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Replication Protein A (RPA) is single-strand DNA binding protein that plays a key
role inthe replication and repair of DNA, RPA is a heterotrimer made of 3 subunits
— RPAL RPAZ and RPAZ. Germline pathogenic variants affecting RPAL were
recently described in patients with Telomere Biclogy Disorders (TBD), also
known as dyskeratosis congenita or short telomere syndrome. Premature
telomere shortening is a hallmark of TBD and results in bone marrow failure
and predisposition to hematologic malignancies. Building on the finding that
somatic mutations in RPA subunit genes occur in ~1% of cancers, we
hypothesized that germline RPA alterations might be enriched in hurnan
cancers. Because germline RPA1 mutations are linked to early onset TED with
predisposition to myelodysplastic syndromes, we interrogated pediatric cancer
cohorts to define the prevalence and spectrum of rare/novel and putative
damaging germline RPA1, RPA2, and RPA3 variants. In this study of 5993
children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer
population allele frequency (AF) = 0.1%) variants in the RPA heterotrimer genes,
of which 51 cases (0.85%) had ultra-rare (AF =< 0.005%) or novel variants.
Compared with Genome Aggregation Database (gnomAD) non-cancer
controls, there was significant enrichment of ultra-rare and novel RPAL but
not RPAZ2 or RPA3, germline variants in our cohort {adjusted p-value < 0.05).
Taken together, these findings suggest that germline putative damaging variants
affecting RPAI are found in excess in children with cancer, warranting further
investigation into the functional role of these variants in oncogenesis.
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Introduction

Maintenance of genome integrity requires efficient DNA repair.
The perturbation of processes engaged in repair of DN A damage by
somatic mutations is a well-known mechanism for oncogenesis.
Germline biallelic inactivation of genes governing DN A repair leads
to classic cancer predisposition syndromes such as Fanconi anemia,
ataxia telangiectasia and Bloom syndrome, among others (1-4).
Monoallelic mutations impacting some of these genes can also
increase the risk for cancer (5-9). We recently discovered that
germline heterozygous mutations in the Replication Protein Al
(RPAL) gene cause Telomere Biology Disorder (TBD), a hereditary
condition classically associated with pathological shortening of
telomeres resulting in bone marrow failure (BMF), pulmonary
and liver fibrosis, mucocutaneous fragility, and predisposition to
solid tumors, myelodysplastic syndromes (MDS) and acute myeloid
leukemia (AML) (10).

The RPAL protein is the largest subunit of Replication Protein
A (RPA), a heterotrimeric complex consisting of RPA1 {RPATD),
RPA2 (RPA32) and RPA3 (RPAI4). As a complex, RPA tightly
binds single-strand DNA (ssDNA) to protect it from nucleases
while maintaining DNA accessible to essential DNA-DNA and
DMNA-protein interactions. Consistent with the ubiguitous and
ongoing formation of ssDNA, RPA is present and required across
almost all cellular processes during replication, recombination, and
repair of DNA. In fact, BPA is involved in all ssDNA repair
pathways (nucleotide excision, base excision, mismatch) and
double strand DNA repair mechanisms (homologous
recombination, non-homologous end joining) (11-13). RPA
participates in such diverse pathways through its ability to
dynamically bind ssDNA while facilitating DNA repair and cell
cycle protein interactions (11},

The essential role of RPA in DNA repair might lend RPA to be
mutated in cancers. By mining the Catalogue Of Somatic Mutations
In Cancer (COSMIC) database (14), we found that somatic
mutations in RPA1, RPA2Z, RPA3 are found in 1.4%, 0.5%, and
0.9% of human cancers, respectively. In our previously published
cohort of 4 patients with TBD, one patient who carried a germline
RPAT p.V227A mutation developed advanced MDS requiring
hematopoietic stem cell transplantation. All 3 RPAI germline
mutations (p.V227A, pE240K, p.T270A) identified in the 4 cases
were missense and 2 out of 3 exerted a gain-of-function effect,
resulting in increased binding to single strand and telomeric DNA
(10). Besides these descriptions associating germline RPAI variants
with bone marrow failure or hematologic malignancies, the RPA2 or
BPA3 genes have not been linked to any human diseases thus far.
Moreover, the landscape of germline variants in RPA heterotrimer
in malignancies has not been systematically assessed. To address
this knowledge gap, we investigated the occurrence of novel and
rare germline variants in RPA I, RPAZ and RPA3 genes, in a cohort
of 5,993 children with cancers. We found that ultra-rare and novel
germline variants in the RPAI gene were significantly more
common among pediatric cancer patients than non-cancer
controls. Furthermore, we examined a separate cohort of 41
young adults with AML and identified potentially deleterious
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RPA! germline variants in 3 cases Our studies indicate that the
RPAI gene may be a novel risk factor for malignancies.

Methods
Data sources

For this study, we used publicly available whole exome
sequencing datasets previously collected across studies at St. Jude
Children's Research Hospital or through dbGaP. Spedfically, we
used the Pediatric Cancer Genome Project (PCGP) (15), real-time
dinical genomics (RTOG/G4K) (16), 5t Jude Lifetime Cohort
(SJLIFE) (17}, and TARGET datasets (TARGET URL is hitps//
www.nchi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000218). In sum, we interrogated 5,993 permline
samples across 24 cancer types including hematologic, non-
central nervous system (CNS) solid tumors, and CNS tumors,
Cancers were stratified into hematologic (n = 3.452; 58%), solid
(n = 1,974; 33%) or CNS (n = 1,068; 18%) cancers and further
subclassified as follows i) hematologic malignancies: B-cell (B)
acute lymphoid leukemia (B-ALL), T-cell ALL (T-ALL), acute
myeloid leukemia (AML), Hodgkins lymphoma, and non-
Hodgkin's lymphoma; ii) solid tumors: germ cell tumor (GCT),
melanoma (MEL), neuroblastoma (NBL), nasopharyngeal
carcinoma (NPC), papillary thyroid carcinoma (PTC), sarcomas
(Ewing's (EWS), osteosarcoma (05), rhabdomyosarcoma (RMS),
synovial), Wilms tumor (WT); and i) CNS tumors: ependymoma
(EP), low grade glioma ({LGG), medulloblastoma (MB), and high
grade glioma (HGG). An external cohort was queried, which
consisted of 41 patients with AML from the German Study
Alliance Leukemia that met following criteria: age below 35, blast-
free remission after chemotherapy, karyotype aberrations (n = 12
with < 3, n = 29 with > 3 aberrations detected in diagnostic
karyotype or FISH analysis), and samples of peripheral blood or
bone marrow at remission (18). The current study was approved by
the Institutional Review Board at 5t. Jude Children's
Research Hospital.

Variant calling and filtering

Varant calling and genotyping were performed using Genome
Analysis Toolkit's (GATK) best practices workflow with
modifications as described previously (19). We retained high
quality variants that passed filtering using following criteria: allelic
balance = 0.2, genotype quality > 20, variant allelic frequency (VAF)
for heterozygous variants between 20-80%, minimum of 10 alternate
reads supporting single nucleotide variants (SN'Vs) and 7 alternate
reads supporting InDels, and missingness < 25% of samples. We
performed variant annotation using ANNOtate VARiation
(ANNOVAR) and variant effect predictor (VEP) tools (20). We
also annotated all the variants using InterVar (21) automated
dinical interpretation based on the American College of Medical
Genetics and Genomics (ACMG) guidelines (22).
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We retained coding variants in the RPA heterotrimer (RPAI,
RPAZ, and RPA3 genes) with genome aggregation database
(gnomAD) non-cancer cohort allelic frequency (AF) of < 0.5%
(23) of the following classes: missense, frameshift insertions and
deletions, stop gain, and splice site. We further filtered to retain
missense variants with a computed Combined Annotation-
Dependent Depletion (CADDY) (24) Phred score > 15.

Computational analysis of RPA mutations

We performed local coordinate minimization followed by
global side-chain optimization with the Atomic Multipole
Optimized Energetics for Biomolecular Applications {AMOEBA)
polarizable force field (25) on 5 high resolution structures of RPA
fragments collectively comprising 7 modular domain of RPA
heterotrimer. These included X-ray structures of the DNA
binding domains A and B, DBD-A and DBED-B (PDEB: 1]MC)
(26), and the RPA trimerization core composed of DBD-C, D and
E(PDB: 1L10) (27) and NMR structures of the DBD-F (SN8A) {28)
and the wing helix domain (PDB: 1DPU} (29). Prior to
minimization, the ssDNA was removed from the 1JMC structure
and bound peptides were removed from the 2 NMR structures, We
then used our optimized structures to predict protein stability
differences AAGp.y (DDG untrained (DDGun)) (30). DDGun
estimates the AAGe,s of missense variants from a linear
regression of sequence and biochemical features determined from
the protein structure. Destabilizing AAGp,s values indicate a
decrease in the ratio of folded to unfolded protein due to the
mutation (we define negative AAGpy values as stabilizing and
positive AAG g, values as destabilizing). We established AAGg 4
cut-offs for mutations highly likely to impact protein folding. Our
cut-offs were determined based on a AAGp; that affects the ratio of
folded to unfolded protein 12-fold (~1.5 keal/mol) for both
stabilizing and destabilizing mutations.

Statistical analysis

We performed rare-variant burden tests for RPAL RPA2, RPA3
variants using 5,993 cases from all pediatric cancers in our cohorts
{pan-cancer) and within each sub-class of cancers, namely,
hematologic (n = 3,452), solid (n = 1,974), and central nervous
system CNS (n = 1,068) malignancies. For the control set, we
retrieved all variants across RPAL RPAZ, and RPA3 from gnomAD
v2 non-cancer subset containing 134,187 individuals with no
reported malignancy (23). All variants from control dataset were
processed through the same variant annotation and filtering
workflow as our cancer cohort (AF < 0.5%). Endchment tests for
cases with and without germline ultra-rare (AF < 0.005%) plus
novel (AF 0%) and rare (AF < 0L1%) variants in the 3 genes were
performed using both two- and one-sided Fisher exact tests using
the statistical package R (v4.3) described in previous studies (31,
32). We used Bonferroni correction to adjust for multiple testing
with a significance cutoff of adjusted p-value of < 0.05.
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Results

Variants identified among the RPA
heterotrimer genes

Within the pan-cancer cohort, we identified 80 cases with 55
germline heterozygous RPAI, RPA2 or RPA3 variants meeting
criteria of AF < 0.5% in gnomAD non-cancer cohort and CADD
seore = 15 for candidate variant selection (Figure 1A). Specifically,
40 RPAI, 7 RPAZ and 8 RPA3 unigue heterozygous germline
variants were identified in 63, 7 and 10 cases, respectively
(Figure 1B). All variants were classified as varfant of uncertain
significance (VUS) according to the ACMG criteria (Tables 1-3),
Majority of the variants (92% of RPAI, 71% of RPA2 and all RPA3
variants) had CADD scores > 20, indicating a higher probability of a
deleterious effect (Tables 1-3). In addition, looking at variant
burden in population, we found that 98% (54/55) of the identified
RPA heterotrimer variants had AF < 0.1% (this includes rare, very-
rare, ultra-rare, and novel variants, Figure 1B). All RPA1, RPA2 and
RPA 3 variants are mutually exclusive and no cases with compound
heterozygous or homozygous variants were identified.

RPA1 germline variants and cancers

RPAL (616 amino adds, 70kDa) is the largest of the 3 subunits
of the RPA heterotrimer. We discovered 1.05% (63/5993) of the
cohort to harbor heterozygous germline RPAI variants (Figure 1C;
Tables 1-3), which was statistically not significant compared to
gnomAD non-cancer controls for all cancers and cancer subtypes
(Table 4). RPAl has 4 modular oligosaccharide binding-fold
domains commonly referred to as functional DNA binding
domains (DBD): F, A, B and C spanning the N- to C- terminal
regions of the protein. BPAI variants were found across all 4 DBEDs
as follows: 6in DBD-F, 15in DBD-A, 10 in DBD-B, and 26 in DBED-
C (Figure 1C). Of note, & cases were found to have RPA1 variants in
the linker regions between 2 DBDs. All RPAI variants were
missense (Figure 1C) except for p.L53153 within DBRD-F, which
was found in 1 case. Three recurrently mutated amino acids were
discovered in BEPAl domains DED-A (p.V286, 9 cases), DBD-B
(p.B389, 5 cases), and DBD-C (p.G437, 5 cases). We next focused
specifically on novel and ultra-rare RPAT variants (33), present in
14 and 21 cases, respectively (Figure 1B; Tables 1-3). Notably, we
found significant enrichment of RPA I novel and ultra-rare variants
in our cohort (adjusted p-value < 0,05, Table 4).

Prediction of variant structural effect was performed by
calculating protein stability change scores (AAGy,a) with a
AAG gy that affects the ratio of folded to unfolded protein 12-fold
(~1.5 kcal/mol) for both stabilizing and destabilizing mutations.
Significant scores (> 1.5 kealimol) were demonstrated for 4 variants
(p.M46T in DBED-F, p. R234G in DBD-A, pW361L in DBED-B,
p- V594G in DBD-C) which were novel or ultra-rare (Tables 1-3).
RPAL p.M46T is likely to destabilize folding of DBD-F resulting in
the loss of multiple important protein-protein interactions (11).
W36l is a key DNA binding residue in DED-B and human cells
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FIGURE 1

Germline heterozygous variants in the RPA heterotrimer in pediafric cancers. [A) Mumber of pediatric cancer cases with either RPAL, RPAZ or RPAS
neterorygous germline vanants, B-ALL (B cell acute lymphosd leukemial, T-ALL [T cell acute lymphoid leukemial, AML [acute myeloid leukemia)
Unique cancers are identified by different colors represented in the legend. (B) Mumber of cancer cases with either novel (pink), ultra- rare (gold)
wery rare (light teall, or rare (blue) germline variants in RPAL RPAZ or RPAS according to gnomAD allelic frequency. Schematic of human RPAL (DA,
binding domain (DBD- F. A, B, C)} [C). RFAZ [DBED-D) (D) and RFAS [DBD-E) (E) proteins with germline varants denoted. Blue and red lettering
represents missense and frameshift variants, respectively, Numbers within circles represent the number of cases that harbored that varant while lack
of numbering denotes one case per variant Variants found in hematologic cases are represented on top and solid {intra and extra cranial)
malignancies are dencted at the bottom of each protein map. * = ultra-rare variant allelic frequency (< 0.005X], # = novel variants.

with W361A support normal replication but are deficient in DNA
repair (12, 34), suggesting that p.W361L may destabilize DED-B
folding resulting in hypomorphic RPA.

We next assessed which types of malignancies were present in
patients with RPAI variants (Figure 1A). We found comparable
frequency of cases with RPA 1 variants across solid tumors (n = 22,
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1.1%), CNS cancers (n = 12, 1.1%) and hematological malignancies
(n=29,0.8%). Among solid tumor cases with RPAT variants, 31.8%
(7/22) presented with sarcomas and 27.3% (6/22) were diagnosed
with neuroblastoma. Notably, the 7 sarcoma cases carried 6 unique
RPA1 variants (n = 2 novel and n = 1 ultra-rare) and only one was
noted to have a concomitant germline mutation (Table 2). All 6
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TABLE1l Germline heterozygous variants found in RPAL, RPAZ and RPAS in pediatric hematological malignancies.

Heterozygous

miline

gmomad

Ancestry

CADD

REVEL

Inter\far

Somatic mutations

e AL3ECE
1747265 SIBALLO32225 BALL 9.14 pMasy AMER 0.0013% 00029% 2 028 Vs none reported IKZF1 del unavailable
eT137C:
1747266 SIALLO4 1240 BALL 413 pMaET NFE novel novel 252 A5G Vs none reported NA 1.9
c155_156dek
1747283 SJALLD41360 BALL 1408 pLS3IE53 NFE (DONEY (0020% NA NA Vs nne reparted NA unavailable
1747879 STHLO42034 HL 174 cG171ApM571 | NFE novel novel 24 0492 Vs none reported NA 02
1747882 SPCBF147 AML 17.68 cGIT4CpISEF | NFE O0009% 00010% 252 0489 Vs none reported NRAS 12
CIOB2ET:
1780546 SITALLO2167S TALL 2238 pR2I0C (ither 0.0038% novel 35 0594 VS nne reparted none reported 05
RCED2-ABL? fusion,
c.C7560G: IKZF1 deletion, VFREE
1782352 SIBALLO20S%4 BALL 2438 p252E Other D0063% D0178% 26.6 0267 Vs none reported deletion 02
NOTCH2 (p.Péfs*, | TP33(p.D281H), ETVé
novel]; FARCD2 (p B4170s), WT1(p.Rd14fs),
c.GH56T: (pV427_El5splice, | PFHPFs(pB225%), FLT3
1782605 SIAMLOIH1G AML 17.11 pvz8eF Orther 00097% 0.0149% 33 0373 WS novel) (pY597>11aa) [T
JAK1p L783F;  ARS:
PASTIVGATAL
AML c.GH56A: pS30_G3165;5TAG2:
1782605 SIAMLO31075 [AMEL) 313 p-V 288l AMER O0410% novel 163 0373 Vs MILL {plaszis) p-T14% s
AML CGB56A: NFM1:p.W2asf: FTPNII:
17E2605 SJAMLO32052 [AMML) 1623 pV2881 NFE Q0410% (02RE% 163 0373 Vs nne reparted pETEK LU
ERCC2p M1fgNPMI:
p-W2ssENRASp.GI2Dx
FTPNILp ATV TRIM2S:
AML CGASGA: pI302_KMMfs
17E2605 SJAMLO32355 [AMML) 17 pV2881 NFE Q0410% (02RE% 163 0373 Vs HIP1:Amplification SLCASA_ELK4:-Fusion LU
c.GH56T:
1782605 SIALLU16427 BALL Ha p-VziaF NFE O0097% 00203% 33 0373 Vs none reported none reported s
CGIO82T:
17E2983 SIALLO41RS9 BALL 1359 pW3SIL NFE (DONEY (0019% 2 0752 Vs nne reparted NA 12
cGI123A;
1783867 STHLO41557 HL Ha pVa7sM NFE 00021% 00049% 286 0413 Vs none reported NA 12
[Continued)
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TABLE1l Continued

gmomad
Heterozygous Mo - Interfar Other heterozy - Stability
Diagnosis RPAL germiine cancer REVEL autom Somatic mutations lecalf
wariant w1l c

cCI165T:

1783909 SITALLOZX93 TALL a0z B pRIgTW AME (L1763% (U0028% 35 0319 Vs e feported none reported 08
c.C1165T:

1783909 STBALLCOD] 72 BAILL NA B p.RIATW MNFE 0.1763% 0.0736% 15 0319 Vs mone repored nane reported 08
cCI165T:

1783909 SJALLMIS268 TALL 6.3 B pR3IZOW NFE 0.1763% 0.0736% 35 0319 VS nne reparted none reported 05
c.C1165T: ATM (pW2re9", TACCI-FGFR3: focal

1783909 SIBALLOG25%2 BALL 1278 | B pRIASW NFE 0.1763% 00736% 35 0319 VYU (LDES) amplification 08
cAIZ5HT:

1787123 SIMHLO42753 NHL .M B p.QllﬂL NFE 0.0019% 0.0042% n .16 VS T rq)nruhd NA unavailable

conling,
it cG1297A:

1787161 STNHLOE207 NHL 1435 | DRD pG433s AFR 0.0157% 0.0508% 215 0218 mone repored NA unavailable
cGIS0RA:

1787173 STHLO42469 HL 1131 [ p.ﬂll’?ﬂ! AFR 00134% 0.1397% X4 2E6 VS T rq)nruhd NA unavailable
CAL459G:

17592053 SIALLO1 8544 BALL 1948 | C P47 MNFE el navel 8.5 0564 mone repored NA 0.2

BRIP] (p.P47A,

cAlSITT: 0.03%), TAL1

1792111 STPHALLOX0033 | BALL 328 C pEs0aV AME (U0034% novel 32 0387 Vs (pEl_splice, novel) | none reported 0.6
CALSITT:

1792111 SIALLG 5640 TALL 523 C p.ES06Y AFR 0.0034% 0.0381% n 0387 Vs mone repored nane reported 0.6
cGI538A: TKZF1 ded, CDEMN2A del,

1792132 SJERGOI0054 BALL MNa [ p.kS]SH NFE D0164% 0.0331% 5 0535 VS T rq)nruhd ETV& del 04
cGL530A:

1792132 STHLO19322 HL 1553 | C pR513H NFE (U0 164% (0331% 35 0535 Vs e feported NA 4
cGla21A:

17951946 S]ALLOM132S BALL 11.21 [ _p.GSd-]R NFE novel novel 24.1 0591 VS T rq)nruhd NA 0.1
cGIE21A: CTC (pR2adgr,

1795196 STMHLOL87EL NHL 14.7 C pGS41R NFE novel novel 26.1 0591 Vs 0.00008%) NA 1
cTI78IG: RADS1D

180035 SIALLO1 8992 BALL 7.78 C pVERG NFE 00011% 0013% 6.5 0568 VYU (G586 novel) NA i3
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TABLE1l Continued

gmomad
Heterozygous Genetic Mo - Ancestry Interfar Other heterozy - Stability
Genf::!-ni-: Diagnosis Dormain RPAZ germline n.n.— ::1'"'_ cancer spacific REVEL autom i Somatic mutations lecal/
position e wariant Ry w1l AF c
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TABLE 2 Germmline heterozygous variants found in RPAL, RPAZ and RPAS in extra-cranial solid tumaors.
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TABLEF Germmline heterozygous variants found in RPAL, RPAZ and RPAS in extra-cranial solid tumaors.
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neuroblastoma cases were found to have unique RPA I vardanis (n=
3 novel, n = 2 ultra-rare) of which half were found to have germline
variants reported in PALB2INDRGY, MDCI1, or TP53 genes
{Table 2), Three cases of retinoblastoma harbored unique RPAL
variants (2 ultra-rare) with 2 cases having concomitant germline
RBI mutation (Table 2). Two cases of Wilms tumor were identified
to have germline RPAI variants. Among the single cases of solid
tumors (germ cell tumor, melanoma, nasopharyngeal carcinoma,
and papillary thyroid carcinoma), 2 ultra-rare and 1 novel RPAT
variants were found.

Among cases with CNS tumors, 4 patients with
medulloblastoma harbored nowvel (n = 3} or ultra-rare (n = 1)
BPAI variants. Each of these cases also carried other germline
mutations (PERRMI, C7 and MYH9, BRCAI, ANKRD26) of which
BRCAT and ANKRDZ26 are cancer predisposition genes (Table 3).
Furthermore, 4 cases with high grade glioma harbored 3 RPAI
variants (n = 1 novel, n = 1 ultra-rare), all dustering within DBD-C
domain of RPA1. These patients had no other potentially causative
germline variants reported in other predisposition genes. Among
the 3 low grade glioma, 3 RPAI variants (one ultra-rare) were
identified, with one harboring other germline mutations in SDHA
and RUNXI. Lastly, one ultra-rare RPAT variant was identified in a
case of ependymoma without other germline mutations (Table 3).

From patients with hematologic malignancies, RPA1 variants
were most common in B-ALL (n = 13}, followed by lymphoma (n=
7), AML (n = 5), and T-ALL {n = 4) {Table 1). Out of 13 B-ALL
cases, 3 and 5 were novel and ultra-rare, respectively. Only 2 cases
out of the 13 had heterozygous germline variants in cancer
predisposition genes (RAD51D, BRIPI). Among lymphomas, we
observed 4 Hodgkin's lymphoma (n = 1 novel, n = 1 ultra-rare) and
3 non-Hodgkin's lymphoma (n = 1 novel, n = 1 ultra-rare) with
BPAI variants. In the AML sub-cohort, we found 3 unique RPAI
variants in 5 cases, of which 4 were mutated at nucleotide 856 in
DBD-A (c8560G>T, c.856G>A coding different amino adds) and 1
ultra-rare variant in DBD-F domain (Table 1). Of the 5 RPAI-
mutated AML cases, 3 carried other germline variants (MLL, HIP1,
NOTCH2 and FANCD2). Four unique RPAI variants (n = 2 ultra-
rare) were discovered in 4 patients with T-ALL, with one case
having additional germline ATM variant {Table 1).

Given the occurrence of MDS/AML in one prior patient with
germline RPAT pV227A with TBD (10) and 5 AML cases in this
study, we queried a cohort of 41 young adults with AML and
karyotype aberrations ( 13) for RPA heterotrimer germline variants.
We found 1 ultra-rare (c.460G=A, T154A, AF 0.001%) and 2 rare
(c.1397C>G, Ad66G, AF 0.027%; c.1538G>A, R513H, AF 0.016%)
RPA1 heterozygous variants (Supplemental Table 1),

RPAZ and RPA3 germline variants
and cancers

RPAZ2 is the second largest subunit (270 amino acids, 34kDa) of
the RP A heterotrimer. We identified 6 heterozygous germline RPA2
variants in 7 cases of pediatric malignancies. Five variants are
present in DBD-D (Figure 1D) and did not exhibit dysfunctional
protein folding scores (Tables 1, 2). All variants were either ultra-
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rare (n = 5) or novel (n = 1). Four patients (4/3452, (.1%) had
hematological malignancies (n = 1 B-ALL, n = 1 T-ALL, n = 2
Hodgkin's lymphoma) and 3 had solid cancers (n=1RBEL.n=1
neuroblastoma, n = 1 sarcoma). Other germline mutations were
noted in 3 out of 7 cases (Tables 1, 2],

RFPA3, although less than half the size of RPA2 (121 amino
acids, 14kDa) had 8 unique germline heterozygous variants (n = 4
ultra-rare, n = 3 novel) in 10 cases of pediatric cancers, including 6
hematologic (B-ALL n = 3, T-ALL n = 1, AML n = 1, Hodgkin's
Iymphoma n = 1), 3 solid tumors (Wilms tumor n = 2, sarcoman =
1) and 1 CNS (medulloblastoma) cancers (Figure 1E; Tables 1-3),
All were missense except for one frameshift (p.M40Cfs* 16). Protein
folding scores for 2 out of 7 available RPA3J variants were greater
than 1.5 keal/maol and were either novel or ultra-rare (Tables 1-3),
Half of RPA3 mutated cases had other germline variants noted
(Tables 1-3). The number of cases with RPAZ or RPA3 germline
variants did not reach statistical significance compared to gnomAD

non-cancer controls (Table 4).,

Discussion

The RPA heterotrimer is an essential protein for binding
ssDINA encountered in cellular transactions to facilitate DMNA-
DNA and DNA-protein interactions during DNA replication,
repair, recombination, RNA transeription, and telomere
maintenance, As such, mutations in this genome maintenance
protein have been linked to cancer formation in mice (35) and
are acquired in up to ~1% of human cancers (14). We recently
demonstrated that heterozygous germline RPAI mutations RPAI
c.680T=C p V2274, c718G>A p.E240K and c.808A>G p.T270A in
DBD-A are associated with TBD, which predisposes to hematologic
and solid tumors. In this study, one patient with RPA1-related TBD
developed MDS (10). Based on these data, we reasoned that
germline defects in RPA1 and possibly also the other 2
components of the RPA heterotrimer (RPA2 and RPA3) might be
associated with cancer development. To this end, we investigated
comprehensive germline genomic data for the presence of
heterozygous varants in RPAJ, RPAZ and RPA3 across a large
series of pediatric hematologic, solid and CN% malignancies. We
discovered significant enrichment of ultra-rare and novel RPA1
germline variants in our pediatric cancer cohort compared to non-
cancer controls, positioning RPA1 as a novel candidate
predisposition gene, Moreover, in an additional cohort of 41
patients with AML, we identified 3 heterozygous germline RPAI
vadants (c460G>A, pTI154A; c1397C>G, pA466G; c1538G=A,
p-R513H) with potential pathogenic effect.

RPAT harbored the most variants likely due to its larger size
compared to RPA2 and RPA3. Although we did not observe a
statistically significant enrichment of putative damaging variants in
RPAZand RPA3, some of the identified variants were novel or ultra-
rare and could possibly have a deleterious effect. Thus, RPA2 and
RPA 3 could be considered as genes of unknown significance (GUS)
vet potentially important in tumor formation. All 3 proteins are
required to fold properly to form a functional RPA heterotrimer
(13). For this reason, we calculated stabilities of the RPA modular
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TABLE 4 5tatistical analysis using two- and one-sided Fisher exact tests of ultra-rare plus novel and rare germline heterozygous variants im RPAL, RPAZ and RPAS across hematologic, extra-cranial solid and CHS

tumors.
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domains harboring mutations to gain insight into the possible effect
of identified germline variants on RPA heterotrimer function.
Scores greater than 1.5 are highly predictive of protein instability
and dysfunction. High protein folding scores were found for 4
unigue RPAL variants in 4 cases, 3 identified in patients with B-ALL
and onein a patient with ependymoma. All were either ultra-rare or
novel with CADD scores suggesting high likelihood of
pathogenicity. Two RPA3 variants also harbored high protein
folding scores in patients with B-ALL. This suggests that
dysfunctional folding of the RPA heterotrimer may lead to
genomic instability in these patients.

In our discovery cohort, we identified 5 AML cases with germline
BPAL variants. One had an ultra-rare RPAT pL58F varant in DBD-F
and the remaining 4 had variants affecting nucleotide 856 within DBD-
A domain (c.GR56A, p.V2861 in 3 cases and . GR56T, p.V286F in one
case). The resulting amino acid changes do not differ in size or charge
from wild-type valine and have a neutral protein folding score of 0.6
However, these mutations may disrupt protein-protein, protein-DNA
interactions, or post-translational moedifications, which are known
mechanisms implicated in pathogenicity of RPAT variants in varous
experimental maodels (10-13, 35), Additionally, TRBD-associated
pathogenic RPAI variants, p.V227A, pEMOK and p.T270A, have
protein folding scores of 1.4, 0.1 and 0.2 (consistent with normal
protein folding shown in biochemical assays) yet were shown to exert
gain-of-function effect on DNA binding and melting of telomeric G-
quadrniplexes (10). Three of the 4 AML cases with RPAT varanis in
DBED-A domain had additional germline variants in genes (NOTCHZ,
FANCD2, MLL, HIP1} which, together with RPAT may have an
epistatic effect to cause overall genomic instability. Corroborating
data from a small cohort of 41 AML patients in which 3 patients
carried RPAL variants (p.T154A in linker region; p A466G and
p-B513H in DBD-C) deserves further investigation. Beyond RPAI in
the AML cohort, we also found a novel germline missense variant in
RPA3 in an infant with AML who also harbored a germline truncating
variant in the DNA helicase, RTEL1, which is associated with TBD (36,
37). More functional studies are needed to determine the pathogenicity
of RPA1 V2861/F alterations and their role in hematologic malignancy.

Among the 13 CNS tumors with variants in RFA heterotrimer
genes, 9 cases were high grade neoplasms, including
medulloblastoma and high-grade glioma. Interestingly, 3 of the 5
medulloblastoma cases had novel and one very rare germline RPA1,
as well as one ultra-rare RPA3 variant Notably, even though
variants in other unrelated genes were also found in 4 of the 5
medulloblastoma cases, none of these genes have been previously
associated with medulloblastomas in the literature. Other studies
have identified germline defects in DNA repair genes in
medulloblastorma (38, 39). It would stand to reason that germline
mutations in the RPA heterotrimer, which functions in almost all
DMA repair pathways, could potentiate oncogenic transformation.
Further investigation should focus on assessing the function of RPA
mutant proteins in DNA repair and their contribution to
tumor biology.

Our study has several limitations. Although all cases were
assessed using a uniform pipeline, the cohort is skewed towards
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cases with B-ALL (~4-fold higher number of B-ALL compared to
solid and CNS cancers). We included all germline and somatic
mutations per case that were reported in previously published
studies; however, this information was unavailable for a
proportion of cases and therefore we cannol make definitive
conchisions about RPA variants being the sole germline driver in
these cancers. Although ultra-rare and novel heterozygous germline
variants in RPA I were significantly enriched in pediatric cancers, it
is difficult to ascertain pathogenicity and clinical relevance without
functional follow-up, which falls beyond the scope of this study. It is
plausible that variants with high in-silico protein folding energy,
ultra-rare and/or novel allelic frequency and high pathogenicity
scores may be clinically relevant and should be among the top
variants to explore in future studies.

In summary, evasion of DNA repair mechanisms is a common
theme among cancers. RPA is an essential protein for DNA
replication and repair. Our study describes novel and rare
variants with potentially deleterious effect in the RPA1, RPA2 and
RPA3 genes in pediatric malignancies. Moreover, we have identified
enrichment of RPAI variants in cancer cases compared to non-
cancer controls, suggesting that this gene potentially acts as a novel
cancer driver. We plan to exploit our findings and perform further
functional and biochemical characterization of recurrent cancer
associated RPAT variants to assess their potential use as targets for
future cancer therapies.
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