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SPACES OF EMBEDDINGS: NONSINGULAR BILINEAR MAPS,
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Abstract. Given a space X we study the topology of the space of embed-
dings of X into Rd through the combinatorics of triangulations of X. We give
a simple combinatorial formula for upper bounds for the largest dimension of
a sphere that antipodally maps into the space of embeddings. This result sum-
marizes and extends results about the nonembeddability of complexes into Rd,
the nonexistence of nonsingular bilinear maps, and the study of embeddings

into Rd up to isotopy, such as the chirality of spatial graphs.

1. Introduction

Given a topological space X, a classical question in geometric topology asks for
the lowest dimension d such that X embeds into Rd. Among the milestones of this
line of inquiry are the characterization of planar graphs (as graphs without K5- and
K3,3-minors), Whitney’s embedding theorem (that any smooth d-manifold embeds
into R2d), the Van Kampen–Flores theorem (that the d-skeleton of the (2d + 2)-
simplex does not embed into R

2d), and upper and lower bounds for the embedding
dimension of real projective space RPn.

A general nonembeddability result in terms of the combinatorics of triangulations
ofX is Sarkaria’s Coloring/Embedding Theorem, which can be found in Matoušek’s
book [32, Theorem 5.8.2] and is implicit in Sarkaria’s papers [37,38]. To state it we
need to introduce the following definitions: For a simplicial complex Σ on ground
set [n] = {1, 2, . . . , n}, we denote by KG(Σ) the Kneser graph of its nonfaces, that
is, the graph whose vertices correspond to those subsets of [n] that do not form
a face of Σ, and with edges between vertices corresponding to disjoint faces. For
a graph G we denote by χ(G) its chromatic number, that is, the least number of
colors c needed to color its vertices such that the two endpoints of every edge receive
distinct colors. A proper coloring of the Kneser graph of minimal nonfaces induces
a proper coloring of the Kneser graph of all nonfaces (by coloring some nonface
σ by the color of some minimal nonface τ ⊂ σ). For a simplicial complex Σ a
continuous map f : Σ → R

d is an almost-embedding if f(σ) ∩ f(τ ) = ∅ for any two
vertex-disjoint faces σ and τ of Σ.

Sarkaria’s theorem states that for a simplicial complex Σ on ground set [n],
and for d = n − 2 − χ(KG(Σ)), there is no almost-embedding Σ → Rd. Here
we prove a generalization of this result. An embedding f : X →֒ Rd that can be
isotoped into itsmirror image, that is, an embedding obtained from f by composing

Received by the editors November 24, 2020, and, in revised form, April 2, 2021.
2020 Mathematics Subject Classification. Primary 57K45, 15A63, 58D10, 57Q15.
The first author was supported by NSF grant DMS 1855591 and a Sloan Research Fellowship.

c©2021 American Mathematical Society

423

Licensed to Carnegie Mellon Univ. Prepared on Tue Nov 14 17:05:56 EST 2023 for download from IP 128.2.114.22.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



424 FLORIAN FRICK AND MICHAEL HARRISON

with an orientation-reversing homeomorphism, is called achiral. Otherwise f is
chiral. If X embeds into Rd, then there is an achiral embedding X →֒ Rd+1

obtained by including R
d →֒ R

d+1 as a hyperplane. Thus for any nonembeddability
result (X does not embed into Rd) we may ask whether it generalizes to a chirality
result (every embedding X →֒ Rd+1 is chiral) . We prove that Sarkaria’s theorem
generalizes in this way:

Theorem 1.1. Let Σ be a simplicial complex on ground set [n], and let d = n −
1 − χ(KG(Σ)). Then no almost-embedding Σ → Rd is homotopic through almost-

embeddings to its mirror image.

We thank an anonymous referee for suggesting that this special case deserves
special attention. Other nonembeddability results have previously been generalized
in the same way: Flapan [9] showed that every embedding K3,3 →֒ R3 of the
complete bipartite graph K3,3 is chiral. (Actually, Flapan showed that K3,3 is
chiral in an a priori stronger sense; we will explain the details in Section 2.1.) It is
known that no embedding RP 2 →֒ R4 is isotopic to its mirror image (see [3]) and the
same is true for embeddings CP 2 →֒ R7. See Skopenkov [40] for a classification of
smooth embeddings CP 2 →֒ R

7 up to smooth isotopy. In fact, all of these chirality
results follow from Theorem 1.1:

Corollary 1.2. Let ΣRP 2 and ΣCP 2 denote the minimal triangulations of RP 2 and

CP 2, respectively.

(i) Given any almost-embedding ΣRP 2 → R
4 there is no homotopy to its mir-

ror image through almost-embeddings. The same is true for any almost-

embedding ΣCP 2 → R7.

(ii) Given any almost-embedding Δ
(k)
2k+2 → R2k+1 there is no homotopy to its

mirror image through almost-embeddings. The same is true for any almost-

embedding [3]∗(k+1) → R2k+1.

Part (ii) of Corollary 1.2 is a chiral generalization of the Van Kampen–Flores

theorem [12, 42], which asserts that the k-skeleton Δ
(k)
2k+2 of the (2k + 2)-simplex

Δ2k+2 and the (k+1)-fold join [3]∗(k+1) of a 3-point space do not embed into R2k.
The case k = 1 is the nonplanarity of K5 and of K3,3.

The study of chirality leads naturally into a more general study of the equivariant
topology of the space of embeddings Emb(X,Rd), considered with the compact-
open topology. These spaces are particularly well-studied when X is a discrete
space on n points, where Emb(X,Rd) is the ordered configuration space of n points
in Rd. For general X, we are interested in the following question: if there is
an embedding X → R

d, is there a rich collection of such embeddings, or will
any sufficiently rich parametrized family of continuous maps necessarily include a
nonembedding? Observe that f : X → Rd is chiral if and only if its mirror image
is in a different path component of Emb(X,Rd). Thus there is no Z/2-equivariant
map S1 → Emb(X,Rd), where S1 has the antipodal action and the embedding
space has the action from the mirror image. This is conveniently stated using the
language of coindex as follows.

The coindex coind(Y ) of a Z/2-space Y is the largest dimension k such that a
Z/2-map Sk → Y from the k-dimensional sphere Sk equipped with the antipodal
Z/2-action exists. The coindex may be considered as some measure of the size or
complexity of a space, though it is only meaningful when the Z/2-action is free,
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SPACES OF EMBEDDINGS 425

since otherwise the constant map from any given sphere to a fixed point is Z/2-
equivariant.

Given ℓ ∈ {1, 2, . . . , d} we fix a Z/2-action on R
d that flips the sign of the first

ℓ coordinates, that is, the generator ε acts by

ε · (x1, . . . , xd) = (−x1, . . . ,−xℓ, xℓ+1, . . . , xd).

The space Emb(X,Rd) with the naturally induced Z/2-action (ε · f)(x) = ε · f(x)
will be denoted by Embℓ(X,Rd). Observe that this action is free if and only if X
does not embed into Rd−ℓ. Notice that all embeddings X →֒ Rd of some space
X are chiral if and only if coind(Emb1(X,Rd)) ≤ 0, thus it is natural to think of
higher values of coindex as some form of “higher achirality.” Our main result is:

Theorem 1.3. Let Σ be a simplicial complex on ground set [n]. Let d and ℓ be

nonnegative integers such that m = d−n+χ(KG(Σ))+2 ≤ ℓ. If the integers m and

ℓ −m do not share common ones in their binary expansions, then AEmbℓ(Σ,R
d),

and thus Embℓ(Σ,R
d), has coindex at most m− 1.

Observe that Theorem 1.1 is the special case m = ℓ = 1, which in turn yields
Sarkaria’s theorem. Moreoever, this allows us to compute the upper bounds for the
coindex of embedding spaces of RP 2 and CP 2:

Corollary 1.4. For any dimension d ≥ 1,

coind(Embd(RP
2,Rd)) = 4

⌊d

4

⌋

− 1 and

coind(Embd(CP
2,Rd)) =

{

8k d = 8k + 7

8
⌊

d
8

⌋

− 1 otherwise
.

The lower bounds in Corollary 1.4 may be achieved using existence results for
nonsingular bilinear maps. A bilinear map B : Rp+1 ×Rq+1 → Rd is called nonsin-

gular if B(x, y) = 0 implies that x = 0 or y = 0. Nonsingular bilinear maps were
originally studied in the context of square identities, but they have since made
prominent appearances in topology (see Section 2.2 for a brief history).

In fact, the bounds of Theorem 1.3 not only specialize to results about the
chirality of embeddings, the more far-reaching bounds for the equivariant topol-
ogy of embedding spaces in terms of their coindex generalize classical results on
the nonexistence of nonsingular bilinear maps as well. This is because the ex-
istence of a nonsingular bilinear map B : Rp+1 × Rq+1 → Rd easily implies that
coind(Embd(S

p,Rd)) ≥ q; see Lemma 2.2. Thus upper bounds for the equivari-
ant topology of Embd(S

p,Rd) generalize the nonexistence of nonsingular bilinear
maps. Theorem 1.3 provides easily computable upper bounds for the equivariant
topology of embedding spaces that generalize chirality results on the one hand and
nonexistence results for nonsingular bilinear maps on the other hand.

Using known results for bilinear maps, it is straightforward to show that, if the
integers p and d−p do not share any common ones in their binary expansions, then

coind(Embd(S
p,Rd)) = d− p− 1;(1.1)

see Corollary 5.3.
We will prove a discretized generalization of this result:

Corollary 1.5. If the nonnegative integers p and d− p do not share any common

ones in their binary expansions then coind(AEmbd(∂Δp+1,R
d)) = d− p− 1.
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The ordered configuration space of p+ 2 affinely independent points in Rd nat-
urally includes into the space AEmbd(∂Δp+1,R

d), since the convex hull of these
points determines an embedding Δp+1 →֒ R

d. Corollary 1.5 gives precise bounds
for the equivariant topology of these configuration spaces.

It follows from the Borsuk-Ulam theorem that Emb(Sn,Rn) is empty; this is
the special case p = d of (1.1). The topological Radon theorem of Bajmóczy and
Bárány [4] asserts that there is no almost-embedding ∂Δn+1 → R

n; this is the
special case p = d of Corollary 1.5.

More generally, the result that any Z/2-equivariant map S2 × S1 → R3 must
have a zero implies that when turning S2 inside-out, which is possible through im-
mersions by work of Smale [41], then at some point in time two antipodal points of
S2 are mapped to the same point. Corollary 1.5 in this case asserts that when turn-
ing the boundary of a tetrahedron inside-out, two disjoint faces of the tetrahedron
must overlap in the image at some point in time.

Together with existence results for nonsingular bilinear maps, Corollary 1.5 yields
the exact values of coind(AEmbd(∂Δp+1,R

d)) for p ≤ 8, generalizing classical
nonexistence results for nonsingular bilinear maps, as tabulated by Berger and
Friedland [5]; see Figure 1 (in Section 5).

2. Some context

To contextualize Theorem 1.3 and its corollaries, we provide brief introductions
to chirality and nonsingular bilinear maps.

2.1. Chirality. The study of whether a given embedding G →֒ R3 of a graph G is
chiral was originally motivated by chemistry. In the original motivation G repre-
sents the bonds in a molecule. See [10] for an introduction, where for instance we
can learn that “one enantiomer of the molecule called carvone smells like caraway,
whereas its mirror image smells like spearmint.”

In order to distinguish between various notions of chirality we need the notions of
isotopy and ambient isotopy, which we recall now. A continuous map F : X×[0, 1] →
Rd, (x, t) 	→ ft(x) such that ft is an embedding for every t is an isotopy between f0
and f1. Given two embedding h, h′ : X →֒ Rd, an ambient isotopy from h to h′ is a
continuous map F : Rd×[0, 1] → Rd, (x, t) 	→ ft(x) such that ft is a homeomorphism
for every t, f0 is the identity and f1(h(x)) = h′(x) for all x ∈ X. In the smooth
category any isotopy can be extended to an ambient isotopy. This fails without the
smoothness requirement; for example, any knot S1 →֒ R3 is isotopic to the unknot.

The notion of ambient isotopy can similarly be defined for subspaces instead
of embeddings: Given two subspaces X,X ′ ⊂ R

d, an ambient isotopy from X
to X ′ is a continuous map F : Rd × [0, 1] → Rd, (x, t) 	→ ft(x) such that ft is a
homeomorphism for every t, f0 is the identity and f1(X) = X ′. An ambient isotopy
between the embeddings h and h′ is also an ambient isotopy from h(X) to h′(X),
so an ambient isotopy between subspaces (the images of two given embeddings) is
in general a weaker requirement than an ambient isotopy between embeddings.

Let X ⊂ Rd, and let h : Rd → Rd be a homeomorphism which is isotopic to a
reflection in a hyperplane, that is, h is an orientation-reversing homeomorphism.
Then h(X) is a mirror image of X. All mirror images are the same up to ambient
isotopy. The spatial graphs literature calls a graph G (intrinsically) chiral if given
any embedding f : G →֒ R3 there is no ambient isotopy of the subspace f(G) ⊂ R3
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SPACES OF EMBEDDINGS 427

to a mirror image of f(G). We will refer to this as unlabelled chirality to distinguish
this from the notion of chirality for embeddings.

It is not difficult to see that all embeddings X →֒ R
d of some space X are chiral

if and only if coind(Emb1(X,Rd)) ≤ 0. More generally, we have the following.

Lemma 2.1. Let X be a space, and let 0 ≤ ℓ ≤ d be integers. Then coind
(Embℓ(X,Rd)) ≥ 1 if and only if there is an isotopy between some embedding

f : X →֒ Rd and the embedding obtained from f by flipping the sign of the first ℓ
coordinates.

Proof. Let Φ: S1 → Embℓ(X,Rd) be a Z/2-map. Denote the generator of the Z/2-
action on Embℓ(X,Rd) by ε. Fix a point x0 ∈ S1 and a path γ : [0, 1] → S1 with
γ(0) = x0 and γ(1) = −x0. Then Φ ◦ γ is an isotopy from the embedding Φ(x0)
to Φ(−x0) = εΦ(x0). Conversely, let F : [0, 1] → Emb(X,Rd) be an isotopy with
F (1) = εF (0). Think of [0, 1] as the upper semi-circle of S1 and extend F to a
continuous map Φ: S1 → Emb(X,Rd) by setting Φ(x) = F (x) for x in the upper
semi-circle and Φ(x) = εΦ(−x) for x in the lower semi-circle. �

Given a graph G, the notion of unlabelled chirality for G is often deduced from
the (labeled) version for embeddings by showing that any homeomorphism G → G
(up to isotopy) extends to an orientation-preserving homeomorphism R3 → R3. For
example, this is how Simon [39] shows that the image of a particular embedding
of K3,3 is chiral. Flapan [9] showed that K3,3 is chiral in the stronger, unlabelled
sense.

The notion of unlabelled chirality of spatial graphs G ⊂ R3 is different from
the stronger notion of chirality of embeddings G →֒ R3. Flapan and Weaver [11]
showed that the complete graphs K4n+3, n ≥ 1, are chiral as subspaces, and all
other complete graphs are not chiral in the unlabelled sense, that is, for every n �≡ 3
mod 4 there is a subspace X of R3 homeomorphic to Kn and an ambient isotopy
to a mirror image of X. On the other hand, Theorem 1.3 easily implies that for
any given embedding f : Kn →֒ R

3, n ≥ 5, there is no isotopy to a mirror image of
f through almost-embeddings.

In this sense our results are weaker than the chirality results for spatial graphs
since they apply to (labelled) embeddings and not to (unlabelled) subspaces. There
is no difference for some spaces, such as for RP 2 since any homeomorphism of RP 2

is the identity up to isotopy. In fact, in those cases our results may be stronger since
they assert the nonexistence of an isotopy, which is stronger than the nonexistence
of an ambient isotopy as we do not have any smoothness requirement.

2.2. Nonsingular bilinear maps. A bilinear map B : Rp+1 ×Rq+1 → Rd is non-
singular if B(x, y) = 0 implies x = 0 or y = 0. The Hurwitz–Radon function
ρ(p+ 1, d) is defined as the maximum number q + 1 such that there exists a non-
singular bilinear map Rp+1 ×Rq+1 → Rd. The values of ρ(p+ 1) := ρ(p+ 1, p+ 1)
are known and may be computed as follows: decompose p + 1 = 2b+4c · (2a + 1),
with 0 ≤ b < 4, then ρ(p + 1) is equal to 2b + 8c. For example, ρ(4) = 4, and a
nonsingular bilinear map R4 × R4 → R4 is given by quaternionic multiplication.

The Hurwitz–Radon function originally appeared in the independent works of
Hurwitz [20] and Radon [35] in their studies of square identities. It has since made
prominent appearances in topology. In particular, an important result of Adams
[1] is that the inequality q + 1 ≤ ρ(p+ 1)− 1 holds if and only if there exist q + 1
linearly independent tangent vector fields on Sp. The Hurwitz–Radon function is
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428 FLORIAN FRICK AND MICHAEL HARRISON

also related to the study of skew fibrations of Rn by pairwise skew affine copies
of Rp+1; see [15, 16, 18, 33, 34].

Nonsingular (symmetric) bilinear maps have been studied, in part, due to their
relationships to immersions and embeddings of projective spaces and to totally
nonparallel immersions; see [17, 21]. Most notably, they were studied in a series of
articles by K.Y. Lam (e.g. [24–29]) and by Berger and Friedland [5].

We also note that nonsingular skew-linear maps B : Rp+1 × Sq → R
d (here skew

refers to Z/2-equivariance in the second slot) and biskew maps Sp × Sq → Rd

have received separate attention; the former notion is equivalent to the generalized

vector field problem, and the latter appears in the study of symmetric topological
complexity [14]. Each of these notions will appear in our study of coindex.

The connection between the existence of nonsingular bilinear maps and the coin-
dex of embedding spaces is the following straight-forward lemma:

Lemma 2.2. Let B : Rp+1 × R
q+1 → R

d be a nonsingular bilinear map. Then

coind(Embd(S
p,Rd)) ≥ q.

Proof. The restriction of B to the unit sphere Sp in R
p+1 and Sq in R

q+1 yields
a map Sp × Sq → Rd that is Z/2-equivariant in the second entry. Moreover, for
any fixed y0 ∈ Sq the restriction Sp × {y0} → Rd is an embedding, and thus by
currying the map Sp × Sq → Rd we see that coind(Embd(S

p,Rd)) ≥ q. �

3. Preliminaries and related results

Here we summarize auxiliary definitions and results that we will need in subse-
quent sections.

3.1. Nonsingular bilinear and biskew maps. We collect some simple existence
results for nonsingular bilinear maps.

Lemma 3.1. Nonsingular bilinear maps exist in the following dimensions:

(a) R× R
k → R

k,

(b) R2 × R2k → R2k,

(c) R4 × R4k → R4k,

(d) R8 × R8k → R8k,

(e) R
p+1 × R

q+1 → R
p+q+1,

(f) Rp+1 × Rq+1 → Rp+q, when p and q are both odd,

(g) R9 × R16 → R16.

Proof. The nonsingular bilinear maps in items (a)–(d) are induced by real, complex,
quaternionic, and octonionic multiplication. For item (e), treat R

p+1 and R
q+1

as the coefficients of degree-p and degree-q real polynomials. Then polynomial
multiplication is a nonsingular bilinear map into Rp+q+1, the space of degree-(p+q)
real polynomials. When p and q are odd, the similarly defined complex polynomial
multiplication may be used for item (f). Item (g) follows from the known value
ρ(16) = 9, which may be computed by the definition of the Hurwitz-Radon function
ρ given in Section 2.2. �

Suppose there exists a nonsingular bilinear map Rp+1 ×Rq+1 → Rp+q (compare
with Lemma 3.1(e) and (f)). Then there exists a biskew map Sp × Sq → Sp+q−1,
which induces a map of real projective spaces. By studying the induced map on
cohomology in Z/2-coefficients, Hopf [19] showed that such a map can only exist
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if p and q both have a common one in some digit of their binary expansions. The
following more general statement has a nearly identical proof, though we present it
in modern language.

The Stiefel-Whitney height swh(X) of a Z/2-space X is the largest number q
such that the qth power of the first Stiefel-Whitney class is nonzero: ω1(X)q �= 0;
here the multiplication is the cup product in the cohomology ring H∗(X/Z/2;Z/2).
The Stiefel-Whitney height is also (and perhaps more commonly) known as the
cohomological index, but we use the former term here to avoid confusion with the
coindex. We refer to Chapter 5.3 of [32] for basic properties of the Stiefel-Whitney
height.

Proposition 3.2. Let X1, . . . , Xk be free Z/2-spaces with Stiefel-Whitney heights

i1, . . . , ik. If no two of the numbers i1, . . . , ik share a one in any digit of their binary

expansions, then every (Z/2)k-equivariant map

f : X1 × · · · ×Xk → R
i1+···+ik

has a zero.

Proof. Let n = i1 + · · · + ik. We show the contrapositive. If f avoids zero, then
by normalization, f maps (Z/2)k-equivariantly into Sn−1, hence induces a map on
quotients. The quotient map induces a map in cohomology with Z/2-coefficients:

H∗(RPn−1) → H∗(X1/Z/2× · · · ×Xk/Z/2) ≃ H∗(X1/Z/2)⊗ · · · ⊗H∗(Xk/Z/2),

which maps

ω1(RP
n−1) 	→ ω1(X1)⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ ω1(Xk).

Since 0 = ω1(RP
n−1)n, its image is zero in H∗(X1/Z/2× · · · ×Xk/Z/2):

0 = (ω1(X1) + · · ·+ ω1(Xk))
n.

Therefore

0 =

(

n

i1, . . . , ik

)

ω1(X1)
i1 · · ·ω1(Xk)

ik ,

which, by the condition on the Stiefel-Whitney heights, implies that the multinomial
coefficient

(

n
i1,...,ik

)

is even. By a standard generalization of the Lucas theorem [30],

this occurs if and only if two of the i1, . . . , ik share a one in any slot of their binary
expansions. �

We also require a similar statement which takes into account different possible
Z/2-actions in the codomain. Let V−−, V+−, or V−+ denote R as a (Z/2)2-module,
where the subscript indicates the action of the two standard generators, that is,
V+− indicates that the first generator acts trivially, while the second generator acts
by x 	→ −x. Lemma 3.3 follows easily from Ramos [36]. Another short proof using
mapping degrees can be found in [7].

Lemma 3.3. Let k, ℓ,m, p, and q be nonnegative integers with p+q = k+ℓ+m, p ≥
ℓ, and q ≥ m. Suppose that p− ℓ and q−m do not share a one in any digit of their

binary expansions. Then any (Z/2)2-equivariant map Sp×Sq → V k
−−×V ℓ

−+×V m
+−

has a zero.
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430 FLORIAN FRICK AND MICHAEL HARRISON

3.2. Joins and deleted joins. Recall that for topological spaces X and Y the
join is the space X ∗ Y obtained from X × Y × [0, 1] by taking the quotient with
respect to the equivalence relation generated by (x, y, 0) ∼ (x′, y, 0) for x, x′ ∈ X
and (x, y, 1) ∼ (x, y′, 1) for y, y′ ∈ Y . If the simplicial complexes ΣX and ΣY

triangulate X and Y , respectively, then the join X ∗ Y is naturally triangulated by
the join of simplicial complexes ΣX ∗ ΣY . As abstract simplicial complexes

ΣX ∗ ΣY = {σ × {1} ∪ τ × {2} : σ ∈ ΣX , τ ∈ ΣY },

that is, the join is defined by the rule that the vertices of a face in ΣX and the
vertices of a face in ΣY together span a face in ΣX ∗ΣY . Here we assume that ΣX

and ΣY have disjoint vertex sets.
One may think of the join X ∗ Y as abstract convex combinations of points in

X and in Y . We will write λ1x + λ2y, with λ1, λ2 ≥ 0 and λ1 + λ2 = 1, for the
point (x, y, λ1) in X ∗ Y . Thus for λ1 = 0 the point x does not influence the point
in X ∗ Y , whereas for λ1 = 1 the choice of y does not matter. Note that in this
notation λ1x1+λ2x2 and λ2x2+λ1x1 determine different points in X∗X if x1 �= x2.

The deleted join X∗2
∆ of a space X is obtained from X ∗X by deleting all points

of the form (x, x, t) with x ∈ X and t ∈ (0, 1). The deleted join Σ∗2
∆ of a simplicial

complex Σ is obtained from the join Σ ∗ Σ by deleting all those faces that have a
vertex in Σ in common, that is,

Σ∗2
∆ = {σ × {1} ∪ τ × {2} : σ, τ ∈ Σ, σ ∩ τ = ∅}.

In particular the deleted join (Δn)
∗2
∆ of the n-simplex Δn is the boundary of an

(n+1)-dimensional crosspolytope, and thus (Δn)
∗2
∆ is homeomorphic to Sn. Inter-

changing the join factors λ1x1+λ2x2 	→ λ2x2+λ1x1 is the antipodal action on the
sphere (Δn)

∗2
∆ .

4. Proof of the main result

Here we prove Theorem 1.3. We first state and prove a more general result,
Theorem 4.1, and then derive Theorem 1.3 as a simple corollary.

Theorem 4.1. Let Σ be a simplicial complex on ground set [n]. Let c, d, and

ℓ be nonnegative integers such that m = d − n + c + 2 ≤ ℓ. Suppose there is

a map Ψ: (Δn−1)
∗2
∆ → Rc with Ψ(λ1x1 + λ2x2) = −Ψ(λ2x2 + λ1x1) such that

Ψ(λ1x1 + λ2x2) = 0 implies λ1 = 1
2 = λ2 and x1, x2 ∈ Σ. If the integers m and

ℓ−m do not share ones in their binary expansions, then AEmbℓ(Σ,R
d), and thus

Embℓ(Σ,R
d), has coindex at most m− 1.

Proof. Let F : Σ×Sm → R
d be a map that is equivariant in the second factor, that

is, F (x,−y) = ε · F (x, y), where ε acts on Rd by multiplication by −1 in exactly
ℓ coordinates. We have to show that for some y ∈ Sm the map F |Σ×{y} is not an
embedding.

Extend F continuously to Δn−1×Sm such that the resulting map is antipodal in
the second factor. For example, consider the barycentric subdivision of the simplex,
and define this extension of F by mapping every barycenter of a face that is not
contained in Σ to the origin. Extend this linearly onto the faces of the barycentric
subdivision. Define Φ: (Δn−1)

∗2
∆ × Sm → R

c+1 × R
d by

Φ(λ1x1 + λ2x2, y) = (Ψ(λ1x1 + λ2x2), λ1F (x1, y)− λ2F (x2, y)).
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The domain (Δn−1)
∗2
∆ ×Sm has a free (Z/2)2-action: One generator ε acts antipo-

dally on the Sm-factor and trivially on (Δn−1)
∗2
∆ , while the other generator δ acts

trivially on Sm and by δ · (λ1x1 + λ2x2) = λ2x2 + λ1x1 on (Δn−1)
∗2
∆ . Notice that

(Δn−1)
∗2
∆ is the boundary of an n-dimensional crosspolytope and thus homeomor-

phic to Sn−1. Moreover, the action by the generator δ is simply the antipodal action
on Sn−1. In the codomain let ε act trivially on the first factor of Rc+1 × Rd, and
let δ acts by multiplication by −1 on both factors of Rc+1×R

d. Then the map Φ is
(Z/2)2-equivariant. The generator ε acts trivially on c+ 1 + (d− ℓ) coordinates of
Rc+1×Rd. By Lemma 3.3 the map Φ has a zero, since m and n−2−c−d+ℓ = ℓ−m
do not share any ones in any digit of their binary expansions.

Thus Φ maps some point (λ1x1+λ2x2, y) to zero. Then since Ψ(λ1x1+λ2x2) = 0
we have that λ1 = λ2 = 1

2 and that x1, x2 ∈ Σ. The last d components of Φ then
imply that F (·, y) cannot be an embedding. �

Lemma 4.2. Let Σ be a simplicial complex on ground set [n], and let c = χ(KG(Σ)).
Then there is a map Ψ: (Δn−1)

∗2
∆ → Rc+1 with Ψ(λ1x1+λ2x2) = −Ψ(λ2x2+λ1x1)

such that Ψ(λ1x1 + λ2x2) = 0 implies λ1 = 1
2 = λ2 and x1, x2 ∈ Σ.

Proof. Color the missing faces of Σ by {1, 2, . . . , c} in such a way that disjoint
missing faces receive distinct colors. Let Σj be the simplicial complex on ground set
[n] whose missing faces are the missing faces of Σ colored j. Then Σ = Σ1∩· · ·∩Σc.

Define the map Ψ: (Δn−1)
∗2
∆ → R

c+1 by

Ψ(λ1x1 + λ2x2) =

(λ1 − λ2, λ1dist(x1,Σ1)− λ2dist(x2,Σ1), . . . , λ1dist(x1,Σc)− λ2dist(x2,Σc)).

Observe that Ψ(λ1x1 + λ2x2) = 0 implies λ1 = λ2 = 1
2 and thus dist(x1,Σj) =

dist(x2,Σj) for all j ∈ [c]. Since by definition of (Δn−1)
∗2
∆ the points x1 and x2 are

in disjoint faces of Δn−1 and the missing faces of Σj intersect pairwise, for every j
either x1 ∈ Σj or x2 ∈ Σj . This implies dist(x1,Σj) = dist(x2,Σj) = 0 and thus
x1, x2 ∈ Σ. �

Proof of Theorem 1.3. Combine Theorem 4.1 and Lemma 4.2. �

5. Coindex via nonsingular maps

Here we collect bounds on coind(Embd(M,Rd)) for topological spaces M , us-
ing the preliminary results stated in Section 3.1. Combining these bounds with
Theorem 1.3 will yield proofs for several of the corollaries stated in Section 1.

Recall that a nonsingular skew-linear map Rp+1 × Sq → Rd induces a Z/2-
equivariant map Sq → Embd(R

p+1,Rd), hence coind(Embd(R
p+1,Rd)) ≥ q. More

generally:

Lemma 5.1. Suppose that M embeds in Rp+1 and there exists a nonsingular skew-

linear map Rp+1 × Sq → Rd. Then coind(Embd(M,Rd)) ≥ q. In particular,

coind(Embd(M,Rd)) ≥ d− p− 1.

The latter statement follows from Lemma 3.1(e).
We also obtain some basic upper bounds on the coindex. Here

F2(M) = {(x, y) ∈ M ×M : x �= y}
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refers to the two-point ordered configuration space of M with the free Z/2-action
(x, y) 	→ (y, x). Recall that the Stiefel-Whitney height swh(X) was defined in
Section 3.1.

Lemma 5.2. Suppose swh(F2(M)) ≥ p and coind(Embd(M,Rd)) ≥ d − p. Then

there exists a (Z/2)2-equivariant map F2(M) × Sd−p → R
d which avoids zero. In

particular, p and d− p share a one in their binary expansions.

Proof. Since coind(Embd(M,Rd)) ≥ d− p, there exists a map f : M × Sd−p → R
d

which is Z/2-equivariant in the second factor. Then Φ: F2(M)× Sd−p → Rd given
by Φ(x, y, z) 	→ f(x, z)− f(y, z) is (Z/2)2-equivariant and avoids zero since f(·, z)
is an embedding. By Proposition 3.2 and the condition on swh(F2(M)), p and d−p
share a one in their binary expansions. �

In particular, if M is a topological manifold of dimension p + 1, there exists a
Z/2-equivariant map from Sp to F2(M), so p ≤ coind(F2(M)) ≤ swh(F2(M)).

Corollary 5.3. Suppose the nonnegative integers p and d−p do not share a one in

their binary expansions. If swh(F2(M)) ≥ p, then coind(Embd(M,Rd)) = d−p−1.
In particular, coind(Embd(S

p,Rd)) = d− p− 1.

Recall that Corollary 1.5 yields a generalization of the latter statement.
To briefly summarize these results: lower bounds for coind(Embd(M,Rd)) are

related to the minimal embedding dimension e of M and the existence of skew-
linear maps R

e × Sq → R
d, whereas the upper bounds for coind(Embd(M,Rd))

are related to the actual dimension p + 1 of M and the existence of biskew maps
Sp×Sd−p → Rd. When there is some gap between these dimensions, upper bounds
might be improved by computing the Stiefel-Whitney height of the configuration
space.

We conclude this section with one result in the smooth category. By restricting
to the space of immersions Immd(M,Rd) (with the compact-open topology) of C1-
manifolds M , which contains the space of smooth embeddings M → Rd, we can
also state upper bounds in terms of the existence of skew-linear maps, instead of
biskew maps.

Lemma 5.4. Let M be a C1-manifold of dimension p+ 1. If

coind(Immd(M,Rd)) ≥ q,

then there exists a nonsingular skew-linear map R
p+1 × Sq → R

d.

Proof. Since coind(Immd(M,Rd)) ≥ q, there exists a family of immersions

fz : M × Sq → R
d

such that fz(x) = −f−z(x) for all x ∈ M and z ∈ Sq. Therefore (d(fz))x =
−(d(f−z))x, considered as operators TxM → Rd, where we have identified the
tangent spaces of Rd with Rd itself. Fix x0 ∈ M . Define Φ: Tx0

M × Sq → Rd

by Φ(v, z) 	→ (d(fz))x0
(v). This is linear in v, Z/2-equivariant in z, and because

each fz is an immersion, only maps to zero when v = 0. Thus Φ is a nonsingular
skew-linear map Rp+1 × Sq → Rd. �
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Corollary 5.5. The minimum dimension q such that there exists a nonsingular

skew-linear map Rp+1 × Sq → Rd is equal to coind(Immd(R
p+1,Rd)).

Proof. Combine Lemmas 5.1 and 5.4. �

There exists a nonsingular skew-linear map R
p+1 × Sq → R

d if and only if dξq
has p+1 linearly independent sections; here ξq → RP q is the canonical line bundle.
Thus determining the coindex of the space Immd(R

p+1,Rd) is closely related to the
generalized vector field problem.

It is known that the existence problems for nonsingular bilinear maps and non-
singular skew-linear maps are not equivalent. In particular, Gitler and Lam [13]
showed that there exists a nonsingular skew-linear map S27×R13 → R32 (by show-
ing that there exist 13 linearly independent sections of 32ξ27) whereas there is no
nonsingular bilinear map R28 × R13 → R32.

6. Applications of Theorem 1.3

Here we prove the corollaries stated in Section 1. The real projective plane RP 2

can be triangulated in a unique way by a six-vertex triangulation, the antipodal
quotient of the icosahedron. We will denote this triangulation by ΣRP 2 . This is the
smallest triangulation (in the sense of simplicial complexes) of RP 2. Similarly, CP 2

has a unique minimal triangulation on nine vertices that we will denote by ΣCP 2 .
The triangulation ΣCP 2 was found by Kühnel, and the first (computer-aided) proof
of its uniqueness is due to Kühnel and Lassmann [23]; see also [22]. Arnoux and
Marin [2] showed that any triangulation Σ of a d-manifold different from the sphere
Sd on 3d

2 + 3 vertices has the property that for any bipartition of the vertex set
of Σ precisely one part is a face of Σ. Thus for such triangulations, in particular
for the triangulations ΣRP 2 and ΣCP 2 , no two nonfaces are disjoint, and thus the
Kneser graphs KG(ΣRP 2) and KG(ΣCP 2) have no edges. In particular, we have:

Lemma 6.1 (Arnoux and Marin [2]). For the minimal triangulations of RP 2 and

CP 2 we have that χ(KG(ΣRP 2)) = 1 = χ(KG(ΣCP 2)).

Proof of Corollary 1.4. The statement for RP 2 will follow from:
• For d = 4k, coind(Embd(RP

2,Rd)) ≥ 4k − 1,
• For d = 4k + 3, coind(AEmbd(ΣRP 2 ,Rd)) ≤ 4k − 1,

since every embedding is an almost-embedding and the coindex is nondecreasing
in d.

The first item is a consequence of Lemma 5.1 with p = 3, together with
Lemma 3.1(c). For the second item, we apply Theorem 1.3 to ΣRP 2 . In partic-
ular, we have n = 6, χ(KG(ΣRP 2)) = 1 (by Lemma 6.1), ℓ = d = 4k + 3, and
m = d − 3 = 4k. Since the integers m = 4k and ℓ − m = 3 do not share any
common ones in their binary expansions, the coindex is at most 4k− 1, as desired.

Similarly, the statement for CP 2 follows from:
• For d = 8k, coind(Embd(CP

2,Rd)) ≥ 8k−1, (Lemma 5.1 (p = 7) with
Lemma 3.1(d))

• For d = 8k+7, coind(Embd(CP
2,Rd)) ≥ 8k, (Lemma 5.1 (p = 6) with

Lemma 3.1(e))
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and the upper bounds from applying Theorem 1.3 to ΣCP 2 (again using Lemma 6.1):
• For d = 8k + 6, coind(AEmbd(ΣCP 2 ,Rd)) ≤ 8k − 1,
• For d = 8k + 7, coind(AEmbd(ΣCP 2 ,Rd)) ≤ 8k.

This completes the proof. �

Observe that the proof of Corollary 1.4 depends on two elements: the upper
bounds arise due to the minimal triangulations of the projective spaces, and the
lower bounds arise because the existence of nonsingular bilinear maps is well un-
derstood in low dimensions (where these spaces embed). For higher-dimensional
manifolds, it could be nontrivial to obtain strong bounds on both ends.

Proof of Corollary 1.2.
(i) We again apply Theorem 1.3 to ΣRP 2 (resp. ΣCP 2), this time with ℓ = 1, d =

4 (resp. d = 7), and χ(KG(ΣRP 2)) = χ(KG(ΣCP 2)) = 1 (by Lemma 6.1).
(ii) The first statement is the special case of Theorem 1.3 with d = 2k + 1,

n = 2k + 3, ℓ = 1, and χ(KG(Δ
(k)
2k+2)) = 1, since no two missing faces

are disjoint. The second statement is the special case of Theorem 1.3 with
d = 2k+1, n = 3k+3, ℓ = 1, and χ(KG([3]∗(k+1))) = k+1, since a proper
coloring of the Kneser graph is induced by coloring the missing edges in the
ith copy of [3] with color i. �

Remark 6.2. Similar to ΣRP 2 and ΣCP 2 , there are triangulations of 8-manifolds
different from the sphere on 15 vertices; see Brehm and Kühnel [6]. However,
there are now at least six (combinatorially different but PL homeomorphic) such
triangulations; see Lutz [31]. Brehm and Kühnel conjectured that these complexes
indeed triangulate HP 2, the quaternionic projective plane, but it is only known
that these are triangulations of manifolds like the projective plane in the sense
of Eells and Kuiper [8]. In particular, they are cohomology quaternionic planes.
Triangulations of 8-manifolds on 15 vertices embed into R13, since they can be
realized as proper subcomplexes of ∂Δ14, which stereographically projects to R13.
Since these triangulations have no two disjoint nonfaces [2], Theorem 1.3 shows that
for any triangulation Σ of an 8-manifold with 15 vertices and for any dimension
d ≡ 12, 13, 14, or 15 mod 16, coind(Embd(Σ,R

d)) ≤ d−13. Matching lower bounds
follow from combining Lemma 5.1 with Lemma 3.1(e) for p = 12 and q = d− 13.

Proof of Corollary 1.5. The lower bound follows from Corollary 5.3. To obtain the
upper bound, first apply Theorem 1.3 to Δp+1; that is, let ℓ = d, n = p + 2, and
χ(KG(Δp+1)) = 0, so that m = d − p. By hypothesis, m and ℓ − m = p share
no ones in their binary expansions, so coind(AEmbd(Δp+1,R

d)) ≤ d − p − 1. It
remains to observe that coind(AEmbd(∂Δp+1,R

d)) ≤ coind(AEmbd(Δp+1,R
d)),

since any almost-embedding f : ∂Δp+1 → Rd extends to an almost-embedding

f̃ : Δp+1 → Rd, because the behavior of f̃ on the largest face does not affect

whether f̃ is an almost-embedding. �

We conclude with Figure 1, which gives the values of coind(AEmbd(∂Δp+1,R
d)),

for p ≤ 8. The evident pattern in each row continues for all values of d. This gen-
eralizes classical results for the existence and nonexistence of nonsingular bilinear
maps, as tabulated by Berger and Friedland [5].
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p\
d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23

2 0 3 3 3 4 7 7 7 8 11 11 11 12 15 15 15 16 19 19 19 20 23 23

3 3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15 19 19 19 19 23 23

4 0 1 2 7 7 7 7 7 8 9 10 15 15 15 15 15 16 17 18 23 23

5 1 1 7 7 7 7 7 7 9 9 15 15 15 15 15 15 17 17 23 23

6 0 7 7 7 7 7 7 7 8 15 15 15 15 15 15 15 16 23 23

7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15 23 23

8 0 1 2 3 4 5 6 15 15 15 15 15 15 15 15 15 16

Figure 1. The coindex of AEmbd(∂Δp+1,R
d). The red circled

numbers are filled by Corollary 1.5. The (8, 16) entry, along with
the rest of the p = 8 row, may be filled using Lemma 3.1(g) and the
fact that the coindex is nondecreasing in the variable d. Similarly,
Lemma 3.1(d) gives a lower bound for the entries in columns d =
8k, and together with the nondecreasing fact, the large triangular
regions (bounded by column d = 8k and row p = 7) may be filled.
Smaller triangular regions are filled similarly using parts (c), (b),
and (a).
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Hamburg 9 (1933), no. 1, 72–78, DOI 10.1007/BF02940628. MR3069580

Licensed to Carnegie Mellon Univ. Prepared on Tue Nov 14 17:05:56 EST 2023 for download from IP 128.2.114.22.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPACES OF EMBEDDINGS 437

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213; and Institute of Mathematics, Freie Universität Berlin, Arni-

mallee 2, 14195 Berlin, Germany

Email address: frick@cmu.edu

Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540

Email address: mah5044@gmail.com

Licensed to Carnegie Mellon Univ. Prepared on Tue Nov 14 17:05:56 EST 2023 for download from IP 128.2.114.22.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction
	2. Some context
	2.1. Chirality
	2.2. Nonsingular bilinear maps

	3. Preliminaries and related results
	3.1. Nonsingular bilinear and biskew maps
	3.2. Joins and deleted joins

	4. Proof of the main result
	5. Coindex via nonsingular maps
	6. Applications of Theorem 1.3
	References

