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ABSTRACT. Given a space X we study the topology of the space of embed-
dings of X into R through the combinatorics of triangulations of X. We give
a simple combinatorial formula for upper bounds for the largest dimension of
a sphere that antipodally maps into the space of embeddings. This result sum-
marizes and extends results about the nonembeddability of complexes into R¢,
the nonexistence of nonsingular bilinear maps, and the study of embeddings
into R? up to isotopy, such as the chirality of spatial graphs.

1. INTRODUCTION

Given a topological space X, a classical question in geometric topology asks for
the lowest dimension d such that X embeds into R?. Among the milestones of this
line of inquiry are the characterization of planar graphs (as graphs without K- and
K3 3-minors), Whitney’s embedding theorem (that any smooth d-manifold embeds
into R?9), the Van Kampen-Flores theorem (that the d-skeleton of the (2d + 2)-
simplex does not embed into R??), and upper and lower bounds for the embedding
dimension of real projective space RP™.

A general nonembeddability result in terms of the combinatorics of triangulations
of X is Sarkaria’s Coloring/Embedding Theorem, which can be found in Matousek’s
book [32, Theorem 5.8.2] and is implicit in Sarkaria’s papers [37,38]. To state it we
need to introduce the following definitions: For a simplicial complex ¥ on ground
set [n] = {1,2,...,n}, we denote by KG(X) the Kneser graph of its nonfaces, that
is, the graph whose vertices correspond to those subsets of [n] that do not form
a face of ¥, and with edges between vertices corresponding to disjoint faces. For
a graph G we denote by x(G) its chromatic number, that is, the least number of
colors ¢ needed to color its vertices such that the two endpoints of every edge receive
distinct colors. A proper coloring of the Kneser graph of minimal nonfaces induces
a proper coloring of the Kneser graph of all nonfaces (by coloring some nonface
o by the color of some minimal nonface 7 C ). For a simplicial complex ¥ a
continuous map f: ¥ — R? is an almost-embedding if f(o) N f(7) = O for any two
vertex-disjoint faces o and 7 of X.

Sarkaria’s theorem states that for a simplicial complex ¥ on ground set [n],
and for d = n — 2 — x(KG(X)), there is no almost-embedding ¥ — R<. Here
we prove a generalization of this result. An embedding f: X < R? that can be
isotoped into its mirror image, that is, an embedding obtained from f by composing
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with an orientation-reversing homeomorphism, is called achiral. Otherwise f is
chiral. Tf X embeds into R%, then there is an achiral embedding X — R4*!
obtained by including R¢ < R¥*! as a hyperplane. Thus for any nonembeddability
result (X does not embed into R%) we may ask whether it generalizes to a chirality
result (every embedding X — R4*! is chiral) . We prove that Sarkaria’s theorem
generalizes in this way:

Theorem 1.1. Let ¥ be a simplicial complex on ground set [n], and let d = n —
1 — x(KG(X)). Then no almost-embedding > — R? is homotopic through almost-
embeddings to its mirror image.

We thank an anonymous referee for suggesting that this special case deserves
special attention. Other nonembeddability results have previously been generalized
in the same way: Flapan [9] showed that every embedding K33 < R? of the
complete bipartite graph K33 is chiral. (Actually, Flapan showed that K33 is
chiral in an a priori stronger sense; we will explain the details in Section 2.1.) Tt is
known that no embedding RP? — R* is isotopic to its mirror image (see [3]) and the
same is true for embeddings CP2 < R”. See Skopenkov [40] for a classification of
smooth embeddings CP? < R” up to smooth isotopy. In fact, all of these chirality
results follow from Theorem 1.1:

Corollary 1.2. Let Sppe and Scp2 denote the minimal triangulations of RP? and
CP?, respectively.

(i) Given any almost-embedding Ygpz — R* there is no homotopy to its mir-
ror image through almost-embeddings. The same is true for any almost-
embedding Scpz — R7.

(ii) Given any almost-embedding Ag,?w — R+ there is no homotopy to its
mirror image through almost-embeddings. The same is true for any almost-
embedding [3]*(F+1) — R2k+1,

Part (ii) of Corollary 1.2 is a chiral generalization of the Van Kampen—Flores
theorem [12,42], which asserts that the k-skeleton ASZ)H of the (2k + 2)-simplex
Aoy 2 and the (k + 1)-fold join [3]*(**1) of a 3-point space do not embed into R?*.
The case k = 1 is the nonplanarity of K5 and of K3 3.

The study of chirality leads naturally into a more general study of the equivariant
topology of the space of embeddings Emb(X, R?), considered with the compact-
open topology. These spaces are particularly well-studied when X is a discrete
space on n points, where Emb (X, R¢) is the ordered configuration space of n points
in RY. For general X, we are interested in the following question: if there is
an embedding X — R¢, is there a rich collection of such embeddings, or will
any sufficiently rich parametrized family of continuous maps necessarily include a
nonembedding? Observe that f: X — R? is chiral if and only if its mirror image
is in a different path component of Emb(X,R%). Thus there is no Z/2-equivariant
map S' — Emb(X,R%), where S' has the antipodal action and the embedding
space has the action from the mirror image. This is conveniently stated using the
language of coindex as follows.

The coindex coind(Y') of a Z/2-space Y is the largest dimension k such that a
7/2-map S* — Y from the k-dimensional sphere S* equipped with the antipodal
Z/2-action exists. The coindex may be considered as some measure of the size or
complexity of a space, though it is only meaningful when the Z/2-action is free,
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SPACES OF EMBEDDINGS 425

since otherwise the constant map from any given sphere to a fixed point is Z/2-
equivariant.

Given ¢ € {1,2,...,d} we fix a Z/2-action on R? that flips the sign of the first
£ coordinates, that is, the generator € acts by

e (z1,...,xq) = (X1, oy =X, Tpp1, -+, Td)-
The space Emb(X, R?) with the naturally induced Z/2-action (¢ - f)(z) = € - f(x)
will be denoted by Emb,(X,R%). Observe that this action is free if and only if X
does not embed into R?~¢. Notice that all embeddings X < R? of some space
X are chiral if and only if coind(Emb; (X, R?)) < 0, thus it is natural to think of
higher values of coindex as some form of “higher achirality.” Our main result is:

Theorem 1.3. Let ¥ be a simplicial complex on ground set [n]. Let d and { be
nonnegative integers such that m = d—n+x(KG(X))+2 < £. If the integers m and
{ —m do not share common ones in their binary expansions, then AEmbg(E,Rd),
and thus Emby(2,RY), has coindex at most m — 1.

Observe that Theorem 1.1 is the special case m = ¢ = 1, which in turn yields
Sarkaria’s theorem. Moreoever, this allows us to compute the upper bounds for the
coindex of embedding spaces of RP? and CP?:

Corollary 1.4. For any dimension d > 1,

coind(Emb,(RP2, RY)) = 4& 1 and

8k d=8k+7

ind(Embg(CP2%,RY)) =
coind(Emba( RY) {S{gJ — 1 otherwise

The lower bounds in Corollary 1.4 may be achieved using existence results for
nonsingular bilinear maps. A bilinear map B: RPT! x R+ — R4 is called nonsin-
gular if B(z,y) = 0 implies that £ = 0 or y = 0. Nonsingular bilinear maps were
originally studied in the context of square identities, but they have since made
prominent appearances in topology (see Section 2.2 for a brief history).

In fact, the bounds of Theorem 1.3 not only specialize to results about the
chirality of embeddings, the more far-reaching bounds for the equivariant topol-
ogy of embedding spaces in terms of their coindex generalize classical results on
the nonexistence of nonsingular bilinear maps as well. This is because the ex-
istence of a nonsingular bilinear map B: RPT! x R9T! — R? easily implies that
coind(Embgy(S?, R?)) > ¢; see Lemma 2.2. Thus upper bounds for the equivari-
ant topology of Emby(S?, R%) generalize the nonexistence of nonsingular bilinear
maps. Theorem 1.3 provides easily computable upper bounds for the equivariant
topology of embedding spaces that generalize chirality results on the one hand and
nonexistence results for nonsingular bilinear maps on the other hand.

Using known results for bilinear maps, it is straightforward to show that, if the
integers p and d — p do not share any common ones in their binary expansions, then

(1.1) coind(Emb,(S?, RY)) = d — p — 1;

see Corollary 5.3.
We will prove a discretized generalization of this result:

Corollary 1.5. If the nonnegative integers p and d — p do not share any common
ones in their binary expansions then coind(AEmbg(0A,41,R?)) =d —p — 1.
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The ordered configuration space of p + 2 affinely independent points in R? nat-
urally includes into the space AEmbg(0A,11,R?), since the convex hull of these
points determines an embedding A, 41 < R%. Corollary 1.5 gives precise bounds
for the equivariant topology of these configuration spaces.

It follows from the Borsuk-Ulam theorem that Emb(S™,R™) is empty; this is
the special case p = d of (1.1). The topological Radon theorem of Bajméczy and
Barany [4] asserts that there is no almost-embedding 0A,y; — R”; this is the
special case p = d of Corollary 1.5.

More generally, the result that any Z/2-equivariant map S? x S' — R? must
have a zero implies that when turning S2 inside-out, which is possible through im-
mersions by work of Smale [41], then at some point in time two antipodal points of
52 are mapped to the same point. Corollary 1.5 in this case asserts that when turn-
ing the boundary of a tetrahedron inside-out, two disjoint faces of the tetrahedron
must overlap in the image at some point in time.

Together with existence results for nonsingular bilinear maps, Corollary 1.5 yields
the exact values of coind(AEmbg(0A,;1,RY)) for p < 8, generalizing classical
nonexistence results for nonsingular bilinear maps, as tabulated by Berger and
Friedland [5]; see Figure 1 (in Section 5).

2. SOME CONTEXT

To contextualize Theorem 1.3 and its corollaries, we provide brief introductions
to chirality and nonsingular bilinear maps.

2.1. Chirality. The study of whether a given embedding G < R3 of a graph G is
chiral was originally motivated by chemistry. In the original motivation G repre-
sents the bonds in a molecule. See [10] for an introduction, where for instance we
can learn that “one enantiomer of the molecule called carvone smells like caraway,
whereas its mirror image smells like spearmint.”

In order to distinguish between various notions of chirality we need the notions of
isotopy and ambient isotopy, which we recall now. A continuous map F': X x[0,1] —
R? (x,t) — fi(x) such that f; is an embedding for every ¢ is an isotopy between fo
and fi. Given two embedding h,h': X — R, an ambient isotopy from h to A’ is a
continuous map F: R4x[0,1] — R%, (z,¢) — f;(z) such that f; is a homeomorphism
for every t, fo is the identity and fi(h(x)) = h'(z) for all x € X. In the smooth
category any isotopy can be extended to an ambient isotopy. This fails without the
smoothness requirement; for example, any knot S' < R? is isotopic to the unknot.

The notion of ambient isotopy can similarly be defined for subspaces instead
of embeddings: Given two subspaces X, X’ C R? an ambient isotopy from X
to X’ is a continuous map F: R? x [0,1] — R?, (x,t) — f;(x) such that f; is a
homeomorphism for every ¢, fo is the identity and f;(X) = X’. An ambient isotopy
between the embeddings h and A’ is also an ambient isotopy from h(X) to h'(X),
so an ambient isotopy between subspaces (the images of two given embeddings) is
in general a weaker requirement than an ambient isotopy between embeddings.

Let X C R?, and let h: R* — R? be a homeomorphism which is isotopic to a
reflection in a hyperplane, that is, h is an orientation-reversing homeomorphism.
Then h(X) is a mirror image of X. All mirror images are the same up to ambient
isotopy. The spatial graphs literature calls a graph G (intrinsically) chiral if given
any embedding f: G — R3? there is no ambient isotopy of the subspace f(G) C R3
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to a mirror image of f(G). We will refer to this as unlabelled chirality to distinguish
this from the notion of chirality for embeddings.

It is not difficult to see that all embeddings X < R¢ of some space X are chiral
if and only if coind(Emb; (X,R%)) < 0. More generally, we have the following.

Lemma 2.1. Let X be a space, and let 0 < ¢ < d be integers. Then coind
(Emby(X,R%)) > 1 if and only if there is an isotopy between some embedding
f: X <= R? and the embedding obtained from f by flipping the sign of the first {
coordinates.

Proof. Let ®: S — Emb,(X,R%) be a Z/2-map. Denote the generator of the Z/2-
action on Emb,(X,R?) by ¢. Fix a point zop € S* and a path v: [0,1] — S! with
~v(0) = zy and ¥(1) = —x¢. Then ® o+ is an isotopy from the embedding ®(x)
to ®(—xg) = £®(zp). Conversely, let F: [0,1] — Emb(X,R?) be an isotopy with
F(1) = eF(0). Think of [0,1] as the upper semi-circle of S* and extend F to a
continuous map ®: S — Emb(X,R?%) by setting ®(x) = F(zx) for z in the upper
semi-circle and ®(z) = e®(—z) for = in the lower semi-circle. O

Given a graph G, the notion of unlabelled chirality for G is often deduced from
the (labeled) version for embeddings by showing that any homeomorphism G — G
(up to isotopy) extends to an orientation-preserving homeomorphism R3 — R3. For
example, this is how Simon [39] shows that the image of a particular embedding
of K33 is chiral. Flapan [9] showed that K33 is chiral in the stronger, unlabelled
sense.

The notion of unlabelled chirality of spatial graphs G C R3 is different from
the stronger notion of chirality of embeddings G < R3. Flapan and Weaver [11]
showed that the complete graphs Ky, 3, n > 1, are chiral as subspaces, and all
other complete graphs are not chiral in the unlabelled sense, that is, for every n # 3
mod 4 there is a subspace X of R? homeomorphic to K, and an ambient isotopy
to a mirror image of X. On the other hand, Theorem 1.3 easily implies that for
any given embedding f: K,, — R3, n > 5, there is no isotopy to a mirror image of
f through almost-embeddings.

In this sense our results are weaker than the chirality results for spatial graphs
since they apply to (labelled) embeddings and not to (unlabelled) subspaces. There
is no difference for some spaces, such as for RP? since any homeomorphism of RP?
is the identity up to isotopy. In fact, in those cases our results may be stronger since
they assert the nonexistence of an isotopy, which is stronger than the nonexistence
of an ambient isotopy as we do not have any smoothness requirement.

2.2. Nonsingular bilinear maps. A bilinear map B: RPT! x Rt - R? is non-
singular if B(z,y) = 0 implies z = 0 or y = 0. The Hurwitz—Radon function
p(p+ 1,d) is defined as the maximum number g + 1 such that there exists a non-
singular bilinear map RPT! x R%+! — R?, The values of p(p+ 1) :== p(p+1,p+ 1)
are known and may be computed as follows: decompose p + 1 = 2°+4¢. (2q + 1),
with 0 < b < 4, then p(p + 1) is equal to 2° + 8c. For example, p(4) = 4, and a
nonsingular bilinear map R* x R* — R* is given by quaternionic multiplication.
The Hurwitz—Radon function originally appeared in the independent works of
Hurwitz [20] and Radon [35] in their studies of square identities. It has since made
prominent appearances in topology. In particular, an important result of Adams
[1] is that the inequality ¢ + 1 < p(p + 1) — 1 holds if and only if there exist g + 1
linearly independent tangent vector fields on SP. The Hurwitz—Radon function is
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428 FLORIAN FRICK AND MICHAEL HARRISON

also related to the study of skew fibrations of R™ by pairwise skew affine copies
of RPHL: see [15,16,18,33,34].

Nonsingular (symmetric) bilinear maps have been studied, in part, due to their
relationships to immersions and embeddings of projective spaces and to totally
nonparallel immersions; see [17,21]. Most notably, they were studied in a series of
articles by K.Y. Lam (e.g. [24-29]) and by Berger and Friedland [5].

We also note that nonsingular skew-linear maps B: RP*! x §7 — R? (here skew
refers to Z/2-equivariance in the second slot) and biskew maps S? x S — R
have received separate attention; the former notion is equivalent to the generalized
vector field problem, and the latter appears in the study of symmetric topological
complexity [14]. Each of these notions will appear in our study of coindex.

The connection between the existence of nonsingular bilinear maps and the coin-
dex of embedding spaces is the following straight-forward lemma:

Lemma 2.2. Let B: RPT! x R — RY be a nonsingular bilinear map. Then
coind(Embg(SP,R%)) > q.

Proof. The restriction of B to the unit sphere S? in RP*! and S? in RI*! yields
a map SP x S7 — R that is Z/2-equivariant in the second entry. Moreover, for
any fixed yo € S9 the restriction S? x {yo} — R? is an embedding, and thus by
currying the map SP x S7 — R¢ we see that coind(Embg(S?, R%)) > q. O

3. PRELIMINARIES AND RELATED RESULTS

Here we summarize auxiliary definitions and results that we will need in subse-
quent sections.

3.1. Nonsingular bilinear and biskew maps. We collect some simple existence
results for nonsingular bilinear maps.

Lemma 3.1. Nonsingular bilinear maps exist in the following dimensions:
(a) R x R — RF,
(b) R2? x R2k — R2F,

(c) R* x R** — R

(d) R® x R8% — R8*,

(e) RPTL x RIFTL — RpHa+l

(f) RPHL x RatL — RPH9 - when p and q are both odd,

(8)

R? x R — R16,
Proof. The nonsingular bilinear maps in items (a)—(d) are induced by real, complex,
quaternionic, and octonionic multiplication. For item (e), treat RP*!1 and R9*+!
as the coefficients of degree-p and degree-q real polynomials. Then polynomial
multiplication is a nonsingular bilinear map into RP*91  the space of degree-(p+q)
real polynomials. When p and ¢ are odd, the similarly defined complex polynomial
multiplication may be used for item (f). Item (g) follows from the known value
p(16) = 9, which may be computed by the definition of the Hurwitz-Radon function
p given in Section 2.2. O

Suppose there exists a nonsingular bilinear map RP*! x R4T1 — RPT4 (compare
with Lemma 3.1(e) and (f)). Then there exists a biskew map S? x §9 — SPTa—1
which induces a map of real projective spaces. By studying the induced map on
cohomology in Z/2-coefficients, Hopf [19] showed that such a map can only exist
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if p and ¢ both have a common one in some digit of their binary expansions. The
following more general statement has a nearly identical proof, though we present it
in modern language.

The Stiefel-Whitney height swh(X) of a Z/2-space X is the largest number ¢
such that the ¢'* power of the first Stiefel-Whitney class is nonzero: w;(X)? # 0;
here the multiplication is the cup product in the cohomology ring H*(X/Z/2;7/2).
The Stiefel-Whitney height is also (and perhaps more commonly) known as the
cohomological index, but we use the former term here to avoid confusion with the
coindex. We refer to Chapter 5.3 of [32] for basic properties of the Stiefel-Whitney
height.

Proposition 3.2. Let X1,..., Xy be free Z/2-spaces with Stiefel-Whitney heights
i1,---,0%. If no two of the numbers iy, ..., i, share a one in any digit of their binary
expansions, then every (Z/2)*-equivariant map

fi Xy %o x X — Rt Tk
has a zero.

Proof. Let n = i1 4+ --- 4+ ix. We show the contrapositive. If f avoids zero, then
by normalization, f maps (Z/2)*-equivariantly into S”~!, hence induces a map on
quotients. The quotient map induces a map in cohomology with Z/2-coefficients:

H*RP™Y) 5 HY (X1 /22 % -+ X X3, /2/2) = H* (X1/2/2) & - @ H*(X,/Z/2),
which maps
wiRP"™ M 5w (X)@1@ @1+ +1® - @ 1w (Xy).
Since 0 = w; (RP™1)" its image is zero in H*(X1/Z/2 % -+ x Xy /Z/2):
0= (wi1(X1) + -+ 4 w1 (Xe))™
Therefore

n i1 i
0= ( | )wl()m (X,
11, <y Uk

which, by the condition on the Stiefel-Whitney heights, implies that the multinomial
coefficient (i1 " ik-) is even. By a standard generalization of the Lucas theorem [30],
this occurs if and only if two of the 71, ...,4; share a one in any slot of their binary

expansions. O

We also require a similar statement which takes into account different possible
7Z/2-actions in the codomain. Let V__,V, _, or V_, denote R as a (Z/2)?>-module,
where the subscript indicates the action of the two standard generators, that is,
V, _ indicates that the first generator acts trivially, while the second generator acts
by & — —z. Lemma 3.3 follows easily from Ramos [36]. Another short proof using
mapping degrees can be found in [7].

Lemma 3.3. Let k, ¢, m,p, and q be nonnegative integers with p+q = k+£4+m, p >
£, and ¢ > m. Suppose that p—{ and q—m do not share a one in any digit of their
binary expansions. Then any (Z/2)*-equivariant map SP x S — VF_ x Vf+ x Vi
has a zero.
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3.2. Joins and deleted joins. Recall that for topological spaces X and Y the
join is the space X x Y obtained from X X Y x [0, 1] by taking the quotient with
respect to the equivalence relation generated by (x,y,0) ~ (2/,y,0) for z,2’ € X
and (z,y,1) ~ (z,y,1) for y,y’ € Y. If the simplicial complexes Y x and Xy
triangulate X and Y, respectively, then the join X %Y is naturally triangulated by
the join of simplicial complexes X x * Xy. As abstract simplicial complexes

Ex*zy:{()')({l}UTX{Z} 0 €Yy, TEEy},

that is, the join is defined by the rule that the vertices of a face in ¥ x and the
vertices of a face in Xy together span a face in Xy * Xy . Here we assume that ¥ x
and Yy have disjoint vertex sets.

One may think of the join X * Y as abstract convex combinations of points in
X and in Y. We will write \jz + Aoy, with A;, Ao > 0 and Ay + Ao = 1, for the
point (z,y, A1) in X * Y. Thus for A\; = 0 the point x does not influence the point
in X Y, whereas for \; = 1 the choice of y does not matter. Note that in this
notation Ajx1+Aoxo and Asxo+ Ajx; determine different points in X « X if 21 # 5.

The deleted join X2 of a space X is obtained from X * X by deleting all points
of the form (z,x,t) with z € X and t € (0,1). The deleted join X3¢ of a simplicial
complex ¥ is obtained from the join 3 * X by deleting all those faces that have a
vertex in ¥ in common, that is,

YR ={ox{1}urx{2} : 0,7€X, oNT =0}

In particular the deleted join (A,)%2 of the n-simplex A,, is the boundary of an
(n+ 1)-dimensional crosspolytope, and thus (A,,)%? is homeomorphic to S™. Inter-
changing the join factors A\jz1 + Ao +— Ao + A\1x1 is the antipodal action on the
sphere (A,,)%2.

4. PROOF OF THE MAIN RESULT

Here we prove Theorem 1.3. We first state and prove a more general result,
Theorem 4.1, and then derive Theorem 1.3 as a simple corollary.

Theorem 4.1. Let ¥ be a simplicial complex on ground set [n]. Let ¢, d, and
£ be nonnegative integers such that m = d —n+ c+ 2 < £. Suppose there is
amap U: (Ap_1)% — R® with (A1 + Aawa) = —V(Aexay + A1) such that
U(A1x1 + Aexo) = 0 implies N\ = % = Ao and x1,x9 € X. If the integers m and
¢ —m do not share ones in their binary expansions, then AEmby (X, R?), and thus
Emby (X, RY), has coindex at most m — 1.

Proof. Let F: ¥.x 8™ — R?% be a map that is equivariant in the second factor, that
is, F(x,—y) = ¢ - F(x,y), where ¢ acts on R? by multiplication by —1 in exactly
¢ coordinates. We have to show that for some y € S™ the map F'[5;«(,) is not an
embedding.

Extend F' continuously to A, _1 x S™ such that the resulting map is antipodal in
the second factor. For example, consider the barycentric subdivision of the simplex,
and define this extension of F' by mapping every barycenter of a face that is not
contained in ¥ to the origin. Extend this linearly onto the faces of the barycentric
subdivision. Define ®: (A, _1)%2 x S™ — Rt x R? by

D(Nz1 + Aoz2,y) = (T(Aiz1 + Aoz2), M F (21, y) — Ao F(22,7)).
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The domain (A,,_1)%2 x S™ has a free (Z/2)?-action: One generator ¢ acts antipo-
dally on the S™-factor and trivially on (A,_1)32, while the other generator & acts
trivially on S™ and by 6 - (\1z1 + Aawa) = Aaz2 + A1x1 on (A, _1)32. Notice that
(Ap—1)% is the boundary of an n-dimensional crosspolytope and thus homeomor-
phic to S”~1. Moreover, the action by the generator § is simply the antipodal action
on S"~!. In the codomain let € act trivially on the first factor of R*t! x R?, and
let 6 acts by multiplication by —1 on both factors of R°t! x R?. Then the map ® is
(Z/2)2-equivariant. The generator ¢ acts trivially on ¢ + 1 + (d — £) coordinates of
Rt x R4, By Lemma, 3.3 the map ® has a zero, since m and n—2—c—d+£ = {(—m
do not share any ones in any digit of their binary expansions.

Thus ® maps some point (A121+A222,y) to zero. Then since U(Ajx1+Aaxs) =0
we have that A\; = A = 1 and that x1,2T2 € X. The last d components of ® then

2
imply that F(-,y) cannot be an embedding. O

Lemma 4.2. Let X be a simplicial complex on ground set [n], and let c = x(KG(X)).
Then there is a map W: (A,_1)52 — R with U(A\jxq +Aawa) = —V(Aaza + A121)
such that U( Az + Aaxo) = 0 implies Ay = % = Xy and x1,T2 € 2.

Proof. Color the missing faces of ¥ by {1,2,...,c} in such a way that disjoint

missing faces receive distinct colors. Let ¥; be the simplicial complex on ground set

[n] whose missing faces are the missing faces of ¥ colored j. Then ¥ = XN -NX..
Define the map ¥: (A,,_1)32 — Rt by

\I/(/\lxl + /\2.132) =
()\1 — Ao, /\1diSt(I1, 21) — /\Qdist(l‘g, 21), e /\1dist(:1:1, EC) — )\Qdist(IQ, EC))

Observe that U(A\jx1 + Aoxa) = 0 implies Ay = Ay = % and thus dist(z1,%;) =
dist(z2, ;) for all j € [c]. Since by definition of (A,_1)% the points z; and z2 are
in disjoint faces of A, _; and the missing faces of ; intersect pairwise, for every j
either 1 € X; or zp € ¥;. This implies dist(x1,3;) = dist(z2,X;) = 0 and thus
x1,To € > O

Proof of Theorem 1.3. Combine Theorem 4.1 and Lemma 4.2. O

5. COINDEX VIA NONSINGULAR MAPS

Here we collect bounds on coind(Embg(M,R%)) for topological spaces M, us-
ing the preliminary results stated in Section 3.1. Combining these bounds with
Theorem 1.3 will yield proofs for several of the corollaries stated in Section 1.

Recall that a nonsingular skew-linear map RP*! x S7 — R? induces a 7Z/2-
equivariant map S? — Embg(RPHL R?), hence coind(Emby(RPT1 R?)) > ¢q. More
generally:

Lemma 5.1. Suppose that M embeds in RPT1 and there exists a nonsingular skew-
linear map RP*! x S7 — RY.  Then coind(Emby(M,R%)) > q. In particular,
coind(Embg(M,R%)) > d —p — 1.

The latter statement follows from Lemma 3.1(e).
We also obtain some basic upper bounds on the coindex. Here

FEM)={(z,y) e M x M : z#y}
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refers to the two-point ordered configuration space of M with the free Z/2-action
(z,y) — (y,z). Recall that the Stiefel-Whitney height swh(X) was defined in
Section 3.1.

Lemma 5.2. Suppose swh(Fy(M)) > p and coind(Emby(M,R%)) > d — p. Then
there exists a (Z/2)?-equivariant map Fo(M) x S¥=P — R? which avoids zero. In
particular, p and d — p share a one in their binary expansions.

Proof. Since coind(Embg(M,R%)) > d — p, there exists a map f: M x S4 P — R4
which is Z/2-equivariant in the second factor. Then ®: Fy(M) x S4=P — R? given
by ®(z,y,2) — f(x,2) — f(y,2) is (Z/2)?-equivariant and avoids zero since f(-,z)
is an embedding. By Proposition 3.2 and the condition on swh(F5(M)), p and d—p
share a one in their binary expansions. O

In particular, if M is a topological manifold of dimension p + 1, there exists a
Z/2-equivariant map from S? to F»(M), so p < coind(Fo(M)) < swh(Fa(M)).

Corollary 5.3. Suppose the nonnegative integers p and d—p do not share a one in
their binary expansions. If swh(Fy(M)) > p, then coind(Embg(M,R?)) =d—p—1.
In particular, coind(Emb,(SP,R?)) =d —p — 1.

Recall that Corollary 1.5 yields a generalization of the latter statement.

To briefly summarize these results: lower bounds for coind(Embgy(M,R9)) are
related to the minimal embedding dimension e of M and the existence of skew-
linear maps R¢ x S9 — RY, whereas the upper bounds for coind(Embg(M,R?))
are related to the actual dimension p + 1 of M and the existence of biskew maps
SP x 89=P — R, When there is some gap between these dimensions, upper bounds
might be improved by computing the Stiefel-Whitney height of the configuration
space.

We conclude this section with one result in the smooth category. By restricting
to the space of immersions Immg (M, R%) (with the compact-open topology) of C-
manifolds M, which contains the space of smooth embeddings M — R¢, we can
also state upper bounds in terms of the existence of skew-linear maps, instead of
biskew maps.

Lemma 5.4. Let M be a C*-manifold of dimension p+ 1. If
coind (Immg(M,R%)) > ¢,
then there exists a nonsingular skew-linear map RPT! x §7 — R?.
Proof. Since coind(Immg(M,R?)) > ¢, there exists a family of immersions
foir M x S7—RE

such that f.(x) = —f_,(x) for all x € M and z € S9. Therefore (d(f.)). =
—(d(f-.))s, considered as operators T,M — R? where we have identified the
tangent spaces of R? with R? itself. Fix zg € M. Define ®: T,,, M x S7 — R?
by ®(v,z) — (d(f;))x,(v). This is linear in v, Z/2-equivariant in z, and because
each f, is an immersion, only maps to zero when v = 0. Thus ® is a nonsingular
skew-linear map RPF! x §7 — R?, O
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Corollary 5.5. The minimum dimension q such that there exists a nonsingular
skew-linear map RPT! x ST — R? is equal to coind(Immg(RPH! R?)).

Proof. Combine Lemmas 5.1 and 5.4. ]

There exists a nonsingular skew-linear map RP*! x §79 — R? if and only if dé,
has p+1 linearly independent sections; here {, — RPY is the canonical line bundle.
Thus determining the coindex of the space Immgy(RPT!, R?) is closely related to the
generalized vector field problem.

It is known that the existence problems for nonsingular bilinear maps and non-
singular skew-linear maps are not equivalent. In particular, Gitler and Lam [13]
showed that there exists a nonsingular skew-linear map S?7 x R'? — R32 (by show-
ing that there exist 13 linearly independent sections of 32€27) whereas there is no
nonsingular bilinear map R?® x R13 — R32.

6. APPLICATIONS OF THEOREM 1.3

Here we prove the corollaries stated in Section 1. The real projective plane RP?
can be triangulated in a unique way by a six-vertex triangulation, the antipodal
quotient of the icosahedron. We will denote this triangulation by Ygp2. This is the
smallest triangulation (in the sense of simplicial complexes) of RP2. Similarly, CP?
has a unique minimal triangulation on nine vertices that we will denote by X¢p2.
The triangulation ¥¢pz was found by Kiihnel, and the first (computer-aided) proof
of its uniqueness is due to Kiihnel and Lassmann [23]; see also [22]. Arnoux and
Marin [2] showed that any triangulation ¥ of a d-manifold different from the sphere
5S¢ on 3% + 3 vertices has the property that for any bipartition of the vertex set
of ¥ precisely one part is a face of ¥. Thus for such triangulations, in particular
for the triangulations Xgp2 and X¢p2, no two nonfaces are disjoint, and thus the
Kneser graphs KG(Xgp2) and KG(X¢p2) have no edges. In particular, we have:

Lemma 6.1 (Arnoux and Marin [2]). For the minimal triangulations of RP? and
CP? we have that x(KG(Zgp2)) = 1 = x(KG(Z¢p2)).

Proof of Corollary 1.4. The statement for RP? will follow from:

e For d = 4k, coind(Emby(RP2,RY)) > 4k — 1,

e For d = 4k + 3, coind(AEmb,(Zgp2, RY)) < 4k — 1,
since every embedding is an almost-embedding and the coindex is nondecreasing
in d.

The first item is a consequence of Lemma 5.1 with p = 3, together with
Lemma 3.1(c). For the second item, we apply Theorem 1.3 to Xgp2. In partic-
ular, we have n = 6, x(KG(Xgpz)) = 1 (by Lemma 6.1), £ = d = 4k + 3, and
m = d — 3 = 4k. Since the integers m = 4k and £ — m = 3 do not share any
common ones in their binary expansions, the coindex is at most 4k — 1, as desired.

Similarly, the statement for CP? follows from:

e For d = 8k, coind(Embg(CP?% R%)) > 8k — 1, (Lemma 5.1 (p = 7) with
Lemma 3.1(d))

e For d = 8k +7, coind(Emby(CP? R?)) > 8k, (Lemma 5.1 (p = 6) with
Lemma 3.1(e))
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and the upper bounds from applying Theorem 1.3 to X¢p2 (again using Lemma 6.1):
e For d = 8k + 6, coind(AEmbg(X¢cp2, RY)) < 8k — 1,
e For d = 8k + 7, coind(AEmbg(X¢p2, RY)) < 8k.

This completes the proof. O

Observe that the proof of Corollary 1.4 depends on two elements: the upper
bounds arise due to the minimal triangulations of the projective spaces, and the
lower bounds arise because the existence of nonsingular bilinear maps is well un-
derstood in low dimensions (where these spaces embed). For higher-dimensional
manifolds, it could be nontrivial to obtain strong bounds on both ends.

Proof of Corollary 1.2.

(i) We again apply Theorem 1.3 to Xgp2 (resp. Xcpz), this time with ¢ =1, d =

4 (resp. d = 7), and x(KG(Xgp2)) = x(KG(Xcp2)) = 1 (by Lemma 6.1).
(ii) The first statement is the special case of Theorem 1.3 with d = 2k + 1,
n=2k+3 (=1, and X(KG(A2k+2)) = 1, since no two missing faces
are disjoint. The second statement is the special case of Theorem 1.3 with
d=2k+1,n=3k+3, =1, and xy(KG([3]**+1)) = k41, since a proper
coloring of the Kneser graph is induced by coloring the missing edges in the
h copy of [3] with color i. O

Remark 6.2. Similar to Ygp2 and Xcp2, there are triangulations of 8-manifolds
different from the sphere on 15 vertices; see Brehm and Kiihnel [6]. However,
there are now at least six (combinatorially different but PL homeomorphic) such
triangulations; see Lutz [31]. Brehm and Kiihnel conjectured that these complexes
indeed triangulate HP?, the quaternionic projective plane, but it is only known
that these are triangulations of manifolds like the projective plane in the sense
of Eells and Kuiper [8]. In particular, they are cohomology quaternionic planes.
Triangulations of 8-manifolds on 15 vertices embed into R!3, since they can be
realized as proper subcomplexes of A4, which stereographically projects to R3.
Since these triangulations have no two disjoint nonfaces [2], Theorem 1.3 shows that
for any triangulation ¥ of an 8-manifold with 15 vertices and for any dimension
d=12,13,14, 0r 15 mod 16, coind(Emb, (X, R?)) < d—13. Matching lower bounds
follow from combining Lemma 5.1 with Lemma 3.1(e) for p =12 and ¢ = d — 13.

Proof of Corollary 1.5. The lower bound follows from Corollary 5.3. To obtain the
upper bound, first apply Theorem 1.3 to Apy1; that is, let £ = d, n = p + 2, and
X(KG(Ap11)) = 0, so that m = d — p. By hypothesis, m and ¢ — m = p share
no ones in their binary expansions, so coind(AEmbg(A,41,R?)) < d—p—1. It
remains to observe that coind(AEmbg(0A,1,R?)) < coind(AEmbg(A,11,R9)),
since any almost-embedding f : 9A,;; — R extends to an almost-embedding
f Ap+1 — R?, because the behavior of f on the largest face does not affect
whether f is an almost-embedding. O

We conclude with Figure 1, which gives the values of coind(AEmbg(9A 11, R9)),
for p < 8. The evident pattern in each row continues for all values of d. This gen-
eralizes classical results for the existence and nonexistence of nonsingular bilinear
maps, as tabulated by Berger and Friedland [5].
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[\ [1]2]3[4]5]6|7|8[9]10]11]12]13]14|15[16]17 18|19 |20 |21 |22]23]24]25]
1 ol3[@]s[e[7[o]o]@un][a[13]d3[15][@[17[ap[19]d9[21[CD] 23 [@)
2 ol3[3[@la|7|7]o[e®ulu|d[d|15]15]d[as] 1919190 | 23| 23
3 slss|oefr]7[7]oluln[u|d|15]15]15[a9][ 191919 23 | 23
4 ololel7]7[7]7]|@o]|®[@[a|15[15]15]15[@[16 1D [a9] 23] 23
5 o777l 7]l7[@] 9@ |15 15[15]15]A9[17[an] 23] 23
6 ol7|7]7]7]7]7|® 1515 15[ 15[ 15| 15 [ @9 23 | 23
7 vl 77777l @|5]15]15][ 15151515 [@9] 23] 23
8 olo|lo|d@|l@a[®|® 1515|1515 [15]15]15]15[05 |10

FIGURE 1. The coindex of AEmbg(0A,1,R?). The red circled
numbers are filled by Corollary 1.5. The (8, 16) entry, along with
the rest of the p = 8 row, may be filled using Lemma 3.1(g) and the
fact that the coindex is nondecreasing in the variable d. Similarly,
Lemma 3.1(d) gives a lower bound for the entries in columns d =
8k, and together with the nondecreasing fact, the large triangular
regions (bounded by column d = 8k and row p = 7) may be filled.
Smaller triangular regions are filled similarly using parts (c¢), (b),
and (a).
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