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Abstract. We show that the size of codes in projective space controls

structural results for zeros of odd maps from spheres to Euclidean space.

In fact, this relation is given through the topology of the space of prob-

ability measures on the sphere whose supports have diameter bounded

by some specific parameter. Our main result is a generalization of the

Borsuk–Ulam theorem, and we derive four consequences of it: (i) We

give a new proof of a result of Simonyi and Tardos on topological lower

bounds for the circular chromatic number of a graph; (ii) we study

generic embeddings of spheres into Euclidean space and show that pro-

jective codes give quantitative bounds for a measure of genericity of

sphere embeddings; and we prove generalizations of (iii) the Ham Sand-

wich theorem and (iv) the Lyusternik–Shnirel’man–Borsuk covering the-

orem for the case where the number of measures or sets in a covering,

respectively, may exceed the ambient dimension.

1. Introduction

Given a compact metric space (X, d), a central problem in coding theory is to

determine a configuration of n points in X that maximizes the minimal distance

between them. More precisely, for each n ≥ 1, we define

pn(X) := sup{ε > 0 : there are x1, . . . , xn ∈ X with d(xi, xj) ≥ ε for all i 6= j}.

By compactness, one can find {x1, . . . , xn} ⊆ X such that d(xi, xj) ≥ pn(X) when-

ever i 6= j; such a set is called a code of size n.

For the d-sphere Sd, a code {x1, . . . , xn} ⊂ Sd is called a spherical code. Spherical

codes have generated considerable interest; see for example [44].

Spheres are naturally equipped with the Z/2-action exchanging antipodal points,

denoted x 7→ −x, and a subset of a sphere that is invariant under this action is said

to be centrally-symmetric. Hence, one may also consider the problem of finding

centrally-symmetric spherical codes, that is, spherical codes in which points come
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in antipodal pairs {x,−x} [13, 16]. By equipping real projective space RP d with the

quotient metric induced by the antipodal action, a centrally-symmetric spherical

code in Sd is equivalent to a code in RP d, i.e. a projective code. With this metric, the

distance between two points in RP d is the angle between the lines they determine

in R
d+1. In other words, a projective code is a collection of lines through the origin

in R
d+1 that are as close to orthogonal as possible. Therefore, the problem of

finding a projective code of size n may be rephrased as follows: Given c > 0, find

n unit vectors x1, . . . , xn ∈ Sd ⊂ R
d+1 such that |〈xi, xj〉| ≤ c whenever i 6= j.

In the present manuscript, we establish relationships between projective codes

and the following two problem areas:

(1) Metric thickenings: For a compact metric space X and δ > 0, determine bounds

for the topology of the space of probability measures on X supported on finite

sets of diameter at most δ, equipped with an optimal transport metric. This is

the metric thickening Xδ at scale δ.

(2) Zeros of odd maps: A map f : Sd → R is odd if f(−x) = −f(x) for all x ∈ Sd.

Let V be an n-dimensional vector space of continuous odd maps Sd → R. Find

a small δ ≥ 0 such that there is a set A ⊂ Sd of diameter at most δ with the

property that for every f ∈ V the restriction f |A is not strictly positive.

Metric thickenings were introduced in [2] to capture the geometry of a metric

space at a given scale δ > 0. Here we show that large projective codes provide

lower bounds for the topology of metric thickenings of spheres (in terms of their

cohomological index), which in turn give non-trivial upper bounds for δ in problem

area (2), and thus structural results for zeros of odd maps. Our main result is:

Theorem 1. Let V be an n-dimensional vector space of continuous odd maps

Sd → R. Then there is a set A ⊂ Sd of diameter at most δ = π − pn+1(RP
d) such

that for every f ∈ V the restriction f |A is not strictly positive.

Thus if RP d has a close packing by metric balls, then odd maps Sd → R cannot

stay positive on large subsets of Sd. One can regard Theorem 1 as an asymptotic

Borsuk–Ulam theorem. To recover the classical Borsuk–Ulam theorem that any odd

map Sn → R
n has a zero, one must instead phrase Theorem 1 in terms of the topol-

ogy of metric thickenings of the sphere; see Remark 3.1. This theorem improves

on a recent Borsuk–Ulam result for odd maps Sd → R
n with n ≥ d, proven by the

authors in [3]. We also refer the reader to [17], which uses characteristic classes to

give related generalizations of the Borsuk–Ulam theorem into higher-dimensional

codomains. The Borsuk–Ulam theorem has found numerous applications across

mathematics; see for instance [35] for applications in combinatorics and discrete

geometry.

An equivalent formulation of the Borsuk–Ulam theorem states that there does

not exist a continuous odd map Sn → Sd when n > d. However, the obstruction

to the existence of such maps can be eliminated by thickening the codomain. The



PROJECTIVE CODES AND ODD MAPS 3

following theorem makes this precise and establishes a relationship between the

topology of metric thickenings of spheres and projective codes.

Theorem 2. Let d and n be positive integers, and let δ ≥ π − pn+1(RP
d). Then

there is a continuous odd map Sn → Sd
δ .

Theorem 2 gives lower bounds for the topology of metric thickenings of spheres,

Sd
δ , in terms of packings of metric balls in projective space. Dually, coverings of

projective space by metric balls provide upper bounds for the topology of met-

ric thickenings in Theorem 3. Thus the topology of the metric thickening Sd
δ is

sandwiched between packings and coverings of projective space.

Theorem 3. Let δ > 0. Suppose there are n points x1, . . . , xn ∈ RP d such that

every point y ∈ RP d is strictly within distance δ from one of the xj. Then there is

an odd map Sd
π−2δ → Sn−1.

The following result about odd maps from metric thickenings into spheres, when

combined with Theorem 2, implies Theorem 1; see Section 3 for the proof.

Theorem 4. Let X be a metric space with a free Z/2-action, and let δ > 0. Let

V be an n-dimensional real vector space of continuous odd functions f : X → R,

such that for every A ⊂ X of diameter at most δ there is an f ∈ V such that f |A
is strictly positive. Then there is an odd map Xδ → Sn−1.

After proving the results outlined above, we will derive applications of Theo-

rem 1. Some of these are generalizations of the familiar consequences of the Borsuk–

Ulam theorem, while others are new applications that require the added generality

of Theorem 1 to produce interesting results. Applications of the latter kind are the

following:

(i) A well-studied problem concerns generic manifold embeddings, that is, if a

manifold M embeds into R
d, does it embed in a particularly generic way,

for example, such that tangent lines at different points are skew [20] or non-

parallel [27], or such that any k pairwise distinct points map to linearly inde-

pendent points [10]. Here we show that for embeddings of spheres into R
d a

notion of genericity of embeddings is governed by the size of projective codes;

see Section 4.

(ii) Simonyi and Tardos [42] established topological lower bounds for the circular

chromatic number of a graph in terms of the topology of its box complex.

Theorem 1 is already interesting in the case d = 1 of the circle S1, where

we derive the Simonyi–Tardos result as a consequence, thereby giving a new

proof of their result that provides new insights into why topological bounds

of the circular chromatic number depend on the parity of the coindex of the

box complex; see Section 5.



4 HENRY ADAMS, JOHNATHAN BUSH, AND FLORIAN FRICK

For two of the usual consequences of the Borsuk–Ulam theorem, we prove general-

izations to possibly “overdetermined” cases. These consequences are:

(iii) The Ham Sandwich theorem asserts that any d continuous probability mea-

sures on R
d can be simultaneously bisected by an affine hyperplane. We

prove a generalization of this result to the case of n ≥ d probability mea-

sures, where we have to relax the notion of bisection; see Section 6.

(iv) In any covering of Sn by n + 1 closed sets, one of these sets contains a

pair of antipodal points. We generalize this result by showing that this

remains true for coverings of Sn by more than n + 1 sets, provided that

every subset of Sn of a certain diameter appears in at least one of those

sets; see Section 7.

2. Context

We begin with some preliminary material, definitions, and lemmas.

2.1. Structural results for zeros of odd maps. Let X and Y be spaces with

Z/2-actions, that is, both X and Y are equipped with a continuous involution,

which we will denote x 7→ −x for x ∈ X and similarly y 7→ −y for y ∈ Y . For

the sphere Sd and for Euclidean space R
d we always fix the antipodal Z/2-action.

We will refer to any Z/2-equivariant map f : X → Y (i.e., f(−x) = −f(x) for

all x ∈ X) as an odd map. The central result about zeros of odd maps is the

Borsuk–Ulam theorem [11]:

Theorem 5. Any continuous odd map f : Sd → R
d has a zero. Equivalently, there

is no continuous odd map Sd → Sd−1.

Bourgin [12, Theorem 4A] and Yang [45] proved generalizations of this theorem

asserting that for any continuous odd map f : Sd → R
n with 1 ≤ n ≤ d, the

preimage f−1(0) contains an antipodally symmetric (d−n)-dimensional cycle, which

when mapped into the corresponding projective space RP d, is a non-zero element

of Hd−n(RP
d;Z/2). From Theorem 1 we can derive a Borsuk–Ulam theorem for

the complementary case n > d, as explained in Section 4. This improves on an

earlier result of the authors in [3] that bridges applied, quantitative, and equivariant

topology.

To explain the connection between Borsuk–Ulam theorems and projective codes,

we say that a set Y ⊂ R
n is a Carathéodory subset if its convex hull captures the

origin in R
n, i.e. if 0 ∈ conv(Y ). In particular, any set Y that contains antipodal

points y0,−y0 ∈ Y , such as the image of an odd map f : Sd → R
n, is trivially a

Carathéodory subset. While the image of a continuous odd map f : Sd → R
n may

miss the origin, we will explain in Section 4 how Theorem 2 implies that for some

set A ⊂ Sd of diameter strictly less than π, the restricted image f(A) is still a

Carathéodory subset.
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In order to recover the topological lower bounds for the circular chromatic num-

ber of a graph due to Simonyi and Tardos [42] in Section 5, we will need an auxiliary

result from [3]: Let

SM2k(t) = (cos t, sin t, cos(3t), sin(3t), . . . , cos((2k − 1)t), sin((2k − 1)t))

be the symmetric trigonometric moment curve. We may think of SM2k as a map

S1 → R
2k under the identification S1 = R/2πZ, with the antipodal action specified

by t 7→ t+π. Observe that SM2k is an odd map. Furthermore, the preimage of any

Carathéodory subset of the image of SM2k must have sufficiently large diameter in

the circle S1:

Lemma 2.1 ([3, Theorem 5]). Let X ⊂ S1 be a set with diameter strictly less

than 2πk
2k+1 . Then the convex hull of SM2k(X) does not contain the origin.

For example, in the case k = 1, Lemma 2.1 reduces to the statement that no

subset of S1 ⊂ R
2 of diameter less than 2π

3 can contain the origin in its convex hull;

this is Jung’s Theorem in the plane [29, Lemma 2]. This lemma can be seen as a

structural result for zeros of raked trigonometric polynomials; see [3, Theorem 4].

We will need the following consequence of Lemma 2.1 in Section 5:

Lemma 2.2. Let k ≥ 1 be an integer and let δ < 2πk
2k+1 . Then there is a continuous

odd map f : S1
δ → S2k−1.

Proof. By Lemma 2.1 the map SM2k : S
1 → R

2k extends linearly to an odd map

f̂ : S1
δ → R

2k \ {0}. Then f(x) = f̂(x)

‖f̂(x)‖ is the desired map. �

The bound on δ in Lemma 2.2 is optimal: there is a homotopy equivalence

S1
δ ≃ S2k+1 for 2πk

2k+1 ≤ δ < 2π(k+1)
2k+3 [39, 1], which can furthermore be made Z/2-

equivariant.

2.2. Cohomological index. Observe that Theorems 2, 3, and 4 are statements

regarding the existence of continuous odd maps into and out of spheres. Results

along these lines are commonly phrased in terms of the cohomological index, which

we now recall.

Let X be a metric space with a free Z/2-action, that is, a fixed-point free in-

volution. Let S∞ = ∪∞
n=0S

n, where each Sn is the equator of Sn+1. Up to Z/2-

equivariant homotopy (i.e., a homotopy that at every time commutes with the

Z/2-action) there is a unique odd map X → S∞, which gives X/(Z/2) → RP∞ on

quotients. This induces a map H∗(RP∞;F2) → H∗(X/(Z/2);F2) in cohomology

with F2-coefficients, where H∗(RP∞;F2) ∼= F2[t]. The smallest integer n such that

tn+1 is in the kernel of this map is the cohomological index (or Stiefel–Whitney

height) of X and denoted by ind(X); see [35]. If there is an odd map X → Sn,

then ind(X) ≤ n. On the other hand, if there is an odd map Sn → X then

n ≤ ind(X). We refer to the largest n such that there is an odd map Sn → X as
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the coindex of X, denoted by coind(X), which by the previous sentence satisfies

coind(X) ≤ ind(X).

2.3. Metric thickenings. Let (X, d) be a metric space and let δ ≥ 0. The

(Vietoris–Rips) metric thickening Xδ of X at scale δ is the set of probability

measures µ in X whose support supp(µ) is finite and has diameter at most δ,

equipped with the 1-Wasserstein metric of optimal transport. See [2] for an in-

troduction. In particular, we can write elements µ ∈ Xδ as convex combinations

µ =
∑n

k=1 λixi, where λi ≥ 0,
∑n

i=1 λi = 1, and x1, . . . , xn ∈ X with d(xi, xj) ≤ δ

for all 1 ≤ i, j ≤ n; see Figure 1. Here we identify each point xi ∈ X with the Dirac

measure at xi. Notice that in this way X is naturally a subspace of Xδ, embedded

isometrically.

] ]
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Figure 1. A metric space X with 7 points, and its metric thickening Xδ at three

different increasing values of δ > 0. In this visualization, a Dirac delta measure

supported on a point x ∈ X is drawn as a black point, and a probability measure∑n
k=1 λixi with d(xi, xj) ≤ δ for all i, j is represented by the point in the simplex

{x1, . . . , xn} with barycentric coordinates (λ1, . . . , λn).

Originally, metric thickenings were defined to introduce tools from metric ge-

ometry to the study of Vietoris–Rips complexes, that is, the simplicial complex

VR(X; δ) of all finite subsets of X of diameter at most δ. These complexes are

ubiquitous in computational topology and topological data analysis [15]. Despite

their prevalence in these areas, the topology of Vietoris–Rips complexes and thick-

enings is not well-understood, unless the scale parameter δ is small [28, 30, 2] or the

underlying metric space X is simple [1, 39]. See [4, 5, 38] for relationships between

Vietoris–Rips complexes and Vietoris–Rips metric thickenings in the context of ap-

plied topology. Because metric thickenings parametrize the collection of subsets of

a metric space of bounded diameter, they are the correct “configuration space” for

studying such subsets. Indeed, the topology of metric thickenings of spheres Sd
δ will

play a key role in the proofs of our main results.

The choice to restrict the metric thickening Xδ to probability measures supported

in finitely many points is essentially immaterial; this restriction is the easiest way

to ensure that the 1-Wasserstein distance between such measures is well-defined.
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(Otherwise we could instead require that every probability measure on X is inner

regular, that is, for each open U ⊂ X the measure µ(U) can be approximated

arbitrarily closely by µ(C), where C ⊂ U is compact.) Also, one could instead

choose to equip the metric thickening Xδ with the q-Wasserstein metric for any

q ∈ [1,∞).

Any map f : X → R
n induces a natural map f : Xδ → R

n by f(µ) =
∫
X
f dµ,

where for µ =
∑

λixi the integral
∫
X
f dµ is simply the sum

∑
λif(xi). The

extended map on Xδ is also denoted f , since no confusion can arise: The value of

f(x) for x ∈ X does not depend on whether we interpret x as a point in X or the

Dirac measure centered at x. We call this naturally extended map f : Xδ → R
n

the linear extension of f , and say that f was linearly extended. If f : X → R
n is

continuous and bounded, then its linear extension f : Xδ → R
n is continuous [2,

Lemma 5.2].

Suppose X is equipped with a Z/2-action. Then the generator of Z/2 defines an

involution ι : X → X. This extends to an involution ι : Xδ → Xδ in a natural way:

ι(
∑

λixi) =
∑

λiι(xi). Thus Xδ is a Z/2-space as well. If the action on X is free,

then the induced action on Xδ is free as well, provided that d(x, ι(x)) > δ for all

x ∈ X.

3. The cohomological index of metric thickenings

We will first prove lower bounds for the topology of metric thickenings in terms of

the size of projective codes. These lower bounds are in terms of the coindex of metric

thickenings. Algebraically, this is approximately captured by the (integer-valued

Z/2-)cohomological index; see Section 2.2 for a brief introduction. For convenience,

we restate these theorems from the introduction before giving the proofs; note that

we now also refer to the cohomological index of a space.

Theorem 2. Let d and n be positive integers, and let δ ≥ π − pn+1(RP
d). Then

there is a continuous odd map Sn → Sd
δ ; in particular, n ≤ coind(Sd

δ ) ≤ ind(Sd
δ ).

Proof. We will construct an odd map f : Sn → Sd
δ . Let α = pn+1(RP

d). By

compactness, we can find x1, . . . , xn+1 ∈ RP d that are pairwise at distance at

least α. Each xj lifts to two points x−
j and x+

j in Sd. These points are antipodes

at distance π, but the distance to any other point x±
i for i 6= j is at most π − α.

Indeed, the point x±
i lies on a shortest path connecting x+

j to x−
j . Since its distance

to x−
j is at least α, it is within a distance of π − α from x+

j . Symmetrically, since

its distance to x+
j is at least α, it is within a distance of π − α from x−

j .

We will think of the domain of the odd map f : Sn → Sd
δ as the ℓ1 unit sphere

in R
n+1, that is, as the boundary of the (n + 1)-dimensional crosspolytope with

vertices ±e1, . . . ,±en+1. Define f on vertices by mapping ±ej to the Dirac measure

at x±
j . Then extend linearly, that is, given a point

∑n+1
i=1 λiεiei in the ℓ1 unit sphere

for some choice of signs εi ∈ {−1, 1} and coefficients λi ≥ 0 with
∑n+1

i=1 λi = 1,
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define f(
∑n+1

i=1 λiεiei) =
∑n+1

i=1 λiεif(ei). This is a measure supported on at most

n+ 1 points whose pairwise distances are at most π − α ≤ δ. �

The proof above shows that a projective code x1, . . . , xn+1 ∈ RP d, where any

two points are at distance at least α, induces a linear map from the boundary of the

(n+1)-dimensional crosspolytope Sn → Sd
δ for δ ≥ π−α. Here Sd

δ is a subset of the

vector space of signed measures on Sd, so linearity is well-defined. Conversely, any

map Sn → Sd
δ that is linear in this sense induces a projective code, where elements

are at distance at least π− δ. The cohomological index of Sd
δ provides an algebraic

witness for the existence of odd maps Sn → Sd
δ , and thus the parametrized family

of cohomological indices of Sd
δ as δ ranges over (0, π) is a topological version of

projective codes.

As remarked in the introduction, coverings of projective space by metric balls

dually provide upper bounds for the topology of metric thickenings; see Theorem 3.

In other words, simple volume bounds for the size of projective codes apply more

generally to bound the topology of metric thickenings. A collection of n metric

δ-balls in RP d cannot be pairwise disjoint if the sum of their volumes exceeds the

volume of RP d. This bound for projective codes applies more generally as an upper

bound for the topology of metric thickenings of spheres.

Theorem 3. Let δ > 0. Suppose there are n points x1, . . . , xn ∈ RP d such that

every point y ∈ RP d is strictly within distance δ from one of the xj. Then there is

an odd map Sd
π−2δ → Sn−1; in particular, ind(Sd

π−2δ) ≤ n− 1.

Proof. We think of each xj ∈ RP d as a pair of antipodal points ±xj in Sd. If y ∈ Sd

has distance less than δ from xj and z ∈ Sd has distance less than δ from −xj , then

y and z are at a distance exceeding π − 2δ. Thus for any µ ∈ Sd
π−2δ the support

of µ does not intersect both Bδ(xj) and Bδ(−xj). Let fj : S
d
π−2δ → R be the map

that for µ ∈ Sd
π−2δ with support disjoint from Bδ(−xj) is defined as

inf{d(µ, ν) : ν ∈ Sd
π, supp(ν) ∩Bδ(xj) = ∅},

where the distance between measures is the 1-Wasserstein distance. Extend this

map to all of Sd
π−2δ by declaring that fj(−µ) = −fj(µ). It is easily verified that

this is a well-defined, continuous odd map. The map f : Sd
π−2δ → R

n given by

f = (f1, . . . , fn) is odd and misses the origin. Thus µ 7→ f(µ)
‖f(µ)‖ is an odd map

Sd
π−2δ → Sn−1. �

The next theorem, when combined with Theorem 2, will allow us to prove our

main result, Theorem 1.

Theorem 4. Let X be a metric space with a free Z/2-action, and let δ > 0. Let

V be an n-dimensional real vector space of continuous odd functions f : X → R,

such that for every A ⊂ X of diameter at most δ there is an f ∈ V such that
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f |A is strictly positive. Then there is an odd map Xδ → Sn−1; in particular,

ind(Xδ) ≤ n− 1.

Proof. Fix a basis B of V , so |B| = n. For µ ∈ Xδ and f ∈ V let f(µ) =∫
X
f dµ. Define Φ: Xδ → R

n by Φ(µ) = (f(µ))f∈B . Every element of V is a

linear combination of B and thus a function of the form x 7→ 〈z,Φ(x)〉 for some

z ∈ R
n. Here x denotes the Dirac measure δx. Let µ ∈ Xδ be arbitrary, and denote

its support by A. There is some f ∈ V such that f |A is strictly positive. Thus

〈z,Φ(x)〉 > 0 for some z ∈ R
n and every x ∈ A. In particular, 〈z,Φ(µ)〉 > 0 and

thus Φ maps to R
n \ {0} ≃ Sn−1. �

Proof of Theorem 1. Let V be an n-dimensional vector space of continuous odd

maps Sd → R. We must show that there is a set A ⊂ Sd of diameter at most

δ := π − pn+1(RP
d) such that for every f ∈ V the restriction f |A is not strictly

positive.

Theorem 2 implies ind(Sd
δ ) ≥ n. If there were no such set A ⊂ Sd, then for all

sets of diameter at most δ there would be some f ∈ V such that the restriction f |A
is strictly positive, so Theorem 4 would imply ind(Sd

δ ) ≤ n−1, a contradiction. �

Remark 3.1. Instead of δ = π − pn+1(RP
d) we could have phrased Theorem 1

for the smallest δ such that the metric thickening Sd
δ has cohomological index at

least n, i.e., such that ind(Sd
δ ) ≥ n. For n = d, this δ is zero, since Sd is a subspace

of Sd
δ for any δ ≥ 0. In the case n = d and δ = 0, this stronger version of Theorem 1

says that given any d-dimensional vector space V of continuous odd maps Sd → R,

there is a point x ∈ Sd (i.e., a set of diameter zero) such that f(x) = 0 (since f ∈ V

implies −f ∈ V ) for all f ∈ V . By choosing V to be generated by the d coordinate

functions of an odd map g : Sd → R
d, we hence obtain the standard Borsuk–Ulam

Theorem stating there exists some x ∈ Sd with g(x) = 0.

To conclude this section, we give an example of explicit bounds that may be

derived from Theorem 2. For general upper and lower bounds for the size of pro-

jective codes, see Levenshtein [31]. For our explicit example, we are interested in

projective codes whose size exceeds the dimension by a fixed integer. Bukh and

Cox [13] study the behaviour of pd+k(RP
d) for fixed k as d grows. Among other

results they show:

Theorem 6 (Bukh and Cox [13], Theorem 21). Let k ≥ 1 be an integer. Then

pd−1+k(RP
d−1) ≥ arccos

(
(1 + o(1))

2
√
k + 1

d

)
,

where o(1) denotes a function that converges to 0 as d → ∞.

By combining Theorem 6 with Theorem 2, we immediately get the following

consequence for the topology of Vietoris–Rips metric thickenings of spheres:
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Corollary 3.2. Let k ≥ 1 be an integer and δ > π
2 . Then for d = d(k, δ) sufficiently

large, there is a continuous odd map Sd+k → Sd
δ . Indeed, we need to choose d

sufficiently large such that δ > π− arccos
(
(1 + o(1)) 2

√
k+2

d+1

)
, where o(1) denotes a

function that converges to 0 as d → ∞.

Proof. By Theorem 6 we have pd+k+1(RP
d) ≥ arccos

(
(1 + o(1)) 2

√
k+2

d+1

)
→ π

2 as

d → ∞. So for δ > π
2 we have δ ≥ π − pd+k+1(RP

d) for d sufficiently large, in

which case Theorem 2 gives an odd map Sd+k → Sd
δ . �

For δ ≤ π
2 we have that Sd

δ ≃ Sd [2]. Corollary 3.2 asserts that for any δ > π
2 ,

there is an arbitrarily large jump in coindex between Sd
π/2 and Sd

δ for d sufficiently

large.

4. Convexity properties of odd maps and generic manifold embeddings

The fundamental result about zeros of odd maps is the classical Borsuk–Ulam

theorem: Any continuous odd map Sd → R
d has a zero, or equivalently, any

continuous map f : Sd → R
d identifies two antipodal points, f(−x) = f(x). Gen-

eralizations of this result that quantify the size of the zero set or preimage of a

point for maps Sd → R
n for n ≤ d were proven by Bourgin [12], Yang [45, 46],

Almgren [7], and Gromov [22, 23, 25, 37]. Our Theorem 1 studies an approximate

Borsuk–Ulam result for maps Sd → R
n in which we instead have n ≥ d.

To explain this connection, recall from Section 2.1 that we say a set Y ⊂ R
n

is a Carathéodory subset if its convex hull captures the origin, 0 ∈ conv(Y ). Any

set that contains antipodal points, such as the image of an odd map Sd → R
n, is

trivially a Carathéodory subset. We will explain how Theorem 2 shows that for

some set A ⊂ Sd of diameter strictly less than π the restricted image f(A) still

is a Carathéodory subset. For a compact metric space X with free Z/2-action,

we denote by cn(X) the infimum over all t ∈ [0,∞) such that, for any odd map

f : X → R
n, there is a set A ⊂ X with diameter bound diam(A) ≤ t and with

0 ∈ conv(f(A)). We call cn(X) the Z/2-Carathéodory number of X. The Borsuk–

Ulam theorem may be phrased as cd(S
d) = 0. Upper bounds for cn(S

d), for n > d,

follow easily from Theorem 2:

Corollary 4.1. The Z/2-Carathéodory number of the d-sphere satisfies the inequal-

ity

cn(S
d) ≤ π − pn+1(RP

d).

Proof. Let f : Sd → R
n be a continuous odd map, and let δ = π − pn+1(RP

d).

The map f has a canonical continuous odd extension F : Sd
δ → R

n defined by

F (µ) =
∫
Sd f dµ. In addition, Theorem 2 gives a continuous odd map Sn → Sd

δ .

By the Borsuk–Ulam theorem applied to the odd composition Sn → Sd
δ → R

n,

there exists some µ ∈ Sd
δ with 0 =

∫
Sd f dµ. Thus 0 ∈ conv{supp(µ)} with

diam(supp(µ)) ≤ δ. �



PROJECTIVE CODES AND ODD MAPS 11

Remark 4.2. Corollary 4.1 substantially improves a result of the present authors

in [3] that shows c2kd+2d−1(S
2d−1) ≤ 2πk

2k+1 (with equality in the case d = 1). For

example, consider the projective code given by lines through the vertices of the

hypercube: Let C ⊂ R
d be the set of vectors whose coordinates are all ±1. This is

an antipodal set, C = −C, determining 2d−1 lines through the origin. The angle

between distinct lines is at least arccos(1− 1
d ). More generally, fix d, n ≥ 1, and let

Sr = {x ∈ Z
d : ‖x‖2 = r and |xi| ≤ n for all i}.

Note {x ∈ Z
d : |xi| ≤ n for all i} has cardinality (2n+1)d, that S0 has cardinality

1, and that Sr = ∅ for r > dn2. Hence some Sr with 1 ≤ r ≤ dn2 has cardinality

at least (2n+1)d−1
dn2 ≥ (2n)d

dn2 = 2d

d · nd

n2 > nd−2. For x, y ∈ Sr with x 6= ±y the

absolute value of the inner product |〈x, y〉| is an integer and less than r, in particular

|〈x, y〉| ≤ r − 1. Thus the angle between distinct lines determined by points in Sr

is at least arccos(1 − 1
r ). It follows that pnd−2+1(RP

d−1) ≥ arccos(1 − 1
dn2 ), and

hence

cnd−2(Sd−1) ≤ π − arccos

(
1− 1

dn2

)
.

Since arccos(1 − x) converges to 0 as x → 0 in a linear fashion, this shows that

π − cnd−2(Sd−1) = Ω( 1
dn2 ) as n → ∞. By contrast, the earlier bound from [3]

would only give π − cnd−2(Sd−1) = Ω( 1
nd−2 ) as n → ∞. For a concrete example,

recall that the 600-cell (also known as the hypericosahedron or hexacosichoron) has

120 centrally-symmetric vertices, which determine 60 lines through the origin in R
4

with minimal angle π
5 . Thus c59(S

3) ≤ π − π
5 by Corollary 4.1, whereas our earlier

bound (with d = 2 and k = 14) only gives c59(S
3) ≤ π − π

29 .

Remark 4.3. Instead of viewing Corollary 4.1 as an upper bound for cn(S
d) in

terms of pn+1(RP
d), equivalently pn+1(RP

d) ≤ π − cn(S
d) gives an upper bound

for projective codes in terms of zeros of odd maps. It remains an interesting open

problem whether upper bounds for projective codes may be improved using this

framework by exhibiting odd maps such that the image of sets up to a certain

diameter may be separated from the origin. On the other hand, Theorem 3 shows

that volume bounds for projective codes more generally provide upper bounds for

the cohomological index of metric thickenings.

In much the same way that the Borsuk–Ulam theorem prohibits an embedding

of Sd into R
d, Corollary 4.1 gives bounds for how generic an embedding Sd →֒ R

n,

n > d, may be. Here the convex hulls of images of nearby points must intersect,

where “nearby” is quantified by the distance of projective codes of size n+ 1.

Corollary 4.4. Let d and n be positive integers, and let δ ≥ cn(S
d), which is

satisfied if δ ≥ π−pn+1(RP
d). Then for any map f : Sd → R

n there is a set X ⊂ Sd

of diameter at most δ such that the convex hulls of f(X) and f(−X) intersect.
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Moreover, the preimages of the intersection point have the same coefficients with

respect to X and −X, that is,
∫
Sd f(x) dµ =

∫
Sd f(−x) dµ for some µ ∈ Sd

δ .

By Carathéodory’s theorem, we may take X to have size at most n+ 1.

Proof. Let δ ≥ cn(S
d), which for example holds if δ ≥ π − pn+1(RP

d) by Corol-

lary 4.1. Define F : Sd
δ → R

n by F (µ) =
∫
Sd(f(x) − f(−x)) dµ(x). The map F is

odd, and thus has a zero by the definition of the Z/2-Carathéodory number cn(S
d).

This implies
∫
Sd f(x) dµ(x) =

∫
Sd f(−x) dµ(x) for some probability measure µ on

Sd whose support has diameter at most δ. The point
∫
Sd f(x) dµ(x) lies in the

convex hull of f(X), where X denotes the support µ, while
∫
Sd f(−x) dµ(x) ∈

conv f(−X). �

Example 4.5. Let α be the common angle between the six (equiangular) lines

in R
3 determined by the vertices of the icosahedron. That is, let φ = 1+

√
5

2 be

the golden ratio, and let α = arccos( φ
1+φ2 ). Corollary 4.4 shows that for any

map f : S2 → R
5 there is a set X ⊂ S2 of diameter at most π − α such that

conv f(X) ∩ conv f(−X) 6= ∅.

5. Topological bounds for the circular chromatic number

Lovász’s proof of Kneser’s conjecture [33] introduced topological lower bounds

to the study of chromatic numbers of graphs. This classical result has been ex-

tended and adapted in various ways. For example, Simonyi and Tardos [42] proved

topological lower bounds for the circular chromatic number of a graph.

Definition 5.1. Given a graph G with vertex set V and edge set E, an r-circular

coloring of G is a map f : V → RP 1 such that d(f(v), f(w)) ≥ π
r whenever (v, w) ∈

E. Recall that RP 1 simply denotes the circle of circumference π.

Definition 5.2. The circular chromatic number of a graph G is

χc(G) := inf{r > 0 | G is r-circular colorable}.

The infimum in the definition of the circular chromatic number of a graph G is

known to be attained if G is finite. The topological lower bounds for χc(G) are in

terms of the topology of the box complex, which we define now. Let G be a graph

on vertex set {1, 2, . . . , n}. The box complex B0(G) of G is a simplicial complex

on vertex set Q = {1, . . . , n} ∪ {−1, . . . ,−n}. A subset σ ⊂ Q is a face of B0(G)

if for every v ∈ σ with v > 0 and every w ∈ σ with w < 0, the tuple (v,−w)

forms an edge of G. In particular, {1, . . . , n} and {−1, . . . ,−n} are faces of B0(G).

The complex B0(G) has a free Z/2-action which swaps the vertices v and −v and

extends linearly to the faces of B0(G). The box complex B0(G) that we use is only

one of several possible definitions; see for example [18, 36, 42] which study both the

box complex B0(G) along with variants thereof.

We can now state the result of Simonyi and Tardos:
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Theorem 7 (Simonyi–Tardos [42, Theorem 6]). Given a finite graph G, if there is

a continuous odd map S2k−1 → B0(G), then χc(G) ≥ 2k.

Here we show that Theorem 7 is a consequence of bounds for the topology of

metric thickenings of the circle. Our proof in particular gives an explanation for

the dependence of the bounds for the circular chromatic number on the parity

of the coindex of B0(G): When δ exceeds a critical value when the index of the

metric thickenings of the circle S1
δ increases, the index in fact increases by two (see

Lemma 2.2). Our proof of Theorem 7 is based on Theorem 8 and Lemmas 5.3–5.4,

which we now provide.

Theorem 8. Let G be a finite graph with vertex set V (G) and edge set E(G),

and let CG denote the cone over G with vertex set V (CG) = V (G) ∪ {•} and

edge set E(CG) = E(G) ∪ {(•, v) | v ∈ V (G)}. If there is a continuous odd map

S2k → B0(CG), then χc(CG) ≥ 2k + 1.

Proof. Suppose G is a finite graph with χc(CG) < 2k+1. Let the map f : V (CG) →
RP 1 be given such that for some small ε > 0 we have dRP 1(f(v), f(w)) ≥ π

2k+1 + ε

whenever (v, w) ∈ E(CG). Think of RP 1 as [0, π] with 0 and π identified into one

point. Thus, f induces a map V (CG) → [0, π), and we choose f so that f(•) = 0.

Now, thinking of S1 as [0, 2π] with 0 and 2π identified, f induces a map V (CG) →
S1 that maps all vertices to the upper semi-circle. By antipodal symmetry we can

extend this to a map F : (V (CG)∪−V (CG)) → S1 with F (•) = 0 and F (−•) = π.

In particular, if we compose F with the double-covering S1 → RP 1, then both v

and −v map to f(v).

We will prove that F extends to a well-defined odd map F̃ : B0(CG) → S1
δ ,

where δ = 2πk
2k+1 − ε. There are three cases to check. First, for this we need to

show that for any face σ of B0(CG) the set {F (v) : v ∈ σ} ⊂ S1 has diameter at

most δ. For any v ∈ V (G) we have dRP 1(f(v), f(•)) ≥ π
2k+1 +ε, and thus F (v) is at

distance at least π
2k+1 +ε from both F (•) and −F (•) = F (−•) in S1. In particular,

dS1(F (v), F (•)) = π − dS1(F (v),−F (•)) ≤ π −
(

π
2k+1 + ε

)
= δ, (1)

and similarly dS1(F (−v), F (−•)) ≤ δ. Second, since F (•) = 0, note (1) implies that

the set of points {F (v) : v ∈ V (G)} is contained in an interval of length δ in the

upper semi-circle of S1. Thus for any v, w ∈ V (G) we have that dS1(F (v), F (w)) ≤
δ and dS1(F (−v), F (−w)) ≤ δ. Third, if (v, w) ∈ E(G), then dRP 1(f(v), f(w)) ≥

π
2k+1 + ε, and so dS1(F (v), F (−w)) = dS1(F (−v), F (w)) ≤ δ.

The map F sends the vertices of B0(CG) to points in S1, such that vertices that

span a face of B0(CG) map to points at pairwise distance at most δ. Let x be a

point contained in the interior of some face σ of B0(CG), say x =
∑ℓ

i=1 λivi for

v1, . . . , vℓ vertices of σ and λi > 0 with
∑

λi = 1. Then thinking of F (vi) as the

Dirac measure based at F (vi), we can define F̃ (x) =
∑

λiF (vi), which is an element
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of S1
δ . This completes the definition of the continuous odd map F̃ : B0(CG) → S1

δ .

By Lemma 2.2 there is a continuous odd map S1
δ → S2k−1, and by composition we

get a continuous odd map B0(CG) → S2k−1. Hence their cannot be a continuous

odd map S2k → B0(CG), as their composition S2k → S2k−1 would contradict the

Borsuk–Ulam theorem. �

Lemma 5.3. For a finite graph G, χc(G) ≥ χc(CG)− 1.

Proof. Let f : V (G) → RP 1 be a circular r-coloring of G. We need to construct a

circular (r + 1)-coloring of CG. Parametrize RP 1 as [0, π] with 0 and π identified

into one point, which we will denote by x0. Choose the parametrization in such a

way that some vertex v ∈ V (G) satisfies f(v) = x0.

Now think of f as a map f : V (G) → [0, π). Define a map g : V (CG) → [0, π)

by g(v) = r
r+1f(v) for v ∈ V (G) and g(•) = r

r+1π. It is easily verified that g is a

circular (r + 1)-coloring of CG. �

Lemma 5.4. For a finite graph G, coind(B0(CG)) ≥ coind(B0(G)) + 1.

Proof. To prove the lemma, it is sufficient to prove that B0(CG) is the suspension

of B0(G) (see, for instance, [42, Lemma 3.1]). Let G have vertex set {1, 2, . . . , n},
and so B0(G) has vertex set {1, . . . , n}∪{−1, . . . ,−n}. Note that the box complex

B0(CG) has two additional vertices that are not present in B0(G), which we will

denote by • and −•. To prove that B0(CG) is the suspension of B0(G), we must

verify that both σ ∪ {•} and σ ∪ {−•} are faces of B0(CG) for any given face σ of

B0(G). We do only the former, as the argument for the latter is nearly identical.

Toward that end, for a given face σ ∈ B0(G), consider any v ∈ σ ∪ {•} with v > 0

and any w ∈ σ∪{•} with w < 0 (which implies w 6= •). There are two possibilities:

If v ∈ σ, we have (v,−w) ∈ E(G) ⊂ E(CG) because σ ∈ B0(G). Otherwise, if

v = •, we have (v,−w) = (•,−w) ∈ E(CG) by the definition of CG. Hence σ∪{•}
is a face of B0(CG). �

We are prepared to prove Theorem 7.

Proof of Theorem 7. Since there is a continuous odd map S2k−1 → B0(G), we

have coind(B0(G)) ≥ 2k− 1. So coind(B0(CG)) ≥ 2k by Lemma 5.4, i.e. there is a

continuous odd map S2k → B0(CG). Hence, Theorem 8 implies χc(CG) ≥ 2k + 1.

Finally, by Lemma 5.3 we have χc(G) ≥ χc(CG)− 1 ≥ (2k + 1)− 1 = 2k. �

6. Generalizations of the Ham Sandwich theorem

The Ham Sandwich theorem, originally conjectured by Steinhaus in the “Scottish

book,” was proved by Banach and Stone–Tukey [43]. See [9] for the history of this

result, including a note on Banach’s contribution to the proof in dimension 3.
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Theorem 9 (Ham Sandwich theorem). Let µ1, . . . , µd be finite Borel measures in

R
d such that every hyperplane has measure 0 for each of the µi. Then there exists

a hyperplane H such that µi(H
+) = 1

2µi(R
d) for i = 1, . . . , d, where H+ denotes

one of the half-spaces defined by H.

Informally, in the case of three measurable subsets of R3, a sandwich made of

three ingredients may be equipartitioned (that is, divided into two sandwiches each

containing equal amounts of all three ingredients) using a single planar slice.

The Ham Sandwich theorem is perhaps the most well-known example of a mass

partition theorem. In general, such theorems seek to establish the existence of

families of partitions of Euclidean spaces splitting a given family of measures in a

particular way. For example, Grünbaum [24] asked if it is always possible to divide

a single mass in R
d by d hyperplanes to obtain 2d equal parts. This question was

answered in the affirmative by Hadwiger [26] for d ≤ 3, but was proved to be false

for d ≥ 5 by Avis [8]. See [40, 19] for surveys of mass partition theorems and re-

lated results in combinatorial topology and combinatorial geometry, including Ham

Sandwich-type theorems allowing multiple planar slices and theorems concerning

the fair division of cakes and necklaces. There are versions of the Ham Sandwich

theorem studying when one can bisect more masses than the dimension of the am-

bient space, for example including divisions by algebraic surfaces [43] or divisions

of projections onto hyperplanes [41].

Theorem 1 and Corollary 4.4 allow us to extend the Ham Sandwich theorem to

the setting in which the number of measures exceeds the dimension of the ambient

space. For the purpose of illustration, we refer to the following as the “log bundle”

theorem.

Informally, in the case of three measurable subsets of the disk, Theorem 10

says the following: Suppose a bundle of three logs needs to be divided up using

equipment that permits only two kinds of cuts. First, we can perform “horizontal

cuts,” perpendicular to the bundle (Figure 2 (left)), dividing the bundle up into

shorter bundles. Secondly, through the centers of each resulting shorter bundles, we

can perform a single “vertical cut” to produce two hemi-bundles (Figure 2 (right)).

Furthermore, the blade used to perform each “vertical cut” is on a fixed pivot that

cannot swivel by an angle of more than 2π
3 . Then, in light of these constraints, it is

always possible to obtain an equipartition of the bundle (that is, two piles of wood

each containing exactly half the mass of each log) by selecting exactly one of each

of the resulting hemi-bundles from each of the shorter bundles.

Theorem 10 (Generalization of Theorem 9). Fix integers d, n ≥ 1. Let

Dd+1 = {(x1, x2, . . . , xd+1, 0) | x2
1 + x2

2 + · · ·+ x2
d+1 ≤ 1} ⊂ R

d+2

and suppose A1, . . . , An ⊂ Dd+1 are measurable sets. For

p ∈ ∂Dd+1 = {(x1, x2, . . . , xd+1, 0) | x2
1 + x2

2 + · · ·+ x2
d+1 = 1},
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Figure 2. (Left) A bundle of three logs, Ai × I for i = 1, 2, 3.

Dashed red lines indicate “horizontal cuts.” (Right) A “vertical”

cut through the center of one slice of the log bundle. The saw

blade is on a fixed pivot that can not swivel by an angle of more

than 2π
3 .

let π(p) = {x ∈ R
d+2 | 〈x, p〉 = 0} denote the hyperplane passing through the origin

normal to p. Furthermore, let H+(p) and H−(p) denote the (closed) halfspaces of

R
d+2 determined by the inequalities 〈x, p〉 ≥ 0 and 〈x, p〉 ≤ 0, respectively. Then,

there exist numbers 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 = 1 with k ≤ n and vectors

p1, . . . , pk+1 ∈ ∂Dd+1 such that

(1) the vectors pi are “close” in the sense that arccos(〈pi, pj〉) ≤ π−pn+1(RP
d)

for all i and j (in particular, no two vectors are antipodal), and

(2) there exists an equipartition of the n masses Aj × I given by taking (Aj ×
[ti−1, ti]) ∩H+(pi) for each 1 ≤ i ≤ k + 1.

This equipartition means that for each j, the sum of the measures of (Aj ×
[ti−1, ti])∩H+(pi) is equal to the sum of the measures of (Aj × [ti−1, ti])∩H−(pi),

where both sums vary over 1 ≤ i ≤ k + 1.

Proof. Define a continuous function f : Sd → R
n by

p 7→
(
the measure of A1 ∩H+(p), . . . , the measure of An ∩H+(p)

)
.

By Corollary 4.4 there exist vectors p1, . . . , pk+1 ∈ Sd (with k ≤ n by Carathéodory’s

theorem) and convex coefficients λ1, λ2, . . . λk+1 such that arccos(〈pi, pj〉) ≤ π −
pn+1(RP

d) for all i and j and

k+1∑

i=1

λif(pi) =

k+1∑

i=1

λif(−pi).

Observe that

f(−p) = (the measure of A1 ∩H−(p), . . . , the measure of An ∩H−(p)).

Setting ti =
∑i

j=1 λj for each 0 ≤ i ≤ k + 1 completes the proof. �
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Remark 6.1. We may obtain a stronger version of Theorem 10, allowing one

more set to be equipartitioned, by dropping the requirement that each hyperplane

π(p) must pass through the origin. In this setting, n + 1 sets may be equiparti-

tioned by n+1 hyperplanes determined by vectors p1, . . . , pn+1 which again satisfy

arccos(〈pi, pj〉) ≤ π − pn+1(RP
d) for all i and j.

We will refer to a hyperplane that passes through the origin as a linear hyper-

plane. A linear hyperplane H is oriented if the two halfspaces determined by H

come with a choice of positive halfspace H+ and negative halfspace H−. The Ham

Sandwich theorem may be restated in the following way:

Theorem 11 (Ham Sandwich theorem – restated). Let µ1, . . . , µd be finite Borel

measures on Sd ⊂ R
d+1 such that every linear hyperplane in R

d+1 has measure

0 for each of the µi. Then there exists a linear hyperplane H in R
d+1 such that

µi(H
+ ∩ Sd) = 1

2µi(S
d) for i = 1, . . . , d, where H+ denotes one of the half-spaces

defined by H.

Theorem 1 implies the following:

Theorem 12. Let µ1, . . . , µn on Sd ⊂ R
d+1 be finite Borel measures such that each

linear hyperplane in R
d+1 has measure 0 for each of the µi. Then there exists a

set H of oriented linear hyperplanes in R
d+1 at pairwise angle (in RP d) at most

δ = π − pn+1(RP
d) such that, for each i, at least half of µi is contained in the

negative halfspace determined by some hyperplane in H, and at least half of µi is

contained in the positive halfspace determined by some hyperplane in H.

Proof. For x ∈ Sd ⊂ R
d+1, let H−(x) and H+(x) denote the (closed) halfspaces of

R
d+1 determined by the inequalities 〈y, x〉 ≤ 0 and 〈y, x〉 ≥ 0, respectively. Let V

denote the vector space of odd maps Sd → R generated by the vectors fi defined by

fi(x) = µi(H
+(x))−µi(H

−(x)) for 1 ≤ i ≤ n. Note that V has dimension at most

n, and that each fi is odd. By Theorem 1, there exists a set A ⊂ Sd of diameter

at most δ such that, for every f ∈ V , the restriction f |A is not strictly positive

(and, since −f ∈ V , it is also true that the restriction f |A is not strictly negative).

Hence, for each 1 ≤ i ≤ n, there must exist points ai, bi ∈ A such that fi(ai) is

nonpositive and fi(bi) is nonnegative, that is, at least half of µi is contained in

the negative halfspace H−(ai) and at least half of µi is contained in the positive

halfspace H+(bi). So we are done by letting H = {H±(a) : a ∈ A}. �

Remark 6.2. Instead of δ = π − pn+1(RP
d) we could have phrased both Theo-

rem 10 and Theorem 12 for the smallest δ such that the metric thickening Sd
δ has

cohomological index at least n. For n = d, this δ is zero, since Sd is a subspace of

Sd
δ for any δ ≥ 0. In the case n = d and δ = 0, the stronger version of Theorem 10

described in Remark 6.1 specializes to Theorem 9, and Theorem 12 specializes to

Theorem 11.
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7. Generalizations of Lyusternik–Shnirel’man–Borsuk covering

theorems

Theorem 13 (Lyusternik–Shnirel’man–Borsuk covering theorem [34]). For any

cover A1, . . . , Ad+1 of the sphere Sd by d + 1 closed sets, there is at least one set

containing a pair of antipodal points.

In fact, the conclusion of Theorem 13 holds for more general collections of subsets

of Sd.

Theorem 14. For any cover A1, . . . , Ad+1 of the sphere Sd by d + 1 sets such

that the first d sets A1, . . . , Ad are each open or closed, there is at least one set

containing a pair of antipodal points.

A proof of this theorem appears in [6]; see also [21, 35]. We now consider a

generalization in which the number of sets in the covering may be arbitrarily large

with respect to the dimension of the sphere.

Theorem 15 (Generalization of Theorem 14). Fix integers n ≥ d ≥ 1 and suppose

A1, . . . , An+1 is a cover of the sphere Sd by n + 1 sets such that the first n sets

A1, . . . , An are each open or closed. Furthermore, suppose that any subset of the

sphere of diameter at most cn(S
d) is contained in some subset Ai. In particular,

this is satisfied if every subset of the sphere of diameter at most π − pn+1(RP
d)

is contained in some Ai. Then, there is at least one set Ai containing a pair of

antipodal points.

Recall the Z/2-Carathéodory number cn(S
d) is defined as the infimum over all

t ∈ [0,∞) such that for any odd map f : X → R
n there is a set A ⊂ X with

diam(A) ≤ t and 0 ∈ conv(f(A)). The above theorem generalizes Theorem 13

because if n = d, then the condition that any subset of the sphere of diameter at

most cd(S
d) = 0 is in some subset Ai simply implies that the sets Ai cover the

sphere.

Proof. Assume, for the sake of contradiction, that no set in the cover contains

antipodal points. Consider the continuous map f : Sd → R
n
≥0 defined by f(x) =

(d(x,A1), . . . , d(x,An)), where d(x,Ai) = infy∈Ai
{d(x, y)}. By Corollary 4.4, there

exists a subset {x1, . . . , xm} ⊂ Sd (with m ≤ n + 1) of diameter at most cn(S
d)

and convex coefficients λi > 0 such that

y :=
m∑

i=1

λif(xi) =
m∑

i=1

λif(−xi). (2)

Since An+1 does not contain antipodal points by assumption, for each 1 ≤ i ≤ m

at least one of xi and −xi must be contained in some element of {A1, . . . , An}.
In fact, we claim that there must exist a single Aj ∈ {A1, . . . , An} containing

all of {x1, . . . , xm} or all of {−x1, . . . ,−xm}. Toward proving the claim, note
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that the points x1, . . . , xm are all contained in some element of the cover be-

cause diam({x1, . . . , xm}) ≤ cn(S
d). Hence, either {x1, . . . , xm} ⊆ Aj for some

1 ≤ j ≤ n, or {x1, . . . , xm} ⊆ An+1. In the latter case, because An+1 does not

contain antipodal points, we have {−x1, . . . ,−xm} ⊆ Sd \ An+1. Then, because

diam({−x1, . . . ,−xm}) = diam({x1, . . . , xm}), it follows that {−x1, . . . ,−xm} ⊆
Aj for some 1 ≤ j ≤ n. This proves the claim.

Now, observe that either d(xi, Aj) = 0 for all 1 ≤ i ≤ m or d(−xi, Aj) = 0 for

all 1 ≤ i ≤ m. Furthermore, by considering the jth coordinate of y in Equation (2)

above, it follows that both d(xi, Aj) = 0 and d(−xi, Aj) = 0 for all i. There are

two cases:

(1) Suppose Aj is closed. In this case, d(xi, Aj) = 0 and d(−xi, Aj) = 0 imply

that {xi,−xi} ⊆ Aj for all i, contradicting the assumption that no set in

the cover contains antipodal points.

(2) Suppose Aj is open. Note that d(−xi, Aj) = 0 implies −xi ∈ Aj for all i.

In turn, Aj is contained in the closed set Sn \ (−Aj) ⊇ Aj . Hence, each

−xi belongs to Sn \ (−Aj), which implies that xi /∈ Aj for all i. Swapping

the roles of xi and −xi, a similar argument shows that −xi /∈ Aj for all

i. This contradicts the fact that Aj contains all of {x1, . . . , xm} or all of

{−x1, . . . ,−xm}.

Hence some Aj for 1 ≤ j ≤ n+ 1 contains a pair of antipodal points. �

8. Conclusion

The presence of a large projective code bounds the topology of the metric thick-

ening of a sphere, which in turn controls the structure of zeros of odd maps from the

sphere into Euclidean space. As a consequence, we obtain a generalization of the

Borsuk–Ulam theorem for maps from spheres into higher-dimensional codomains.

We derive consequences of this Borsuk–Ulam theorem for overdetermined versions

of the Ham Sandwich theorem (more measures than the ambient dimension), for

overdetermined versions of the Lyusternik–Shnirel’man–Borsuk covering theorem

(more sets than the ambient dimension), for generic manifold embeddings, and for

bounds on circular chromatic numbers.

We end with open questions on the topology of metric thickenings of spheres,

their concrete relation to the size of projective codes, and on a possible connection

to Gromov–Hausdorff distances between spheres.

Question 8.1. Corollary 3.2 asserts that for any δ > π
2 , there is an arbitrarily large

jump in coindex between Sd
π/2 ≃ Sd and Sd

δ for d sufficiently large. Is it possible to

determine coind(Sd
δ ) and ind(Sd

δ ) as a function of δ ∈ (π2 , π) at least asymptotically

in d?
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Question 8.2. Theorem 2 shows if pn+1(RP
d) ≥ π−δ then ind(Sd

δ ) ≥ coind(Sd
δ ) ≥

n. Does an approximate converse of this result hold?

We only raise the question about an “approximate” converse, since Sd
δ in addi-

tion to the size of codes in RP d also encodes symmetries of Sd. For example, an

equilateral triangle inscribed in RP 1 gives a projective code with distance π
3 . For

δ = π − π
3 , Theorem 2 then gives an odd map S2 → S1

δ . However, S1
δ ≃ S3, since

there are a circle’s worth of equilateral triangles in RP 1.

Question 8.3. For d ≤ n, could the Z/2-Carathéodory number cn(S
d) be equal

to 2 · dGH(S
d, Sn), twice the Gromov-Hausdorff distance between the spheres Sd

and Sn, equipped with the geodesic metric? This is known to be true when n ≤ 3,

and is consistent with known bounds on cn(S
d) (see [14, Table page 80]) and on

dGH(S
d, Sn) (see [32, Figure 2]). Or does one quantity bound the other?
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