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THE TOPOLOGY OF PROJECTIVE CODES
AND THE DISTRIBUTION OF ZEROS OF ODD MAPS

HENRY ADAMS, JOHNATHAN BUSH, AND FLORIAN FRICK

AstracT. We show that the size of codes in projective space controls
structural results for zeros of odd maps from spheres to Euclidean space.
In fact, this relation is given through the topology of the space of prob-
ability measures on the sphere whose supports have diameter bounded
by some specific parameter. Our main result is a generalization of the
Borsuk-Ulam theorem, and we derive four consequences of it: (i) We
give a new proof of a result of Simonyi and Tardos on topological lower
bounds for the circular chromatic number of a graph; (ii) we study
generic embeddings of spheres into Euclidean space and show that pro-
jective codes give quantitative bounds for a measure of genericity of
sphere embeddings; and we prove generalizations of (iii) the Ham Sand-
wich theorem and (iv) the Lyusternik—Shnirel’'man-Borsuk covering the-
orem for the case where the number of measures or sets in a covering,

respectively, may exceed the ambient dimension.

1. INTRODUCTION

Given a compact metric space (X,d), a central problem in coding theory is to
determine a configuration of n points in X that maximizes the minimal distance

between them. More precisely, for each n > 1, we define
pn(X) =sup{e >0 : there are z1,...,z, € X with d(z;,z;) > ¢ for all i # j}.

By compactness, one can find {z1,...,2,} C X such that d(z;, z;) > p,(X) when-
ever i # j; such a set is called a code of size n.

For the d-sphere S¢, a code {x1,...,x,} C S%is called a spherical code. Spherical
codes have generated considerable interest; see for example [44].

Spheres are naturally equipped with the Z/2-action exchanging antipodal points,
denoted x — —x, and a subset of a sphere that is invariant under this action is said
to be centrally-symmetric. Hence, one may also consider the problem of finding

centrally-symmetric spherical codes, that is, spherical codes in which points come
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in antipodal pairs {z, —x} [13, 16]. By equipping real projective space RP? with the
quotient metric induced by the antipodal action, a centrally-symmetric spherical
code in S% is equivalent to a code in RP?, i.e. a projective code. With this metric, the
distance between two points in RP? is the angle between the lines they determine
in R¥*1. In other words, a projective code is a collection of lines through the origin
in R%*! that are as close to orthogonal as possible. Therefore, the problem of
finding a projective code of size n may be rephrased as follows: Given ¢ > 0, find

n unit vectors x1,...,x, € S¢ C R¥1! such that |(z;,z;)| < ¢ whenever i # j.

In the present manuscript, we establish relationships between projective codes
and the following two problem areas:

(1) Metric thickenings: For a compact metric space X and 6 > 0, determine bounds
for the topology of the space of probability measures on X supported on finite
sets of diameter at most d, equipped with an optimal transport metric. This is
the metric thickening X; at scale 4.

(2) Zeros of odd maps: A map f: S¢ — R is odd if f(—z) = —f(x) for all z € S<.
Let V be an n-dimensional vector space of continuous odd maps S — R. Find
a small § > 0 such that there is a set A C S? of diameter at most § with the
property that for every f € V the restriction f|4 is not strictly positive.

Metric thickenings were introduced in [2] to capture the geometry of a metric
space at a given scale § > 0. Here we show that large projective codes provide
lower bounds for the topology of metric thickenings of spheres (in terms of their
cohomological index), which in turn give non-trivial upper bounds for ¢ in problem

area (2), and thus structural results for zeros of odd maps. Our main result is:

Theorem 1. Let V be an n-dimensional vector space of continuous odd maps
S? — R. Then there is a set A C S of diameter at most § = 7 — pp+1(RP?) such
that for every f € V the restriction f|a is not strictly positive.

Thus if RP? has a close packing by metric balls, then odd maps S¢ — R cannot
stay positive on large subsets of S%. One can regard Theorem 1 as an asymptotic
Borsuk—Ulam theorem. To recover the classical Borsuk—Ulam theorem that any odd
map S™ — R”™ has a zero, one must instead phrase Theorem 1 in terms of the topol-
ogy of metric thickenings of the sphere; see Remark 3.1. This theorem improves
on a recent Borsuk-Ulam result for odd maps S¢ — R™ with n > d, proven by the
authors in [3]. We also refer the reader to [17], which uses characteristic classes to
give related generalizations of the Borsuk-Ulam theorem into higher-dimensional
codomains. The Borsuk—Ulam theorem has found numerous applications across
mathematics; see for instance [35] for applications in combinatorics and discrete
geometry.

An equivalent formulation of the Borsuk—Ulam theorem states that there does
not exist a continuous odd map S™ — S¢ when n > d. However, the obstruction

to the existence of such maps can be eliminated by thickening the codomain. The
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following theorem makes this precise and establishes a relationship between the

topology of metric thickenings of spheres and projective codes.

Theorem 2. Let d and n be positive integers, and let § > m — pny1(RP?). Then

there is a continuous odd map S™ — Sgl.

Theorem 2 gives lower bounds for the topology of metric thickenings of spheres,
Sg, in terms of packings of metric balls in projective space. Dually, coverings of
projective space by metric balls provide upper bounds for the topology of met-
ric thickenings in Theorem 3. Thus the topology of the metric thickening Sgl is
sandwiched between packings and coverings of projective space.

Theorem 3. Let 6 > 0. Suppose there are n points x1,...,x, € RP? such that
every point y € RP? is strictly within distance & from one of the xj. Then there is
an odd map ngza — snL

The following result about odd maps from metric thickenings into spheres, when

combined with Theorem 2, implies Theorem 1; see Section 3 for the proof.

Theorem 4. Let X be a metric space with a free Z/2-action, and let § > 0. Let
V' be an n-dimensional real vector space of continuous odd functions f: X — R,
such that for every A C X of diameter at most ¢ there is an f € V such that f|a
is strictly positive. Then there is an odd map Xs — S™~ 1.

After proving the results outlined above, we will derive applications of Theo-
rem 1. Some of these are generalizations of the familiar consequences of the Borsuk—
Ulam theorem, while others are new applications that require the added generality
of Theorem 1 to produce interesting results. Applications of the latter kind are the

following:

(i) A well-studied problem concerns generic manifold embeddings, that is, if a
manifold M embeds into R%, does it embed in a particularly generic way,
for example, such that tangent lines at different points are skew [20] or non-
parallel [27], or such that any k pairwise distinct points map to linearly inde-
pendent points [10]. Here we show that for embeddings of spheres into R? a
notion of genericity of embeddings is governed by the size of projective codes;
see Section 4.

(ii) Simonyi and Tardos [42] established topological lower bounds for the circular
chromatic number of a graph in terms of the topology of its box complex.
Theorem 1 is already interesting in the case d = 1 of the circle S, where
we derive the Simonyi—Tardos result as a consequence, thereby giving a new
proof of their result that provides new insights into why topological bounds
of the circular chromatic number depend on the parity of the coindex of the

box complex; see Section 5.
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For two of the usual consequences of the Borsuk—Ulam theorem, we prove general-

izations to possibly “overdetermined” cases. These consequences are:

(iii) The Ham Sandwich theorem asserts that any d continuous probability mea-
sures on R? can be simultaneously bisected by an affine hyperplane. We
prove a generalization of this result to the case of n > d probability mea-
sures, where we have to relax the notion of bisection; see Section 6.

(iv) In any covering of S™ by n + 1 closed sets, one of these sets contains a
pair of antipodal points. We generalize this result by showing that this
remains true for coverings of S™ by more than n + 1 sets, provided that
every subset of S™ of a certain diameter appears in at least one of those

sets; see Section 7.

2. CONTEXT
We begin with some preliminary material, definitions, and lemmas.

2.1. Structural results for zeros of odd maps. Let X and Y be spaces with
Z/2-actions, that is, both X and Y are equipped with a continuous involution,
which we will denote © — —x for € X and similarly y — —y for y € Y. For
the sphere S? and for Euclidean space R? we always fix the antipodal Z/2-action.
We will refer to any Z/2-equivariant map f: X — Y (ie., f(—z) = —f(z) for
all z € X) as an odd map. The central result about zeros of odd maps is the
Borsuk—Ulam theorem [11]:

Theorem 5. Any continuous odd map f: S¢ — R? has a zero. Equivalently, there

is no continuous odd map S — S¢=1.

Bourgin [12, Theorem 4A| and Yang [45] proved generalizations of this theorem
asserting that for any continuous odd map f: S¢ — R™ with 1 < n < d, the
preimage f~!(0) contains an antipodally symmetric (d—n)-dimensional cycle, which
when mapped into the corresponding projective space RP?, is a non-zero element
of Hy_,(RP%7Z/2). From Theorem 1 we can derive a Borsuk-Ulam theorem for
the complementary case n > d, as explained in Section 4. This improves on an
earlier result of the authors in [3] that bridges applied, quantitative, and equivariant
topology.

To explain the connection between Borsuk—Ulam theorems and projective codes,
we say that a set Y C R™ is a Carathéodory subset if its convex hull captures the
origin in R", i.e. if 0 € conv(Y). In particular, any set Y that contains antipodal
points 4o, —yo € Y, such as the image of an odd map f: S¢ — R”, is trivially a
Carathéodory subset. While the image of a continuous odd map f: S¢ — R™ may
miss the origin, we will explain in Section 4 how Theorem 2 implies that for some
set A C S? of diameter strictly less than , the restricted image f(A) is still a
Carathéodory subset.
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In order to recover the topological lower bounds for the circular chromatic num-
ber of a graph due to Simonyi and Tardos [42] in Section 5, we will need an auxiliary
result from [3]: Let

SMoay (t) = (cost,sint, cos(3t),sin(3t), . .., cos((2k — 1)t),sin((2k — 1)t))

be the symmetric trigonometric moment curve. We may think of SMa; as a map
S — R?* under the identification S' = R/27Z, with the antipodal action specified
by t — t+m. Observe that SMyy, is an odd map. Furthermore, the preimage of any
Carathéodory subset of the image of SMy;, must have sufficiently large diameter in
the circle S*:

Lemma 2.1 (|3, Theorem 5|). Let X C S' be a set with diameter strictly less

than 2%;1“1. Then the convex hull of SMa(X) does not contain the origin.

For example, in the case k = 1, Lemma 2.1 reduces to the statement that no
subset of S* C R? of diameter less than 2?” can contain the origin in its convex hull;
this is Jung’s Theorem in the plane [29, Lemma 2]. This lemma can be seen as a
structural result for zeros of raked trigonometric polynomials; see [3, Theorem 4].

We will need the following consequence of Lemma 2.1 in Section 5:

Lemma 2.2. Let k > 1 be an integer and let § < 22,;1“1. Then there is a continuous
odd map f: S} — §2k=1,

Proof. By Lemma 2.1 the map SMoy: St — R?* extends linearly to an odd map

f: S} — R2*\ {0}. Then f(z) = -2 is the desired map. O
15 7] P

The bound on § in Lemma 2.2 is optimal: there is a homotopy equivalence

S}~ §2k+L for 22];1“1 <d< 27;(,5:%1) [39, 1], which can furthermore be made Z/2-

equivariant.

2.2. Cohomological index. Observe that Theorems 2, 3, and 4 are statements
regarding the existence of continuous odd maps into and out of spheres. Results
along these lines are commonly phrased in terms of the cohomological index, which
we now recall.

Let X be a metric space with a free Z/2-action, that is, a fixed-point free in-
volution. Let S = U ,S™, where each S™ is the equator of S"*1. Up to Z/2-
equivariant homotopy (i.e., a homotopy that at every time commutes with the
Z/2-action) there is a unique odd map X — S°°, which gives X/(Z/2) — RP* on
quotients. This induces a map H*(RP*>;Fy) — H*(X/(Z/2);F2) in cohomology
with Fo-coefficients, where H*(RP>;Fy) = Fy[t]. The smallest integer n such that
t"*t1 is in the kernel of this map is the cohomological index (or Stiefel-Whitney
height) of X and denoted by ind(X); see [35]. If there is an odd map X — S™,
then ind(X) < m. On the other hand, if there is an odd map S™ — X then
n < ind(X). We refer to the largest n such that there is an odd map S™ — X as
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the coindex of X, denoted by coind(X), which by the previous sentence satisfies
coind(X) < ind(X).

2.3. Metric thickenings. Let (X,d) be a metric space and let 6 > 0. The
(Vietoris—Rips) metric thickening Xs of X at scale § is the set of probability
measures 4 in X whose support supp(u) is finite and has diameter at most d,
equipped with the 1-Wasserstein metric of optimal transport. See [2] for an in-
troduction. In particular, we can write elements u € X5 as convex combinations
p=p_; Nz, where X\; >0, 3" N, =1, and 2q,...,2, € X with d(z;,2;) < ¢
for all 1 <i4,j < n; see Figure 1. Here we identify each point x; € X with the Dirac
measure at z;. Notice that in this way X is naturally a subspace of Xy, embedded

isometrically.

FIGURE 1. A metric space X with 7 points, and its metric thickening X; at three
different increasing values of § > 0. In this visualization, a Dirac delta measure
supported on a point z € X is drawn as a black point, and a probability measure
Sori Nz with d(x;, zj) < 6 for all 4, j is represented by the point in the simplex

{z1,...,z,} with barycentric coordinates (A1, ..., A,).

Originally, metric thickenings were defined to introduce tools from metric ge-
ometry to the study of Vietoris—Rips complezes, that is, the simplicial complex
VR(X;4) of all finite subsets of X of diameter at most §. These complexes are
ubiquitous in computational topology and topological data analysis [15]. Despite
their prevalence in these areas, the topology of Vietoris—Rips complexes and thick-
enings is not well-understood, unless the scale parameter § is small [28, 30, 2] or the
underlying metric space X is simple [1, 39]. See [4, 5, 38| for relationships between
Vietoris—Rips complexes and Vietoris—Rips metric thickenings in the context of ap-
plied topology. Because metric thickenings parametrize the collection of subsets of
a metric space of bounded diameter, they are the correct “configuration space” for
studying such subsets. Indeed, the topology of metric thickenings of spheres Sg will
play a key role in the proofs of our main results.

The choice to restrict the metric thickening X to probability measures supported
in finitely many points is essentially immaterial; this restriction is the easiest way

to ensure that the 1-Wasserstein distance between such measures is well-defined.
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(Otherwise we could instead require that every probability measure on X is inner
regular, that is, for each open U C X the measure p(U) can be approximated
arbitrarily closely by u(C), where C' C U is compact.) Also, one could instead
choose to equip the metric thickening Xs with the g-Wasserstein metric for any
q € [1,00).

Any map f: X — R" induces a natural map f: Xs — R"™ by f(u) = fx fdu,
where for p = > M\jz; the integral fX f dp is simply the sum > A; f(z;). The
extended map on X is also denoted f, since no confusion can arise: The value of
f(z) for x € X does not depend on whether we interpret x as a point in X or the
Dirac measure centered at . We call this naturally extended map f: X; — R”
the linear extension of f, and say that f was linearly extended. If f: X — R™ is
continuous and bounded, then its linear extension f: X5 — R™ is continuous |2,
Lemma 5.2].

Suppose X is equipped with a Z/2-action. Then the generator of Z/2 defines an
involution ¢: X — X. This extends to an involution ¢: X5 — X in a natural way:
t(>°Nizi) = >0 Aie(x;). Thus X; is a Z/2-space as well. If the action on X is free,
then the induced action on X is free as well, provided that d(z,¢(x)) > ¢ for all
reX.

3. THE COHOMOLOGICAL INDEX OF METRIC THICKENINGS

We will first prove lower bounds for the topology of metric thickenings in terms of
the size of projective codes. These lower bounds are in terms of the coindex of metric
thickenings. Algebraically, this is approximately captured by the (integer-valued
Z/2-)cohomological index; see Section 2.2 for a brief introduction. For convenience,
we restate these theorems from the introduction before giving the proofs; note that

we now also refer to the cohomological index of a space.

Theorem 2. Let d and n be positive integers, and let § > 7 — pyo1(RPY). Then
there is a continuous odd map S™ — S¢; in particular, n < coind(S¢) < ind(S¢).

Proof. We will construct an odd map f: S® — S¢. Let a = p,+1(RPY). By
compactness, we can find z1,...,2,,1 € RP? that are pairwise at distance at
least «. Each x; lifts to two points z; and x;r in S¢. These points are antipodes
at distance 7, but the distance to any other point acli for i # j is at most ™ — a.
Indeed, the point xli lies on a shortest path connecting .I;'_ to x; . Since its distance
to z; is at least o, it is within a distance of T — o from zj Symmetrically, since
its distance to xj is at least «, it is within a distance of m — « from z;.

We will think of the domain of the odd map f: S™ — Sg as the ¢, unit sphere
in R"*1 that is, as the boundary of the (n + 1)-dimensional crosspolytope with
vertices ey, ..., £e,41. Define f on vertices by mapping +e; to the Dirac measure
at x]i Then extend linearly, that is, given a point Z?:ll Aig;e; in the ¢ unit sphere
for some choice of signs ¢; € {—1,1} and coefficients A\; > 0 with Z?:ll A= 1,
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define f (ijll Ai€ie;) = Z?jll Ai€; f(e;). This is a measure supported on at most
n + 1 points whose pairwise distances are at most m# — a < 4. (Il
The proof above shows that a projective code z1,..., 2,41 € RP? where any

two points are at distance at least «, induces a linear map from the boundary of the
(n+1)-dimensional crosspolytope S™ — S¢ for § > 7 —a. Here S¢ is a subset of the
vector space of signed measures on S¢, so linearity is well-defined. Conversely, any
map S” — Sg that is linear in this sense induces a projective code, where elements
are at distance at least m — §. The cohomological index of S(‘;i provides an algebraic
witness for the existence of odd maps S™ — Sg, and thus the parametrized family
of cohomological indices of S¢ as § ranges over (0,7) is a topological version of
projective codes.

As remarked in the introduction, coverings of projective space by metric balls
dually provide upper bounds for the topology of metric thickenings; see Theorem 3.
In other words, simple volume bounds for the size of projective codes apply more
generally to bound the topology of metric thickenings. A collection of n metric
d-balls in RP? cannot be pairwise disjoint if the sum of their volumes exceeds the
volume of RP?. This bound for projective codes applies more generally as an upper

bound for the topology of metric thickenings of spheres.

Theorem 3. Let § > 0. Suppose there are n points x1,...,x, € RP% such that
every point y € RP? is strictly within distance § from one of the z;. Then there is
an odd map S¢_,5 — S™71; in particular, ind(S?_,5) <mn — 1.

Proof. We think of each z; € RP? as a pair of antipodal points +z;in Se. Ify € 94
has distance less than ¢ from z; and z € § 4 has distance less than 6 from —x;, then
y and z are at a distance exceeding m — 25. Thus for any u € Sﬁ_% the support
of u1 does not intersect both Bs(x;) and Bs(—x;). Let f;: S¢_,s — R be the map
that for u € S?_,; with support disjoint from Bs(—z;) is defined as

inf{d(u,v) : v €S, supp(v) N Bs(z;) = 0},

where the distance between measures is the 1-Wasserstein distance. Extend this
map to all of S¢_,s by declaring that f;(—p) = —f;(u). It is easily verified that
this is a well-defined, continuous odd map. The map f: S¢ ,s — R" given by
f = (f1,-.., fn) is odd and misses the origin. Thus u % is an odd map
Sd_ s — SnL 0

The next theorem, when combined with Theorem 2, will allow us to prove our

main result, Theorem 1.

Theorem 4. Let X be a metric space with a free Z/2-action, and let § > 0. Let
V' be an n-dimensional real vector space of continuous odd functions f: X — R,
such that for every A C X of diameter at most & there is an f € V such that
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fla is strictly positive. Then there is an odd map Xs — S™~; in particular,
ind(X5) <n-—1.

Proof. Fix a basis B of V, so |B| = n. For p € X5 and f € V let f(u) =
Jx f dp. Define ®: X5 — R™ by ®(u) = (f(n))ren- Every element of V is a
linear combination of B and thus a function of the form x — (z, ®(x)) for some
z € R™. Here x denotes the Dirac measure . Let u € X be arbitrary, and denote
its support by A. There is some f € V such that f|4 is strictly positive. Thus
(z,®(x)) > 0 for some z € R™ and every x € A. In particular, (z, ®(x)) > 0 and
thus ® maps to R\ {0} ~ S~ 1. O

Proof of Theorem 1. Let V be an n-dimensional vector space of continuous odd
maps S — R. We must show that there is a set A C S? of diameter at most
§ := 7 — ppy1(RP?) such that for every f € V the restriction f|4 is not strictly
positive.

Theorem 2 implies ind(S¢) > n. If there were no such set A C S¢, then for all
sets of diameter at most ¢ there would be some f € V such that the restriction f|4

is strictly positive, so Theorem 4 would imply ind(S¢) < n—1, a contradiction. O

Remark 3.1. Instead of § = 7 — p,,+1(RP?) we could have phrased Theorem 1
for the smallest 6 such that the metric thickening Sgl has cohomological index at
least n, i.e., such that ind(Sg) > n. For n = d, this J is zero, since S? is a subspace
of Sg for any 6 > 0. In the case n = d and § = 0, this stronger version of Theorem 1
says that given any d-dimensional vector space V of continuous odd maps S% — R,
there is a point z € S¢ (i.e., a set of diameter zero) such that f(z) = 0 (since f € V'
implies —f € V) for all f € V. By choosing V to be generated by the d coordinate
functions of an odd map g: S — R?, we hence obtain the standard Borsuk-Ulam

Theorem stating there exists some z € S¢ with g(x) = 0.

To conclude this section, we give an example of explicit bounds that may be
derived from Theorem 2. For general upper and lower bounds for the size of pro-
jective codes, see Levenshtein [31]. For our explicit example, we are interested in
projective codes whose size exceeds the dimension by a fixed integer. Bukh and
Cox [13] study the behaviour of pgi(RP?) for fixed k as d grows. Among other
results they show:

Theorem 6 (Bukh and Cox [13]|, Theorem 21). Let k > 1 be an integer. Then

Pacrpk(RP) > arccos ((1 n o<1>>2“jl“> ,

where o(1) denotes a function that converges to 0 as d — co.

By combining Theorem 6 with Theorem 2, we immediately get the following

consequence for the topology of Vietoris—Rips metric thickenings of spheres:
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Corollary 3.2. Letk > 1 be an integer and 6 > 5. Then for d = d(k,d) sufficiently
large, there is a continuous odd map S+ — Sgl, Indeed, we need to choose d

sufficiently large such that § > m — arccos ((1 +0(1))2Y E'Q), where o(1) denotes a

function that converges to 0 as d — oo.

Proof. By Theorem 6 we have pgysy1(RP?) > arccos ((1 +0(1))2Y Tl'z) — 5 as

d — oo. So for § > Z we have § > T — payr1(RP?) for d sufficiently large, in

which case Theorem 2 gives an odd map S+ — Sgl. (]

For § < Z we have that S§ ~ S [2]. Corollary 3.2 asserts that for any § > Z,
there is an arbitrarily large jump in coindex between Sg /2 and S¢ for d sufficiently

large.

4. CONVEXITY PROPERTIES OF ODD MAPS AND GENERIC MANIFOLD EMBEDDINGS

The fundamental result about zeros of odd maps is the classical Borsuk—Ulam
theorem: Any continuous odd map S¢ — R? has a zero, or equivalently, any
continuous map f: S¢ — R? identifies two antipodal points, f(—xz) = f(z). Gen-
eralizations of this result that quantify the size of the zero set or preimage of a
point for maps S — R™ for n < d were proven by Bourgin [12], Yang [45, 46],
Almgren [7], and Gromov [22, 23, 25, 37]. Our Theorem 1 studies an approximate
Borsuk-Ulam result for maps S — R™ in which we instead have n > d.

To explain this connection, recall from Section 2.1 that we say a set Y C R"
is a Carathéodory subset if its convex hull captures the origin, 0 € conv(Y). Any
set that contains antipodal points, such as the image of an odd map S¢ — R”, is
trivially a Carathéodory subset. We will explain how Theorem 2 shows that for
some set A C S¢ of diameter strictly less than 7 the restricted image f(A) still
is a Carathéodory subset. For a compact metric space X with free Z/2-action,
we denote by ¢,(X) the infimum over all ¢t € [0,00) such that, for any odd map
f: X — R", there is a set A C X with diameter bound diam(A) < ¢t and with
0 € conv(f(A)). We call ¢, (X) the Z/2-Carathéodory number of X. The Borsuk-
Ulam theorem may be phrased as c4(S?) = 0. Upper bounds for ¢, (5%), for n > d,
follow easily from Theorem 2:

Corollary 4.1. The Z/2-Carathéodory number of the d-sphere satisfies the inequal-
ity
cn(Sd) <m- pn_,_l(RPd).

Proof. Let f: S¢ — R™ be a continuous odd map, and let § = ™ — p,1(RP?).
The map f has a canonical continuous odd extension F': Sg — R”™ defined by
F(p) = fsd f du. In addition, Theorem 2 gives a continuous odd map S™ — S¢.
By the Borsuk-Ulam theorem applied to the odd composition S™ — S¢ — R,
there exists some p € S§ with 0 = [o, f du. Thus 0 € conv{supp(p)} with
diam(supp(u)) < 4. O
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Remark 4.2. Corollary 4.1 substantially improves a result of the present authors

in [3] that shows copgyoq_1(S2¢71) < 22];1“1 (with equality in the case d = 1). For

example, consider the projective code given by lines through the vertices of the

hypercube: Let C C R? be the set of vectors whose coordinates are all +-1. This is
an antipodal set, C = —C, determining 297! lines through the origin. The angle

between distinct lines is at least arccos(1 — %) More generally, fix d,n > 1, and let
S, ={recz : ||z|*=rand |z;| < n for all i}.

Note {z € Z% : |z;| < n for all i} has cardinality (2n+ 1)¢, that Sy has cardinality

1, and that S, = 0 for r > dn?. Hence some S, with 1 < r < dn? has cardinality
d d

at least (2"57132 -1 > (32)2 = % . Z—Z > n%=2, For x,y € S, with z # 4y the

absolute value of the inner product |(z, y)| is an integer and less than r, in particular

|{(z,y)| <7 —1. Thus the angle between distinct lines determined by points in S,
1

is at least arccos(1 — ). It follows that p,a-2,y(RP4"!) > arccos(l — 713), and
hence

1
Cni—2(S471) < 7 — arccos (1 - d712> .

Since arccos(l — x) converges to 0 as  — 0 in a linear fashion, this shows that

T — cpa—2(S471) = Q(L;) as n — oco. By contrast, the earlier bound from [3]
1

would only give 7 — ¢,a-2(S?"!) = Q(—=) as n — oco. For a concrete example,

recall that the 600-cell (also known as the hypericosahedron or hexacosichoron) has

120 centrally-symmetric vertices, which determine 60 lines through the origin in R*

with minimal angle . Thus cs50(S3) < m— £ by Corollary 4.1, whereas our earlier
bound (with d = 2 and k = 14) only gives ¢59(5%) < 7 — 5.

Remark 4.3. Instead of viewing Corollary 4.1 as an upper bound for ¢, (S%) in
terms of p,11(RP?), equivalently p, 1 (RP?) < 7 — ¢,(S%) gives an upper bound
for projective codes in terms of zeros of odd maps. It remains an interesting open
problem whether upper bounds for projective codes may be improved using this
framework by exhibiting odd maps such that the image of sets up to a certain
diameter may be separated from the origin. On the other hand, Theorem 3 shows
that volume bounds for projective codes more generally provide upper bounds for

the cohomological index of metric thickenings.

In much the same way that the Borsuk—Ulam theorem prohibits an embedding
of 8% into R?, Corollary 4.1 gives bounds for how generic an embedding S¢ < R,
n > d, may be. Here the convex hulls of images of nearby points must intersect,

where “nearby” is quantified by the distance of projective codes of size n + 1.

Corollary 4.4. Let d and n be positive integers, and let & > c,(S%), which is
satisfied if § > T—pp1(RPY). Then for any map f: S¢ — R™ there is a set X C S¢
of diameter at most § such that the convex hulls of f(X) and f(—X) intersect.
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Moreover, the preimages of the intersection point have the same coefficients with
respect to X and —X , that is, [¢. f(2) dp = [ga f(—x) dp for some p € S§.

By Carathéodory’s theorem, we may take X to have size at most n + 1.

Proof. Let § > ¢,(S?%), which for example holds if § > 7 — p,+1(RP?) by Corol-
lary 4.1. Define F': S¢ — R™ by F(u) = [¢u(f(z) — f(—2)) du(z). The map F is
odd, and thus has a zero by the definition of the Z/2-Carathéodory number ¢, (S%).
This implies (g, f(2) du(x) = [qq f(—2) du(z) for some probability measure 1 on
S¢ whose support has diameter at most §. The point fsd f(z) du(z) lies in the
convex hull of f(X), where X denotes the support u, while [¢, f(—z) du(z) €
conv f(—X). O

Example 4.5. Let o be the common angle between the six (equiangular) lines
in R? determined by the vertices of the icosahedron. That is, let ¢ = 1+T\/5 be
the golden ratio, and let a = arccos(#). Corollary 4.4 shows that for any
map f: S? — R there is a set X C S? of diameter at most 7 — a such that
conv f(X)Nconv f(—X) #0.

5. TOPOLOGICAL BOUNDS FOR THE CIRCULAR CHROMATIC NUMBER

Lovasz’s proof of Kneser’s conjecture [33] introduced topological lower bounds
to the study of chromatic numbers of graphs. This classical result has been ex-
tended and adapted in various ways. For example, Simonyi and Tardos [42] proved

topological lower bounds for the circular chromatic number of a graph.

Definition 5.1. Given a graph G with vertex set V and edge set E, an r-circular
coloring of G'isamap f: V — RP! such that d(f(v), f(w)) > T whenever (v,w) €

E. Recall that RP! simply denotes the circle of circumference .
Definition 5.2. The circular chromatic number of a graph G is
Xc(G) :=inf{r > 0| G is r-circular colorable}.

The infimum in the definition of the circular chromatic number of a graph G is
known to be attained if G is finite. The topological lower bounds for x.(G) are in
terms of the topology of the box complex, which we define now. Let G be a graph
on vertex set {1,2,...,n}. The box complex By(G) of G is a simplicial complex
on vertex set Q = {1,...,n}U{-1,...,—n}. A subset 0 C @ is a face of By(G)
if for every v € o with v > 0 and every w € o with w < 0, the tuple (v, —w)
forms an edge of G. In particular, {1,...,n} and {—1,..., —n} are faces of By(G).
The complex By(G) has a free Z/2-action which swaps the vertices v and —v and
extends linearly to the faces of By(G). The box complex By(G) that we use is only
one of several possible definitions; see for example [18, 36, 42] which study both the
box complex By(G) along with variants thereof.

We can now state the result of Simonyi and Tardos:
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Theorem 7 (Simonyi-Tardos [42, Theorem 6]). Given a finite graph G, if there is
a continuous odd map S**~1 — By(Q), then x.(G) > 2k.

Here we show that Theorem 7 is a consequence of bounds for the topology of
metric thickenings of the circle. Our proof in particular gives an explanation for
the dependence of the bounds for the circular chromatic number on the parity
of the coindex of By(G): When ¢ exceeds a critical value when the index of the
metric thickenings of the circle S(} increases, the index in fact increases by two (see
Lemma 2.2). Our proof of Theorem 7 is based on Theorem 8 and Lemmas 5.3-5.4,

which we now provide.

Theorem 8. Let G be a finite graph with vertex set V(G) and edge set E(G),
and let CG denote the cone over G with vertex set V(CG) = V(G) U {e} and
edge set E(CG) = E(G)U{(e,v) | v € V(G)}. If there is a continuous odd map
Sk — Bo(CQG), then x.(CG) > 2k + 1.

Proof. Suppose G is a finite graph with x.(CG) < 2k+1. Let the map f: V(CG) —
RP' be given such that for some small ¢ > 0 we have dgp1 (f(v), f(w)) > 577 +¢
whenever (v,w) € E(CG). Think of RP! as [0, 7] with 0 and 7 identified into one
point. Thus, f induces a map V(CG) — [0, ), and we choose f so that f(e) = 0.
Now, thinking of S as [0, 27] with 0 and 27 identified, f induces a map V(CG) —
S! that maps all vertices to the upper semi-circle. By antipodal symmetry we can
extend this to a map F: (V(CG)U—-V(CG)) — S! with F(e) =0 and F(—e) = 7.
In particular, if we compose F' with the double-covering S' — RP!, then both v
and —v map to f(v).

We will prove that F extends to a well-defined odd map F: By(CG) — Si,
where § = 22,;1“1 — €. There are three cases to check. First, for this we need to
show that for any face o of By(CG) the set {F(v) : v € o} C S! has diameter at

most 0. For any v € V(G) we have drp1(f(v), f(e)) > 57757 +¢, and thus F(v) is at

distance at least 5% +¢ from both F(e) and —F(e) = F(—e) in S'. In particular,
dsi (F(v), F(#)) =7 = dsi (F(v), =F(s)) < 7 — (587 +¢) =6, (1)

and similarly dg1 (F'(—v), F'(—e)) < J. Second, since F'(e¢) = 0, note (1) implies that
the set of points {F'(v) : v € V(G)} is contained in an interval of length § in the
upper semi-circle of S*. Thus for any v, w € V(G) we have that dg: (F(v), F(w)) <
§ and dg1 (F(—v), F(—w)) < §. Third, if (v,w) € E(G), then dgp:(f(v), f(w)) >
anr1 T & and so dgsi (F(v), F(—w)) = dg1 (F(—v), F(w)) < 6.

The map F sends the vertices of Bo(CG) to points in S, such that vertices that
span a face of By(C'G) map to points at pairwise distance at most J. Let x be a
point contained in the interior of some face o of Bo(CG), say = = Ele A;v; for
v1,...,v vertices of o and \; > 0 with >°\; = 1. Then thinking of F(v;) as the

Dirac measure based at F(v;), we can define F(z) = > A;F(v;), which is an element
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of S1. This completes the definition of the continuous odd map F: By(CG) — SL.
By Lemma 2.2 there is a continuous odd map Sj — S§2k=1"and by composition we
get a continuous odd map By(CG) — S?*~1. Hence their cannot be a continuous
odd map S?* — By(CG), as their composition S%¥ — $2*~! would contradict the
Borsuk-Ulam theorem. O

Lemma 5.3. For a finite graph G, x.(G) > x.(CG) — 1.

Proof. Let f: V(G) — RP! be a circular r-coloring of G. We need to construct a
circular (r + 1)-coloring of CG. Parametrize RP! as [0, 7] with 0 and 7 identified
into one point, which we will denote by xy. Choose the parametrization in such a
way that some vertex v € V(G) satisfies f(v) = xo.

Now think of f as a map f: V(G) — [0,7). Define a map g: V(CG) — [0,7)
by g(v) = A5 f(v) for v € V(G) and g(e) = 7. It is easily verified that g is a
circular (r + 1)-coloring of CG. O

Lemma 5.4. For a finite graph G, coind(By(CG)) > coind(By(G)) + 1.

Proof. To prove the lemma, it is sufficient to prove that Bo(C'G) is the suspension
of By(G) (see, for instance, [42, Lemma 3.1]). Let G have vertex set {1,2,...,n},
and so By(G) has vertex set {1,...,n}U{—1,..., —n}. Note that the box complex
By(CG) has two additional vertices that are not present in Bo(G), which we will
denote by e and —e. To prove that By(CG) is the suspension of By(G), we must
verify that both o U {e} and o U {—e} are faces of By(CG) for any given face o of
By(G). We do only the former, as the argument for the latter is nearly identical.
Toward that end, for a given face o € By(G), consider any v € o U {e} with v > 0
and any w € o U{e} with w < 0 (which implies w # e). There are two possibilities:
If v € o, we have (v,—w) € E(G) C E(CG) because 0 € By(G). Otherwise, if
v = o, we have (v, —w) = (8, —w) € E(CG) by the definition of CG. Hence o U {e}
is a face of Bo(CQ). O

We are prepared to prove Theorem 7.

Proof of Theorem 7. Since there is a continuous odd map S?*~! — By(G), we
have coind(By(G)) > 2k — 1. So coind(By(CG)) > 2k by Lemma 5.4, i.e. there is a
continuous odd map S%* — By(CG). Hence, Theorem 8 implies x.(CG) > 2k + 1.
Finally, by Lemma 5.3 we have x.(G) > x.(CG) —1 > (2k + 1) — 1 = 2k. O

6. GENERALIZATIONS OF THE HAM SANDWICH THEOREM

The Ham Sandwich theorem, originally conjectured by Steinhaus in the “Scottish
book,” was proved by Banach and Stone-Tukey [43]. See [9] for the history of this

result, including a note on Banach’s contribution to the proof in dimension 3.
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Theorem 9 (Ham Sandwich theorem). Let uq,...,uq be finite Borel measures in
R? such that every hyperplane has measure O for each of the p;. Then there exists
a hyperplane H such that p;(HY) = %m(Rd) fori=1,...,d, where HT denotes
one of the half-spaces defined by H.

Informally, in the case of three measurable subsets of R3, a sandwich made of
three ingredients may be equipartitioned (that is, divided into two sandwiches each
containing equal amounts of all three ingredients) using a single planar slice.

The Ham Sandwich theorem is perhaps the most well-known example of a mass
partition theorem. In general, such theorems seek to establish the existence of
families of partitions of Euclidean spaces splitting a given family of measures in a
particular way. For example, Griinbaum [24] asked if it is always possible to divide
a single mass in R? by d hyperplanes to obtain 2¢ equal parts. This question was
answered in the affirmative by Hadwiger [26] for d < 3, but was proved to be false
for d > 5 by Avis [8]. See [40, 19] for surveys of mass partition theorems and re-
lated results in combinatorial topology and combinatorial geometry, including Ham
Sandwich-type theorems allowing multiple planar slices and theorems concerning
the fair division of cakes and necklaces. There are versions of the Ham Sandwich
theorem studying when one can bisect more masses than the dimension of the am-
bient space, for example including divisions by algebraic surfaces [43] or divisions
of projections onto hyperplanes [41].

Theorem 1 and Corollary 4.4 allow us to extend the Ham Sandwich theorem to
the setting in which the number of measures exceeds the dimension of the ambient
space. For the purpose of illustration, we refer to the following as the “log bundle”
theorem.

Informally, in the case of three measurable subsets of the disk, Theorem 10
says the following: Suppose a bundle of three logs needs to be divided up using
equipment that permits only two kinds of cuts. First, we can perform “horizontal
cuts,” perpendicular to the bundle (Figure 2 (left)), dividing the bundle up into
shorter bundles. Secondly, through the centers of each resulting shorter bundles, we
can perform a single “vertical cut” to produce two hemi-bundles (Figure 2 (right)).
Furthermore, the blade used to perform each “vertical cut” is on a fixed pivot that
cannot swivel by an angle of more than %’T Then, in light of these constraints, it is
always possible to obtain an equipartition of the bundle (that is, two piles of wood
each containing exactly half the mass of each log) by selecting exactly one of each

of the resulting hemi-bundles from each of the shorter bundles.
Theorem 10 (Generalization of Theorem 9). Fix integers d,n > 1. Let

D™ = {(z1,22,...,2441,0) | 27 + a3+ + 27, <1} C RI?
and suppose A1, ..., A, C D are measurable sets. For

peaDdH :{(ml,xg,...,:cd+1,0) | ZL’%+£L’§++£BZ+1 :1},
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FIGURE 2. (Left) A bundle of three logs, A; x I for i = 1,2,3.
Dashed red lines indicate “horizontal cuts.” (Right) A “vertical”
cut through the center of one slice of the log bundle. The saw
blade is on a fixed pivot that can not swivel by an angle of more
than %”
let 7(p) = {x € R¥*T2 | (z,p) = 0} denote the hyperplane passing through the origin
normal to p. Furthermore, let HY(p) and H~ (p) denote the (closed) halfspaces of
RI*2 determined by the inequalities (x,p) > 0 and (x,p) < 0, respectively. Then,
there exist numbers 0 = tg < t1 < -+ <t < tpy1 = 1 with k < n and vectors
Pis- . Pes1 € 0D such that
(1) the vectors p; are “close” in the sense that arccos({p;, p;)) < m— ppi1(RP?)
for alli and j (in particular, no two vectors are antipodal), and
(2) there exists an equipartition of the n masses Aj x I given by taking (A; x
[ti—1,t:)) N HT(p;) for each 1 <i<k+1.

This equipartition means that for each j, the sum of the measures of (A4; X
[ti—1,t:]) N H'(p;) is equal to the sum of the measures of (A; X [t;—1,t;]) VH ™ (p;),
where both sums vary over 1 <i¢ <k + 1.

Proof. Define a continuous function f: S* — R™ by
p — (the measure of A4y N H*(p),...,the measure of A, N H(p)).

By Corollary 4.4 there exist vectors py, .. ., ppy1 € S? (with k < n by Carathéodory’s
theorem) and convex coefficients A1, A2, ... A\py1 such that arccos({p;,p;)) < 7™ —
Pni1(RP?) for all i and j and

k+1 k+1

Z Aif(pi) = Z Aif (=pi)-

Observe that

f(=p) = (the measure of Ay N H™ (p), ..., the measure of 4,, N H™(p)).

Setting t; = 22:1 A; for each 0 <4 < k + 1 completes the proof. O
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Remark 6.1. We may obtain a stronger version of Theorem 10, allowing one
more set to be equipartitioned, by dropping the requirement that each hyperplane
m(p) must pass through the origin. In this setting, n + 1 sets may be equiparti-
tioned by n+ 1 hyperplanes determined by vectors p1, ..., p,4+1 which again satisfy
arccos((pi, p;)) < 7 — ppy1(RPY) for all i and j.

We will refer to a hyperplane that passes through the origin as a linear hyper-
plane. A linear hyperplane H is oriented if the two halfspaces determined by H
come with a choice of positive halfspace H* and negative halfspace H~. The Ham

Sandwich theorem may be restated in the following way:

Theorem 11 (Ham Sandwich theorem — restated). Let uq,...,pq be finite Borel
measures on S¢ C R such that every linear hyperplane in R4 has measure
0 for each of the p;. Then there exists a linear hyperplane H in R such that
pi(HT NS = 24;(89) fori=1,...,d, where H denotes one of the half-spaces
defined by H.

Theorem 1 implies the following:

Theorem 12. Let iy, ..., ptn on S C R be finite Borel measures such that each
linear hyperplane in R has measure O for each of the u;. Then there exists a
set H of oriented linear hyperplanes in R at pairwise angle (in RPY) at most
§ = 7 — pni1(RPY) such that, for each i, at least half of p; is contained in the
negative halfspace determined by some hyperplane in H, and at least half of p; is

contained in the positive halfspace determined by some hyperplane in H.

Proof. For x € S C R let H~(z) and H*(z) denote the (closed) halfspaces of
R*! determined by the inequalities (y,z) < 0 and (y, ) > 0, respectively. Let V'
denote the vector space of odd maps S% — R generated by the vectors f; defined by
fi(z) = p;(H* (x)) — pi(H™ (z)) for 1 <4 < n. Note that V has dimension at most
n, and that each f; is odd. By Theorem 1, there exists a set A C S? of diameter
at most ¢ such that, for every f € V, the restriction f|4 is not strictly positive
(and, since —f € Vit is also true that the restriction f|4 is not strictly negative).
Hence, for each 1 < ¢ < n, there must exist points a;,b; € A such that f;(a;) is
nonpositive and f;(b;) is nonnegative, that is, at least half of p; is contained in
the negative halfspace H™ (a;) and at least half of pu; is contained in the positive
halfspace HT(b;). So we are done by letting H = {H*(a) : a € A}. O

Remark 6.2. Instead of 6 = m — p,;1(RP?) we could have phrased both Theo-
rem 10 and Theorem 12 for the smallest § such that the metric thickening Sgl has
cohomological index at least n. For n = d, this § is zero, since S¢ is a subspace of
S¢ for any § > 0. In the case n = d and § = 0, the stronger version of Theorem 10
described in Remark 6.1 specializes to Theorem 9, and Theorem 12 specializes to
Theorem 11.
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7. GENERALIZATIONS OF LYUSTERNIK—SHNIREL'MAN-BORSUK COVERING
THEOREMS

Theorem 13 (Lyusternik—Shnirel’'man—Borsuk covering theorem [34]). For any
cover Ay,...,Aqs1 of the sphere S¢ by d + 1 closed sets, there is at least one set

containing a pair of antipodal points.

In fact, the conclusion of Theorem 13 holds for more general collections of subsets
of S¢.

Theorem 14. For any cover Ai,...,Aqy1 of the sphere S¢ by d + 1 sets such
that the first d sets Aq,...,Aq are each open or closed, there is at least one set

containing a pair of antipodal points.

A proof of this theorem appears in [6]; see also [21, 35]. We now consider a
generalization in which the number of sets in the covering may be arbitrarily large
with respect to the dimension of the sphere.

Theorem 15 (Generalization of Theorem 14). Fiz integers n > d > 1 and suppose
Ay,..., A1 is a cover of the sphere S by n + 1 sets such that the first n sets
Aq,..., A, are each open or closed. Furthermore, suppose that any subset of the
sphere of diameter at most c,,(S%) is contained in some subset A;. In particular,
this is satisfied if every subset of the sphere of diameter at most m — ppi1(RPY)
is contained in some A;. Then, there is at least one set A; containing a pair of

antipodal points.

Recall the Z/2-Carathéodory number c,(S?) is defined as the infimum over all
t € [0,00) such that for any odd map f: X — R™ there is a set A C X with
diam(A4) < ¢t and 0 € conv(f(A4)). The above theorem generalizes Theorem 13
because if n = d, then the condition that any subset of the sphere of diameter at
most cq(S%) = 0 is in some subset A; simply implies that the sets A; cover the

sphere.

Proof. Assume, for the sake of contradiction, that no set in the cover contains
antipodal points. Consider the continuous map f: S — RZ, defined by f(z) =
(d(z, A1), ...,d(z, Ay)), where d(z, A;) = infyca, {d(z,y)}. B;/ Corollary 4.4, there
exists a subset {z1,...,7,} C S (with m < n + 1) of diameter at most ¢, (S%)

and convex coefficients \; > 0 such that
yi= Y Nf(w) =Y Nif(—). (2)
i=1 i=1

Since A,,+1 does not contain antipodal points by assumption, for each 1 <i <m
at least one of z; and —z; must be contained in some element of {A4;,...,4,}.
In fact, we claim that there must exist a single A; € {A4,...,A,} containing

all of {x1,...,2mn} or all of {—x1,...,—x,,}. Toward proving the claim, note
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that the points x1,...,x, are all contained in some element of the cover be-
cause diam({z1,...,2m}) < c,(S%). Hence, either {z1,...,2,,} C A; for some
1<j<n,or{z,....,zym} C Ayy1. In the latter case, because A, 11 does not
contain antipodal points, we have {—zy,...,—z,} € S\ A,+1. Then, because
diam({—z1,...,—2n}) = diam({z1,...,zmn}), it follows that {—z1,...,—zn} C
A;j for some 1 < j < n. This proves the claim.

Now, observe that either d(x;, A;) = 0 for all 1 <4 < m or d(—x;, A;) = 0 for
all 1 <4 < m. Furthermore, by considering the j*" coordinate of y in Equation (2)
above, it follows that both d(x;, A;) = 0 and d(—=;, A;) = 0 for all 5. There are

two cases:

(1) Suppose A; is closed. In this case, d(z;, A;) =0 and d(—=z;, 4;) = 0 imply
that {z;, —z;} C A; for all 4, contradicting the assumption that no set in
the cover contains antipodal points.

(2) Suppose A; is open. Note that d(—x;, A;) = 0 implies —z; € A; for all i.
In turn, A4; is contained in the closed set S™\ (—A;) 2 A;. Hence, each
—x; belongs to S™ \ (—A;), which implies that z; ¢ A; for all i. Swapping

the roles of x; and —x;, a similar argument shows that —x; ¢ A; for all

i. This contradicts the fact that A; contains all of {z1,...,2,} or all of
{=21,...,—Zm}.
Hence some A; for 1 < j < n+ 1 contains a pair of antipodal points. O

8. CONCLUSION

The presence of a large projective code bounds the topology of the metric thick-
ening of a sphere, which in turn controls the structure of zeros of odd maps from the
sphere into Euclidean space. As a consequence, we obtain a generalization of the
Borsuk—Ulam theorem for maps from spheres into higher-dimensional codomains.
We derive consequences of this Borsuk—Ulam theorem for overdetermined versions
of the Ham Sandwich theorem (more measures than the ambient dimension), for
overdetermined versions of the Lyusternik—Shnirel’man-Borsuk covering theorem
(more sets than the ambient dimension), for generic manifold embeddings, and for
bounds on circular chromatic numbers.

We end with open questions on the topology of metric thickenings of spheres,
their concrete relation to the size of projective codes, and on a possible connection

to Gromov-Hausdorff distances between spheres.

Question 8.1. Corollary 3.2 asserts that for any 6 > 7, there is an arbitrarily large
jump in coindex between Sg 2 = S¢ and Sgi for d sufficiently large. Is it possible to
determine coind(S§) and ind(S§) as a function of 6 € (3, 7) at least asymptotically
in d?
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Question 8.2. Theorem 2 shows if p,, 1 (RP?) > 7—4 then ind(S§) > coind(S¢) >

n. Does an approximate converse of this result hold?

We only raise the question about an “approximate” converse, since Sg in addi-
tion to the size of codes in RP? also encodes symmetries of S¢. For example, an
equilateral triangle inscribed in RP! gives a projective code with distance 5. For
0 =7 — %, Theorem 2 then gives an odd map S% — Si. However, S} ~ $3, since

there are a circle’s worth of equilateral triangles in RP!.

Question 8.3. For d < n, could the Z/2-Carathéodory number ¢, (S?) be equal
to 2 - dau(S%,S™), twice the Gromov-Hausdorff distance between the spheres S¢
and S™, equipped with the geodesic metric? This is known to be true when n < 3,
and is consistent with known bounds on ¢, (S%) (see [14, Table page 80]) and on
dgu(S?,S™) (see [32, Figure 2]). Or does one quantity bound the other?
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