
F. Frick et al. (2023) “Transversal Generalizations of Hyperplane Equipartitions,”
International Mathematics Research Notices, Vol. 00, No. 00, pp. 1–33
https://doi.org/10.1093/imrn/rnad216

Transversal Generalizations of Hyperplane Equipartitions

Florian Frick1, Samuel Murray1, Steven Simon2,∗, and

Laura Stemmler1

1Department of Mathematical Sciences, Carnegie Mellon University,

Pittsburgh, PA 15213, USA and 2Department of Mathematics, Bard

College, Annandale-on-Hudson, NY 12504, USA

∗Correspondence to be sent to: e-mail: ssimon@bard.edu

The classical Ham Sandwich theorem states that any d point sets in Rd can be simul-

taneously bisected by a single affine hyperplane. A generalization of Dolnikov asserts

that any d families of pairwise intersecting compact, convex sets in Rd admit a common

hyperplane transversal. We extend Dolnikov’s theorem by showing that families of

compact convex sets satisfyingmore general non-disjointness conditions admit common

transversals by multiple hyperplanes. In particular, these generalize all known opti-

mal results to the long-standing Grünbaum–Hadwiger–Ramos measure equipartition

problem in the case of two hyperplanes. Our proof proceeds by establishing topological

Radon-type intersection theorems and then applying Gale duality in the linear setting.

For a single hyperplane, this gives a new proof of Dolnikov’s original result via Sarkaria’s

non-embedding criterion for simplicial complexes.

1 Introduction

The starting point for our investigation is the classical Ham Sandwich theorem con-

jectured by Steinhaus and proved by Banach (see [3]), a result which is at the origin of

topological methods in discrete geometry:
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2 F. Frick et al.

Theorem 1.1. Let X1, . . . ,Xd be finite subsets of Rd. Then there exists an affine hyper-

planeH such that both of the corresponding open halfspacesH+ andH− contain nomore

than half the points of each Xi.

The hyperplane H given by Theorem 1.1 simultaneously bisects each set Xi. This

result is often stated for finite Borel measures instead of point sets, which follows from

the formulation above by approximation. Conversely, Theorem 1.1 can be derived from

the version for Borel measures via a standard compactness argument.

We recall two generalizations of the Ham Sandwich theorem. First, Dolnikov

gave a combinatorial criterion for not necessarily balanced hyperplane partitions of

point sets. This recovers the Ham Sandwich theorem in the balanced case. Second,

generalizations for equipartitions bymultiple hyperplanes have been proven. In the same

way that Dolnikov’s result extends the classical Ham Sandwich theorem, we generalize

equipartition results by multiple hyperplanes to the not necessarily balanced setting.

1.1 Two generalizations of the Ham Sandwich theorem

Dolnikov [9] generalized Theorem 1.1 to hyperplane piercings of families of compact

convex sets. Recall that a set family F is said to be intersecting if any two members

of the family have non-trivial intersection. While we state Dolnikov’s theorem below

for families of polytopes (i.e., convex hulls of finite point sets in Rd), a standard

approximation argument ensures the result for arbitrary compact convex sets.

Theorem 1.2. Let F1, . . . ,Fd be finite families of polytopes in Rd, where each family is

intersecting. Then there exists an affine hyperplane H that intersects each polytope from

each Fi.

This generalizes Theorem 1.1: Given finite sets X1, . . . ,Xd ⊂ Rd, for each Xi

consider the corresponding intersecting family Fi =
{
convA | A ⊂ Xi, |A| >

|Xi|
2

}
. By

Theorem 1.2 there is an affine hyperplane H that intersects all sets from each Fi. This

hyperplane must bisect each Xi; otherwise, there is some i such that one of the open

halfspaces H± contains more than half the elements of Xi, say |H+ ∩ Xi| > 1
2 |Xi|. Then

conv(H+ ∩ Xi) ∈ Fi is disjoint from H, contradicting that H intersects all polytopes in

every Fi. Theorem 1.2 allows for the (unbalanced) case that Fi consists of polytopes,

where the inclusion-minimal polytopes do not all have the same number of vertices.

Another generalization of the Ham Sandwich theorem concerns equipartitions

by more than one hyperplane. Given finite sets X1, . . . ,Xm ⊂ Rd, we say that k (not
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Transversal Generalizations of Hyperplane Equipartitions 3

necessarily distinct) affine hyperplanes H1, . . . ,Hk ⊂ Rd form an equipartition if each

of the (not necessarily distinct) 2k open orthants H±
1 ∩ · · · ∩ H±

k
contains at most

|Xi|

2k
of the points of each Xi. The smallest dimension d such that any m finite sets

X1, . . . ,Xm ⊂ Rd admit an equipartition by k affine hyperplanes is denoted by �(m,k).

Thus, Theorem 1.1 states that �(m, 1) ≤ m, and this upper bound is easily seen to be

tight. As with Theorem 1.1, the problem of determining �(m,k) can be stated for more

finite Borel measures more generally, and again approximation arguments show that the

two problems are equivalent.

For multiple hyperplanes, Avis [1] and Ramos [27] observed the general lower

bound �(m,k) ≥ ⌈2k−1
k

m⌉ by placing the sets X1, . . . ,Xm along the moment curve. This

lower bound is conjectured to be optimal for all m and k. The current best upper bound

for general k is due to Mani-Levitska, Vrećica, and Živaljević [19]:

Theorem 1.3. Let m = 2p + q, where p ≥ 0 and 0 ≤ q < 2p. Then �(m,k) ≤ 2k+p−1 + q.

While recovering Theorem 1.1 for arbitrary m, the upper bound of Theorem 1.3

coincides with the lower bound above only when k = 2 and m + 1 is a power of two.

Additional matching upper bounds have been established for k = 2 when m or m − 1 is

a power of two, for k = 3 when m ∈ {1, 2, 4} [5], and for no values of m when k ≥ 4; see

[6] for a survey of known results. We record the current situation as follows:

Theorem 1.4.

(i) �(2s − 1, 2) = 3 · 2s−1 − 1 for all integers s ≥ 1

(ii) �(2s + 1, 2) = 3 · 2s−1 + 2 for all integers s ≥ 2

(iii) �(2s, 2) = 3 · 2s−1 for all integers s ≥ 1

(iv) �(1, 3) = 3

(v) �(2, 3) = 5

(vi) �(4, 3) = 10

1.2 Statement of main results

For a finite family F of non-empty sets and an integer r ≥ 2, denote by KGr(F) the

r-uniform Kneser hypergraph of F , that is, the hypergraph with vertex set F and

a hyperedge {A1, . . . ,Ar} for every collection of pairwise disjoint A1, . . . ,Ar ∈ F . In

particular, KG2(F) is the Kneser graph KG(F) of F . The chromatic number χ(KGr(F)) of

this hypergraph is the smallest number of colors required to color the vertices so that no
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4 F. Frick et al.

hyperedge is monochromatic. As usual,we denote this by χ(KG(F)) when r = 2.Note that

χ(KGr(F)) ≤ mmeans precisely that there is a partition F = F1 ∪ · · · ∪Fm such that no r

sets from any Fi are pairwise disjoint. We say that a collection of k hyperplanes pierces

a given family F of non-empty sets of Rd if the union of these hyperplanes intersects

each set from F . We may now state our main results.

Theorem 1.5. Let m = 2p + q, where p ≥ 0 and 0 ≤ q < 2p, and let d = 2k+p−1 + q. If F

is a finite family of polytopes in Rd such that χ(KG2k(F)) ≤ m, then there exist k affine

hyperplanes in Rd, which pierce F .

In the same way that Dolnikov’s theorem implies the Ham Sandwich theorem,

Theorem 1.5 generalizes Theorem 1.3; see Theorem 3.3 for the proof of this implication.

Note that the k = 1 case of Theorem 1.5 is Dolnikov’s theorem.

Theorem 1.6. Let m = 2s + t, where s ≥ 1 is an integer and t ∈ {−1, 0, 1}. Let d = ⌈3
2m⌉.

If F is a finite family of polytopes in Rd such that χ(KG4(F)) ≤ m, then there exist two

affine hyperplanes in Rd, which pierce F .

Theorem 1.6 generalizes Theorem 1.4, parts (i), (ii), and (iii). As with Theorem 1.2,

the above theorems can be extended to arbitrary compact convex sets by approximation.

The first non-trivial exact bound for hyperplane mass equipartitions for k = 2 hyper-

planes is due to Hadwiger [14],who showed that�(2, 2) = 3. In this instance,Theorem 1.6

states the following: Given two families of polytopes in R3, neither of which contains

four pairwise disjoint polytopes, there are two affine planes whose union intersects each

polytope from each family.

Our final main result gives a transversal extension of �(1, 3) = 3:

Theorem 1.7. LetF be a finite family of polytopes inR3 such that χ(KG8(F)) = 1 (i.e., no

eight polytopes are pairwise disjoint). Then F can be pierced by three affine hyperplanes

in R3.

1.3 Proof scheme: topological Radon-type results for multiple Radon pairs

Our proof approach for hyperplane partition and transversal results appears to be new.

Here we explain this approach and give an overview of the proof scheme. Ultimately, we

derive ourmain results from certain non-embeddability results for simplicial complexes,

which we collect here since they might be of independent interest.
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Transversal Generalizations of Hyperplane Equipartitions 5

Gale duality translates between hyperplane bisection results for n points in

Rd and intersection results for convex hulls of n points in Rn−d−1; see Section 2 for

details. Results that prescribe constraints for disjoint subsets A and B of a set X ⊂ Rd

whose convex hulls intersect are referred to as Radon-type results. The classical Radon

theorem [26] states that any X ⊂ Rd of size d+ 2 admits a partition A ⊔ B = X such that

convA ∩ convB �= ∅. Such partitions A ⊔ B are called Radon partitions. A rather general

result asserting the existence of Radon partitions that satisfy certain constraints is the

following theorem due to Sarkaria [22, 28, 29]:

Theorem 1.8. Let � be a simplicial complex on [d + n + 2] = {1, 2, . . . ,d + n + 2} such

that 2[d+n+2] \ � can be partitioned into n families F1, . . . ,Fn, where each Fi is pairwise

intersecting. Then for any continuous map f : |�| → Rd, there are disjoint faces σ , τ ⊂ |�|

such that f (σ ) ∩ f (τ ) �= ∅.

This result indeed guarantees the existence of certain Radon partitions: The

simplicial complex � encodes which subsets of [d + n + 2] are permitted to appear in

Radon partitions; for face-wise linear f : |�| → Rd the image f (σ ) of a face σ of � is

the convex hull of the images of its vertex set. In Section 2 we will show that Dolnikov’s

theorem follows from Theorem 1.8 via Gale duality.

To prove our main results we apply Gale duality to the vertices of all polytopes

in
⋃

Fi and points at their pairwise intersections. We thus need to establish a Radon-

type result (for multiple Radon partitions that interact in a specific way) to establish

hyperplane transversal results.

We denote the simplex on vertex set [n + 1] = {1, . . . ,n + 1} by �n. Our notation

does not distinguish between �n as an abstract simplicial complex and its geometric

realization. Given a continuous map f : �n → Rd, we say that a tuple of faces (σ+, σ−)

of �n is a Radon pair for f if σ+ ∩ σ− = ∅ and f (σ+) ∩ f (σ−) �= ∅. The Gale dual of

Theorem 1.6 is the linear case of the following Radon-type result:

Theorem 1.9. Letm = 2s + t, where s ≥ 1 is an integer and t ∈ {−1, 0, 1}. Let d ≥ 1 be an

integer and let n ≥ d+ 3
2m+ 2. Let F be a family of subsets of [n] with χ(KG4(F)) ≤ m.

Then for any continuous map f : �n−1 → Rd, there are two Radon pairs (σ+, σ−) and

(τ+, τ−) for f such that none of the four intersections σ± ∩ τ± contains a set from F .

Given a generic set X of d + 2 points in Rd there is a unique way to partition X

into A and B with convA ∩ convB �= ∅. Theorem 1.9 asserts that for X ⊂ Rd with d + 4
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6 F. Frick et al.

points, there are two such partitions A ⊔ B and C ⊔ D that are maximally different, that

is, the intersections A∩C,A∩D, B∩C, and B∩D have at most d+4
4 points. This follows by

letting m = 1 and F the family of subsets of [d+ 4] that have more than d+4
4 elements.

Theorem 1.9 and its relatives for more than two Radon pairs imply our main

results on hyperplane transversals. To establish these results we use a standard trans-

lation to nonexistence results for certain equivariant maps. If Theorem 1.9 failed, then

there would exist a continuous map Sn × Sn → R2d+2 × R3m that avoids zero and which

commutes with certain actions of the Dihedral group D4. Here Sn × Sn parametrizes all

possible Radon pairs (σ+, σ−) and (τ+, τ−). The D4-action independently swaps σ+ ↔ σ−

and τ+ ↔ τ− and interchanges (σ+, σ−) with (τ+, τ−). We will explain this translation to

the equivariant setup in Section 4. The non-existence results for equivariant maps that

we establish are new, and in fact extend earlier non-existence results that were derived

in the context of hyperplane equipartitions.

2 Dolnikov’s Theorem via Gale Duality

In this section we provide a new proof of Theorem 1.2 which (essentially) exhibits this

result as the Gale dual of the linear version of Sarkaria’s theorem. For the sake of

completeness, we first review the construction of the Gale transform as well as some

of its essential properties, which we use throughout the paper. For a more complete

exposition, see, for example [21, Ch. 5.6].

2.1 Gale transform: construction and properties

Let a1, . . . ,an be a sequence of n points in Rd whose affine hull is Rd. In particular, n ≥

d+1. For each j ∈ [n], one lets a′
j
= (aj, 1) be the vector inRd+1 obtained by appending 1 to

aj, and denotes byA the (d+1)×nmatrixwhose columns are the a′
j
. As the aj affinely span

Rd, rank(A) = d+1. Given any basis v1, . . . ,vn−d−1 for the nullspace V = Null(A), one lets

B be the (n−d−1)×n whose rows are the vi. The Gale transform of a1, . . . ,an is defined

to be the sequence b1, . . . ,bn in Rn−d−1 made of the columns of B. It is straightforward to

verify that (1) the bj linearly spanRn−d−1 and that (2)
∑n

j=1 bj = 0.Moreover, one sees that

any sequence b1, . . . ,bn of points in Rn−d−1 satisfying (1) and (2) is the Gale transform of

some sequence a1, . . . ,an of points in Rd, which affinely span Rd.

For our purposes, the main property of the Gale transform that we use is the

duality it provides between Radon pairs of point sets in Rd and partitions of point sets

in Rn−d−1 by linear hyperplanes. The precise formulation of the connection we need is

stated as Proposition 2.1 below.We shall say that a Radon pair (A+,A−) of a finite point
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Transversal Generalizations of Hyperplane Equipartitions 7

set A ⊂ Rd is minimal if conv(A+) ∩ conv(A′) = ∅ for any proper subset A′ ⊂ A− and

likewise conv(A′) ∩ conv(A−) = ∅ for any proper subset A′ ⊂ A+.

Proposition 2.1. Let d and n be positive integers with n ≥ d+ 1.

(i) Suppose that (A+,A−) is a minimal Radon pair for a set A = {a1, . . . ,an} of

n points in Rd whose affine hull is Rd. Let I+ = {j ∈ [n] | aj ∈ A+} and

I− = {j ∈ [n] | aj ∈ A−} be the corresponding index sets. Let b1, . . . ,bn in

Rn−d−1 be the Gale transform of the sequence a1, . . . ,an. Then there exists a

linear hyperplane H in Rn−d−1 such that B+ = {bj | j ∈ I+} ⊂ H+, B− = {bj |

j ∈ I+} ⊂ H−, and all remaining bj lie on H.

(ii) Let B = {b1, . . . ,bn} be a set of n points in Rn−d−1 such that
∑n

j=1 bj = 0 and

which linearly span Rn−d−1. Suppose that there is a linear hyperplane H in

Rn−d−1 and non-empty subsets B+,B− ⊂ B such that B+ ⊂ H+, B− ⊂ H−, and

all the remaining bj lie on H. Let J+ = {j ∈ [n] | bj ∈ B+} and J− = {j ∈ [n] |

bj ∈ B−} be the corresponding index sets. Then there is a sequence a1, . . . ,an

of n points in Rd whose Gale transform is b1, . . . ,bn and subsets I+ ⊂ J+ and

I− ⊂ J− such that (conv{aj | j ∈ I+}, conv{aj | j ∈ I−}) is a minimal Radon pair

for A = {a1, . . . ,an}, {bj | j ∈ I+} ⊂ B+, and {bj | j ∈ I−} ⊂ B−.

While Proposition 2.1 can be established using standard methods (see, e.g., [21,

Lemma. 5.6.2] for an essentially similar statement), for the sake of completeness we

provide a proof.

Proof of Proposition 2.1. For part (i), suppose that (A+,A−) is a minimal Radon pair for

{a1, . . . ,an} and let I+ and I− be the corresponding index sets of [n]. In particular, there

exist scalars λ1, . . . , λn ≥ 0 such that λj > 0 for all j ∈ I+ ∪ I−,
∑

j∈I+ λj =
∑

j∈I− λj = 1,

and
∑

j∈I+ λjaj =
∑

j∈I− λjaj. Defining t = (t1, . . . , tn) by tj = λj for j ∈ I+, tj = −λj for

j ∈ I−, and tj = 0 otherwise, we have
∑

j tjaj = 0 and
∑

j tj = 0. Using the notation of the

construction of the Gale transform, we see that t lies in V = Null(A) so t =
∑n−d−1

i=1 αivi

with α = (α1, . . . ,αn−d−1) ∈ Rn−d−1. Considering the linear hyperplane H = 〈α〉⊥, it is

easily verified that tj = 〈bj,α〉 for all j ∈ [n]. Thus, bj ∈ H+ for all j ∈ I+, bj ∈ H− for all

j ∈ I−, and bj ∈ H if j /∈ I+ ∪ I−.

To prove (ii), suppose that there exist non-empty subsets B+ and B− of {b1, . . . ,bn}

and a linear hyperplane H such that B+ ⊂ H+, B− ⊂ H−, and all other points of bj lie on

H. Let J+ and J− be the corresponding index sets of [n].We have that J+ ∩J− = ∅ because

the half-spaces are open. We have H = 〈α〉⊥ in Rn−d−1 for some α = (α1, . . . ,αn−d−1) ∈
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8 F. Frick et al.

Rn−d−1 \ {0}. Define t = (t1, . . . , tn) by tj = 〈bj,α〉 for all j ∈ [n]. Thus, tj > 0 for all j ∈ J+,

tj < 0 for all j ∈ J−, and tj = 0 for all j /∈ J+ ∪ J−. Letting v1, . . . ,vn−d−1 be the rows of

the matrix B whose columns are the bj, one verifies that t =
∑n−d−1

i=1 αivi, and it is again

straightforward to show that
∑n

j=1 tjaj = 0 and
∑n

j=1 tj = 0. Now define λj =
tj∑

i∈J+ ti
if

j ∈ J+ and λj =
−tj∑
i∈J− ti

if j ∈ J−. Thus, λj > 0 for all j ∈ J+ ∪ J−,
∑

j∈J+ λj =
∑

j∈J− λj = 1,

and
∑

j∈J+ λjaj =
∑

j∈J− λjaj. To complete the proof, by removing points if necessary we

may choose I+ ⊂ J+ and I− ⊂ J− so that A+ = {ai | i ∈ I+} and A− = {ai | i ∈ I+} are

minimal. �

2.2 A proof of Dolnikov’s theorem

We now derive Theorem 1.2 as a consequence of the linear version of Theorem 1.8; the

reverse implication is given in Remark 3.2 following Lemma 3.1. As we have already

seen, Theorem 1.1 is a special case of Theorem 1.2. In order to use Gale duality, it will

be convenient to prove the following slight reformulation of Theorem 1.2. Recall that

KG(F) = KG2(F).

Proposition 2.2. Let Y ⊂ Rd be a finite set and let F be a family of subsets of Y such

that χ(KG(F)) ≤ d. Then there exists an affine hyperplane H in Rd which intersects all

the convex hulls of all sets in F .

To see that Proposition 2.2 implies Theorem 1.2, assume Proposition 2.2 and let

F1, . . . ,Fd be as in the statement of Theorem 1.2. For each Fi, let Yi ⊂ Rd be the set that

consists of (i) the vertices from each polytope P of Fi together with (ii) a point from the

intersection of any pair of distinct polytopes P and Q from Fi. Now let Y = ∪iYi and

let F ′ = ∪iF
′
i
, where for each i we define F ′

i
= {P ∩ Yi | P ∈ Fi}. Each F ′

i
is pairwise

intersecting by construction, so χ(KG(F ′)) ≤ d. By Proposition 2.2, there is therefore an

affine hyperplane H ⊂ Rd that intersects conv(P ∩ Yi) = P of each P in Fi and every Fi.

We now prove Proposition 2.2.

Proof of Proposition 2.2 via Theorem 1.8. IdentifyRd with the hyperplane inRd+1 with

last coordinate equal to 1 and let Y ⊂ Rd and F be as in the statement of Proposition

2.2. By adding points to the set Y ⊂ Rd, if necessary, we obtain a set Y1 which linearly

spans Rd+1. Note that no set in F will contain any of the added points. Letting Y2 =

Y1∪{−
∑

y∈Y1
y} now gives a set which linearly spans Rd+1 and has barycenter the origin.

Thus,Y2 is the Gale transform of some finite set X ⊂ Rn−d−2 which affinely spansRn−d−2.

For concreteness, say that Y2 = {b1, . . . ,bn} and that X = {a1, . . . ,an}.
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Transversal Generalizations of Hyperplane Equipartitions 9

To avoid a slight abuse of notation, let F ′ be the family of subsets of [n] =

{1, . . . ,n} corresponding to the family F of subsets of the original set Y. We let �(F ′)

denote the simplicial complex on [n] whose minimal non-faces are the sets of F ′, that is,

�(F ′) = {σ ⊂ [n] | τ /∈ F
′ for all τ ⊆ σ }.

The set family 2[n] \ �(F ′) is obtained from F ′ by including any supersets of elements of

F ′, so in particular χ(KG(2[n]\�(F ′)) = χ(KG(F)) ≤ d. Thus, 2[n]\�(F ′) can be partitioned

into F ′
1, . . . ,F

′
d
, where each F ′

i
is pairwise intersecting.

The linear version of Theorem 1.8 gives two disjoint faces σ+, σ− ∈ �(F ′) such

that

conv{ai | i ∈ σ+} ∩ conv{ai | i ∈ σ−} �= ∅.

Without loss of generality, we may assume that {ai | i ∈ σ+} and {ai | i ∈ σ−} form a

minimal Radon pair, so that by Proposition 2.1 there is a linear hyperplane H in Rd+1

such that {bi | i ∈ σ+} lies in H+, {bi | i ∈ σ−} lies in H−, and H contains every other point

of Y2. By the definition of �(F ′), neither σ+ nor σ− can contain any set from F ′. Thus,

neither H+ nor H− can contain any set of the form {bi | i ∈ F ′} with F ′ ∈ F ′, which is

to say that neither open half space contains any set from F . Therefore, H intersects the

convex hull of every set of F . On the other hand, F is a family of subsets of the original

set Y ⊂ Rd. As the convex hull of each set of F lies in Rd and the intersection of H and

Rd is an affine hyperplane in Rd, the proof is complete. �

3 Multiple Hyperplane Transversals via Radon-type Results

As for a single hyperplane, equipartition results by multiple hyperplanes are special

cases of hyperplane transversal generalizations, where now the transversal consists of

a union of several hyperplanes. For linear hyperplanes, by Gale duality these transversal

results in turn have equivalent formulations as Radon-type results for several Radon

pairs.We shall say that a Radon pair (σ+, σ−) for f : �n → Rd isminimal if both f (σ+)∩

f (τ ) = ∅ for any proper subface τ ⊂ σ− and f (σ−)∩f (τ ) = ∅ for any proper subface τ ⊂ σ+.

Lemma 3.1. Let c ≥ 1,d ≥ 1, k ≥ 1, andm ≥ 1 be integers. The following are equivalent:

(1 If n ≥ d + c + 2, then for any linear map f : �n−1 → Rd and for any family

F of subsets of [n] with χ(KG2k(F)) ≤ m, there are k minimal Radon pairs

(σ+
1 , σ−

1 ), . . . , (σ+
k
, σ−

k
) for f such that none of the intersections of the form

σ±
1 ∩ · · · ∩ σ±

k
contains a set from F .
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10 F. Frick et al.

(2) For any finite family F of polytopes in Rc+1 with χ(KG2k(F)) ≤ m, there are

k linear hyperplanes, which pierce F .

Remark 3.2. Using Lemma 3.1, let us now show how the linear case of Sarkaria’s

theorem follows from Dolnikov’s theorem. Assuming Theorem 1.2, let F be a finite family

of polytopes in Rd+1 with χ(KG(F)) ≤ d. Adding the singleton containing the origin to

F if necessary gives a finite family F ′ of polytopes in Rd+1 with χ(KG(F ′)) ≤ d + 1.

Theorem 1.2 guarantees a hyperplane, which pierces each polytope in F ′, and this

hyperplane necessarily passes through the origin while intersecting every polytope in

F . This establishes (2) and therefore (1) of Lemma 3.1 when k = 1 and c = m. On

the other hand, if F is a family of subsets of [d + m + 2] with χ(KG(F)) ≤ m, let

� = {σ ⊂ [d + m + 2] | τ /∈ F for all τ ⊆ σ } be the simplicial complex of non-faces.

Any given linear map f : � → Rd extends linearly to a linear map from �n to Rd, so

Lemma 3.1(1) gives the linear case of Theorem 1.8.

Proof of Lemma 3.1. Assuming (1), let F be a finite family of polytopes in Rc+1 with

χ(KG2k(F)) ≤ m. As before, let Y be the set that contains all vertices of all these polytopes

as well as a point in the intersection of any two polytopes P,Q ∈ F with P∩Q �= ∅. Again

as before, we may artificially add points to Y if necessary so that Y = {y1, . . . ,yn} affinely

spans Rc+1 and
∑

y∈Y y = 0. Thus, Y is the Gale transform of some X = {x1, . . . ,xn} ⊂

Rn−c−2. Let ϕ : Y → [n] be the bijection ϕ(yi) = i. The corresponding points x1, . . . ,xn in

Rn−c−2 thus determine a linear map f : �n−1 → Rd with d = n− c − 2.

Let F ′ = {ϕ(P ∩ Y) | P ∈ F}. By construction of the set Y, it follows that

KG2k(F ′) = KG2k(F) and so χ(KG2k(F ′)) ≤ m. By (1), there are k minimal Radon

pairs (σ+
1 , σ−

1 ), . . . , (σ+
k
, σ−

k
) for f such that none of the 2k intersections of the form

σ±
1 ∩ · · · ∩ σ±

k
contains any set in F ′. Each pair (σ+

j
, σ−

j
) determines intersecting convex

hulls f (σ+
j

)∩f (σ−
j

) �= ∅ of points in X. By Proposition 2.1, for each j ∈ [k] there is therefore

a linear hyperplane Hj ⊂ Rc+1 such that {yi | i ∈ σ+
j

} lies in H+
j
, {yi | i ∈ σ−

j
} lies in H−

j
,

and Hj passes through every other point of Y.

Now let P ∈ F be arbitrary. Letting A = P∩Y we have that ϕ(A) ∈ F ′ and convA =

P. By (1), there is some j ∈ [k] such that ϕ(A) is not fully contained in either σ+
j

or σ−
j
.

Thus,A = {yi | i ∈ ϕ(A)} is neither completely to the open positive side nor to the negative

side of Hj, and therefore Hj intersects P = convA.

The proof that (2) implies (1) essentially follows the proof of [31, Theorem 5] via

Gale duality and the ham sandwich theorem. Given a linear map f : �n−1 → Rd and a

family F of subsets of [n] with χ(KG2k(F)) ≤ m as in (1), let xi = f (i) and X = {x1, . . . ,xn}.
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Transversal Generalizations of Hyperplane Equipartitions 11

Wemay assume that n = d+c+2, since otherwise one may simply restrict to a subset of

the vertices. By possibly decreasing d, we may assume that X affinely spans Rd. Denote

the Gale transform of X by Y = {y1, . . . ,yn} ⊂ Rn−d−1 = Rc+1 and let F ′ be the family con-

sisting of all polytopes of the form PA = conv{yi | i ∈ A} for eachA ∈ F . If PA∩PB = ∅, then

A ∩ B = ∅. Thus, KG2k(F ′) is contained in KG2k(F), and so in particular χ(KG2k(F ′)) ≤ m.

Assuming (2), there are k linear hyperplanes H1, . . . ,Hk ⊂ Rc+1 such that every

polytope in F ′ is intersected by ∪iHi. As before, let ϕ : Y → [n] be the bijection ϕ(yi) = i.

By Proposition 2.1, for each j ∈ [k] there is minimal Radon pair (σ+
j
, σ−

j
) for f with σ+

j
⊂

ϕ(H+
j

∩ Y) and σ−
j

⊂ ϕ(H−
j

∩ Y) for each j ∈ [k]. Now let A ∈ F be arbitrary. We have that

conv{yi | i ∈ A} is in F ′ and so must be pierced by some Hj. Thus, {yi | i ∈ A} does not lie

in either open half-space determined by Hj, so A cannot be contained in either σ+
j

or σ−
j
.

In particular, A does not lie in any of the intersections σ±
1 ∩ · · · ∩ σ±

k
. �

The following is our central result on the connection between Radon-type

theorems, hyperplane transversality, and mass equipartitions.

Theorem 3.3. Let c ≥ 1, d ≥ 1, k ≥ 1, and m ≥ 1 be integers. Of the statements below,

(1) implies (2), which in turn implies (3).

(1) If n ≥ d + c + 2, then for any linear map f : �n−1 → Rd and for any family

F of subsets of [n] with χ(KG2k(F)) ≤ m, there are k minimal Radon pairs

(σ+
1 , σ−

1 ), . . . , (σ+
k
, σ−

k
) for f such that none of the intersections of the form

σ±
1 ∩ · · · ∩ σ±

k
contains a set from F .

(2 For any finite family F of polytopes in Rc with χ(KG2k(F)) ≤ m, there are k

affine hyperplanes which pierce F .

(3 For finite point sets X1, . . . ,Xm ⊂ Rc, there are k affine hyperplanes H1, . . . ,Hk

such that each of the orthants H±
1 ∩ · · · ∩ H±

k
contains no more than 1

2k
|Xi|

points of each Xi, that is, �(m,k) ≤ c.

Remark 3.4. Observe that any c ≥ 1 for which any of (1) through (3) of Theorem 3.3

holds must satisfy c ≥ ⌈2k−1
k

m⌉. In particular, the dimension d of Theorem 1.6 is tight

with respect to m, as is the n of Theorem 1.9.

Proof of Theorem 3.3. We first show that (1) implies (2). By Lemma 3.1, we have that

(1) is equivalent to the statement: For any finite family F of polytopes in Rc+1 with

χ(KG2k(F)) ≤ m there are k linear hyperplanes H1, . . . ,Hk ⊂ Rc+1 such that every

polytope in F is intersected by ∪k
i=1

Hi. If instead we are given a finite family F of
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12 F. Frick et al.

polytopes in Rc with χ(KG2k(F)) ≤ m, we place Rc in Rc+1 as the hyperplane at height

one. Then by the above there are k linear hyperplanes H1, . . . ,Hk ⊂ Rc+1 such that

every polytope in F is intersected by ∪k
i=1

Hi. These hyperplanes Hi correspond to affine

hyperplanes in Rc, thus proving (2).

To show that (2) implies (3) (and in fact is a special case), let finite sets

X1, . . . ,Xm ⊂ Rc be given. For each i ∈ [m], consider the corresponding family

Fi =

{
convA | A ⊂ Xi, |A| >

1

2k
|Xi|

}
.

LettingF =
⋃

i Fi we see that χ(KG2k(F)) ≤ m, and so by (2) there are k affine hyperplanes

H1, . . . ,Hk ⊂ Rc such that every polytope in F is intersected by ∪k
i=1

Hi. If A ⊂ Xj is any

set with |A| > 1
2k

|Xj|, then by construction its convex hull convA is intersected by some

hyperplane Hi, so A cannot lie in any open orthant determined by the hyperplanes. �

4 A General Bound for Multiple Radon Pairs

Over the next three sections we explain how to obtain topological Radon-type theorems

from non-existence results for equivariant maps. These follow from the well-established

configuration space/test map scheme and a generalization of Borsuk–Ulam-type results

arising from the Grünbaum–Ramos–Hadwiger mass partition problem.

In this section wewill prove Theorem 1.5,which by Theorem 3.3 is a consequence

of the following result about Radon pairs for continuous maps. As before, letm = 2p +q

where p ≥ 0 and 0 ≤ q < 2p, and let U(m,k) = 2k+p−1 + q be the upper bound of

Theorem 1.3 for the Grünbaum–Ramos–Hadwiger problem. As m = 2p+1 − 1 when k = 2

and q = 2p−1 − 1, the t = −1 case of Theorem 1.9 is an immediate consequence.

Theorem 4.1. Let m ≥ 1, k ≥ 1, and d ≥ 1. Suppose that n ≥ d + U(m,k) + 1. If F

is a family of subsets of [n + 1] with χ(KG2k(F)) ≤ m, then for any continuous map

f : �n → Rd there are k Radon pairs (σ+
1 , σ−

1 ), . . . , (σ+
k
, σ−

k
) for f such that none of the

intersections of the form σ±
1 ∩ · · · ∩ σ±

k
contains a set from F .

4.1 Configuration space

Let �∗2
n = {σ ∗ τ | σ , τ ⊆ �n} be the join of the n-simplex with itself. The deleted join

�n := (�n)∗2� = {σ+ ∗ σ− | σ+ ∩σ− = ∅} is the sub-complex of �∗2
n consisting of all formal

convex sums λx+ + (1 − λ)x−, where x+ ∈ σ+ and x− ∈ σ−, and for which the σ± are

disjoint. This complex is realized as the boundary of the n-dimensional cross–polytope,
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Transversal Generalizations of Hyperplane Equipartitions 13

that is, the unit sphere in the ℓ1-metric on Rn+1, and is equipped with a Z2-action

obtained by interchanging λx+ with (1 − λ)x−. Under the identification of �n with the

n-sphere Sn, this action corresponds to the usual antipodal action on the sphere.

For any k ≥ 2, let

�(n,k) = �×k
n = {σ = (σ+

1 ∗ σ−
1 , · · · , σ+

k
∗ σ−

k
) | σ+

i
∩ σ−

i
= ∅ for all 1 ≤ i ≤ k}

be the k-fold product of �n. This product comes equipped with a canonical action of

the hyperoctahedral group S
±
k

= Zk2 ⋊ Sk, whereby Zk2 acts by interchanging each pair

{σ+
i
, σ−

i
} of disjoint faces for any 1 ≤ i ≤ k and the symmetric groupSk acts by permuting

the σ+
i

∗ σ−
i
. This action is by isometries if one takes the product metric on �(n,k) with

the ℓ1-metric on each �n factor. Extending the identification of �n with Sn, one has a

natural correspondence between �(n,k) and the product Y(n,k) := (Sn)k of n-spheres,

the later being equipped with the analogous S
±
k
-action whereby Zk2 acts antipodally

on each coordinate sphere and Sk acts by permuting each Sn factor. Explicitly, let

(y1, . . . ,yk) ∈ (Sn)k, let (g1, . . . ,gk) ∈ Zk2, and let α ∈ Sk. Then,

((g1, . . . ,gk) ⋊ α) · (y1, . . . ,yk) = ((−1)g1yα−1(1), . . . , (−1)gkyα−1(k)).

Observe that the action of Zk2 on �n,k (and Y(n,k)) is free, and in fact it is easily

observed that g · σ ∩ σ = ∅ for all non-identity g = (g1, . . . ,gk) ∈ Zk2 and all σ = (σ+
1 ∗

σ−
1 , . . . , σ+

k
∗ σ−

k
) ∈ �(n,k). On the other hand, the full action of S±

k
is not free, with non-

free part �(n,k)′ consisting of all ([λ1x
+
1 + (1 − λ1)x

−
1 ], . . . , [λkx

+
k

+ (1 − λk)x
−
k
]) ∈ �(n,k)

such that λix
+
i

+ (1− λi)x
−
i

= ±(λjx
+
j

+ (1− λj)x
−
j

) for some i �= j. Under the identification

of �(n,k) with Y(n,k), this corresponds to all (y1, . . . ,yk) ∈ Y(n,k) with yi = ±yj for

distinct i and j, which is the non-free part Y ′(n,k) of Y(n,k) under the S
±
k
-action.

4.2 Test space

Let R[Zk2] =
{∑

g∈Zk2
rgg | rg ∈ R for all g ∈ Zk2

}
denote the regular representation of Zk2.

Considering the action of the symmetric group on coordinates, R[Zk2] becomes a S
±
k
-

module, as does Uk =
{∑

g∈Zk2
rgg |

∑
g∈Zk2

rg = 0
}
, the orthogonal complement of the

trivial Zk2-representation. We consider the direct sum U⊕m
k

as a S
±
k
-module under the

diagonal action.

In addition to U⊕m
k

, we shall also consider the S
±
k
-module Vk := (Rd+1)k, where

again Sk acts by permuting each Rd+1 factor and Zk2 acts independently and antipodally

on each coordinate Rd+1.
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14 F. Frick et al.

4.3 Test map

Let n = d + c + 1 for some constant c. To obtain k Radon pairs for a given continuous

map f : �n → Rd, for each λx = ([λ1x
+
1 + (1− λ1)x

−
1 ], . . . , [λkx

+
k

+ (1− λk)x
−
k
]) ∈ �(n,k) we

define R : �(n,k) → Vk by

R(λx) = (λ1 − 1/2, λ1f (x
+
1 ) − (1 − λ1)f (x

−
1 ), . . . , λk − 1/2, λkf (x

+
k

) − (1 − λk)f (x
−
k

)).

It is easily observed that R is equivariant with respect to the S
±
k
-actions on �(n,k) and

Vk.

Now let F be a family of subsets of the vertices of �n such that χ(KG2k(F)) ≤ m.

Fix a partition F1 ∪ · · · ∪ Fm of F with χ(KG2k(Fj)) ≤ 1 for each j ∈ [m]. We may assume

that Fj is closed under taking supersets. For each σ = (σ+
1 ∗ σ−

1 , . . . , σ+
k

∗ σ−
k

) ∈ �(n,k),

write σ 0
i
for σ+

i
and write σ 1

i
for σ−

i
. For each j ∈ [m] and each g = (g1, . . . ,gk) ∈ Zk2, let

K
j
g =

{
σ = (σ+

1 ∗ σ−
1 , . . . , σ+

k
∗ σ−

k
) ∈ �(n,k) | σ

g1
1 ∩ · · · ∩ σ

gk
k

/∈ Fj

}

and let Kj = ∩g∈Zk2
K
j
g. Since Fj is closed under taking supersets, each K

j
g and thus Kj is a

simplicial complex.

For each λx ∈ �(n,k) and each g ∈ Zk2, consider the distance d(λx,K
j
g) from λx to

the subcomplex K
j
g. Letting

aj(λx) =
1

2k

∑

g∈Zk2

d(λx,K
j
g)

be the average of these distances, define Dj : �(n,k) → R[Zk2] by

Dj(λx) =
∑

g

(d(λx,K
j
g) − aj(λx))g.

The image of Dj thus lies in Uk, and so one has a mapping D = (D1, . . . ,Dm) : �(n,k) →

U⊕m
k

. Clearly,D(λx) = 0 if and only if for each fixed g ∈ Zk2 we have that λx is equidistant

from each K
j
g. On the other hand, the sets σ

g1
1 ∩ · · · ∩ σ

gk
k

are pairwise disjoint. If each of

these were to lie in some Fj, then these intersections would all be distinct because no Fj

contains the empty set. However, none of the Fj contains 2k pairwise disjoint elements,

and so for each 1 ≤ j ≤ m and any λx ∈ �(n,k) one must have d(λx,K
j
g(j)

) = 0 for some

g(j) ∈ Zk2. Any zero of D must therefore lie in Kj for all 1 ≤ j ≤ m, and conversely. As

gσ ∩ σ = ∅ unless g is the identity and the Zk2-action is by isometries, it is a straight-

forward verification that the mapping D is S
±
k
-equivariant with respect to the actions

considered.
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Transversal Generalizations of Hyperplane Equipartitions 15

Letting ι : Y(n,k) → �(n,k) be the natural (S±
k
-equivariant) identification of

Y(n,k) and �(n,k), let

F = (D⊕ R) ◦ ι : Y(n,k) → U⊕m
k

⊕ Vk. (4.1)

By construction, any zero of this map corresponds to the existence of k Radon pairs that

are not contained in F . Thus, Theorem 4.1 follows if any S
±
k
-map F can be guaranteed

a zero when c ≥ U(m,k). This will be established by appealing to a relevant theorem of

Borsuk–Ulam type.

4.4 Proof of Theorem 4.1

For Theorem 4.1, we only need to consider the representation U⊕m
k

⊕ Vk when viewed as

a Zk2-module and apply a corresponding Borsuk–Ulam-type theorem for Zk2-equivariant

maps. We recall that any Zk2-representation is isomorphic to the direct sum of one-

dimensional representations and that the latter are indexed by the group itself. Namely,

for each h = (h1, . . . ,hk) ∈ Zk, the corresponding 1-dimensional representation Uh given

by χh(g) = (−1)h1g1+···hkgk for each g ∈ Zk2. For example, for Uk and Vk as above one has

Uk
∼= ⊕h∈Zk2−{0}Uh and Vk

∼= ⊕k
i=1

U
⊕(d+1)
ei , where ei is the standard basis vector in Zk2.

While we shall find it convenient to use the following Borsuk–Ulam-type result of [30,

Proposition 6.1] based on Stiefel–Whitney classes and the cohomology of real projective

space, we note that similar results have been obtained via ideal-valued cohomological

index theory [10] and used extensively in the field, such as in particular in [19] in

establishing the upper bound of Theorem 1.3.

Proposition 4.2. Let h1 = (h1,1, . . . ,h1,k), . . . ,hnk = (hnk,1, . . . ,hnk,k) ∈ Zk2 and let U =

⊕nk
i=1

Uhi
. Let PU be the polynomial in Z2[u1, . . . ,uk]/(u

n+1
1 , . . . ,un+1

k
) given by

PU(u1, . . . ,uk) =

nk∏

i=1

(hi,1u1 + · · · + hi,kuk).

If PU(u1, . . . ,uk) = un1 · · ·un
k
, then any Zk2-equivariant continuous map f : Y(n,k) → U has

a zero.

Proof of Theorem 4.1. Define U = U⊕m
k

⊕Vk ⊕V ′, where form = 2p + q as above we set

V ′ = ⊕k
i=2

U
αi
ei with αi = U(m,k)−2p+k−i−q2i−1. Thus, dimU = kn,where n = U(m,k)+d+

1. The corresponding polynomial PU can be expressed as the product PU = PmUk · PVk · PV ′ ,

where PUk =
∏

(h1,...,hk)∈Z
k
2\{0}(h1u1 + · · · + hkuk), PVk = xd+1

1 · · ·xd+1
k

, and PV ′ = x
α2
2 · · · x

αk
k
.
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16 F. Frick et al.

As shown in [33], PUk is the Dickson polynomial PUk =
∑

σ∈Sk
u2k−1

σ(1)
u2k−2

σ(2)
· · ·u1

σ(k)
. Thus,

PU =
∑

σ∈Sk

u2k+p−1

σ(1) u2k+p−2

σ(2) · · ·u2p

σ(k) ·

⎛
⎝

∑

τ∈Sk

u2k−1

τ(1) u
2k−2

τ(2) · · ·u1
τ(k)

⎞
⎠
q

· ud+1
1 u

α2+d+1
2 · · ·u

αk+d+1
k

.

Viewing PU as a polynomial in Z2[u1, . . . ,uk]/(u
n+1
1 , . . . ,un+1

k
), a consideration of the

exponents βi in each monomial x
β1
1 · · · x

β

k
in the resulting expansion of PU shows that

all such terms vanish unless σ(i) = τ(k − i + 1) = i for all i, in which case the

mononmial is xn1 · · ·xn
k
. Thus, PU = un1 · · ·un

k
. By Proposition 4.2, any Zk2-equivariant

map f : Y(n,k) → U has a zero, and in particular so must any S
±
k
-equivariant map

F : Y(n,k) → U⊕m
k

⊕ Vk. �

5 Proof of the t = 1 Case of Theorem 1.9

We prove the remaining cases of Theorem 1.9 over the course of the next two sections.

By Theorem 3.3, this will complete the proof of Theorem 1.6. Here we prove the t = 1

case of Theorem 1.9, which for organizational purposes we state as a separate theorem:

Theorem 5.1. Let m = 2s + 1, where s ≥ 1 and d ≥ 1. Suppose that n ≥ d + ⌈3m
2 ⌉ + 1.

If F is a family of subsets of [n + 1] with χ(KG4(F)) ≤ m, then for any continuous map

f : �n → Rd, there are twoRadon pairs (σ+
1 , σ−

1 ), (σ+
2 , σ−

2 ) for f such that each intersection

of the form σ±
1 ∩ σ±

2 does not contain any set from F .

As the s = 1 case of Theorem 5.1 is already covered by Theorem 4.1, we consider

s ≥ 2 throughout the remainder of this section.

We shall restrict the setup of Section 4 to the case where k = 2. Thus, S±
2 =

Z2
2 ⋊ 〈τ 〉 = D4 is the dihedral group of order 8 (that is, the symmetry group of a square),

where the transposition τ acts by swapping the coordinates of any g = (g1,g2) ∈ Z2
2. In

what follows, for any n ≥ 1 we let (Sn)2 = Y(n, 2) and we denote the non-free part Y ′(n, 2)

by (Sn)2>1.

Let m = 2s + 1 with s ≥ 2, let c = ⌈3m
2 ⌉, and let n = d + c + 1. In order to prove

Theorem 5.1, it will be necessary to use the full dihedral group instead of just the normal

Z2
2-subgroup. We will prove that any D4-equivariant map F : (Sn)2 → U⊕m

2 ⊕ V2 has a

zero, which demonstrates the existence of the desired Radon pair for any f : �n → Rd.

As before, we proceed by contradiction. Assuming that F never vanishes, a mapping

degree argument will lead to a contradiction with the degree calculation of a certain

D4-equivariant map G : (Sc−1)2 → U⊕m
2 crucially used in [6] in obtaining case (ii) of
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Transversal Generalizations of Hyperplane Equipartitions 17

Theorem 1.4 (see [6, Lemma 5.6]).We state the properties of thismap that we shall need as

Lemma 5.2 below.As c−1 = 3·2s−1+1, observe that dim((Sc−1)2) = 3·2s+2 = dim(S(U⊕m
2 ))

and so the degree of a mapping between (Sc−1)2 and S(U⊕m
2 ) is defined after a choice

of orientation. We let φ : U⊕m
2 \ {0} → S(U⊕m

2 ) be the radial projection, which is D4-

equivariant.

Lemma 5.2. Let s ≥ 2, letm = 2s+1, and let c = ⌈3m
2 ⌉. Then there exists a non-vanishing

continuousD4-equivariant mapG : (Sc−1)2 → U⊕m
2 such that φ◦G : (Sc−1)2 → S(U⊕m

2 ) has

non-zero degree modulo 8.

5.1 Outline of the proof of Theorem 5.1

Before providing the details of the proof Theorem 5.1, we first provide a summary of our

argument. Let n = d + c + 1, where again c = ⌈3m
2 ⌉ with m = 2s + 1 and s ≥ 2. We have

dim((Sn−1)2) = dim S(U⊕m
2 ⊕ V2). Assuming that F : (Sn)2 → U⊕m

2 ⊕ V2 never vanishes,

the restriction

F : (Sn−1)2 → U⊕m
2 ⊕ V2

of F is likewise non-vanishing (here we view Sn−1 as the equatorial sphere inside Sn),

and composing this with the radial projection ρ : (U⊕m
2 ⊕ V2) \ {0} → S(U⊕m

2 ⊕ V2) gives

the existence of a D4-equivariant map

ρ ◦ F : (Sn−1)2 → S(U⊕m
2 ⊕ V2).

As this map factors through (Sn)2, it follows from elementary (co)homological consider-

ations that ρ ◦ F has degree zero. On the other hand, a generalization of the equivariant

Hopf degree theorem shows that the degrees of ρ ◦ F and ρ ◦ G̃ coincide modulo 8, where

G̃ : (Sn−1)2 → U⊕m
2 ⊕ V2 is a natural D4-equivariant extension of G which is defined in

Section 5.2. This is because ρ◦F and ρ◦G̃ areD4-equivariantly homotopic on the non-free

part (Sn−1)2>1 of (Sn−1)2, as shown by Proposition 5.3.

An easy regular value argument then shows that deg(ρ ◦ G̃) = deg(φ ◦ G). This

implies that deg(φ ◦ G) ≡ 0 (mod 8), contradicting Lemma 5.2 and thereby establishing

Theorem 5.1.

5.2 Equivariant homotopy on the non-free part

Our degree argument relies on comparing the D4-equivariant map F : (Sn−1)2 → U⊕m
2 ⊕

V2 to a D4-equivariant extension G̃ : (Sn−1)2 → U⊕m
2 ⊕ V2 of the D4-equivariant map

G : (Sc−1)2 → U⊕m
2 guaranteed by Lemma 5.2. To that end, let c ≥ 1 be arbitrary and
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18 F. Frick et al.

suppose that f : (Sc)2 → U⊕m
2 is a D4-equivariant map which is non-vanishing on the

non-free part (Sc)2>1 of (Sc)2. For any d ≥ 1 and n = d + c + 1, we extend f to a D4-

equivariant map

f̃ : (Sn)2 → U⊕m
2 ⊕ V2

whose zeros are the same as those of G, and which in particular does not vanish on

(Sn)2>1. Namely, view Sn as the join Sn = Sc ∗Sd. Then each yi from any y = (y1,y2) ∈ (Sn)2

is the formal convex sum yi = (1 − ti)y
c
i

⊕ tiy
d
i
where yc

i
∈ Sc, yd

i
∈ Sd, and ti ∈ [0, 1].

Defining

f̃ (y) = (1 − t1)(1 − t2)f (y
c
1,y

c
2) ⊕ (t1y

d
1 , t2y

d
2 ), (5.1)

we see that f̃ is well–defined, D4-equivariant, and has the same zero set as f . Note also

that the restriction of f̃ to (Sn)2>1 equivariantly extends the restriction of f to (Sc)2>1. In

what follows, we shall occasionally need to ensure smoothness of the maps f and f̃ . To

give Sn the usual smooth structure, Sc is connected to Sd via arcs along great circles, so

that yi =
(
cos(πti/2)yc

i
, sin(πti/2)yd

i

)
for any yi ∈ Sn. Correspondingly, f̃ : (Sn)2 → U⊕m

2

given by

f̃ (y) = cos(πt1/2) cos(πt2/2)f (yc1,y
c
2) ⊕

(
sin(πt1/2)yd1 , sin(πt2/2)yd2

)
(5.2)

is then smooth whenever f is.

We now return to the case where c = ⌈3m
2 ⌉ with m = 2s + 1 and s ≥ 2. Let

F : (Sn−1)2 → U⊕m
2 ⊕ V2 be the map above and let G : (Sc−1)2 → U⊕m

2 be as in Lemma 5.2.

Now consider the restrictions F |(Sn−1)2>1
, G̃ |(Sn−1)2>1

: (Sn−1)2>1 → (U⊕m
2 ⊕ V2) \ {0}. the

following proposition will be crucial for our degree argument.

Proposition 5.3. Let m ≥ 1 and suppose that n = c + d+ 1, where c = ⌈3m
2 ⌉ and d ≥ 1.

If f1, f2 : (Sn−1)2>1 → (U⊕m
2 ⊕ V2) \ {0} are D4-equivariant maps, then f1 and f2 are D4-

equivariantly homotopic. In particular, the maps F |(Sn−1)2>1
and G̃ |(Sn−1)2>1

above are D4-

equivariantly homotopic.

Proof of Proposition 5.3. The non-free part (Sn−1)2>1 of theD4-action on (Sn−1)2 consists

of the two disjoint n-spheres Sn−1
+ := {(x,x) | x ∈ Sn−1} and Sn−1

− := {(x,−x) | x ∈ Sn−1}.

The D4-action on (Sn−1)2>1 is free when restricted to Z2
2. Moreover, the standard free Z2-

equivariant cellular structure on Sn−1that is, with two i-dimensional open hemisphere

cells ei+ and ei− for each 0 ≤ i < n—gives rise to a D4-equivariant CW structure on

(Sn−1)2>1 such that the Z2
2 action is free. Indeed, for each 0 ≤ i < n, one may define the
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Transversal Generalizations of Hyperplane Equipartitions 19

i-dimensional cells of (Sn−1)2>1 by (ei±)+ := {(x,x) | x ∈ ei±} ⊂ Sn−1
+ and let (ei±)− :=

{(x,−x) | x ∈ ei±} ⊂ Sn−1
− . If τ denotes the generator of S2, then τ acts trivially on S+

n−1.

On the other hand, τ acts antipodally on S−
n−1, so that τ · (x,−x) = g · (x,−x) where

g = (1, 1) ∈ Z2
2. Moreover, the CW structure on (Sn−1)2>1 respects these actions.

Let U+
2 be the subset of U2 given by U+

2 =
{∑

g∈G rgg ∈ U2 | r(0,1) = r(1,0)

}
, and

likewise let U−
2 =

{ ∑
g∈G rgg ∈ U2 | r(0,0) = r(1,1)

}
. Also let V+

2 = {(v1,v2) ∈ (Rd+1)2 |

v1 = v2} and V−
2 = {(v1,v2) ∈ (Rd+1)2 | v1 = −v2}. Now define U+ = (U+

2 )⊕m ⊕ V+
2 and

U− = (U−
2 )⊕m ⊕ V−

2 . Thus, U
+ is the subset of U⊕m

2 ⊕ V2 on which the transposition τ

acts trivially, while and U− is the subset of U⊕m
2 ⊕ V2 on which τ acts as g = (1, 1) ∈ Z2

2.

Letting τ · h denote the permutative action of τ on any h ∈ Z2
2, one has τhτ = (τ · h)τ for

each h ∈ Z2
2, where τ ·h = h if h ∈ 〈g〉 and τ ·h = g+h otherwise. It is then easily verified

that the subset U := U+ ∪U− of U⊕m
2 ⊕V2 is D4-invariant, and moreover that h ·U± = U±

if h ∈ 〈g〉 and h · U± = U∓ otherwise.

Now consider the given D4-equivariant maps f1, f2 : (Sn−1)2>1 → U⊕m
2 ⊕ V2. Each

of these necessarily maps Sn−1
+ to U+ and Sn−1

− to U−. To obtain the claimed homotopy,

extend theD4-action on (Sn−1)2>1 to (Sn−1)2>1×[0, 1] by lettingD4 act trivially on [0, 1].Now

let X = (Sn−1)2>1 ×{0, 1} and let h : X → U \ {0} be given by h = f1|(Sn−1)2>1
on (Sn−1)2>1 ×{0}

and h = f2|(Sn−1)2>1
on (Sn−1)2>1 × {1}. The product CW structure on (Sn−1)2>1 × [0, 1] is

D4-equivariant, and the action is free when restricted to Z2
2. It follows from elementary

equivariant obstruction theory that there is a Z2
2-equivariant extension H : (Sn−1)2>1 ×

[0, 1] → U \ {0} of f so that H(Sn−1
+ × I) ⊂ U+ and H(Sn−1

− × I) ⊂ U−. To see this, observe

that the boundary of any cell (ei±)± × (0, 1) has dimension at most n − 1 = d + c, while

the connectivity of U± \ {0} is 2m+ d. As c = ⌈3m
2 ⌉ ≤ 2m, we have n− 1 ≤ 2m+ d. Thus,

one may define H by induction on the dimension of cells of (Sn−1)2>1 × I,Z2
2-equivariantly

extending cell-by-cell at any stage: if H is so constructed on the i-skeleton, 0 ≤ i < n−1,

then the composition of H with the attaching map of (ei+1
+ )+ × I gives a map from an

i-sphere to U+, which is therefore nullhomotopic and so extends to this cell. One then

defines H on the remaining (i + 1)-dimensional cells g · ((ei+1
+ )+ × I) for g ∈ Z2

2 \ {0} to

preserve equivariance, and this guarantees that H((ei+1
± )±) ⊂ U±).

The map H : (Sn−1)2>1 × [0, 1] → U \ {0} thus given by obstruction theory is a Z2
2-

equivariant homotopy between f1 and f2. However, the action of τ on (Sn)+ × I and on U+

is trivial while the action of τ on (Sn)− × I and U− is given by g = (1, 1). As H sends Sn+ × I

to U+ and Sn− × I to U−, the homotopy is necessarily D4-equivariant. �

Remark 5.4. In Section 6, it will be important to note that, providedm ≥ 2, Proposition

5.3 holds for n = c + d + 1 and c = ⌈3m
2 ⌉ when the domain sphere Sn−1 is replaced
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20 F. Frick et al.

by Sn. This is because we still have no obstruction in equivariantly extending the map

h : (Sn)2>1×{0, 1} → U\{0} to all of (Sn)2>1×I. Indeed, the dimension of any cell (ei±)±×(0, 1)

is now n = d + c + 1, and this is still no greater than the connectivity of the codomain

when m ≥ 2. The same dimension count shows that one may also let d = −1 in this

case (as well as in Proposition 5.3), or in other words that these results holds when the

module V2 is omitted. This observation will also be needed in Section 6.

5.3 Degree calculations

We now perform the degree calculations outlined at the beginning of this section. As

before, let F : (Sn−1)2 → U⊕m
2 ⊕ V2 be the restriction of our map F : (Sn)2 → U⊕m

2 ⊕ V2,

which we assume to be non-vanishing, and let G : (Sc−1)2 → U⊕m
2 be as in Lemma 5.2.We

consider the maps ρ ◦F, ρ ◦ G̃ : (Sn−1)2 → S(U⊕m
2 ⊕V2), where again ρ : (U⊕m

2 ⊕V2)\ {0} →

S(U⊕m
2 ⊕ V2) denotes the radial projection.

First, we show that

deg(ρ ◦ F) ≡ deg(ρ ◦ G̃) (mod 8). (5.3)

Proof of equation 5.3. By Proposition 5.3, we have that F(Sn−1)2>1
and G̃(Sn−1)2>1

are

D4-equivariantly homotopic, and therefore (ρ ◦ F)(Sn−1)2>1
and (ρ ◦ G̃)(Sn−1)2>1

are D4-

equivariantly homotopic. Thus, equation (5.3) is an immediate consequence of the

following generalization of the equivariant Hopf theorem [17, Corollary 2.4]. �

Theorem 5.5. Let n ≥ 1 and letMn be a compact oriented n-dimensional manifold with

the action of a finite group Ŵ. Let N ⊆ M be a closed Ŵ-invariant subset which contains

the non-free part of M. Then for any two Ŵ-equivariant maps f1, f2 : M
n → Sn that are

equivariantly homotopic on N, we have that deg(f1) ≡ deg(f2) (mod |Ŵ|).

Next, we show that

deg(ρ ◦ G̃) = deg(φ ◦ G), (5.4)

where φ : U⊕m
2 \ {0} → S(U⊕m

2 ) is the radial projection.

Proof of equation 5.4. By the Whitney approximation theorem, G : (Sc−1)2 → U⊕m
2 is

homotopic to a smooth map, and therefore so are φ ◦ G and ρ ◦ G̃. It therefore suffices to

assume that G is smooth. Moreover, deg(ρ ◦ G̃) = deg(ρ ◦ (φ̃ ◦ G)), and therefore it suffices

to assume that the image of G lies in S(U⊕m
2 ). Indeed, letting Gs(y) = (1 − s)G(yc) +
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Transversal Generalizations of Hyperplane Equipartitions 21

(1 − s)(φ ◦ G)(yc) for each yc ∈ (Sc−1)2 and s ∈ [0, 1], then ρ ◦ G̃s gives an explicit smooth

homotopy between ρ ◦ G̃ and ρ ◦ (φ̃ ◦ G).

By the explicit formula for G̃, we have

G̃(y1,y2) = cos(πt1/2) cos(πt2/2)G(yc1,y
c
2) ⊕

(
sin(πt1/2)yd1 , sin(πt2/2)yd2

)
,

where (yc
i
,yd

i
) ∈ Sc−1 × Sd, ti ∈ [0, 1], and yi =

(
cos(πti/2)yc

i
, sin(πti/2)yd

i

)
for i ∈ {1, 2}.

Let u ∈ S(U⊕m
2 ) be a regular value for G : (Sc−1)2 → S(U⊕m

2 ). Thus,G−1(u) is finite,

G is a local diffeomorphsim at each yc ∈ G−1(u), and deg(G) =
∑

yc∈G−1(u) degG(yc) where

degG(yc) = ±1 is the local degree (i.e., the sign of the Jacobian determinant) at yc.

Consider u ⊕ 0 ∈ S(U⊕m
2 ⊕ V2). The formula for G̃ shows that (ρ ◦ G̃)−1(u ⊕ 0) =

G−1(u) ⊕ 0. As G̃ equals G on (Sc−1)2 and is the identity map on (Sd)2, it is again clear

from the formula for G̃ that ρ ◦ G̃ is a local diffeomorphism at each y = (yc, 0) and that

the Jacobian determinants of ρ ◦ G̃ at y and G at yc are the same. Thus, u⊕ 0 is a regular

value for ρ◦G̃ and deg(ρ◦G̃) =
∑

y∈(ρ◦G̃)−1(u⊕0) degρ◦G̃(y) =
∑

yc∈G−1(u) degG(yc) = deg(G) =

deg(φ ◦ G). �

As our last computation, we show that

deg(ρ ◦ F) = 0. (5.5)

Proof of equation 5.5. We have that ρ ◦ F factors as

(Sn−1)2 →֒ (Sn)2
ρ◦F
→ S(U⊕m

2 ⊕ V2).

The induced map (ρ ◦ F)∗ : H2n−2((S
n−1)2;Z) → H2n−2(S(U⊕m

2 ⊕ V2);Z) on homol-

ogy must be the zero map because H2n−2((S
n)2;Z) = 0 by the Künneth formula.

Thus, deg(ρ ◦ F) = 0. �

Putting equation 5.5 together with equations 5.3 and 5.4 completes the proof of

Theorem 5.1:

Proof of Theorem 5.1. If the map F : (Sn)2 → U⊕m
2 ⊕ V2 never vanishes, it follows from

equations (5.3)–(5.5) that deg(φ ◦ G) ≡ 0 (mod 8). This contradicts Lemma 5.2, so any

F : (Sn)2 → U⊕m
2 ⊕ V2 must have a zero and therefore the claimed Radon pair exists. �

6 Proof of the t = 0 Case of Theorem 1.9

We now prove the t = 0 case of Theorem 1.9. As before, we state this as a separate

theorem:
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22 F. Frick et al.

Theorem 6.1. Let m = 2s for some s ≥ 1 and d ≥ 1. Suppose that n ≥ d + 3 · 2t−1 + 1.

If F be a family of subsets of [n + 1] with χ(KG4(F)) ≤ m, then for any continuous map

f : �n → Rd, there are twoRadon pairs (σ+
1 , σ−

1 ), (σ+
2 , σ−

2 ) for f such that each intersection

of the form σ±
1 ∩ σ±

2 does not contain any set from F .

Let n = d + c + 1 where c = 3 · 2s−1 with s ≥ 1. As in Section 5, we shall use

contradiction to prove that any D4-equivariant map F : (Sn)2 → U⊕m
2 ⊕ V2 must have a

zero, now using a smooth homotopy argument to extend a non-equivariant result of [5].

6.1 Conversion to the join scheme

In order to use computations of [5], we first convert from the product scheme used so far

to the “join scheme.” For any n ≥ 1, the join

(Sn)∗2 = {z = (1 − μ)y1 ⊕ μy2 | y1,y2 ∈ Sn and 0 ≤ μ ≤ 1}

of Sn consists of all formal convex sums of any two elements from Sn. Topologically,

(Sn)∗2 is a sphere of dimension 2n+ 1, and the product (Sn)2 is naturally identified with

the subset of (Sn)∗2 consisting of all formal sums for which μ = 1/2. As for the product,

there is a canonical D4-action on (Sn)∗2, with the non-free part ((Sn)∗2)>1 consisting of

those z such that either (i)μ = 0 orμ = 1, or else (ii)μ = 1/2 and simultaneously y1 = ±y2.

Let W2 be the subset of R2 given by W2 = {(r,−r) | r ∈ R}, which we view as

a D4-module by letting Z2
2 act trivially and letting S2 act by swapping coordinates. For

arbitrary n,d ≥ 1 and any continuous map f : (Sn)2 → Rd, one may consider the “join

extension”

J0(f ) : (Sn)∗2 → Rd ⊕W2

given by

J0(f )(z) = μ(1 − μ)f (y) ⊕ (μ − 1/2, 1/2 − μ). (6.1)

Note that the restriction of J0(f ) to (Sn)2 is precisely 1
4 f . Observe that J0(f )(z) = 0 if and

only if μ = 1/2 and f (y) = 0, and in particular J0(f ) does not vanish on the non-free part

(Sn)∗2>1 provided f : (Sn)2 → Rd does not vanish on (Sn)2>1. Moreover, if Rd is realized as a

D4-module and f : (Sn)2 → Rd is D4-equivariant, it is again immediate that J0(f ) is also

D4-equivariant.

In what follows smoothness will be important, so let us note here that (Sn)∗2 =

S2n+1 has the standard smooth structure if the join is realized by connecting the
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Transversal Generalizations of Hyperplane Equipartitions 23

two copies of Sn via great circles. Explicitly, each z ∈ (Sn)∗2 is of the form z =

(cos(πμ/2)y1, sin(πμ/2)y2) for (y1,y2) ∈ Sn and μ ∈ [0, 1]. The non-free part is the same

as before. As in Section 5, we view each Sn = Sc ∗ Sd as the join, and now realize this join

explicitly via arcs on great circles connecting the two sphere factors. Corresponding to

this realization of (Sn)∗2, we will modify the definition of the join map and set

J(f )(z) = cos(πμ/2) sin(πμ/2)f (y) ⊕
(
cos2(πμ/2) − 1/2, sin2(πμ/2) − 1/2

)
(6.2)

for each z = (cos(πμ/2)y1, sin(πμ/2)y2). As before, J(f ) is D4-equivariant if f is. Again

J(f )(z) = 0 if and only if μ = 1/2 and f (y) = 0 and so the zero sets of J0(f ) and

J(f ) coincide. In the case that f : (Sn)2 → Rd is smooth, equation 6.2 ensures that

J(f ) : (Sn)∗2 → Rd ⊕ W2 is smooth. Moreover, it follows easily from this formula that

0 is a regular for J(f ) precisely when 0 is a regular value for f . This fact will be needed

crucially in what follows.

As in Section 5, we will compare the join J(F) of any D4-equivariant map

F : (Sn)2 → U⊕m
2 ⊕V2 to the join J(G̃) of an extension G̃ : (Sn)2 → U⊕m

2 ⊕V2 of a certain D4-

equivariant map G : (Sc)2 → U⊕m
2 , which we describe in Section 6.2. By Proposition 5.3,

there is a non-vanishing D4-equivariant homotopy between the restriction of F and G̃

to the non-free part (Sn)2>1. The following guarantees an equivariant homotopy between

J(F) and J(G̃), which is non-vanishing on the non-free part.

Proposition 6.2. Let m ≥ 2 and suppose that n = c + d+ 1, where c = ⌈3m
2 ⌉ and d ≥ 1.

(a) If f1, f2 : (Sn)2>1 → (U⊕m
2 ⊕ V2) \ {0} are D4-equivariant maps, then

J(f1), J(f2) : (Sn)∗2>1 → (U⊕m
2 ⊕W2 ⊕ V2) \ {0} are D4-equivariantly homotopic.

(b) If f1, f2 : (Sn)2 → U⊕m
2 ⊕V2 areD4-equivariantmaps,which are non-vanishing

on (Sn)2>1, then there exists aD4-equivariant homotopyH : (Sn)∗2×I → U⊕m
2 ⊕

V2 from J(f1) and J(f2), which is non-vanishing on (Sn)∗2>1 × I.

Remark 6.3. As with Proposition 5.3, it will be important to note that Proposition 6.2

also holds when d = −1, that is, with the module V2 omitted.

Proof of Proposition 6.2. For the first claim, Remark 5.4 above shows that there is a D4-

equivariant homotopy H : (Sn)2>1 × I → Rd between f1 and f2. Defining J(H) : (Sn)∗2>1 × I →

(U⊕m
2 ⊕ V2 ⊕W2) \ {0} by

J(H)(z, t) = cos(πμ/2) sin(πμ/2)H(y, t) ⊕
(
cos2(πμ/2) − 1/2, sin2(πμ/2) − 1/2

)

gives the desired D4-equivariant homotopy between J(f1) and J(f2).
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24 F. Frick et al.

For the second claim,we use elementary equivariant obstruction theory to extend

J(H) to an equivariant homotopy Ĵ(H) : (Sn)∗2 × I → U⊕m
2 ⊕ V2. Namely, given the D4-

equivariant structure on (Sn)∗2, one has a corresponding D4-equivariant structure on

(Sn)∗2×I by lettingD4 act trivially on I.Our homotopy is already defined on (Sn)2×{0, 1} as

well as the non-free part of (Sn)2×{0, 1}, which are both D4-invariant subcomplexes. The

desired equivariant extension now exists simply because the codomain U⊕m
2 ⊕ V2 ⊕ W2

is contractible. �

Let us outline the argument to follow. As discussed in Sections 6.2 and 6.3,

the map G : (Sc)2 → U⊕m
2 will be chosen so that J(G̃) is smooth, transverse to zero,

and has a zero set J(G̃)−1(0) consisting of an odd number of full D4-orbits. Using

a combination of the Whitney approximation and Thom transversality theorems, we

will replace (Section 6.4) the continuous equivariant homotopy between J(G̃) and J(F)

guaranteed by Proposition 6.2 with a smooth equivariant homotopy between J(G̃) and

some D4-equivariant non-vanishing smooth function. This homotopy will be transverse

to 0 and non-vanishing on the non-free part of (Sn)∗2 × I, from which it will follow

that J(G̃) has an even number of full D4-orbits. This contradiction establishes that any

equivariant F must vanish and so completes the proof of Theorem 6.1.

6.2 Previous calculations

The existence of the map G will be based on the Borsuk–Ulam-type results of [5] arising

from them = 2s case of the Grünbaum–Hadwiger–Ramos problem. Crucial to these was

the existence of a certain D4-equivariant CW–structure on (Sn)∗2 for any n ≥ 1.While we

shall not need the details of its construction, we note that it is obtained by intersecting

the unit sphere of (Rn+1)2 with a cone stratification on (Rn+1)2 originally due to Fox–

Neuwirth [11] and Björner–Ziegler [4]. We refer the interested reader to [5, Section 3] for

further details. We summarize the key properties are as follows (see [5, Theorem 3.11]).

Observe that dim(Sn)∗2>1 = n, so that none of the top (open) cells of (Sn)∗2 lie in (Sn)∗2>1.

Theorem 6.4. There is a D4-equivariant CW structure on (Sn)∗2 such that

• (Sn)∗2>1 is a D4-equivariant subcomplex and the action on the cells of (Sn)∗2 \

(Sn)∗2>1 is free, and

• the top-dimensional cells of (Sn)∗2 consist of a full D4-orbit.

Letm = 2s with s ≥ 1, and let c = 3m/2. By evaluating measures concentrated on

a non-standard moment curve, it was shown in [5, Section 4.3] that there is a continuous
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Transversal Generalizations of Hyperplane Equipartitions 25

D4-equivariant mapG0 : (Sc)2 → U⊕m
2 such that J0(G0) : (Sc)∗2 → U⊕m

2 ⊕W2 the following:

• J0(G0) does not vanish on the subcomplex ((Sc)∗2)(2c) of cells of codimen-

sion one.

• J0(G0) has an odd number of zeros in a generating top-dimensional cell of

(Sn)∗2, and therefore J0(G)−1(0) consists of an odd number of full D4-orbits.

In particular, note that J0(G0) does not vanish on the non-free part (Sn)∗2>1, and

therefore G0 does not vanish on (Sc)2>1. As the zero sets of J0(G0) and J(G0) coincide,

we conclude that the same facts hold for J(G0). By the explicit obstruction theory

calculations given in [5], one may state the following:

Proposition 6.5. Let m = 2s and c = 3m/2, where s ≥ 1. Suppose that G : (Sc)2 → U⊕m
2

is a continuous D4-equivariant map such that J(G) : (Sc)∗2 → U⊕m
2 ⊕W2 is non-vanishing

on [(Sc)∗2](2c), J(G)−1(0) is finite, and J(G) is a local homeomorphism at each zero of J(G).

Then |J(G)−1(0)| is an odd multiple of 8.

Proof of Proposition 6.5. For G : (Sc)2 → U⊕m
2 as in the statement of Proposition 6.5,

it follows that G is non-vanishing on ((Sc)∗2)(2c−1) and in particular is non-vanishing

on (Sc)2>1. By Remark 6.3 following Proposition 6.2, the restrictions of J(G) and J(G0) to

(Sc)∗2>1 are necessarily D4-equivariantly homotopic via a non-vanishing homotopy. From

here, we appeal to the equivariant obstruction theory computations given in [5, Section

4.3.2], which we now summarize.

First, as J(G) is non-vanishing on [(Sc)∗2](2c), composition with the (D4-

equivariant) radial projection ρ : (U⊕m
2 ⊕W2)\ {0} → S(U⊕m

2 ⊕W2) gives a D4-equivariant

map

α = ρ ◦ J(G) : [(Sc)∗2](2c) → S(U⊕m
2 ⊕W2).

Consider the obstruction co-cycle

o(α) ∈ C2c+1
D4

(
[(Sc)∗2, (Sc)∗2>1;π2c(S(U⊕m

2 ⊕ V2 ⊕W2))

)
.

For each top-dimensional cell e of (Sc)∗2,

o(α)(e) ∈ π2c(S(U⊕m
2 ⊕W2))

∼= Z

is the homotopy class of the composition α◦ϕ : S2c → S(U⊕m
2 ⊕W2) of α with the attaching

map ϕ : S2c → [(Sc)∗2](2c), and so 0(e) can therefore be identified with the mapping degree
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26 F. Frick et al.

deg(α◦ϕ) once a generator is chosen. As α is non-vanishing on [(Sc)∗2c](2c), it is a standard

fact of mapping degree theory (see, e.g., [25, Proposition 4.5]) that deg(α ◦ϕ) is the sum of

the zeros of J(G) which lay in the (open) cell e,where each such zero is counted with signs

andmultiplicities. As J(G) is a local homeomorphism at each zero of J(G) by assumption,

each multiplicity is either +1 or −1.

Now consider the obstruction class

[o(α)] ∈ H
2c+1
D4

(
(Sc)∗2, (Sc)∗2>1);π2c(S(U⊕m

2 ⊕W2))

)
.

Letting α0 = ρ ◦ J(G0) |[(Sc)∗2]2c , it follows from the d = −1 case of Proposition 6.2 that α

and α0 are D4-equivariantly homotopic, and therefore that [o(α)] = [o(α0)].

Let e denote a D4-generator of C
2c+1
D4

(
(Sc)∗2, (Sc)∗2>1);π2c(S(U⊕m

2 ⊕W2))
)
, and let ζ

denote a generator of π2c(S(U⊕m
2 ⊕ W2))

∼= Z. Thus, o(α) = a · ζ , where a = deg(ρ ◦ α0).

The explicit computations of [5, Section 4.3.2] show that [o(α)] = 0 if and only if a is

even. On the other hand, the discussion above shows that number of zeros of J(G0) in

the open cell e is odd, so deg(ρ ◦ α0) is odd and [o(α)] �= 0. This implies that deg(ρ ◦ α)

is odd as well, and as this degree is the sum
∑

z∈J(G)−1(0)∩e ±1 ranging over the zeros

of J(G), we conclude that |J(G)−1(0) ∩ e| is also odd. Finally, the zeros of J(G) all lie

in top-dimensional cells by assumption, and by Theorem 6.4(b) the top-dimensional

cells are a free D4-orbit of the generating cell e. By equivariance, each top-dimensional

cell has the same number of zeros, and therefore |J(G)−1(0)| is an odd multiple of 8,

as claimed. �

6.3 Construction of the maps G and G̃

Starting with the D4-equivariant map G0 : (Sc)2 → U⊕m
2 above, it will follow from

an application of Thom transversality that there exists smooth D4-equivariant map

G : (Sc)2 → U⊕m
2 so that J(G) : (Sc)2 → U⊕m

2 ⊕ W2 is transverse to zero and is non-

vanishing on [(Sc)∗2](2c). It follows automatically that J(G)−1(0) is a 0-dimensional

manifold, hence is finite, and by the transversality condition that J(G) is a local homeo-

morphism at each zero of J(G). By Proposition 6.5, we therefore have that |J(G)−1(0)| is

an odd multiple of 8.

Proposition 6.6. Letm = 2s and c = 3m/2, where s ≥ 1. Then there exists a smooth D4-

equivariant map G : (Sc)2 → U⊕m
2 , which is transverse to zero such that J(G) : (Sc)∗2 →

U⊕m
2 ⊕ W2 is non-vanishing on [(Sc)∗2](2c) and J(G) is transverse to zero. In particular,

|G−1(0)| is an odd multiple of 8.
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Transversal Generalizations of Hyperplane Equipartitions 27

Proof of Proposition 6.6. Let G0 : (Sc)2 → U⊕m
2 be as above. By (equivariant) Whitney

approximation [7, Theorem 4.2, Chapter 6], for any ε > 0 there exists a smooth D4-

equivariant map Gε
0, which is a uniform ε-approximation of G0. It follows immediately

from the explicit formula for the join map that J(Gε
0) is a uniform ε-approximation of

J(G). As each Gε
0 is smooth, the explicit formula for a join map shows that each J(Gε

0)

is smooth as well. By compactness, it follows that J(Gε
0) is non-vanishing on [(Sc)∗2](2c)

for some ε > 0. Let G1 be such a map. In particular, G1 is non-vanishing on the (2c − 1)

skeleton of (Sc)2.

By an equivariant version [18, Proposition 2.2] of relative Thom transversality

(see, e.g., [23, Theorem 1.35]), for any ε > 0 there is a D4-equivariant smooth map Gε
1

which is a uniform ε-approximation of G1, is transverse to zero, and is equal to G1 on

[(Sc)2](2c−1). This is because the D4-action on X := (Sc)2 \ [((Sc)2)(2c−1)] is free and G1 is

automatically transverse to 0 on [(Sc)2](2c−1) because G1 is non-vanishing there, so that

G1 can bemodifiedwithout changing its value on the (2c−1)-skeleton to obtain a uniform

ε-approximation which is transverse to 0. By the formula for join maps above, it follows

that each J(Gε
1) is transverse to zero as well (and is a uniform ε-approximation of J(G1)).

Finally, by compactness, there exists some ε > 0 such that J(Gε
1) is non-vanishing on all

of [(Sc)∗2](2c). Letting G = Gε
1 for some such ε completes the proof. �

Now let d ≥ 1 be arbitrary and let n = d+c+1. As in Section 5,we let Sn = Sc∗Sd.

For each y = (y1,y2) ∈ (Sn)2 we have yi = (cos(πti/2)yc
i
, sin(πti/2)yd

i
) with yc

i
∈ Sc,

yd
i

∈ Sd, and ti ∈ [0, 1]. For G : (Sc)2 → U⊕m
2 as given by Proposition 6.6, we define a

smooth D4–equivariant extension

G̃ : (Sn)2 → U⊕m
2 ⊕ V2

by

G̃(y) = cos(πt1/2) cos(πt2/2) G(yc1,y
c
2) ⊕ (sin(πt1/2)yd1 , sin(πt2/2)yd2 ). (6.3)

As G is transverse to zero, it follows that G̃ is transverse to zero as well. Moreover,

the zeros of G and G̃ coincide, so G̃ is non-vanishing on [(Sn)2](2n−1). Considering

J(G̃) : (Sn)∗2 → U⊕m
2 ⊕ V2 ⊕ W2, we likewise conclude that it is transverse to zero and

non-vanishing on [(Sn)∗2](2n). Again, the zeros of J(G) and J(G̃) coincide, so J(G̃)−1(0)

consists of an odd number of free D4-orbits.

6.4 An equivariant homotopy argument

Recall that we are assuming that F : (Sn)2 → U⊕m
2 ⊕ V2 is never vanishing, and thus and

so is its join extension. In order to make our smooth equivariant homotopy argument,
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we will need to show the existence of a transverse homotopy between J(G̃) and a non-

vanishing function. As with Proposition 6.5, this follows from an application of Whitney

approximation and Thom transversality.

Proposition 6.7. If F : (Sn)2 → U⊕m
2 ⊕V2 is never vanishing, then there exists a smooth

homotopy H : (Sn)∗2 × I → U⊕m
2 ⊕ V2 ⊕W2 with the following properties:

• H is transverse to zero,

• H coincides with J(G̃) on (Sn)∗2 × {0}, and

• H is non-vanishing on (Sn)∗2>1 × I as well as on (Sn)∗2 × {1}.

Proof of Proposition 6.7. Let W = U⊕m
2 ⊕ V2 ⊕ W2. By Proposition 6.2, there exists a

continuous D4-equivariant homotopy H ′ : (Sn)∗2 × I → W from J(G̃) to J(F) which is non-

vanishing on the non-free part (Sn)∗2>1 × I. As F is assumed to be never vanishing, so is

J(F). We will now replace this H ′ by a smooth homotopy, which is transverse to zero

and coincides with J(G̃) on (Sn)∗2 × {0} and is non-vanishing on (Sn)∗2>1 × I as well as on

(Sn)∗2 × {1}.

First, for any ε > 0, relative equivariant Whitney approximation [7, Theorem

4.2] guarantees a smooth D4-equivariant map H ′
ε : (Sn)∗2 × I → W, which uniformly

approximatesH ′ by ε.Moreover, eachHε may be taken to coincide with J(G̃) on (Sn)∗2×{0}

because J(G̃) is D4–equivariant on the closed subset (Sn)∗2 ×{0}. Finally, by compactness

there exists some ε > 0 such that Hε is non-vanishing on (Sn)∗2>1 × I as well as on

(Sn)∗2 × {1}. Let H ′′ = H ′
ε for such ε. In particular, H ′′ coincides with J(G̃) on the slice

(Sn)∗2 × {0}.

We now replaceH ′′ with a smooth equivariant homotopyH which again coincides

with H on (Sn)∗2 × {0}, is non-zero on both (Sn)∗2>1 × I and (Sn)∗2 × {1}, and is in addition

transverse to zero. Namely, as the D4-action on (Sn)∗2 × I is free away from (Sn)∗2>1 × I

and H ′′ is already transverse to zero on (Sn)∗2 × {0, 1} and (Sn)∗2>1 × I, by equivariant

Thom transversality [18, Proposition 2.2] one can consider any D4-equivariant uniform

H of H ′′ which is transverse to zero and so that H coincides with H ′ on (Sn)∗2 × {0, 1}

and (Sn)∗2>1 × I. �

Using the D4-equivariant transverse homotopy H : (Sn)∗2 × I → U⊕m
2 ⊕W2 ⊕V2 of

Proposition 6.7, we may now prove Theorem 6.1 via a standard zero counting argument

as in [24]. See also [16, 20].

Proof of Theorem 6.1. Let W = U⊕m
2 ⊕ V2 ⊕ W2. Assuming that F : (Sn)2 → U⊕m

2 ⊕ V2

is non-vanishing, let H : (Sn)∗2 × I → W be as guaranteed by Proposition 6.7. As H is
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Transversal Generalizations of Hyperplane Equipartitions 29

transverse to 0, as is H |(Sn)∗2×{0,1}, it follows that H−1(0) is a closed one-dimensional

manifold with boundary ∂H−1(0) = H−1(0) ∩ ((Sn)∗2 × {0, 1}). As H is non-vanishing on

both (Sn)∗2 ×{1} and H |(Sn)∗2×{0}= J(G̃), we conclude that ∂H−1(0) = J(G̃)−1(0). Moreover,

as H is non-vanishing on (Sn)∗2>1 × I,H−1(0) lies in the free part of (Sn)∗2 × I. On the other

hand,H−1(0) is diffeomorphic to a union of segments and circles. It follows thatD4 freely

permutes each of the segment components of H−1(0): if some non-trivial g ∈ D4 set-wise

fixed a segment, then a point of the segment must be fixed by g too, but points outside

(Sn)∗2>1 × I have trivial stabilizer. Thus, the number of segment components of H−1(0) is

a multiple of |D4|, and therefore ∂H−1(0) = J(G̃)−1(0) consists of an even number of full

D4-orbits. This contradicts Proposition 6.6, and therefore F must vanish. �

7 A Generalization of �(1, 3) = 3 via Topological Reduction

For any m ≥ 1, it is an easy consequence of the Ham Sandwich theorem that an upper

bound �(2m,k) ≤ c implies the upper bound �(m,k + 1) ≤ c (see, e.g. [14, 27]). In

particular, the exact value �(1, 3) = 3 of Theorem 1.4 follows from �(2, 2) = 3. We now

derive a similar reduction for multiple Radon pairs, which follows from an application

of Sarkaria’s theorem. Theorem 1.7 is then an immediate corollary.

Proposition 7.1. Let c ≥ 1, d ≥ 1, k ≥ 1, and m ≥ 1 be integers. Suppose that the

following holds for any n ≥ d+ c + 2:

For any continuous map f : �n−1 → Rd and any family F of subsets of [n]

with χ(KG2k(F)) ≤ 2m, there are kminimal Radon pairs (σ+
1 , σ−

1 ), . . . , (σ+
k
, σ−

k
)

for f such that none of the 2k intersections of the form σ±
1 ∩ · · · ∩σ±

k
contains

a set from F .

Then the following holds for any n ≥ d+ c + 2:

For any continuous map f : �n−1 → Rd and any family F of subsets

of [n] with χ(KG2k+1
(F)) ≤ m, there are k + 1 minimal Radon pairs

(σ+
1 , σ−

1 ), . . . , (σ+
k+1

, σ−
k+1

) for f such that none of the 2k+1 intersections of

the form σ±
1 ∩ · · · ∩ σ±

k+1
contains a set from F .

Proof of Proposition 7.1. We first note that the assumption of Proposition 7.1 implies

that c ≥ m. This is because we are assuming that for any n ≥ d + c + 2 we have in

particular that for any linear map f : �n−1 → Rd and any family F of subsets of [n] with

χ(KG2k(F)) ≤ 2m, there are k minimal Radon pairs (σ+
1 , σ−

1 ), . . . , (σ+
k
, σ−

k
) for f such that

none of the 2k intersections of the form σ±
1 ∩ · · · ∩ σ±

k
contains a set from F . Thus, part
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30 F. Frick et al.

(1) of Theorem 3.3 is satisfied (with 2m replacing m), and so by part (3) of Theorem 3.3

we have c ≥ �(2m,k). On the other hand, �(2m,k) ≥ ⌈2m(2k−1)
k

⌉ by the lower bound of

Ramos [27], so in particular c ≥ m.

Now let n ≥ d + c + 2, let f : �n−1 → Rd be continuous, and suppose that F

is a family of subsets of [n] with χ(KG2k+1
(F)) ≤ m, say F = F1 ∪ · · · ∪ Fm where

χ(KG2k+1
(Fi)) = 1 for all i ∈ [m]. We show there are there are k + 1 minimal Radon

pairs (σ+
1 , σ−

1 ), . . . , (σ+
k+1

, σ−
k+1

) for f such that none of the 2k+1 intersections of the form

σ±
1 ∩ · · · ∩ σ±

k+1
contains a set from F .

In order to apply Theorem 1.8, for each i ∈ [m] we define Gi to be the family of

subsets of [n] consisting of all 2k-fold unions of pairwise disjoint members of Fi, that is,

Gi =
{
∪2k

j=1τj | τj ∈ Fi for all j and τj1 ∩ τj2 = ∅ for all j1 �= j2

}
.

As χ(KG2k+1
(Fi)) = 1, each non-empty Gi is an intersecting family. Letting G = ∪m

i=1
Gi, we

therefore have that χ(KG(G)) ≤ m and so χ(KG(G)) ≤ c. As in the proof of Proposition

2.2, let � denote the simplicial complex on [n] whose minimal non-faces are the sets of

G. Since the set family 2[n] \� is obtained from G by including any supersets of elements

of G, we have χ(KG(2[n] \ �) = χ(KG(G)) ≤ c. Applying Theorem 1.8 to the restriction

f ||�| : |�| → Rd, we conclude that there is a minimal Radon pair {σ+
1 , σ−

1 } for f such that

neither σ+
1 nor σ−

1 contains any set from G. Thus, the union of any 2k pairwise disjoint

elements from any Fi is not contained in either σ+
1 or σ−

1 .

For each i ∈ [m], we now define

F
+
i

= {τ ∈ Fi | τ ⊂ σ+
1 } and F

−
i

= {τ ∈ Fi | τ ⊂ σ−
1 }.

If F
+
i

�= ∅, then necessarily χ(KG2k(F+
i

)) = 1 since otherwise σ+
1 would contain the

union of some collection of 2k pairwise disjoint elements of Fi. Likewise, we have

χ(KG2k(F−
i

)) ≤ 1 for all i ∈ [m] as well. Letting

F
′ = ∪m

i=1F
+
i

∪ ∪m
i=1F

−
i
,

we therefore have that χ(KG2k(F ′)) ≤ 2m. By the assumption of Proposition 7.1, there

must be k minimal Radon pairs (σ+
2 , σ−

2 ), . . . , (σ+
k+1

, σ−
k+1

) for f such that none of the

intersections of the form σ±
2 ∩ · · · ∩ σ±

k+1
contains any set of F ′.

To conclude the proof, suppose that τ ∈ Fi for some i ∈ [m] and suppose for

contradiction that τ were contained in some intersection of the form σ±
1 ∩σ±

2 ∩ · · · ∩σ±
k+1

.

Since τ is contained in σ±
2 ∩ · · · ∩ σ±

k+1
, we conclude that τ is not in either F+

i
or F−

i
, and

therefore that τ is not contained in either σ+
1 or σ−

1 . But τ ⊂ σ±
1 ∩ σ±

2 ∩ · · · ∩ σ±
k+1

, so we

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
d
2
1
6
/7

2
8
1
1
5
7
 b

y
 C

a
rn

e
g
ie

 M
e
llo

n
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

4
 N

o
v
e
m

b
e
r 2

0
2
3



Transversal Generalizations of Hyperplane Equipartitions 31

have a contradiction. Thus, none of the 2k+1 intersections of the form σ±
1 ∩σ±

2 ∩ · · · ∩σ±
k+1

contains any set from F and the proof is complete. �

We conclude with the proof of Theorem 1.7.

Proof of Theorem 1.7. Appealing to the m = 2 case of Theorem 1.9, Proposition 7.1

shows that for any continuous map f : �d+4 → Rd and any family F of subsets of [d+ 5]

with χ(KG8(F)) = 1, there are three minimal Radon pairs (σ+
1 , σ−

1 ), (σ+
2 , σ−

2 ), and (σ+
3 , σ−

3 )

for f such that none of the eight intersections of the form σ±
1 ∩ σ±

2 ∩ σ±
3 contains a set

from F . Theorem 1.7 now follows from Theorem 3.3. �
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[6] Blagojević, P., F. Frick, A. Hasse, and G. Ziegler. “Topology of the Grünbaum–Hadwiger–Ramos

hyperplane mass partition problem.” Trans. Amer. Math. Soc. 370 (2018): 6795–824. https://

doi.org/10.1090/tran/7528.

[7] Bredon,G. Introduction to Compact Transformation Groups.Pure and AppliedMathematics,

Vol. 46. New York-London: Academic Press, 1972.

[8] tom Dieck, T. Transformation Groups. Studies in Mathematics, Vol. 8. Berlin: Walter de

Gruyter, 1987.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
d
2
1
6
/7

2
8
1
1
5
7
 b

y
 C

a
rn

e
g
ie

 M
e
llo

n
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 1

4
 N

o
v
e
m

b
e
r 2

0
2
3



32 F. Frick et al.

[9] Dolnikov, V. L. “A generalization of the ham sandwich theorem.”Math. Notes 52 (1992): 771–9.

https://doi.org/10.1007/BF01236771.

[10] Fadell, E. and S. Husseini. “An ideal-valued cohomological index theory with applications to

Borsuk–Ulam and Bourgin–Yang theorems.” Ergodic Theory Dynam. Syst. 8∗ (1998): 73–85.

[11] Fox, R. and L. Neuwirth. “The braid groups.”Math. Scandinavica 10 (1962): 119–26. https://

doi.org/10.7146/math.scand.a-10518.

[12] Frick, F. “Chromatic numbers of stable Kneser hypergraphs via topological Tverberg-type

theorems.” Int. Math. Res. Not. IMRN 2020 (2020): 4037–61. https://doi.org/10.1093/imrn/

rny135.

[13] Grünbaum, B. “Partitions of mass-distributions and convex bodies by hyperplanes.” Pacific

J. Math. 10 (1960): 1257–61. https://doi.org/10.2140/pjm.1960.10.1257.

[14] Hadwiger, H. “Simultane vierteilung zweier körper.” Arch. Math. (Basel) 17 (1966): 274–8.

https://doi.org/10.1007/BF01899586.

[15] Hatcher, A. Algebraic Topology. Cambridge: Cambridge Univeristy Press, 2000.

[16] Hubard, A. and R. Karasev. “Bisecting measures with hyperplane arrangements.”Math. Proc.

Camb. Phil. Soc. 169 (2020): 639–47. https://doi.org/10.1017/S0305004119000380.

[17] Kushkuley, A. and Z. Balanov. Geometric Methods in Degree Theory for Equivariant Maps,

LectureNotes inMath.,Vol. 1632.Berlin: Springer, 1996.https://doi.org/10.1007/BFb0092822.

[18] Lee, C. and A.Wasserman. “On the groups JO(G).”Mem. Am.Math. Soc. 2, no. 1 (1975). https://

doi.org/10.1090/memo/0159 No. 159.
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