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The classical Ham Sandwich theorem states that any d point sets in R? can be simul-
taneously bisected by a single affine hyperplane. A generalization of Dolnikov asserts
that any d families of pairwise intersecting compact, convex sets in R¢ admit a common
hyperplane transversal. We extend Dolnikov’'s theorem by showing that families of
compact convex sets satisfying more general non-disjointness conditions admit common
transversals by multiple hyperplanes. In particular, these generalize all known opti-
mal results to the long-standing Grinbaum-Hadwiger-Ramos measure equipartition
problem in the case of two hyperplanes. Our proof proceeds by establishing topological
Radon-type intersection theorems and then applying Gale duality in the linear setting.
For a single hyperplane, this gives a new proof of Dolnikov's original result via Sarkaria’s

non-embedding criterion for simplicial complexes.

1 Introduction

The starting point for our investigation is the classical Ham Sandwich theorem con-
jectured by Steinhaus and proved by Banach (see [3]), a result which is at the origin of

topological methods in discrete geometry:
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2 F. Frick et al.

Theorem 1.1. Let X,,...,X,; be finite subsets of R4, Then there exists an affine hyper-
plane H such that both of the corresponding open halfspaces Ht and H~ contain no more
than half the points of each X;.

The hyperplane H given by Theorem 1.1 simultaneously bisects each set X;. This
result is often stated for finite Borel measures instead of point sets, which follows from
the formulation above by approximation. Conversely, Theorem 1.1 can be derived from
the version for Borel measures via a standard compactness argument.

We recall two generalizations of the Ham Sandwich theorem. First, Dolnikov
gave a combinatorial criterion for not necessarily balanced hyperplane partitions of
point sets. This recovers the Ham Sandwich theorem in the balanced case. Second,
generalizations for equipartitions by multiple hyperplanes have been proven. In the same
way that Dolnikov's result extends the classical Ham Sandwich theorem, we generalize

equipartition results by multiple hyperplanes to the not necessarily balanced setting.

1.1 Two generalizations of the Ham Sandwich theorem

Dolnikov [9] generalized Theorem 1.1 to hyperplane piercings of families of compact
convex sets. Recall that a set family F is said to be intersecting if any two members
of the family have non-trivial intersection. While we state Dolnikov’'s theorem below
for families of polytopes (i.e., convex hulls of finite point sets in R%), a standard

approximation argument ensures the result for arbitrary compact convex sets.

Theorem 1.2. Let Fi,...,F, be finite families of polytopes in R¢, where each family is
intersecting. Then there exists an affine hyperplane H that intersects each polytope from
each 7.

This generalizes Theorem 1.1: Given finite sets X;,...,X; C R4, for each X;
consider the corresponding intersecting family F;, = {convA |ACX;, |Al > %} By
Theorem 1.2 there is an affine hyperplane H that intersects all sets from each F;. This
hyperplane must bisect each X;; otherwise, there is some i such that one of the open
halfspaces H* contains more than half the elements of X;, say |[H" N X;| > 1|X;|. Then
conv(Ht NX;) € F, is disjoint from H, contradicting that H intersects all polytopes in
every F;. Theorem 1.2 allows for the (unbalanced) case that F; consists of polytopes,
where the inclusion-minimal polytopes do not all have the same number of vertices.

Another generalization of the Ham Sandwich theorem concerns equipartitions

by more than one hyperplane. Given finite sets X;,...,X,, ¢ R, we say that k (not
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Transversal Generalizations of Hyperplane Equipartitions 3

necessarily distinct) affine hyperplanes H;,...,H; C R? form an equipartition if each
of the (not necessarily distinct) 2¥ open orthants Hf n---N HkjE contains at most
% of the points of each X;. The smallest dimension d such that any m finite sets
X,...X, C R? admit an equipartition by k affine hyperplanes is denoted by A(m, k).
Thus, Theorem 1.1 states that A(m,1) < m, and this upper bound is easily seen to be
tight. As with Theorem 1.1, the problem of determining A(m, k) can be stated for more
finite Borel measures more generally, and again approximation arguments show that the
two problems are equivalent.

For multiple hyperplanes, Avis [1] and Ramos [27] observed the general lower
bound A(m, k) > (sz_ImW by placing the sets Xj,...,X,, along the moment curve. This
lower bound is conjectured to be optimal for all m and k. The current best upper bound

for general k is due to Mani-Levitska, Vrecica, and Zivaljevié [19]:
Theorem 1.3. Let m = 2P + g, where p > 0 and 0 < g < 2P. Then A(m, k) < 2k+p—1 4 q.

While recovering Theorem 1.1 for arbitrary m, the upper bound of Theorem 1.3
coincides with the lower bound above only when kK = 2 and m + 1 is a power of two.
Additional matching upper bounds have been established for k = 2 when m or m — 1 is
a power of two, for k = 3 when m € {1, 2,4} [5], and for no values of m when k > 4; see

[6] for a survey of known results. We record the current situation as follows:

Theorem 1.4.

A(25—1,2)=3-25"1 —1 for all integers s > 1
A(2541,2) =3-25"1 4+ 2 for all integers s > 2
A(25,2) = 3- 257! for all integers s > 1
A(1,3)=3

(v) A@2,3)=5

(vi) A(4,3)=10

1.2 Statement of main results

For a finite family F of non-empty sets and an integer r > 2, denote by KG"(F) the
r-uniform Kneser hypergraph of F, that is, the hypergraph with vertex set F and
a hyperedge {A,,...,A,} for every collection of pairwise disjoint 4;,...,4, € F.In
particular, KG2(F) is the Kneser graph KG(F) of F. The chromatic number x (KG"(F)) of

this hypergraph is the smallest number of colors required to color the vertices so that no
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4 T Frick et al.

hyperedge is monochromatic. As usual, we denote this by x (XG(F)) when r = 2. Note that
x(KG"(F)) < m means precisely that there is a partition ¥ = F; U---UF,, such thatnor
sets from any F; are pairwise disjoint. We say that a collection of k hyperplanes pierces
a given family F of non-empty sets of R? if the union of these hyperplanes intersects

each set from F. We may now state our main results.

Theorem 1.5. Let m = 2P 4+ g, wherep > 0and 0 < g < 2P, and letd = 2k+p-1 4 q If F
is a finite family of polytopes in R¢ such that X(Ksz (F)) < m, then there exist k affine
hyperplanes in R?, which pierce F.

In the same way that Dolnikov’s theorem implies the Ham Sandwich theorem,
Theorem 1.5 generalizes Theorem 1.3; see Theorem 3.3 for the proof of this implication.

Note that the k = 1 case of Theorem 1.5 is Dolnikov’s theorem.

Theorem 1.6. Let m = 2%+ t, where s > 1 is an integerand t € {—1,0,1}. Letd = (%m}.
If F is a finite family of polytopes in R? such that x (KG*(F)) < m, then there exist two
affine hyperplanes in R%, which pierce F.

Theorem 1.6 generalizes Theorem 1.4, parts (i), (ii), and (iii). As with Theorem 1.2,
the above theorems can be extended to arbitrary compact convex sets by approximation.
The first non-trivial exact bound for hyperplane mass equipartitions for k = 2 hyper-
planes is due to Hadwiger [14], who showed that A(2,2) = 3.In this instance, Theorem 1.6
states the following: Given two families of polytopes in R3, neither of which contains
four pairwise disjoint polytopes, there are two affine planes whose union intersects each
polytope from each family.

Our final main result gives a transversal extension of A(1,3) = 3:

Theorem 1.7. Let F be a finite family of polytopes in R® such that x (KG®(F)) =1 (i.e.,no
eight polytopes are pairwise disjoint). Then F can be pierced by three affine hyperplanes
in RS,

1.3 Proof scheme: topological Radon-type results for multiple Radon pairs

Our proof approach for hyperplane partition and transversal results appears to be new.
Here we explain this approach and give an overview of the proof scheme. Ultimately, we
derive our main results from certain non-embeddability results for simplicial complexes,

which we collect here since they might be of independent interest.
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Transversal Generalizations of Hyperplane Equipartitions 5

Gale duality translates between hyperplane bisection results for n points in
R? and intersection results for convex hulls of n points in R"—d-1. gee Section 2 for
details. Results that prescribe constraints for disjoint subsets A and B of a set X ¢ R%
whose convex hulls intersect are referred to as Radon-type results. The classical Radon
theorem [26] states that any X c R? of size d + 2 admits a partition A UB = X such that
convA N convB # (. Such partitions A U B are called Radon partitions. A rather general
result asserting the existence of Radon partitions that satisfy certain constraints is the

following theorem due to Sarkaria [22, 28, 29]:

Theorem 1.8. Let X be a simplicial complex on[d+n+2] ={1,2,...,d+ n + 2} such
that 2[d+n+2] \ T can be partitioned into n families 7, ..., F,,, where each F; is pairwise
intersecting. Then for any continuous map f: |=| — R%, there are disjoint faces o, 7 C |Z|
such that f(o) N f(r) # @.

This result indeed guarantees the existence of certain Radon partitions: The
simplicial complex ¥ encodes which subsets of [d + n + 2] are permitted to appear in
Radon partitions; for face-wise linear f: |Z| — R? the image f(o) of a face o of T is
the convex hull of the images of its vertex set. In Section 2 we will show that Dolnikov's
theorem follows from Theorem 1.8 via Gale duality.

To prove our main results we apply Gale duality to the vertices of all polytopes
in |J F; and points at their pairwise intersections. We thus need to establish a Radon-
type result (for multiple Radon partitions that interact in a specific way) to establish
hyperplane transversal results.

We denote the simplex on vertex set [n + 1] = {1,...,n + 1} by A,,. Our notation
does not distinguish between A, as an abstract simplicial complex and its geometric
realization. Given a continuous map f: A, — R?, we say that a tuple of faces (c*,07)
of A, is a Radon pair for f if 6T No~ = ¢ and f(o*) N f(6~) # ¥. The Gale dual of

Theorem 1.6 is the linear case of the following Radon-type result:

Theorem 1.9. Let m = 25+ t, where s > 1is anintegerand t € {—1,0,1}.Letd > 1 be an
integer and let n > d + %m + 2. Let F be a family of subsets of [n] with x (KG*(F)) < m.
Then for any continuous map f: A, _; — R?, there are two Radon pairs (c*,0~) and

(t*,t7) for f such that none of the four intersections o N r* contains a set from F.

Given a generic set X of d + 2 points in R? there is a unique way to partition X
into A and B with convA N convB # @. Theorem 1.9 asserts that for X ¢ R% with d + 4
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6 F. Frick et al.

points, there are two such partitions A LB and C U D that are maximally different, that
is, the intersections ANC,AND, BNC,and BND have at most % points. This follows by
letting m = 1 and F the family of subsets of [d + 4] that have more than % elements.
Theorem 1.9 and its relatives for more than two Radon pairs imply our main
results on hyperplane transversals. To establish these results we use a standard trans-
lation to nonexistence results for certain equivariant maps. If Theorem 1.9 failed, then
there would exist a continuous map S” x S"* — R24+2 x R3™ that avoids zero and which
commutes with certain actions of the Dihedral group D,. Here S” x S parametrizes all
possible Radon pairs (c+,07) and (r*, 7). The D,-action independently swaps o™ <> o~
and t™ < 7~ and interchanges (0,0 ~) with (zT, 7). We will explain this translation to
the equivariant setup in Section 4. The non-existence results for equivariant maps that
we establish are new, and in fact extend earlier non-existence results that were derived

in the context of hyperplane equipartitions.

2 Dolnikov's Theorem via Gale Duality

In this section we provide a new proof of Theorem 1.2 which (essentially) exhibits this
result as the Gale dual of the linear version of Sarkaria’s theorem. For the sake of
completeness, we first review the construction of the Gale transform as well as some
of its essential properties, which we use throughout the paper. For a more complete

exposition, see, for example [21, Ch. 5.6].

2.1 Gale transform: construction and properties

Let ay,...,a, be a sequence of n points in R? whose affine hull is R%. In particular, n >
d+1.Foreachj € [n], one lets a;. = (a;, 1) be the vectorin R%+1 obtained by appending 1 to
a;, and denotes by A the (d+1) xn matrix whose columns are the a}. As the g; affinely span
RE, rank(A) = d+1.Given any basis vy, ...,v,_4_; for the nullspace V = Null(4), one lets
Bbe the (n —d —1) x n whose rows are the v;. The Gale transform of a,, ..., a,, is defined
to be the sequence b, ..., b, in R"~4-1 made of the columns of B. It is straightforward to
verify that (1) the b; linearly span R"~4-1 and that (2) Z};l b; = 0. Moreover, one sees that
any sequence b, ..., b, of points in R"~4-1 gatisfying (1) and (2) is the Gale transform of
some sequence a, ..., a, of points in R%, which affinely span R¢.

For our purposes, the main property of the Gale transform that we use is the
duality it provides between Radon pairs of point sets in R? and partitions of point sets
in R"~9-1 by linear hyperplanes. The precise formulation of the connection we need is

stated as Proposition 2.1 below. We shall say that a Radon pair (A™,A™) of a finite point
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Transversal Generalizations of Hyperplane Equipartitions 7

set A C R? is minimal if conv(A™) N conv(4A’) = ¢ for any proper subset A’ C A~ and

likewise conv(A’) N conv(A~) = ¢ for any proper subset A’ C A™.

Proposition 2.1. Let d and n be positive integers withn > d 4 1.

() Suppose that (A",A™) is a minimal Radon pair for a set A = {a,,...,a,} of
n points in R% whose affine hull is R%. Let It = {j € [n] | a; € AT} and
I ={eln]| aj € A~} be the corresponding index sets. Let by,...,b, in
R"4-1 he the Gale transform of the sequence ap, ..., a,. Then there exists a
linear hyperplane H in R*~94-! such that Bt = {bjlje ITYCcHY,B~ = {b; |
jeI*} C H™,and all remaining b; lie on H.

(ii) LetB = {by,...,b,} be a set of n points in R"4-1 guch that Z}‘Zl bj =0 and
which linearly span R”~9-!, Suppose that there is a linear hyperplane H in
R"%-1 and non-empty subsets Bt,B~ C B such that Bt c HT,B~ Cc H—, and
all the remaining bj lieon H. Let J* = {j € [n] | b]- eBt}andJ ={jeln]|
b; € B”} be the corresponding index sets. Then there is a sequence a,, ..., a,

of n points in R? whose Gale transform is b,,...,b, and subsets IT cJtand

I~ ¢ J~ such that (conv{a; |jel"), conv{a; | j € I"}) is a minimal Radon pair

forA={ay,...,a,} {b; 1] eI} c B, and {bjljeI"}CB .

While Proposition 2.1 can be established using standard methods (see, e.g., [21,
Lemma. 5.6.2] for an essentially similar statement), for the sake of completeness we

provide a proof.

Proof of Proposition 2.1. For part (i), suppose that (A", A7) is a minimal Radon pair for
{a;,...,a,} and let I'* and I be the corresponding index sets of [n]. In particular, there
exist scalars Ay,...,A, > O such that &; > O forallj e It UI", Djert A = 2ger- A =1,
and Zjeﬁ ra; = Zjer rja;. Defining t = (ty,...,t,) by t; = &; forj € It, t; = —A; for
jeI ,and t;=0 otherwise, we have Zj tia; =0 and Zj t=0. Using the notation of the

construction of the Gale transform, we see that ¢ lies in V = Null(4) so t = Z?;ldfl o;V;
with @ = (ay,...,a, 4 1) € R* 91 Considering the linear hyperplane H = ()™, it is
easily verified that t; = (b;,«) for all j € [n]. Thus, b; € H* for allj € I'*, b; € H™ for all
jelI ,andb;jeHifj¢ It UI".

To prove (ii), suppose that there exist non-empty subsets B and B~ of {b;, ..., b,}
and a linear hyperplane H such that B ¢ H", B~ C H, and all other points of b; lie on
H.LetJ" and J~ be the corresponding index sets of [n]. We have that J"NJ~ = @ because

the half-spaces are open. We have H = (a)* in R*~¢~! for some o = (y,...,0, 4 1) €
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8 F. Frick et al.

R"4-1\ {0}. Define t = (ty,....t,) by t= (bj,a) for allj e [n]. Thus, t; > OforalljeJ™,
t; <OforalljeJ ,andt; = 0forallj ¢ J"UJ . Letting vy,...,v,_4_; be the rows of

the matrix B whose columns are the b;, one verifies that t = > d-14.v,, and it is again

straightforward to show that Z]" 1tja; = 0 and ZJ 1 tj = 0. Now define 4; = =5 tf+ - if
ieJT "

ifjeJ . Thus, ;> O0forallje JTUJ ™, D hj =24 =1,

ll’

jeJtand ;=

ZLEJ_
and Zjeﬁ rja; = ZJEJ, ja;. To complete the proof, by removing points if necessary we
may choose It C Jt and I~ C J sothat AT ={aq; |i € I"}and A~ = {a; | i € I} are
minimal. |

2.2 A proof of Dolnikov’s theorem

We now derive Theorem 1.2 as a consequence of the linear version of Theorem 1.8; the
reverse implication is given in Remark 3.2 following Lemma 3.1. As we have already
seen, Theorem 1.1 is a special case of Theorem 1.2. In order to use Gale duality, it will
be convenient to prove the following slight reformulation of Theorem 1.2. Recall that
KG(F) = KG?(F).

Proposition 2.2. Let ¥ C R% be a finite set and let F be a family of subsets of ¥ such
that x (KG(F)) < d. Then there exists an affine hyperplane H in R? which intersects all

the convex hulls of all sets in F.

To see that Proposition 2.2 implies Theorem 1.2, assume Proposition 2.2 and let
Fy,...,F4 be as in the statement of Theorem 1.2. For each F;, let ¥; ¢ R? be the set that
consists of (i) the vertices from each polytope P of F; together with (ii) a point from the
intersection of any pair of distinct polytopes P and Q from F;. Now let ¥ = U,Y; and
let 7' = U;F;, where for each i we define 7, = {PNY; | P € F;}. Each F is pairwise
intersecting by construction, so x(KG(F")) < d. By Proposition 2.2, there is therefore an
affine hyperplane H C R? that intersects conv(P N Y;) = P of each P in F; and every F;.

We now prove Proposition 2.2.

Proof of Proposition 2.2 via Theorem 1.8. Identify R? with the hyperplane in R%*! with
last coordinate equal to 1 and let ¥ ¢ R? and F be as in the statement of Proposition
2.2. By adding points to the set ¥ ¢ R, if necessary, we obtain a set Y, which linearly
spans R%t!. Note that no set in F will contain any of the added points. Letting Y, =
Y, U{— 2> ey, ¥} now gives a set which linearly spans R%+1 and has barycenter the origin.
Thus, Y, is the Gale transform of some finite set X ¢ R”~4~2 which affinely spans R*~4-2,
For concreteness, say that Y, = {b;,...,b,} and that X = {a,,...,a,}.
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Transversal Generalizations of Hyperplane Equipartitions 9

To avoid a slight abuse of notation, let 7' be the family of subsets of [n] =
{1,...,n} corresponding to the family F of subsets of the original set Y. We let X (F")

denote the simplicial complex on [n] whose minimal non-faces are the sets of 7/, that is,
S(FY={oClnl|t¢F forall t C o).

The set family 2/ \ £(F) is obtained from F’ by including any supersets of elements of
F’,soin particular x (KG(2"\ =(F")) = x (KG(F)) < d. Thus, 2™\ £ (F’) can be partitioned
into F7, ..., F}, where each 7 is pairwise intersecting.

The linear version of Theorem 1.8 gives two disjoint faces 0,0~ € Z(F’) such
that

convia; |[i € ot} Nconvia; |ico™} # 0.

Without loss of generality, we may assume that {a; | i € ot} and {a; | i € 0~} form a
minimal Radon pair, so that by Proposition 2.1 there is a linear hyperplane H in R%t!
such that {b; | i € ot} liesin H, {b; | i € 0~} lies in H~, and H contains every other point
of Y,. By the definition of (F’), neither 0 nor o~ can contain any set from F'. Thus,
neither H* nor H~ can contain any set of the form {b; | i € F'} with F' € F’/, which is
to say that neither open half space contains any set from F. Therefore, H intersects the
convex hull of every set of F. On the other hand, F is a family of subsets of the original
set ¥ ¢ R, As the convex hull of each set of F lies in R? and the intersection of H and
R? is an affine hyperplane in R¢, the proof is complete. |

3 Multiple Hyperplane Transversals via Radon-type Results

As for a single hyperplane, equipartition results by multiple hyperplanes are special
cases of hyperplane transversal generalizations, where now the transversal consists of
a union of several hyperplanes. For linear hyperplanes, by Gale duality these transversal
results in turn have equivalent formulations as Radon-type results for several Radon
pairs. We shall say that a Radon pair (¢, 07) for f: A, — R% is minimal if both f(o*)N
f(r) = ¢ for any proper subface t C o~ and f(c ~)Nf(r) = ¥ for any proper subfacet C o+.

Lemma3.1. Letc>1,d>1,k>1,and m > 1 be integers. The following are equivalent:

(1 Ifn>d+c+ 2, then for any linear map f: A, ; — R? and for any family
F of subsets of [n] with x(KGZk (F)) < m, there are k minimal Radon pairs
(Ufr,al_),...,(a;,ak_) for f such that none of the intersections of the form

oli n---N a];t contains a set from F.

€202 J8QWIBAON | UO Jasn AjisiaAiun uojs|A a1bsuied Aq /G 1L.8Z/2/91 ZPBUI/UIWI/SE0 ] 0 L /I0p/3]o1lB-00UuBAPE/UIWI/WOo2 dNo dlwapede//:sdjy Wol) papeojuMo(]



10 F. Fricketal.

(2) For any finite family F of polytopes in R°T! with X(Ksz(]-' )) < m, there are

k linear hyperplanes, which pierce F.

Remark 3.2. Using Lemma 3.1, let us now show how the linear case of Sarkaria’s
theorem follows from Dolnikov's theorem. Assuming Theorem 1.2, let F be a finite family
of polytopes in R4+ with x (KG(F)) < d. Adding the singleton containing the origin to
F if necessary gives a finite family 7' of polytopes in R4t with x(KG(F) < d + 1.
Theorem 1.2 guarantees a hyperplane, which pierces each polytope in F’/, and this
hyperplane necessarily passes through the origin while intersecting every polytope in
F. This establishes (2) and therefore (1) of Lemma 3.1 when kK = 1 and ¢ = m. On
the other hand, if F is a family of subsets of [d + m + 2] with x(XG(F)) < m, let
Y ={occld+m+2]| 1t ¢ Fforallt C o} be the simplicial complex of non-faces.
Any given linear map f: £ — R? extends linearly to a linear map from A, to R4, so

Lemma 3.1(1) gives the linear case of Theorem 1.8.

Proof of Lemma 3.1. Assuming (1), let F be a finite family of polytopes in R¢*! with
X (Ksz (F)) < m.As before, let Y be the set that contains all vertices of all these polytopes
as well as a point in the intersection of any two polytopes P, Q € F with PN Q # . Again
as before, we may artificially add points to Y if necessary so that Y = {y,,...,y,} affinely
spans R and Zyeyy = 0. Thus, Y is the Gale transform of some X = {x,...,x,,} C
R"¢~2 Let ¢: Y — [n] be the bijection ¢(y;) = i. The corresponding points x,..., X, in
R"~°~2 thus determine a linear map f: A, _; - R¢withd =n —c — 2.

Let 7/ = {p(PNY) | P € F}. By construction of the set Y, it follows that
KG2* (Fy = KG2* (F) and so X(Ksz(}")) < m. By (1), there are k minimal Radon
pairs (af“,of),...,(a,j,o,;) for f such that none of the 2k intersections of the form
aljE N---N a,f contains any set in 7'. Each pair (of,oj—) determines intersecting convex
hulls f(aj+) ﬂf(oj_) # ¢ of points in X. By Proposition 2.1, for each j € [k] there is therefore
a linear hyperplane H; C R°"! such that {y; | i € a].+} lies in Hj+, {vilieo }liesinH,
and H; passes through every other point of Y.

Now let P € F be arbitrary. Letting A = PNY we have that ¢(4) € 7 and convA =
P. By (1), there is some j € [k] such that ¢(A) is not fully contained in either oJ.* or oj*.
Thus, A = {y; | i € ¢(A)} is neither completely to the open positive side nor to the negative
side of H]-, and therefore H] intersects P = convA.

The proof that (2) implies (1) essentially follows the proof of [31, Theorem 5] via
Gale duality and the ham sandwich theorem. Given a linear map f: A,,_; — R% and a

family F of subsets of [n] with X(Ksz(]-')) <masin(l),letx; = f(i) and X = {x;,...,x,}.
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Transversal Generalizations of Hyperplane Equipartitions 11

We may assume that n = d+c+ 2, since otherwise one may simply restrict to a subset of
the vertices. By possibly decreasing d, we may assume that X affinely spans R%. Denote
the Gale transform of X by ¥ = {y;,...,y,} € R* ¢-1 = R°*! and let 7’ be the family con-
sisting of all polytopes of the form P, = conv{y; | i € A} foreach A € F.If P,NPy = ), then
AN B = ¢. Thus, KG2(F) is contained in KG2*(F), and so in particular Y (KGZ(F) < m.

Assuming (2), there are k linear hyperplanes Hy, ..., H, C R°*! such that every
polytope in F’ is intersected by U;H;. As before, let ¢: Y — [n] be the bijection ¢(y;) = i.
By Proposition 2.1, for each j € [k] there is minimal Radon pair (aj+, o) for f with aj+ C
go(H;r NY)and o; C (p(HJ._ N'Y) for each j € [k]l. Now let A € F be arbitrary. We have that
conv{y; | i € A}is in 7' and so must be pierced by some H;. Thus, {y; | i € A} does not lie
in either open half-space determined by H;, so A cannot be contained in either oj+ oro; .

In particular, A does not lie in any of the intersections oli N---N ait. |

The following is our central result on the connection between Radon-type

theorems, hyperplane transversality, and mass equipartitions.

Theorem 3.3. Letc >1,d > 1,k > 1,and m > 1 be integers. Of the statements below,

(1) implies (2), which in turn implies (3).

(1) Ifn > d+ c+ 2, then for any linear map f: A,,_; — R? and for any family
F of subsets of [n] with X(Ksz (F)) < m, there are k minimal Radon pairs
(afr,ol_), ., (a]j,ok_) for f such that none of the intersections of the form
oli N---N o,ét contains a set from F.

(2 For any finite family F of polytopes in R¢ with X(KGZk (F)) < m, there are k
affine hyperplanes which pierce F.

(3 Forfinite point sets X;,...,X,, C R there are k affine hyperplanes Hy, ..., H;
such that each of the orthants Hli Nn---N H,:ct contains no more than %|Xi|

points of each X;, that is, A(m, k) <c.

Remark 3.4. Observe that any ¢ > 1 for which any of (1) through (3) of Theorem 3.3
holds must satisfy ¢ > |'2kT*1m'|. In particular, the dimension d of Theorem 1.6 is tight

with respect to m, as is the n of Theorem 1.9.

Proof of Theorem 3.3. We first show that (1) implies (2). By Lemma 3.1, we have that
(1) is equivalent to the statement: For any finite family F of polytopes in R¢t! with
X(Ksz(]-')) < m there are k linear hyperplanes Hj,...,H, C R°"! such that every
polytope in F is intersected by UleHi. If instead we are given a finite family F of
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12 F. Fricketal.

polytopes in R¢ with X(Ksz(]-')) < m, we place R® in R°*! as the hyperplane at height
one. Then by the above there are k linear hyperplanes Hy,...,H, C R°! such that
every polytope in F is intersected by UleHi. These hyperplanes H; correspond to affine
hyperplanes in R¢, thus proving (2).

To show that (2) implies (3) (and in fact is a special case), let finite sets

X,,....X,, C R°be given. For each i € [m], consider the corresponding family
1
F;=1{convA | A C X;, |A| > §|Xi| .

Letting F = |J; F; we see that x (Ksz (F)) < m,and so by (2) there are k affine hyperplanes
H,,...,H;, C R° such that every polytope in F is intersected by Ui?lei. If A C X; is any
set with |A| > zlk|X]-|, then by construction its convex hull convA is intersected by some

hyperplane H;, so A cannot lie in any open orthant determined by the hyperplanes. N

4 A General Bound for Multiple Radon Pairs

Over the next three sections we explain how to obtain topological Radon-type theorems
from non-existence results for equivariant maps. These follow from the well-established
configuration space/test map scheme and a generalization of Borsuk-Ulam-type results
arising from the Griinbaum-Ramos-Hadwiger mass partition problem.

In this section we will prove Theorem 1.5, which by Theorem 3.3 is a consequence
of the following result about Radon pairs for continuous maps. As before,let m = 2P + ¢q
where p > 0 and 0 < g < 2P, and let U(m, k) = 2KP~1 4 g be the upper bound of
Theorem 1.3 for the Griinbaum-Ramos-Hadwiger problem. As m = 2P*! — 1 when k = 2

and g = 2P~1 — 1, the t = —1 case of Theorem 1.9 is an immediate consequence.

Theorem 4.1. Letm > 1,k > 1,and d > 1. Suppose that n > d + U(m, k) + 1. If F
is a family of subsets of [n + 1] with X(Ksz(}')) < m, then for any continuous map
f: A, — R? there are k Radon pairs (o] ,07),..., (o) 01 ) for f such that none of the

intersections of the form oli Nn---N oki contains a set from F.

4.1 Configuration space

Let A2 = {o 1 | 0,7 € A,} be the join of the n-simplex with itself. The deleted join
T, = (A ={0Tx0" | 0T No~ = @} is the sub-complex of A2 consisting of all formal
convex sums AxT + (1 — A)x~, where x* € o1 and x~ € o, and for which the ¢* are

disjoint. This complex is realized as the boundary of the n-dimensional cross—polytope,
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Transversal Generalizations of Hyperplane Equipartitions 13

that is, the unit sphere in the ¢,-metric on R®!, and is equipped with a Z,-action
obtained by interchanging Ax* with (1 — A)x~. Under the identification of ¥, with the
n-sphere S”, this action corresponds to the usual antipodal action on the sphere.

For any k > 2, let

S(n,k) =35k ={0 = (o] oy, op ko) |0 No =@ forall 1 <i <k}

be the k-fold product of X,,. This product comes equipped with a canonical action of
the hyperoctahedral group 6% = lec x &, whereby Z’§ acts by interchanging each pair
{al.+, o, } of disjoint faces forany 1 < i < k and the symmetric group &, acts by permuting
the cri+ *o; . This action is by isometries if one takes the product metric on X(n, k) with
the ¢,-metric on each %, factor. Extending the identification of X, with S", one has a
natural correspondence between X (n, k) and the product Y(n, k) := (SM* of n-spheres,
the later being equipped with the analogous Gf—action whereby Z’zC acts antipodally
on each coordinate sphere and &, acts by permuting each S" factor. Explicitly, let

V1,0 V8) € (SMk, let G1r---198) € Z’2°, and let « € ;. Then,

((gll cee rgk) X Ol) : (er cee ,Yk) = ((—1)91Ya—1(1), v r(_l)gkya—l(k))'

Observe that the action of Z’2° on X, (and Y (n, k)) is free, and in fact it is easily
observed that g- o0 N o = ¢ for all non-identity g = (g;,....9%) € lec and all o0 = (af’ *
oy ... ,a,j * 0y ) € X(n, k). On the other hand, the full action of 6; is not free, with non-
free part £(n, k)’ consisting of all ([A,x] + (1 — A)x7],..., Ix{ + (1 — A )x D) € =(n, k)
such that /\Z-X;r +(1—-2r)x; = :I:()»J-X;_ +(1-— )»J-)Xj_) for some i # j. Under the identification
of X (n, k) with Y(n, k), this corresponds to all (y;,...,y) € Y(n,k) with y; = ty; for
distinct i and j, which is the non-free part Y'(n, k) of Y(n, k) under the Gf—action.

4.2 Test space

Let R[Zé‘] = {dezg rg9 | 14 € R for all g lec} denote the regular representation of Z’ZC.
Considering the action of the symmetric group on coordinates, R[Z’ZC] becomes a 6;—
module, as does U, = {dez’g g9 | dez’g rg = 0}, the orthogonal complement of the
trivial Z’zc—representation. We consider the direct sum U]?m as a Gf—module under the
diagonal action.

In addition to U,?m, we shall also consider the Gf-module Vy = (R+1k where
again &, acts by permuting each R%*! factor and Z’2‘ acts independently and antipodally

on each coordinate R+1,
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14 F. Fricket al.
4.3 Test map

Let n = d + ¢ + 1 for some constant c. To obtain k Radon pairs for a given continuous
map f : A, > R, for each Ax = (A x] + (1 —A)x7],..., gxf + (1 —A)x]) € (n, k) we
define R: X(n, k) — Vi by

ROx) = (A — 1/2,0f (&) = (L= ADF D), hg = 1/2, 1 f () — (1 = A f (50).
It is easily observed that R is equivariant with respect to the Gf—actions on £(n, k) and
v,.
Now let F be a family of subsets of the vertices of A, such that x (Ksz (F) <m.
Fix a partition 7, U---U F,, of F with X(Ksz(]-"j)) < 1 for each j € [m]. We may assume

that ]-'J is closed under taking supersets. For each o = (ofr *0p,... ,a,j 0y ) € X(n, k),
write aio for Ui+ and write ail for o;”. For each j € [m] and each g = (g;,...,g;) € lec, let
Kf;: {0 =(01Jr>l<0f,...,ak+*cr,;) € X(n, k)| crigl ﬂ~-ﬂo,‘?k gé]-']}

and let K/ = ﬂgeng{]. Since }"J is closed under taking supersets, each Kg and thus K’ is a
simplicial complex.

For each Ax € X (n, k) and each g € Z;‘, consider the distance d(AX,KJé) from Ax to
the subcomplex Ké. Letting

1 .
_ ]
aj(kx) =t E d(rx, Kg)
geZ’2°

be the average of these distances, define Dj: X(n, k) — ]R[Z]z‘] by

D;(0x) = > (d(hx, K}) — a;(hx))g.
g

The image of DJ- thus lies in Uy, and so one has a mapping D = (Dy,...,D,,): X(n, k) —
Uffm. Clearly, D(Ax) = 0 if and only if for each fixed g lec we have that Ax is equidistant
from each Kg. On the other hand, the sets algl N---N o,f" are pairwise disjoint. If each of
these were to lie in some ]-'j, then these intersections would all be distinct because no ]-"J
contains the empty set. However, none of the F; contains 2k pairwise disjoint elements,
and so for each 1 < j < m and any Ax € X(n, k) one must have d(ix, Kgq)) = 0 for some
q() € Z’zc. Any zero of D must therefore lie in K/ for all 1 < j < m, and conversely. As
go No = ¥ unless g is the identity and the Z’zc—action is by isometries, it is a straight-
forward verification that the mapping D is Gf-equivariant with respect to the actions

considered.
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Transversal Generalizations of Hyperplane Equipartitions 15

Letting ¢: Y(n,k) — X(n,k) be the natural (Gf—equivariant) identification of
Y(n,k) and X(n, k), let

F=D®R)oi: Y(n,k) > U™ & V. (4.1)

By construction, any zero of this map corresponds to the existence of k Radon pairs that
are not contained in F. Thus, Theorem 4.1 follows if any Gf-map F can be guaranteed
a zero when ¢ > U(m, k). This will be established by appealing to a relevant theorem of

Borsuk-Ulam type.

4.4 Proof of Theorem 4.1

For Theorem 4.1, we only need to consider the representation U™ & V;, when viewed as
a Z’zc—module and apply a corresponding Borsuk-Ulam-type theorem for Z’zc—equivariant
maps. We recall that any Zlg—representation is isomorphic to the direct sum of one-
dimensional representations and that the latter are indexed by the group itself. Namely,
for each h = (hy,..., hy) € Z;, the corresponding 1-dimensional representation U, given
by x,(9) = (—1)Mm9r+-hdk for each g € Z’zc. For example, for U and V,, as above one has

~ ~ d+1
Uk = @hezlzc_{o}Uh and Vk = @icleg( +1)

, where e; is the standard basis vector in ZE.
While we shall find it convenient to use the following Borsuk-Ulam-type result of [30,
Proposition 6.1] based on Stiefel-Whitney classes and the cohomology of real projective
space, we note that similar results have been obtained via ideal-valued cohomological
index theory [10] and used extensively in the field, such as in particular in [19] in

establishing the upper bound of Theorem 1.3.

Proposition 4.2. Let hy = (hyy,..., Ry ), Ay = (Bpgy,- o hpgp) € 7% and let U =

@7¥ Uy, . Let Py be the polynomial in Z,[u,, ..., w1/}, ..., uf™) given by
nk
PU(ul, ey uk) = H(hiylul + -4 hi'kuk).
i=1
IfPy(uy, ..., up) =ul--- uZ then any Zg-equivariant continuous map f: Y(n,k) — U has

a zero.

Proof of Theorem 4.1. Define U = Uffm ® V;, ® V', where for m = 2P + g as above we set
V' = & ,Uq! withe; = U(m, k)—2P+k~I—g2i=1 Thus, dim U = kn, where n = U(m, k)+d+

1. The corresponding polynomial P;; can be expressed as the product Py, = Pﬁk - Py, - Py,

d+1 d+1 o
where Py, =[], hk)ez’g\{O}(hlul + A heuy), Py, = x{7 - x7 and Py o= xp7 - xpK

.....
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16 F. Frick et al.

2k2

As shown in [33], Py, is the Dickson polynomial Py, =3 s, U U(l) Ug o) (r(k) Thus,
q

_ 2ktp=1, okip-2 2P 2k-1_ ok— ul d+1, az+d+1 ag+d+1

Py = Z Us)y Uos2) " Ugy - Z ur(l) ur(2) Uy | Uy U U :
(TEGk ‘EGGk

Viewing Py as a polynomial in Z,lu,,... uk]/(u”+1, . "+1) a consideration of the
exponents §; in each monomial X’f ! X£ in the resulting expansion of P; shows that
all such terms vanish unless o(i) = t(k — i + 1) = i for all i, in which case the
mononmial is x}---x;!. Thus, Py = ul---uy. By Proposition 4.2, any Z’zc—equivariant

map f: Y(n,k) — U has a zero, and in particular so must any Gf—equivariant map
F:Y(nk) - U™ @ V. |

5 Proof of the t = 1 Case of Theorem 1.9

We prove the remaining cases of Theorem 1.9 over the course of the next two sections.
By Theorem 3.3, this will complete the proof of Theorem 1.6. Here we prove the t = 1

case of Theorem 1.9, which for organizational purposes we state as a separate theorem:

Theorem 5.1. Let m = 25+ 1, where s > 1 and d > 1. Suppose thatn > d + (?’Tm} + 1.
If F is a family of subsets of [n + 1] with x (KG*(F)) < m, then for any continuous map
f: A, — R% there are two Radon pairs (o;", 07 ), (0, , 0, ) for f such that each intersection

of the form oli n azi does not contain any set from F.

As the s = 1 case of Theorem 5.1 is already covered by Theorem 4.1, we consider
s > 2 throughout the remainder of this section.

We shall restrict the setup of Section 4 to the case where k = 2. Thus, 65 =
Z% X (t) = D, is the dihedral group of order 8 (that is, the symmetry group of a square),
where the transposition t acts by swapping the coordinates of any g = (9,,9,) € Zz. In
what follows, for any n > 1 we let (S*)? = Y(n, 2) and we denote the non-free part Y’(n, 2)
by (M2,

Letm =254+1withs> 2,letc = f37m], and let n = d + ¢ + 1. In order to prove
Theorem 5.1, it will be necessary to use the full dihedral group instead of just the normal
Z%—subgroup. We will prove that any D,-equivariant map F: (S*)? — U;em @V, has a
zero, which demonstrates the existence of the desired Radon pair for any f: A,, — R4,
As before, we proceed by contradiction. Assuming that F never vanishes, a mapping
degree argument will lead to a contradiction with the degree calculation of a certain
usm

D,-equivariant map G: (S 1)2 — crucially used in [6] in obtaining case (ii) of
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Transversal Generalizations of Hyperplane Equipartitions 17

Theorem 1.4 (see [6, Lemma 5.6]). We state the properties of this map that we shall need as
Lemma 5.2 below. As c—1 = 3-257141, observe that dim((S°~1)?) = 3-25+2 = dim(S(U$™))
and so the degree of a mapping between (S°~1)? and S(Ugem) is defined after a choice
of orientation. We let ¢: U3™ \ {0} — S(U3™) be the radial projection, which is D,-

equivariant.

Lemma5.2. Lets>2,letm =25+1,andletc = f37m1 . Then there exists a non-vanishing
continuous D,-equivariant map G: (S 1)2 — U™ such that ¢oG: (S~ 1) — S(US™) has

non-zero degree modulo 8.

5.1 Outline of the proof of Theorem 5.1

Before providing the details of the proof Theorem 5.1, we first provide a summary of our
argument. Let n = d + ¢ + 1, where again ¢ = {377”1 with m = 25 + 1 and s > 2. We have
dim((S"1)?) = dimS(US™ & V,). Assuming that F: (S")? — U3™ & V, never vanishes,

the restriction
. —1.2 ®
F: (") > U"9V,

of F is likewise non-vanishing (here we view S"! as the equatorial sphere inside S"),
and composing this with the radial projection p: (US™ & V,) \ {0} — S(US™ & V,) gives

the existence of a D,-equivariant map
poF: (S HZ - SUS™ @ V,).

As this map factors through (S")?, it follows from elementary (co)homological consider-
ations that p o F has degree zero. On the other hand, a generalization of the equivariant
Hopf degree theorem shows that the degrees of p o F and p o G coincide modulo 8, where
G: (S""1)?2 - UP™ @ V, is a natural D,-equivariant extension of G which is defined in
Section 5.2. This is because poF and poG are D,-equivariantly homotopic on the non-free
part (S""1)2, of (S""1)?, as shown by Proposition 5.3.

An easy regular value argument then shows that deg(p o G) = deg(¢ o G). This
implies that deg(¢ o G) = 0 (mod 8), contradicting Lemma 5.2 and thereby establishing
Theorem 5.1.

5.2 Equivariant homotopy on the non-free part

Our degree argument relies on comparing the D,-equivariant map F: (S* )2 — U™ @
V, to a D,-equivariant extension G: (S* )2 — UY™ @ V, of the D,-equivariant map
G: (Sc1H)2 - Ugem guaranteed by Lemma 5.2. To that end, let ¢ > 1 be arbitrary and
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18 F. Frick et al.

suppose that f: (S°)? — Ugem is a D,-equivariant map which is non-vanishing on the
non-free part (S€)2, of (S°)2. For any d > 1 and n = d + ¢ + 1, we extend f to a D,-

equivariant map
f: (- Uufmev,

whose zeros are the same as those of G, and which in particular does not vanish on
(™2 . Namely, view S™ as the join S™ = S°*S%. Then each y; from any y = (y;,y,) € (S")?
is the formal convex sum y; = (1 — t,)y; ® tiyl‘.i where y; € S°, yf € 8%, and t; € [0, 11.
Defining

F@) = —t)A = t)f ¥5, ¥5) @ (1,7 t,yD), (5.1)

we see thatf is well-defined, D,-equivariant, and has the same zero set as f. Note also
that the restriction of f to (S”)z>1 equivariantly extends the restriction of f to (S")2>1. In
what follows, we shall occasionally need to ensure smoothness of the maps f and f. To
give S” the usual smooth structure, S¢ is connected to S¢ via arcs along great circles, so
that y; = (cos(nti/2)yf,sin(nti/Z)yf) for any y; € S". Correspondingly, f: (S")2 — uym
given by

F(y) = cos(rt,/2) cos(t,/2)f (75, v5) & (sin(m1 /2)y<, sin(rt, /2)y§) (5.2)

is then smooth whenever f is.

We now return to the case where ¢ = |'37m'| withm = 25+ 1 and s > 2. Let
F: (S 1% — US™ @ V, be the map above and let G: (S°!)2 — U™ be as in Lemma 5.2.
Now consider the restrictions F |(5"*1)§1’6 lsn1y2, - (S H2, — (U™ @ V,) \ {0}. the

following proposition will be crucial for our degree argument.

Proposition 5.3. Let m > 1 and suppose that n = ¢+ d + 1, where ¢ = {37’”1 and d > 1.
If fi,fp: S 1%, — (U™ @ V,) \ {0} are D,-equivariant maps, then f; and f, are D,-
equivariantly homotopic. In particular, the maps F |(Sn_1)21 and G |(Sn_1)21 above are D,-

equivariantly homotopic.

Proof of Proposition 5.3. The non-free part (S"*I)z>1 of the D,-action on (8™ 12 consists
of the two disjoint n-spheres ¥ ' := {(x,x) | x € S" !} and S* ! := {(x,—x) | x € S"71}.
The D,-action on (S*~!)?, is free when restricted to Z3. Moreover, the standard free Z,-
equivariant cellular structure on S® !that is, with two i-dimensional open hemisphere
cells ei and e! for each 0 < i < n—gives rise to a D,-equivariant CW structure on

(S”_l)z>1 such that the Zg action is free. Indeed, for each 0 < i < n, one may define the
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Transversal Generalizations of Hyperplane Equipartitions 19

i-dimensional cells of (S"*I)z>1 by (eij)Jr = {(x,x) | x € ei} C Sfl and let (efjc)_ =
{(x,—x) | x € eii} c S"1. If ¢ denotes the generator of &,, then 7 acts trivially on S,Jg_l.

On the other hand, t acts antipodally on S so that 7 - (x,—x) = g - (x,—x) where

n—1s
g = (1,1) € Z3. Moreover, the CW structure on (S"1)? respects these actions.

Let Uy be the subset of U, given by U; = {3 5749 € Uy | 71y = T1,0)}, and
likewise let Uy = {3 ccT99 € Uy | 7o) = T 1)} Also let V3 = {(v, ) € (RE+1H2 |
vy = vy} and V, = {(v;,v,) € R1)? | v; = —v,}. Now define UT = (U;)®™ @ V, and
U~ = (U,)®" & V,. Thus, UT is the subset of U™ & V, on which the transposition t
acts trivially, while and U~ is the subset of Ugam @ V, on which r actsas g=(1,1) € Z%.
Letting 7 - h denote the permutative action of 7 on any h € Z2, one has thr = (r - h)t for
each h € Z2, where t-h = hif h € (g) and t - h = g + h otherwise. It is then easily verified
that the subset U := Ut UU~ of U™ @V, is D,-invariant, and moreover that h- U* = U*
if h € (g) and h- U* = UT otherwise.

Now consider the given D,-equivariant maps fi, f,: (S* 12, — U3™ @ V,. Each
of these necessarily maps S"! to U and S” ! to U~. To obtain the claimed homotopy,
extend the D,-action on (S*71)2 to (S"1)2 | x[0, 1] by letting D, act trivially on [0, 1]. Now
let X = (S*"1)2, x{0,1} and let h: X — U\ {0} be given by h :f1|(s"*1)§1 on (S* 12, x {0}
and h = fp|gn-1)2 on (S" 12, x {1}. The product CW structure on (S* 1?2, x [0,1] is
D,-equivariant, and the action is free when restricted to Z3. It follows from elementary
equivariant obstruction theory that there is a Z%—equivariant extension H: (S”_l)z>1 X
[0,1] — U \ {0} of f so that H(Sﬁ_1 xI) c Ut and H(S" ! x I) c U™. To see this, observe
that the boundary of any cell (eii)i x (0,1) has dimension at most n — 1 = d + ¢, while
the connectivity of U+ \{0}is2m +d.Asc = [37'"1 < 2m,we haven — 1 < 2m + d. Thus,
one may define H by induction on the dimension of cells of (S*"1)? | x I, Z3-equivariantly
extending cell-by-cell at any stage: if H is so constructed on the i-skeleton, 0 <i <n—1,
then the composition of H with the attaching map of (eﬂfl) 4+ x I gives a map from an
i-sphere to U, which is therefore nullhomotopic and so extends to this cell. One then
defines H on the remaining (i + 1)-dimensional cells g - ((efi:rl)Jr x I) for g € Z% \ {0} to
preserve equivariance, and this guarantees that H((egl)i) c U%).

The map H: (S"1)2, x [0,1] — U \ {0} thus given by obstruction theory is a Z3-
equivariant homotopy between f; and f,. However, the action of  on (S,))* xI and on U*
is trivial while the action of z on (S,,))™ xI'and U~ is given by g = (1,1). As H sends S" xI

to U' and S™ x I to U, the homotopy is necessarily D,-equivariant. |

Remark 5.4. In Section 6, it will be important to note that, provided m > 2, Proposition
5.3 holds forn = c+d+ 1 and ¢ = f?’Tm] when the domain sphere S*~! is replaced
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20 F. Frick et al.

by S™. This is because we still have no obstruction in equivariantly extending the map
h: (S")z>1 x{0,1} — U\{0}toall of (S”)z>1 xI.Indeed, the dimension of any cell (eii)jE x(0,1)
isnow n = d + ¢ + 1, and this is still no greater than the connectivity of the codomain
when m > 2. The same dimension count shows that one may also let d = —1 in this
case (as well as in Proposition 5.3), or in other words that these results holds when the

module V, is omitted. This observation will also be needed in Section 6.

5.3 Degree calculations

We now perform the degree calculations outlined at the beginning of this section. As
before, let F: (S*"1)2 — UP™ @ V, be the restriction of our map F: (S")? — US™ @ V,,
which we assume to be non-vanishing, and let G: (S¢1)? — Ugam be as in Lemma 5.2. We
consider the maps poF, poG: (S* )% — S(U™ @ V,), where again p: (US™ @ V,) \ {0} —
S(UgBm @ V,) denotes the radial projection.

First, we show that
deg(p o F) = deg(po G) (mod 8). (5.3)

Proof of equation 5.3. By Proposition 5.3, we have that F(S"*1)21 and @(sn,l)zl are
D,-equivariantly homotopic, and therefore (p o F)(Sn_l)z1 and (p o @)(sn_l)zl are D,-
equivariantly homotopic. Thus, equation (5.3) is an immediate consequence of the

following generalization of the equivariant Hopf theorem [17, Corollary 2.4]. ]

Theorem 5.5. Letn > 1 and let M" be a compact oriented n-dimensional manifold with
the action of a finite group I'. Let N C M be a closed I'-invariant subset which contains
the non-free part of M. Then for any two I'-equivariant maps f;,f,: M" — S" that are

equivariantly homotopic on N, we have that deg(f;) = deg(f,) (mod |T'|).

Next, we show that
deg(p o G) = deg(¢ o G), (5.4)
where ¢: US™ \ {0} — S(US™) is the radial projection.
Proof of equation 5.4. By the Whitney approximation theorem, G: (S°°1)? — US™ is
homotopic to a smooth map, and therefore so are ¢ o G and p o G. It therefore suffices to

assume that G is smooth. Moreover, deg(p o G) = deg(po (q;_c\J/G)), and therefore it suffices
to assume that the image of G lies in S(Ugem). Indeed, letting G,(y) = (1 — 5)G(y,) +
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Transversal Generalizations of Hyperplane Equipartitions 21

(1—-95)(¢oG(y,) foreachy, e (812 and s € [0, 1], then p o @: gives an explicit smooth
homotopy between p o G and p o (m).

By the explicit formula for G, we have
G(y,,V,) = cos(t; /2) cos(nt,/2)G(YE, y5) @ (sin(ntl/?-)y?, sin(ntz/Z)yéi) ,

where (yic,yld) €81 x 8%t €l0,1],and y; = (cos(nti/Z)in,sin(nti/Z)yld) forie{1,2}.
Let u € S(U3™) be a regular value for G: (S¢71)? — S(US™). Thus, G~!(u) is finite,
G is alocal diffeomorphsim at each y, € G~ '(u), and deg(G) = Zycerl(u) deg;(y,.) where
deg.(y,) = %1 is the local degree (i.e., the sign of the Jacobian determinant) at y,.
Consider u® 0 € S(Ugam @ V,). The formula for G shows that (p o &) Y(u @ 0) =
G 1(w) ® 0. As G equals G on (S°°1)2 and is the identity map on (S%)?, it is again clear
from the formula for G that p o G is a local diffeomorphism at each y = (v, 0) and that
the Jacobian determinants of po G at y and G at v, are the same. Thus, u @ 0 is a regular
value for poG and deg(poé) = Zye(pog)q(u@o) degpog(y) = Zycerl(u) deg.(y,) = deg(G) =
deg(¢ o G). [ |

As our last computation, we show that
deg(p o F) = 0. (5.5)
Proof of equation 5.5. We have that p o F factors as
S H2 s (sM2 2 SUET @ V).

The induced map (p o F),: Hy, ,((S*" 1% Z) — H,, ,(S(WUS™ & V,);Z) on homol-
ogy must be the zero map because H,, ,((S)%7Z) = 0 by the Kiinneth formula.
Thus, deg(p o F) = 0. [ ]

Putting equation 5.5 together with equations 5.3 and 5.4 completes the proof of
Theorem 5.1:

Proof of Theorem 5.1. If the map F: (S")? — U;em @ V, never vanishes, it follows from
equations (5.3)—(5.5) that deg(¢ o G) = 0 (mod 8). This contradicts Lemma 5.2, so any

F: ("2 > USB'” @ V, must have a zero and therefore the claimed Radon pair exists. W

6 Proof of the t = 0 Case of Theorem 1.9

We now prove the t = 0 case of Theorem 1.9. As before, we state this as a separate

theorem:
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Theorem 6.1. Let m = 25 for some s > 1 and d > 1. Suppose thatn > d +3- 271 4 1.
If F be a family of subsets of [n + 1] with x (KG*(F)) < m, then for any continuous map
fiA,— R4, there are two Radon pairs (01+ 01 ), (02+ , 0, ) for f such that each intersection

of the form crli N crzi does not contain any set from F.

Letn = d+ c+ 1 where ¢ = 3-25! with s > 1. As in Section 5, we shall use
contradiction to prove that any D,-equivariant map F: (S")? — Ugam @ V, must have a

zero, now using a smooth homotopy argument to extend a non-equivariant result of [5].

6.1 Conversion to the join scheme

In order to use computations of [5], we first convert from the product scheme used so far

to the “join scheme.” For any n > 1, the join
SM*? ={z=(1—-wy, ®uy, |y, v, €S and 0 < u < 1}

of S™ consists of all formal convex sums of any two elements from S™. Topologically,
(S™*? is a sphere of dimension 2n + 1, and the product (S®)? is naturally identified with
the subset of (S®)*2 consisting of all formal sums for which . = 1/2. As for the product,
there is a canonical D,-action on (S™)*2, with the non-free part ((S")*z)>1 consisting of
those z such that either (i) x = 0 or u = 1, or else (ii) © = 1/2 and simultaneously y; = £y,.

Let W, be the subset of R? given by W, = {(r,—r) | r € R}, which we view as
a D,-module by letting Z% act trivially and letting &, act by swapping coordinates. For
arbitrary n,d > 1 and any continuous map f: (S*)2 — R%, one may consider the “join

extension”
Jo): M > RIe W,
given by
JoH) @) = p(l = W) & (n—1/2,1/2 = ). (6.1)

Note that the restriction of J,(f) to (S™)? is precisely }Lf. Observe that Jy(f)(z) = 0 if and
only if © = 1/2 and f(y) = 0, and in particular J,(f) does not vanish on the non-free part
(S™)*2 provided f: (S™)? — R? does not vanish on (S")? . Moreover, if R? is realized as a
D,-module and f: (S™)? — R? is D,-equivariant, it is again immediate that Jy(f) is also
D,-equivariant.

In what follows smoothness will be important, so let us note here that (S*)*? =

S?"+1 has the standard smooth structure if the join is realized by connecting the
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Transversal Generalizations of Hyperplane Equipartitions 23

two copies of S via great circles. Explicitly, each z e (S")*? is of the form z =
(cos(mwu/2)yy, sin(wpu/2)y,) for (y;,y,) € S* and p € [0, 1]. The non-free part is the same
as before. As in Section 5, we view each S"™ = S€ x S? as the join, and now realize this join
explicitly via arcs on great circles connecting the two sphere factors. Corresponding to

this realization of (S™)*?, we will modify the definition of the join map and set
J(f)(z) = cos(mru/2)sin(ru/2)f (y) & (cosz(nu/Z) — 1/2,sin2(nu/2) — 1/2) (6.2)

for each z = (cos(wp/2)y,,sin(wru/2)y,). As before, J(f) is D,-equivariant if f is. Again
J(f)(z) = 0if and only if © = 1/2 and f(y) = 0 and so the zero sets of J,(f) and
J(f) coincide. In the case that f: (S")2 — R< is smooth, equation 6.2 ensures that
J(F): (SMH*2 - R @ W, is smooth. Moreover, it follows easily from this formula that
0 is a regular for J(f) precisely when 0 is a regular value for f. This fact will be needed
crucially in what follows.

As in Section 5, we will compare the join J(F) of any D,-equivariant map
F: ("% — U™ @V, to the join J(G) of an extension G: (S*)? — U™ @V, of a certain D,-
equivariant map G: (5°)% — Ugem, which we describe in Section 6.2. By Proposition 5.3,
there is a non-vanishing D,-equivariant homotopy between the restriction of F and G
to the non-free part (S")? . The following guarantees an equivariant homotopy between

J(F) and J(G), which is non-vanishing on the non-free part.

Proposition 6.2. Let m > 2 and suppose that n =c+d + 1, where ¢ = |'37m] and d > 1.

(@ If fi,fo: (SH2, — (U™ & V,) \ {0} are D,-equivariant maps, then
J(), I (fy): (SH* — (U™ @ W, & V,) \ {0} are D,-equivariantly homotopic.
b) Iffi,fo: (SH? — US™@V, are D,-equivariant maps, which are non-vanishing
on (S")il,then there exists a D,-equivariant homotopy H: (SM)*2x] — Ugam@

V, from J(f,) and J(f,), which is non-vanishing on (S")’;z1 x I.

Remark 6.3. As with Proposition 5.3, it will be important to note that Proposition 6.2
also holds when d = —1, that is, with the module V, omitted.

Proof of Proposition 6.2. For the first claim, Remark 5.4 above shows that there is a D,-
equivariant homotopy H: (S")?, x I — R% between f; and f,. Defining J(H): (S")*% xI —
(U™ @V, ® W) \ {0} by

J(H)(z,t) = cos(ru/2) sin(ru/2)H(y, t) & (cosz(ym/z) —1/2,sin%(wp/2) — 1/2)

gives the desired D,-equivariant homotopy between J(f;) and J(f,).
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For the second claim, we use elementary equivariant obstruction theory to extend
J(H) to an equivariant homotopy J/(PT): (SM*2 x I — U™ @ V,. Namely, given the D,-
equivariant structure on (S®)*?, one has a corresponding D,-equivariant structure on
(S™)*2 <1 by letting D, act trivially on I. Our homotopy is already defined on (S*)%x{0, 1} as
well as the non-free part of (S*)? x {0, 1}, which are both D,-invariant subcomplexes. The
desired equivariant extension now exists simply because the codomain U;Bm eV, W,

is contractible. [ |

Let us outline the argument to follow. As discussed in Sections 6.2 and 6.3,
the map G: (S°?% — U;em will be chosen so that J(G) is smooth, transverse to zero,
and has a zero set J(G)~1(0) consisting of an odd number of full D,-orbits. Using
a combination of the Whitney approximation and Thom transversality theorems, we
will replace (Section 6.4) the continuous equivariant homotopy between J(G) and J(F)
guaranteed by Proposition 6.2 with a smooth equivariant homotopy between J(G) and
some D,-equivariant non-vanishing smooth function. This homotopy will be transverse
to 0 and non-vanishing on the non-free part of (§*)*? x I, from which it will follow
that J(G) has an even number of full D,-orbits. This contradiction establishes that any

equivariant F must vanish and so completes the proof of Theorem 6.1.

6.2 Previous calculations

The existence of the map G will be based on the Borsuk-Ulam-type results of [5] arising
from the m = 25 case of the Grinbaum-Hadwiger-Ramos problem. Crucial to these was
the existence of a certain D,-equivariant CW-structure on (S)*2 for any n > 1. While we
shall not need the details of its construction, we note that it is obtained by intersecting
the unit sphere of (R**1)2 with a cone stratification on (R"*1)? originally due to Fox—
Neuwirth [11] and Bjérner-Ziegler [4]. We refer the interested reader to [5, Section 3] for
further details. We summarize the key properties are as follows (see [5, Theorem 3.11]).
Observe that dim(S”)’;z1 =7, so that none of the top (open) cells of (5*)*? lie in (S”)’;zl.

Theorem 6.4. There is a D,-equivariant CW structure on (S™*2 such that

. (S")’;Z1 is a D,-equivariant subcomplex and the action on the cells of (S)*2 \
(S™)*? is free, and

e the top-dimensional cells of (S*)*? consist of a full D,-orbit.

Let m = 25 with s > 1, and let ¢ = 3m/2. By evaluating measures concentrated on

a non-standard moment curve, it was shown in [5, Section 4.3] that there is a continuous
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Transversal Generalizations of Hyperplane Equipartitions 25
D,-equivariant map Gy : (S°)? — U™ such that Jy(Gy): (S°)*% — UL @ W, the following:

e Jy(Gy) does not vanish on the subcomplex ((S€)*2)(29 of cells of codimen-
sion one.
* Jy(Gp) has an odd number of zeros in a generating top-dimensional cell of

(S™*2, and therefore JO(G)*1 (0) consists of an odd number of full D,-orbits.

*2

*5, and

In particular, note that J,(G,) does not vanish on the non-free part (S™)
therefore G, does not vanish on (SC)2>1. As the zero sets of Jy(G,) and J(Gy) coincide,
we conclude that the same facts hold for J(G,). By the explicit obstruction theory

calculations given in [5], one may state the following:

Proposition 6.5. Let m = 25 and ¢ = 3m/2, where s > 1. Suppose that G: (S°)? — Us™
is a continuous D,-equivariant map such that J(G): (8°)*2 — U?m @ W, is non-vanishing
on [(§9)*2]?9), J(G)~1(0) is finite, and J(G) is a local homeomorphism at each zero of J(G).
Then |J(G)~'(0)| is an odd multiple of 8.

Proof of Proposition 6.5. For G: (S°)2 — US™ as in the statement of Proposition 6.5,
it follows that G is non-vanishing on ((5°)*?)?~D and in particular is non-vanishing
on (SC)2>1. By Remark 6.3 following Proposition 6.2, the restrictions of J(G) and J(G,) to
(Sc)iz1 are necessarily D,-equivariantly homotopic via a non-vanishing homotopy. From
here, we appeal to the equivariant obstruction theory computations given in [5, Section
4.3.2], which we now summarize.

First, as J(G) is non-vanishing on [(S°)*?]?®), composition with the (D,-
equivariant) radial projection p: (US™ @ W,) \ {0} — S(US™ & W,) gives a D,-equivariant

map
a=poJ(G): [(S)*?]?) - SUS™ & W,).
Consider the obstruction co-cycle
o(@) € CE (6592, (8% 73 (SWE™ & V, & W)
For each top-dimensional cell e of (S¢)*?,
o(a)(e) € Ty (SUS™ & W,)) = Z

is the homotopy class of the composition aog: S*¢ — S(U;emQBWZ) of « with the attaching

map ¢: S¢ — [(S°)*?]?9), and so o(e) can therefore be identified with the mapping degree
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deg(aog) once a generator is chosen. As « is non-vanishing on [(5°)*?¢]?9), it is a standard
fact of mapping degree theory (see, e.g., [25, Proposition 4.5]) that deg(« o ¢) is the sum of
the zeros of J(G) which lay in the (open) cell e, where each such zero is counted with signs
and multiplicities. As J(G) is a local homeomorphism at each zero of J(G) by assumption,
each multiplicity is either +1 or —1.

Now consider the obstruction class
lo(e)] € HE (82, (592); 736 SWE™ ® W)

Letting o = p 0 J(Gy) |{(seys2jze, it follows from the d = —1 case of Proposition 6.2 that o
and « are D,-equivariantly homotopic, and therefore that [o(x)] = [0(cg)].

Let e denote a D,-generator of CIZJZH ((S9)*2,(S9)*2); 1y (S(US™ & W,))), and let ¢
denote a generator of nZC(S(Ugem ® W,)) = Z. Thus, o(e) = a - {, where a = deg(p o «p).
The explicit computations of [5, Section 4.3.2] show that [o(x)] = 0 if and only if a is
even. On the other hand, the discussion above shows that number of zeros of J(G;) in
the open cell e is odd, so deg(p o «y) is odd and [o(x)] # 0. This implies that deg(p o «)
is odd as well, and as this degree is the sum >, _;)-1(0)n. £1 ranging over the zeros
of J(G), we conclude that |J(G)~1(0) N e| is also odd. Finally, the zeros of J(G) all lie
in top-dimensional cells by assumption, and by Theorem 6.4(b) the top-dimensional
cells are a free D,-orbit of the generating cell e. By equivariance, each top-dimensional
cell has the same number of zeros, and therefore |J(G)~1(0)| is an odd multiple of 8,

as claimed. [ |

6.3 Construction of the maps G and G

Starting with the D,-equivariant map G,: (S)? — Ugam above, it will follow from
an application of Thom transversality that there exists smooth D,-equivariant map
G: (892 — U™ so that J(G): (S92 — US™ @ W, is transverse to zero and is non-
vanishing on [(S¢)*?]?9. It follows automatically that J(G)~!(0) is a 0-dimensional
manifold, hence is finite, and by the transversality condition that J(G) is a local homeo-
morphism at each zero of J(G). By Proposition 6.5, we therefore have that |J(G)~!(0)| is
an odd multiple of 8.

Proposition 6.6. Let m = 25 and ¢ = 3m/2, where s > 1. Then there exists a smooth D,-
equivariant map G: (S°)? — US™, which is transverse to zero such that J(G): (5)*? —
U™ & W, is non-vanishing on [(S°)*2]?9 and J(G) is transverse to zero. In particular,
|G~1(0)| is an odd multiple of 8.

€202 J8QWIBAON | UO Jasn AjisiaAiun uojs|A a1bsuied Aq /G 1L.8Z/2/91 ZPBUI/UIWI/SE0 ] 0 L /I0p/3]o1lB-00UuBAPE/UIWI/WOo2 dNo dlwapede//:sdjy Wol) papeojuMo(]



Transversal Generalizations of Hyperplane Equipartitions 27

Proof of Proposition 6.6. Let G,: (S°)2 — US™ be as above. By (equivariant) Whitney
approximation [7, Theorem 4.2, Chapter 6], for any ¢ > 0 there exists a smooth D,-
equivariant map G, which is a uniform e¢-approximation of G. It follows immediately
from the explicit formula for the join map that J(Gj) is a uniform e-approximation of
J(G). As each G{ is smooth, the explicit formula for a join map shows that each J(G{)
is smooth as well. By compactness, it follows that J(G§) is non-vanishing on [(5¢)*2](2¢)
for some ¢ > 0. Let G; be such a map. In particular, G, is non-vanishing on the (2c — 1)
skeleton of (S€)2.

By an equivariant version [18, Proposition 2.2] of relative Thom transversality
(see, e.g., [23, Theorem 1.35]), for any ¢ > O there is a D,-equivariant smooth map Gj
which is a uniform e-approximation of G,, is transverse to zero, and is equal to G, on
[(S%)2]2¢=D), This is because the D -action on X := (S€)? \ [((S€)?)¢~V] is free and G, is
automatically transverse to 0 on [(S°)?]?°~V because G, is non-vanishing there, so that
G, can be modified without changing its value on the (2c—1)-skeleton to obtain a uniform
e-approximation which is transverse to 0. By the formula for join maps above, it follows
that each J(GY) is transverse to zero as well (and is a uniform e-approximation of J(G,)).
Finally, by compactness, there exists some ¢ > 0 such that J(G) is non-vanishing on all

of [(5°)*?]29). Letting G = G¢ for some such ¢ completes the proof. [ |

Now let d > 1 be arbitrary and let n = d+c+1. As in Section 5, we let S = S¢xS4,
For each y = (y;,y,) € (S™)2 we have Vi = (cos(nti/Z)yl.C,sin(nti/Z)yf) with y7 € S°,
y? € S9, and ¢; € [0,1]. For G: (S°)2 — U™ as given by Proposition 6.6, we define a

smooth D,—equivariant extension
G: (S - U @V,
by
G(y) = cos(rt, /2) cos(nt,/2) G(¥S,yS) @ (sin(nt,/2)yd, sin(nt,/2)y9). (6.3)
As G is transverse to zero, it follows that G is transverse to zero as well. Moreover,

the zeros of G and G coincide, so G is non-vanishing on [(S")2]@"—1),

J(G): (SVH*2 — Uéem ® V, & W,, we likewise conclude that it is transverse to zero and
non-vanishing on [(S")*2]®™ Again, the zeros of J(G) and J(G) coincide, so J(G)~1(0)

consists of an odd number of free D,-orbits.

Considering

6.4 An equivariant homotopy argument

Recall that we are assuming that F: (S*)? — Uy™ @ V, is never vanishing, and thus and

so is its join extension. In order to make our smooth equivariant homotopy argument,
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we will need to show the existence of a transverse homotopy between J(G) and a non-
vanishing function. As with Proposition 6.5, this follows from an application of Whitney

approximation and Thom transversality.

Proposition 6.7. IfF: (S")% — U™ & V, is never vanishing, then there exists a smooth
homotopy H: (S")*? x I — UgBm ® V, ® W, with the following properties:

e H is transverse to zero,
e H coincides with J(G) on (S)*2 x {0}, and

e H is non-vanishing on (S")’;zl x I as well as on (S)*? x {1}.

Proof of Proposition 6.7. Let W = US™ @ V, @ W,. By Proposition 6.2, there exists a
continuous D,-equivariant homotopy H’: (8™")*2 x I — W from J(G) to J(F) which is non-
vanishing on the non-free part (S”)’;z1 x I. As F is assumed to be never vanishing, so is
J(F). We will now replace this H' by a smooth homotopy, which is transverse to zero
and coincides with J(G) on (S")*2 x {0} and is non-vanishing on (S”)”;z1 x I as well as on
(S™M*2 x {1}.

First, for any ¢ > 0, relative equivariant Whitney approximation [7, Theorem
4.2] guarantees a smooth D,-equivariant map H.: (S*)*? x I — W, which uniformly
approximates H' by ¢. Moreover, each H, may be taken to coincide with J(G) on (S")*2 x {0}
because J(G) is D,-equivariant on the closed subset (S™)*? x {0}. Finally, by compactness
there exists some ¢ > 0 such that H, is non-vanishing on (S”)”;z1 x I as well as on
(S™*2 x {1}. Let H" = H for such ¢. In particular, H” coincides with J(G) on the slice
(S™*2 x {0}.

We now replace H” with a smooth equivariant homotopy H which again coincides
with H on (S™)*2 x {0}, is non-zero on both (S")*4 x I and (S™)*? x {1}, and is in addition
transverse to zero. Namely, as the D,-action on (S™)*? x I is free away from (S")*;z1 x I
and H” is already transverse to zero on (S™)*? x {0,1} and (S”)iz1 x I, by equivariant
Thom transversality [18, Proposition 2.2] one can consider any D,-equivariant uniform
H of H” which is transverse to zero and so that H coincides with H' on (S™)*? x {0, 1}
and (S")*% x I. [ ]

Using the D,-equivariant transverse homotopy H: (S")*2 xI — US™ @ W, ® V, of
Proposition 6.7, we may now prove Theorem 6.1 via a standard zero counting argument
as in [24]. See also [16, 20].

Proof of Theorem 6.1. Let W = US™ & V, ® W,. Assuming that F: (S*)? — U™ & V,

is non-vanishing, let H: (S*)*2 x I — W be as guaranteed by Proposition 6.7. As H is
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transverse to 0, as is H |gny2,0,1)/ it follows that H1(0) is a closed one-dimensional
manifold with boundary dH~1(0) = H~1(0) N ((S*)*? x {0,1}). As H is non-vanishing on
both (§™)*2 x {1} and H | (sny2x(0)= J(G), we conclude that dH~1(0) = J(G)~1(0). Moreover,
as H is non-vanishing on (S”)*;z1 x I, H"1(0) lies in the free part of (S?)*? x I. On the other
hand, H~!(0) is diffeomorphic to a union of segments and circles. It follows that D, freely
permutes each of the segment components of H~!(0): if some non-trivial g € D, set-wise
fixed a segment, then a point of the segment must be fixed by g too, but points outside
(S”)”;z1 x I have trivial stabilizer. Thus, the number of segment components of H~!(0) is
a multiple of |D,|, and therefore dH~1(0) = J(G)~1(0) consists of an even number of full

D,-orbits. This contradicts Proposition 6.6, and therefore F must vanish. [ |

7 A Generalization of A(1,3) = 3 via Topological Reduction

For any m > 1, it is an easy consequence of the Ham Sandwich theorem that an upper
bound A(2m,k) < c implies the upper bound A(m,k + 1) < c (see, e.g. [14, 27]). In
particular, the exact value A(1,3) = 3 of Theorem 1.4 follows from A(2,2) = 3. We now
derive a similar reduction for multiple Radon pairs, which follows from an application

of Sarkaria’s theorem. Theorem 1.7 is then an immediate corollary.

Proposition 7.1. Letc > 1,d > 1,k > 1, and m > 1 be integers. Suppose that the
following holds for any n > d + ¢ + 2:

For any continuous map f: A, ; — R% and any family F of subsets of [n]
with x (KG?*(F)) < 2m, there are k minimal Radon pairs (0, 00) ... (o) o)
for f such that none of the 2% intersections of the form aljE Ne-- ﬂaki contains

a set from F.
Then the following holds for any n > d + ¢ + 2:

For any continuous map f: A — R9 and any family F of subsets

n—1
of [n] with X(KGZHI(]-')) < m, there are k + 1 minimal Radon pairs
(ofr,af),...,(o,jﬂ,o,gﬂ) for f such that none of the 2¥t! intersections of

the form crli Nn---N Ulj:-l contains a set from F.

Proof of Proposition 7.1. We first note that the assumption of Proposition 7.1 implies
that ¢ > m. This is because we are assuming that for any n > d + ¢ + 2 we have in
particular that for any linear map f: A, ; — R? and any family F of subsets of [n] with
X(KGZk (F)) < 2m, there are k minimal Radon pairs (o;",07),..., (0, ;) for f such that

none of the 2F intersections of the form crljE N---N a,j[ contains a set from F. Thus, part
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(1) of Theorem 3.3 is satisfied (with 2m replacing m), and so by part (3) of Theorem 3.3
we have ¢ > A(2m, k). On the other hand, A(2m, k) > f%k_lﬁ by the lower bound of
Ramos [27], so in particular ¢ > m.

Nowletn >d+c+2,letf: A, ;| — R4 be continuous, and suppose that F
is a family of subsets of [n] with X(Ksz+1 (F)) < m,say F = F, U--- U F,, where
X(KszH(}"i)) = 1 for all i € [m]. We show there are there are k + 1 minimal Radon
pairs (al+, O] )reees (°;+1'Uk_+1) for f such that none of the 2k+1 intersections of the form
ali N---N a,:rl contains a set from F.

In order to apply Theorem 1.8, for each i € [m] we define G; to be the family of

subsets of [n] consisting of all 2k_fold unions of pairwise disjoint members of F;, that is,
g, = {U]gzlrj | 7j € F; for all j and 7; N1, = ¢ for all j; 7&]2} .

As )((KszJrl (F;)) =1, each non-empty G; is an intersecting family. Letting § = u;?;lgi, we
therefore have that x(KG(G)) < m and so x(KG(G)) < c. As in the proof of Proposition
2.2,let ¥ denote the simplicial complex on [n] whose minimal non-faces are the sets of
G. Since the set family 2["\ ¥ is obtained from G by including any supersets of elements
of G, we have x(XG(2M™ \ X) = x(XG(G)) < c. Applying Theorem 1.8 to the restriction
f gt 12— R4, we conclude that there is a minimal Radon pair {01+, o, } for f such that
neither af“ nor o; contains any set from G. Thus, the union of any 2% pairwise disjoint
elements from any F; is not contained in either o;" or o .

For each i € [m], we now define
Fi={teFlrCof}and F; ={r e F;|t Coy}.

If 7;" # ¢, then necessarily X(Ksz(]-';’)) = 1 since otherwise o;” would contain the
union of some collection of 2¥ pairwise disjoint elements of F,. Likewise, we have
X(KGZk (F;)) < 1foralli € [m] as well. Letting

/. om T+ m r—
Fr=Un B U VS A

we therefore have that X(KGZk(]-"’)) < 2m. By the assumption of Proposition 7.1, there
must be k minimal Radon pairs (a;,az_),...,(agﬂ,ok_ﬂ) for f such that none of the
intersections of the form ozi n---N 0’25—1 contains any set of F’.

To conclude the proof, suppose that t € F; for some i € [m] and suppose for
contradiction that T were contained in some intersection of the form ali N ozi N---N 01;t+1'
Since 7 is contained in crzi Nn---N cr,jirl, we conclude that 7 is not in either ]-';“ or F;, and

therefore that t is not contained in either 01* oro, .Butt C oli N crzjE N---N o,irl, SO we
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have a contradiction. Thus, none of the 2¥*! intersections of the form ali ﬂcrzfE ne.- ﬂo,il

contains any set from F and the proof is complete. |
We conclude with the proof of Theorem 1.7.

Proof of Theorem 1.7. Appealing to the m = 2 case of Theorem 1.9, Proposition 7.1
shows that for any continuous map f: Az, 4 — R? and any family F of subsets of [d + 5]
with x (KG8(F)) = 1, there are three minimal Radon pairs (ofr,al_), (02+, o, ), and (arj, o3)
for f such that none of the eight intersections of the form ali N azi N asi contains a set

from F. Theorem 1.7 now follows from Theorem 3.3. [ |
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