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ANOTHER LOOK AT RATIONAL TORSION OF MODULAR
JACOBIANS

KENNETH A. RIBET AND PRESTON WAKE

ABSTRACT. We study the rational torsion subgroup of the modular Jacobian
Jo(N) for N a square-free integer. We give a new proof of a result of Ohta
on a generalization of Ogg’s conjecture: for a prime number p { 6N, the
p-primary part of the rational torsion subgroup equals that of the cuspidal
subgroup. Whereas previous proofs of this result used explicit computations
of the cardinalities of these groups, we instead use their structure as modules
for the Hecke algebra.

1. INTRODUCTION

Let N be a square-free integer and let Jy(N) be the Jacobian of the modular
curve Xo(N). In the case where N is prime, Ogg computed the order of the
cuspidal subgroup (the subgroup of Jo(IN) generated by linear equivalence classes
of differences of cusps) [Ogg73] and conjectured that the cuspidal subgroup is the
whole rational torsion subgroup [Ogg75]. Mazur’s proof of Ogg’s conjecture was
one of the principal results of [Maz77].

Ogg’s computation of the order of the cuspidal subgroup has been generalized to
other modular curves by Kubert and Lang (see [KL81] for example). The order of
the cuspidal subgroup for X, (V) with square-free N has been computed by Takagi
[Tak97] using Kubert-Lang theory.

A number of authors have considered the generalization of Ogg’s conjecture to
Jo(IN) where N is a positive integer that is not necessarily prime. Since the cuspidal
subgroup of Jo(N) may not consist entirely of rational points, the generalization
states that the rational torsion subgroup of Jy(N) is contained in the cuspidal sub-
group of this Jacobian. See Lorenzini [Lor95], Conrad-Edixhoven—Stein [CES03],
Ohta [Oht13, Oht14], Yoo [Yool6], and Ren [Ren18] for details. In particular, Ohta
[Oht14] has proven the generalization of Ogg’s conjecture to square-free N. That
is, he proved that the p-primary parts of Jo(IV)(Q)sor and of the cuspidal subgroup
are equal for p > 5 (and p = 3 if 31 N). The computation of the order of the class
group by Takagi was a key input in Ohta’s proof.

In this article, we give a new proof that, for a prime p f 6N, the p-primary
parts of Jy(N)(Q)sor and of the cuspidal subgroup are equal. Our proof is by “pure
thought” —we do not compute the order of either group but instead analyze their
structure as modules for the Hecke algebra.

(Ribet) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-
3840

(Wake) DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MI
48824

E-mail address: ribet@math.berkeley.edu, wakepres@msu.edu.

1


http://arxiv.org/abs/2206.05321v2

2 ANOTHER LOOK AT RATIONAL TORSION OF MODULAR JACOBIANS

Because we do not consider the p-primary parts for primes p dividing 6N, our
results do not completely recover Ohta’s. We have not investigated the possibility
of adapting our method to handle these primes. See the PhD thesis of Lui [Luil9]
for some computational evidence for the generalized Ogg conjecture for 2- and
3-primary parts.

1.1. Structure of the proof. Fix a prime p { 6N. Let C denote the p-primary
part of cuspidal subgroup and 7" denote the p-primary part of the rational torsion
subgroup Jo(N)(Q)tor. Our proof of the following theorem is based on the structure
of C' and T as Hecke modules. See Section 2.1 for precise definitions of the Hecke
operators we use.

Theorem 1.1. The rational torsion subgroup T coincides with its subgroup C.

Let T be the Hecke algebra acting on Jo(N) and let I C T be the Eisenstein
ideal (see Section 2.3 for the precise definitions). The following result is the essential
contribution of this article.

Theorem 1.2. The annihilators of T and C as T-modules satisfy
Annp(C) C T C Anny(T).

Because the annihilator of T is contained in the annihilator of its submodule C,
the two inclusions of Theorem 1.2 imply the equalities

(1.3) Anny(C) = I = Anny (7).

We deduce Theorem 1.1 from (1.3) at the end of Section 2.5, using an argument of
Mazur to show that the Pontryagin dual of T is cyclic as a T-module.

Corollary 1.4. The index of I in T is the order of C =T.

Proof. Indeed, the Pontryagin dual of T is isomorphic to T/I because it is a cyclic
T-module by Theorem 2.5 and has annihilator I by (1.3). O

We prove the inclusions I C Annp(7") and Annp(C') C I separately, by indepen-
dent arguments. The Eichler—Shimura relation implies 7" is annihilated by 7, —¢—1
for almost all primes ¢ (see Lemma 2.4). So, to prove the inclusion I C Anny(7T),
it is enough to show that elements of this type generate I. That is the content of
the following theorem, which we prove in Section 3 using Galois representations.

Theorem 1.5. Let S be a finite set of prime numbers that contains all primes
dividing 6Np. The Fisenstein ideal I is generated by the set of all Ty —q — 1 with

q¢S.

Let T be the Hecke algebra acting on the full space of modular forms (not just
cusp forms) of weight 2 and level I'o(IV). Let I C T be the Eisenstein ideal and
J C T be the ideal generated by the set of all T, — ¢ — 1 for all ¢ ¢ S. Let

o:T/J—-T/I
be the quotient map arising from the inclusion J C I. The content of Theorem 1.5
is that J = I, or, in other words, that « is an isomorphism. To give the flavor of the
proof of Theorem 1.5, we now explain informally why T/J and T/I have the same

minimal primes: Think of Spec(T/I) as the set of normalized Eisenstein eigenforms
and Spec(T/.J) as the set of those normalized eigenforms whose associated Galois
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pseudorepresentation is € + 1, where € : Gg — Z,' is the p-adic cyclotomic charac-
ter. Because of oldforms, the map sending an normalized eigenform to its Galois
pseudorepresentation is not necessarily injective. However, for each ¢ | N, the
Uy-eigenvalue singles out a root of the characteristic polynomial of Frobenius at ¢,
and the map sending an normalized eigenform to its pseudorepresentation plus this
additional data is injective. We show that the normalized Eisenstein eigenforms
fill out all the possibilities for roots of the characteristic polynomial of Frobenius at
¢ with pseudorepresentation e + 1. This shows that Spec(T/I) C Spec(T/J) is an
equality. In Section 3, we give a more precise version of this argument to establish
that « is an isomorphism.

Our proof of the inclusion Annp(C) C I is given in Section 5. It is based on
an interpretation, due to Stevens [Ste85], of C' in terms of the lattice of Eisenstein
series that have integral periods. We use an integrality result about modular units
to show that this lattice is contained in the lattice of Eisenstein series with integral
g-expansion and thereby exhibit a subquotient of C' that has annihilator I.

Remark 1.6. An alternate proof of the inclusion Annp(C) C I will be given in
forthcoming work of Jordan, Ribet, and Scholl related to [JRS22]. This proof
uses p-adic Hodge theory to show that the Hecke algebra T is p-saturated in the
endomorphism ring of the generalized Jacobian of Xy (N) relative to the cusps, and
then proceeds along the lines of the proof of [Rib83, (1.7)].

Remark 1.7. In Section 4, we prove an integrality result about modular units
(Proposition 4.4) using arithmetic geometry techniques. This integrality also fol-
lows from an explicit description of the modular units given by Takagi [Tak97] using
Kubert—Lang theory. We avoid invoking Takagi’s result both in accordance with
our desire for a ‘pure thought’ proof and to show that our method can be used to
give alternate proofs of some of his results (see Corollary 6.1).

2. PRELIMINARIES

In this section we set up notation for modular forms and Hecke algebras, recall
a duality result, and employ arguments from [Maz77] used to reduce the proof of
Theorem 1.1 to Theorem 1.2.

2.1. Modular forms. Let Ms(N) denote the C-vector space of modular forms of
weight 2 and level T'o(N) and let So(N) and E2(N) be the subspaces of Ma(N)
consisting of cusp forms and Eisenstein series, respectively. For a subring R C C,
let M3(N, R) C M3(N) denote the R-module of modular forms whose g-expansion
(at the cusp o0) is in R[q]. Let Sa(N,R) = S2(N) N Mz(N, R) and Ez(N,R) =
E2(N) N MQ(N, R)

The dimension of F2(N) is 2" — 1, where r is the number of prime divisors of N
(see [DS05, Theorem 4.6.2, pg. 133], for example). For each d | N with d > 1, let
Eg be the element of E5(N) such that for prime numbers ¢,

1 ifeld
“‘Z(E”_{e iffJ[d’

if 0| N, and a¢(Eg) = 1+ £ if £+ N. These eigenforms form a basis of E2(N). Since
each Eq is in Eo(N,Z,)), we infer that Ey(N,Z,)) is a free Z,)-module of rank
2" — 1 (although not necessarily with {E;} as basis).
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2.2. Hecke operators. The spaces of modular forms just introduced are equipped
with actions of the classical Hecke operators T,, for n > 1. These operators arise
from correspondences on modular curves (see, for example, [Shi71, Chapter 7]). As
such, they also act on geometric objects such as Jo(NN) and the divisor group of
cusps, but there is some ambiguity as to how a correspondence acts (using either the
“Picard” or the “Albanese” functoriality —see the discussion in [Rib90, pg. 443—
444]). A summary of our conventions is:

e The endomorphism of Jy(/N) denoted Ty here is the same as the one in
[Rib90, pg. 444] defined using Picard functoriality. It satisfies Ty = &,
where & is the endomorphism defined by Shimura in [Shi71, Chapter 7].

e The action of Ty on the cusps is the dual of the “standard” action (for
example, our action of Ty on the cusps is the same as the the action of “I}
on the cusps described in [Ste82, pg. 15]).

To avoid any ambiguity, we now spell this out in more detail.

We use the following notation for modular curves: Yy(N)?" is the quotient of the
upper half-plane by T'g(V), thought of as a complex analytic manifold, and Yy(N)
is the smooth model of Y ()™ over Z(,) (recall that p f IV, so such a smooth model
exists). We use analogous notations Xo(N)** and Xo(N) for the closed modular
curve. Let Cy(N) = Xo(N) — Yo () denote the set of cusps. Let Jo(N) denote the
Jacobian variety of Xy (V).

For a prime number /¢, let t, = (é 2) € GLy(Q)" and consider the subgroup
Do(N;0) =To(N) Nt To(N)t,. Let Yo(N;£)* be the quotient of the upper half-
plane by T'o(N; ¢). There is a correspondence

%(Ny Z)an

PN
Yo (N)*" Yo(N)**

where 7 is the quotient map and ¢, is the map induced by z + t,z. This corre-
spondence extends uniquely to give a correspondence on Xo(N) that preserves the
cusps; we use the same names 7 and ¢y for the maps in this correspondence. Define
the element T; € End(Jo(NV)) by

T, = (tg)*ﬂ*.

The same formula defines an endomorphism T of the group Div’(Co(N)) of degree-
zero divisors on the cusps. The map

Div’(Co(N)) — Jo(N)

sending a divisor to its class is equivariant for these actions of 7.

By identifying Ms(N) with the space of differential forms on Yy (N)*?, the for-
mula Ty = (t¢).7* gives an action of Ty on My(N). This action preserves the
subspaces S2(N) and E2(N), and preserves the R-submodule M3(N, R) if R is a
Z[1/N]-algebra.

2.3. Hecke algebras. Let T C End(My(N)) be the Zp)-algebra generated by the

Hecke operators T; for all primes ¢ > 1. Let~I~ C T be the annihilator of the space
of Eisenstein series. Let T be the image of T in End(S2(N)) and let I C T be the
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image of I. As is customary, for a prime divisor £ of N, we denote the operator T}
by Ug.

2.4. Duality. The following duality is well known. The duality result for cuspforms
(see, for example, [Rib83, Theorem 2.2]) extends to all modular forms because there
is no nonzero mod p modular form of weight 2 and level I'o(N) with constant g-
expansion when p > 3. This fact can be proven using a mod p Atkin—Lehner-type
result (see [Maz77, Lemma I1.5.9, pg. 83] for the prime-level version; the proof
generalizes to higher levels as in [Agal8, Lemma 3.5] or [Oht14, Lemma (2.1.1)])
together with the fact that there are no nonzero mod p modular forms of weight 2
and level 1 [Maz77, Proposition I1.5.6, pg. 81]. Alternatively, a nonzero constant is
the g-expansion of a modular form of weight 0, but, by [Kat77, Some Corollaries
(2), pg. 55], a nonzero mod p modular form of weight 2 cannot have the same
g-expansion as a modular form of smaller weight.

Lemma 2.1. Let M = My(N,Z)).
(1) The pairing
(2.2) M xT = Zgy, (f,T)~ ai1(Tf)
is a perfect pairing of free Z,)-modules of finite rank.
(2) Let X C M be a T-submodule. The pairing (2.2) induces an isomorphism
Hom (M /X, Z)) = Anng (X).
Moreover, if M/X is torsion free, then (2.2) induces an isomorphism
Hom(X,Z,)) = T/Annz(X).

Proof. The analogue of (1) with Q-coefficients is easy and standard. This analogue
implies that the map

U My(N, Zyy) — Homg,, (T, Zy), (f)(T) = ai(Tf)

is injective and that coker W is a finite abelian p-group. To show that W is an isomor-
phism, it suffices to show that coker ¥ is p-torsion free. Let ¢ € Homgz ('fF, Zpy)
be such that p¢ = W(f) for some f € My(N,Z,); we will show that ¢ is in the
image of ¥, and hence that coker ¥ is p-torsion free. Note that for all n > 1,

Since ¢(T,) € Z(y) for all n > 1, this implies that f (mod p) is a constant and thus
it is 0, as was recalled in the sentences before the statement of the lemma. Hence
g:=p 'fisin Ma(N,Z)) and ¢ = ¥(g) is in the image of ¥. This shows that ¥
is an isomorphism, completing the proof of (1). Statement (2) follows immediately
from (1). O

Lemma 2.3. The Z,)-module 'f['/f is free of rank 2" — 1, where r is the number of
prime divisors of N.

Proof. Lemma 2.1(2) applied to X = E3(N, Z,)) gives an isomorphism
T/I = Homg,, (E2(N, Zy)), Zip))-

In particular, ’f['/f is a free Z,)-module of the same rank as Ea(N,Z,)), which is
2" — 1 as discussed in Section 2.1.
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2.5. The Eichler—Shimura relation. The following lemma, which is well known,
shows that many of the elements of I annihilate 7. In Section 3, we will prove the
inclusion I € Annp(7') by showing that these elements generate I.

Lemma 2.4. For every prime q € S, the group T is annihilated by Ty —q — 1.

Proof. Let g be a prime that is not in S. The Eichler—Shimura relation states that
T, = Frq + Vg on Jo(N)r, [Maz77, pg. 89], where Fr, is the Frobenius endomor-
phism of the group scheme Jo(N),r, and V, is the Verschiebung. Since Fr, is the
identity on Jo(N)(F,), this implies that T, = 1+¢q on Jo(N)(F,). But, since ¢ 1 2N,
the reduction modulo ¢ map induces an injection T' — Jo(N)(F,) of T-modules (see
[Kat81, Appendix], for example), so T, =1+ ¢ on T as well. O

2.6. Cyclicity of the dual of 7. Theorem 1.1 follows from Theorem 1.2 together
with the following mild generalization of a theorem Mazur [Maz77, Corollary 11.14.8
pg. 199], which appears in the work of Ohta [Oht14, Proposition (3.5.4)].

Theorem 2.5 (Mazur, Ohta). The Pontryagin dual of T is cyclic as a T-module.

Proof. Tt is equivalent to show that, for all maximal ideals m of T, the m-torsion
subgroup of T, which we denote by T'[m], has dimension at most 1 as a T /m-vector
space. Since, as was noted in the proof of Lemma 2.4, the reduction map T —
Jo(N)(F,) is injective, T'[m] is contained in the m-torsion subgroup of Jo(N)[p](Fp).
Furthermore, as in [Maz77, Proposition 11.14.7 pg. 119], the Cartier—Serre isomor-
phism induces an injective homomorphism

Jo(N)[p](Fp) ®p, F, — H°(Xo(N)/5,,Q2").

Note that, as in Mazur’s proof, the Cartier—Serre isomorphism is Hecke-equivariant
with respect to the our chosen Hecke action on Jy(N) (see also [Wil80, Proposition
6.5]), so this is a homomorphism of T-modules. The m-torsion subgroup of the
right-hand side has dimension at most 1 as a T/m-vector space by the g-expansion
principle. Hence T'[m| has dimension at most 1 as a T/m-vector space. O

2.7. Equality of annihilators implies equality. The cyclicity proven in Theorem 2.5
implies that the equality T'= C of T-modules follows from the equality Anny(T') =
Annyp(C) of annilhilators:

Proof of Theorem 1.1 assuming Theorem 1.2. The inclusion C' C T induces a sur-
jection TV — CV of Pontryagin duals. By Theorem 1.2 and (1.3), this surjection is
a map of T/I-modules and CV is a faithful T/I-module. Then the map TV — C¥
is an isomorphism because, by Theorem 2.5, TV is a cyclic T-module. (|

3. GALOIS REPRESENTATIONS AND THE ANNIHILATOR OF T’

In this section, we prove Theorem 1.5 and the inclusion Anny (7)) 2 I of Theorem 1.2.
Fix a finite set S of prime numbers containing all primes dividing 6 Np.

3.1. Galois representations. Let J C T be the ideal generated by T, — ¢ — 1 for
allg & S.

Lemma 3.1. The ideal J contains the following elements:
(a) Ty —q—1 for each prime ¢t N,
(b) (Up—1)(Uy — L) for each prime £ | N, and
(¢) 11on(Ue — 1), where the product is over the set of prime divisors of N.
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We will prove Lemma 3.1 using properties of Galois representations associated
to eigenforms. Before continuing with the proof, we review the required properties.
To this end, fix a maximal ideal m C T and assume that m o J.

For each minimal prime ideal p C m, there is a corresponding (not necessarily
cuspidal) eigenform f, with coefficients in O, = Thm /p (which is a finite extension
of Zy), defined by a,(fp) =T, (mod p). Let K, be the field of fractions of O,. To
each fy, there is an associated two-dimensional semisimple Galois representation
pp with coefficients in K, contructed by Shimura. See [DDT97, Theorem 3.1]
for a list the properties of p,, which have been established by the work of many
mathematicians; we will rewrite these properties in terms of a representation py
that we now define.

Since Ty, is reduced (see [CE98]), there is an injective homomorphism

(3.2) Tm = T ® Q=[] K,

plm
The product of the Galois representations p, is a continuous representation
pm : Go = GLy(Ty ® Q)

with the following properties:

(1) pm is unramified outside Np,

(2) det(pm) = Keye, the p-adic cyclotomic character,

(3) tr(pm)(Fry) = T, for each prime ¢ { Np, where Fr, is an arithmetic Frobe-
nius.

Since m D J, the Chebotarev density theorem implies that tr(pm)(0) = Keye(o) +1
(mod m) for every o € Gg. This implies that m is ordinary in the sense that T},
is invertible modulo m. Indeed, a theorem of Fontaine (see [Edi92, Theorem 2.6])
implies that the restriction of tr(py,) (mod m) to the inertia group at p is the sum
of two non-trivial characters in the non-ordinary case. Let u, € T} denote the unit
root of x? — Tz + p, which exists by Hensel’s lemma.

The restrictions of py, to decomposition groups at primes dividing Np can be
described as follows:

(4) For every prime ¢ 1 N and every choice of arithmetic Frobenius Fr, € Gg
the trace of pm(Fr/) is given by

tr(pm ) (Fre) = Up + LU, .
(5) For every o in a decomposition group at p, the trace of p,(o) is given by
tr(pm)(0) = KCyC(U))‘il(U) + A(o)

where A is the unramified character sending Frobenius to w,

Proof of Lemma 3.1. Tt is enough to show the containment after completion at all
maximal ideals m € T. We can and do assume m D J because the statement is
clear if J, = ’f['m.

The Chebotarev density implies that the image of tr(pm) is contained in T and
that Jy, is the ideal generated by

tr(pm)(0) — Keye(o) — 1
for all o € Gg. It follows from (3) that T, — ¢ — 1 € J,, for all ¢ f N.
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To prove part (a), it remains to show that T, —p—1 € Jy, or, equivalently, that
up —1 € Jn. Let o be an element of the inertia group at p such that reyc(o) #
1 mod p. Then (5) implies

tr(pm) (Frp) — Keye(Frp) —1 = ACyC(Frp)(u;1 —1)+u,—1€ Jn,
tr(pm)(0Frp) — Keye(oFr,) — 1 = mcyc(a)mcyc(]?‘rp)(ugl 1) +up—1€Jn.
( 1

Subtracting these equations, we find that (keye(0) — 1)kcye(Frp)(u,t — 1) € Ja.
By the assumption on o, the element (Kcyc(0) — 1)keyc(Frp) € Z, is a unit, so
(u,' —1) € Ju. Hence T, — p — 1 € Ju, completing the proof of (a).

For part (b), note that by (4)

tr(pm)(Fre) =€ —1=Up + LU, ' — =1 € J.
Since (Uy — 1)(Up — £) = Ug(Up + LU, — € — 1), this implies (Up — 1)(U; — £) € Jp.

For part (c), let @ =[], 5y(Ur —1). We will show that 2 = 0 in Ty by showing
that  maps to zero in each factor K, under the injective map (3.2). First suppose
that f, is an Eisenstein series. The only eigenforms in E5(N) are the forms Eq
defined in Section 2.1, hence f, = Ey for some d | N with d > 1. In particular,
ae(fy) = 1 for every prime ¢ | d, so  maps to zero in that factor. Next suppose
that f, is a cuspform. Then ay(f,) = 1 for some £ | N by the following lemma of

Ribet and Yoo. Hence z = 0 in T,,. [l

Lemma 3.3 (Ribet, Yoo). Let M be a square-free integer and let p 4 6M. Suppose
that f is a newform of weight 2 and level M such that aq(f) = ¢+ 1 (mod p) for
all gt Mp. Then a,(f) =1 for some €| M.

Proof. See [Yool9]. O

3.2. Proof that J = I. We now prove Theorem 1.5, which is the claim that J = I,
by showing that the elements of J listed in Lemma 3.1 generate I.

Proof of Theorem 1.5. We will show that the natural surjection o : T/J — T/I is
an isomorphism. This will imply that the elements T, — ¢ — 1 for ¢ ¢ S generate I
and hence also generate I.

Let N = {1 ---£, be the prime factorization of N and let R = Z,)[z1,...,z,].
By Lemma 3.1 part (a), the Z,)-algebra homomorphism

s:R—T/J, a;— U; —1

is surjective. Let Z C R be the ideal generated by 125 -2, and x;(x; + 1 — £;)
fori=1,...,r. The map s induces a surjection s : R/Z — 'ﬁ‘/J because s(Z) = 0
by Lemma 3.1 parts (b) and (c). We claim that R/Z is a free Z,)-module of rank
2" — 1, which is the same as the rank of T / I by Lemma 2.3. Indeed, consider the
ideal 7/ C T generated by x;(z; + 1 — ¢;) for i = 1,...,r. Then R/’ is freely
generated by the 2" monomials of degree at most 1 in each z;. The ideal generated
by z1x3 - -2, in R/ is equal to its Z,)-span, which is a direct summand of R/Z’
as Zyy-modules. Since 7 = 7' + x1x3 - - - 2, R, this implies that R/T is free of rank
2" — 1.
The composition
ao5:R/T—T/I
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is a surjective homomorphism of free Z,)-modules of the same finite rank and is
therefore an isomorphism. Since § is surjective, this implies that « is an isomor-
phism, which is the content of the theorem. 0

Since Annp(7') O J by Lemma 2.4, Theorem 1.5 implies the inclusion Annyp(7") 2
which is one of the two inclusions of Theorem 1.2.

4. THE PERIOD LATTICE OF EISENSTEIN SERIES

In this section, we introduce the period lattice in the space of Eisenstein series.
This lattice is closely related to the cuspidal subgroup of Jy(N) and to modular
units by the work of Stevens [Ste85]. We show that the ¢g-expansions of elements of
the period lattice have coefficients in Z,) by first proving an analogous integrality
property for g-expansions of modular units.

Recall from Section 2.2 the notation Y5(N)*" C Xo(N)** for the analytic mod-
ular curves, Yo(N) C Xo(N) for their Z,)-models, and Co(N) = Xo(N) — Yo(N)
for the set of cusps. If R is a commutative Z,)-algebra, let Yo(N)g and Xo(N)r
denote the base-changes of Yy(N) and Xy(N) to R.

4.1. The period lattice. For each Eisenstein series f € FE3(N), consider the
period map [ f: Hy(Yo(N)*,Z) — C, defined by

/fﬁ'—>/7f(z)d2-

The period lattice € is the Z,)-module consisting of those Eisenstein series f for
which the image of [ f is contained in Lp)-

Let U = ((9;,0(]\,).‘1n /C*) @z Zp) be the Z,)-module of (analytic) modular units
modulo scalars. We will refer to elements of U as scalar classes of modular units;
note that the divisor of a modular unit depends only on its scalar class. Let
C = Div’(Cy(N)) @z Z(y) be the Z,)-module of degree-zero divisors with cusp-
idal support. By definition,

C = C/div(U).
Stevens establishes the isomorphism
(4.1) D:U = &, D(u)dlog(q) = dlog(u),

where dlog(q) = 2midz. He proves that div(u) = Res(2miD(u)) for all u € U
[Ste85, pg. 521], where Res: £ — (' is the residue map defined by

Res(f) = Y Res.(f(2)d2)[a].

z€Ch(N)

We will use this isomorphism, together with a integrality result for modular units,
to study the integrality of g-expansions of elements of the period lattice.

4.2. Zy)-integrality of modular units. We show that every (analytic) modular
unit of level I'g(/V) can be written as a complex constant times an Z,-integral
modular unit—that is, a unit in the ring of regular functions of the smooth model
of the modular curve over Z,). Then we show that Z,)-integral modular units
have g-expansions in Z,) using the algebraic description of the infinity cusp.

The following lemmas provide the reduction from analytic modular units to
integral modular units in two steps: first from analytic to rational, then from
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rational to integral. The second lemma is established using a similar method to
that used in the proof of the g-expansion principle.

Lemma 4.2. The homomorphism

OX

X X
Yoo~ Ovamyen/C

sending a unit on Yo(N)qg to the scalar class of its associated analytic modular unit,
18 surjective.

Proof. Since the divisor map div : Oy N)an/(C — Div’(Cy(N)) is injective, the
lemma states that for each analytic umt u?" € OX
u € OY (N)g ~

Let u?* € (’)Y (Nyan and let D = div(u®) in C, and consider the divisor class
D € Pic(Xo(N)g) of D. Then D is in the kernel of the composite map

Yo(N)ans there is an algebraic unit

with the same divisor.

Pic(Xo(N)g) — Pic(Xo(N)c) = Pic(Xo(N)™).

The first map is injective by [Stal8, Tag 0CC5], and the second map is injective
(in fact, an isomorphism) by GAGA (see [Ray71, Théoreme 4.4, pg. 329]). This
injectivity implies that D = 0 in Pic(Xo(N)g), so D = div(u) for some rational
function u on Xo(N)g. Since D is supported on the cusps, u € lefo(N)@ as desired.

O

Lemma 4.3. Base change induces an surjection
X X X
0%y 7 Oxone/Q

Proof. Let u € OY (N)g? , thought of as a rational function on the arithmetic surface
Yo (V) with zeros and poles along the special fiber Yy(/V)r,. Choose a closed point
x € Yp(N)g, with residue field £, a finite extension of F,,, and identify the the local
ring at « with W (k)[T], which is possible because Yy (V) is smooth. Consider the
pullback @ of u to W (k)[T']. Since u is a unit on Yy(N)g, the constant term @(0)
of @ is non-zero, so we can write 4(0) = p"« for some n € Z and o € W(k)*.
We claim that p~"u is a unit in Oy, (y). Indeed, the divisor of p™"u is supported
on Yo(N)r, by assumption, and, since Yp(N) is normal, it must be a union of
irreducible codimension 1 subvarieties. Since Yy(IV) is smooth, Yo(N)r, itself is
irreducible, so the divisor of p~™u is either empty or all of Yo(N)g,. But, by the
definition of n, x is not in the divisor of p~"u, so the divisor is empty and p~"u is
a unit. g

Proposition 4.4. The g-expansion of every element of (’)Y (N)? thought of as an
analytic modular unit, is in Zgy [q]lg~']*.

Proof. The g-expansion of a modular unit is given by pulling back to the infinity
cusp. The infinity cusp extends to the integral model as a morphism

00 : Spec(Zgy [alla™]) = Yo(N)
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of schemes (defined using the Tate elliptic curve). Hence there is a commutative
diagram

O;O(N) - Z(p) [[Q]] [q_l] X

| |

O;O(N)'fm —Clq]l¢g %,

where the horizontal arrows are the g-expansions (that is, pullback along o).
This commutativity implies that the g-expansion of every element in the image
of O3, () = Oy (wyan belongs to Z,[a]lg~"]*. O

4.3. g-expansions of elements of the period lattice. We note the effect of the
isomorphism D from (4.1) on g-expansions. Let u € O)X,O(N)an and let u(q) be the

g-expansion of w and D(u)(¢q) be the g-expansion of D(u). The chain rule and the
fact that dg = 2miqdz imply

(4.5) Dlu)(g) = ¢,

where u/(q) = diqu(q).

Theorem 4.6. For each f € &, the q-expansion of [ has coefficients in Zy). In
other words, £ C Ey(N,Zy)).

Proof. Let S C O)X,O(N)an be the image of the map O)X,O(N) — OSX/O(N)an sending an
integral modular unit to the associated analytic modular unit. By Lemma 4.2

and Lemma 4.3, the composition S — O}X,O(N)an — (’)}X,O(N)an/((jX is surjective.

Then, by Steven’s theorem (4.1), D(S) spans &, so it is enough to show that
D(S) C EQ(N, Z(p))
Let u € S and write the g-expansion of u as ¢"v for some v € Z,) [q]* and

n € Z. By (4.5), the ¢g-expansion of D(u) is n + qul. Since v’ is in Z,)[q], the
g-expansion of D(u) is in Zy [q] and D(u) € Ea(N, Z)). O

5. THE ANNIHILATOR OF THE CUSPIDAL SUBGROUP

We established the inclusion Anng(7) 2 T in Section 3. To complete the proof
of Theorem 1.2. we need to show that C is large in the sense that Anny(C) is
contained in I. The following result implies this needed fact.

Proposition 5.1. There is a subquotient of C' whose Pontryagin dual is a free
T/I-module of rank 1.
Proof. For this proof, let M = My(N,Z)), S = S2(N, Z,)), and E = Ey(N, Z)).
Stevens’s isomorphism D : U = £ (4.1) and the inclusion & C E of Theorem 4.6
induce a natural surjection

C = C/Res(&) — C/Res(E).
On the other hand, the residue theorem gives an exact sequence

0S5 MZES ¢,
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so the residue map induces an injective homomorphism
M C
S+ E " Res(E)
Note that the residue map is Hecke-equivariant with respect to the action of Hecke
operators on C' by Picard functoriality (see [Ste82, pg. 36], for example), which
induces our chosen action of T on C. Hence C has a subquotient that is isomorphic
to SJ% Let X = SJFLE; it remains to show that the Pontryagin dual XV of X is

isomorphic to T/I.
Consider the exact sequence

(5.2) 0—-S—M/E— X —0.

By Lemma 2.1(2), there are duality isomorphisms
HomZ(P) (S’ Z(P)) = Ta HomZ(p) (M/E, Z(p)) >~ T.

Since M/FE is torsion free, Exté(p) (M/E,Zq)) = 0. Because X is finite, there
is are isomorphisms Homgz, , (X, Z,)) = 0 and Exté(p) (X,Zy) = XV. Applying
Homz,,, (=, Z)) to (5.2), we obtain an exact sequence

01 —-T—=XY =0,

so XV =T/I. O

The proposition implies that C has a subquotient whose annihilator is I. Since
any element of T that annihilates C' will annihilate this subquotient, it follows that
Annp(C) C I and this completes the proof of Theorem 1.2. By Corollary 1.4, C
has the same cardinality as its subquotient X. We record some implications of this
as a corollary.

Corollary 5.3.
(1) The period lattice £ coincides with the q-expansion lattice Ex(N, Zy) ).
(2) There is an isomorphism of T-modules

M
s+5 ¢

sending f € M to the class of Res(f) in C.

(3) The Pontryagin dual of C is a cyclic T-module generated by the homomor-
phism X : C' — Q,/Z,, defined as follows: let x € C, choose f € M such that
Res(f) € C represents the class of x, and write f = ae + bg for a,b € Qp,
ec€ E, and g € S; then define A(x) = bai(g) mod Z,,.

Proof. Continue with the notation as in the proof of Proposition 5.1. Recall that
X = SJriE is Pontriagyn dual to T/I, so there is an equality of cardinalities
|X| = |T/I|. The module X is a subquotient of C' as follows

(5.4) XCES, ¢ /Res(E) <— C/Res(E) —— C.

Moreover, |C| = |T/I| by Corollary 1.4. The maps in (5.4) imply a string of
inequalities of cardinalities

IT/I| = |X| < ‘C“/Res(E)‘ < ‘C’/Res(ﬁ)‘ —|o| = [1/1].
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Since the beginning and end of the string are equal, all the inequalities are in fact
equalities. This implies that all the maps in (5.4) are isomorphisms.

The fact that the surjection C'/Res(€) — C/Res(E) is an isomorphism implies
Res(€) = Res(F). Since Res is injective on Eo(N), this shows that F = £, proving
(1). The map described in (2) is the composition of the isomorphisms in (5.4).

The homomorphism A defined in (3) is the composition of the isomorphism de-
fined in (2) with the map A\ : X — Q,/Z,, defined by X (ae + bg) = bai(g) mod Z,,.
By (2), it is enough to show that X generates the dual of X. First note that N
is well defined since M|[1/p] = S[1/p] & E[1/p] as Q-vector spaces. The element of
Ext%p (X,Z,) corresponding to X is class of the extension

0=Zy—2 =X =0

where Z' = {(z,a) € X x Q, | N(z) = amod Z,}. On the other hand, the proof
of Proposition 5.1 shows that Extép (X,Z,) is a free T/I-module generated by the
class of the extension
0—=+%2Zp 72 —X—0
M/E& 17,
((9,—a1(g)) = g€5)
Z 7', (f,a) = (f,a+bai(g))

where f = ae +bg € M withe € E, g € S, a,b € Qp, and o € Z,. A simple
computation shows that this map is an isomorphism of extensions. Hence the class
of the extension given by Z’ generates Extép (X,Z,) and X generates the dual
of X. O

where Z = . There is a map

6. COMPLEMENT: EXPLICIT BASES OF EISENSTEIN SERIES AND MODULAR UNITS

We give explicit bases of & and U as Z,)-modules. For d | N with d > 1, let

12N
ha € U be the scalar class of (717(('12 Z))) , where n(z) is the Dekekind eta function.

Let fq = D(hq) € €, and note that
fa(z) = 12N (Ea(dz) — Ea(z2)).

where F»(z) is the (non-holomorphic) normalized Eisenstein series of weight 2 and
level 1.

Corollary 6.1.
(1) The set {fq : d>1, d| N} is a basis for Eo(N,Zy,)) as a Z,)-module.
(2) The period lattice £ coincides with the q-expansion lattice Ey(N, Zy).
(3) The set {hq : d>1, d| N} is a basis for U as a Z)-module.

Proof. Note that (2) has already been proven in Corollary 5.3(1); we give an alter-
nate proof here. Since each fy; is in &, (1) implies that Eo(N,Z,)) C €. Together
with Theorem 4.6, this inclusion implies (2). Since fq = D(hq) and D is an isomor-
phism, (1) and (2) imply (3).

It remains to prove (1). Let E' C E3(N,Z,)) be the Z,)-submodule generated
by {fa|d>1, d| N}. Since the set {fq | d > 1, d| N} is a Q-basis for E3(N,Q)
(see [DS05, Theorem 4.6.2, pg. 133], for example), the index of £’ in Ex(N,Zy)
is finite. To show this index is 1, it is enough to show that the restriction map

(6.2) HOInZ(p) (Eg (N, Z(p)), Z(p)) — HOInZ(p) (El, Z(p))
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is surjective.
For any divisor d | N, define a functional lg : Ea(N,Z,)) — Z) by

(6.3) la(f) =Y n(d/t)oasan(f).
t|d

where p is the Mobius function and o is the divisor-sum function. In terms of the
duality pairing of Lemma 2.1, l; corresponds to the Hecke operator

tg == H (Ug—f—l),
{£|N:¢ prime}

in that l4(f) = a1 (taf). Nowlet d,s | N with d,s > 1. An elementary computation,
either directly using (6.3) or by computing the action of ¢4 on f,, shows

—12Nd s=d
la(fs) =
0 s #d.
Since —12Nd € Z(Xp), the elements ¢, generate Homg, , (E’,Z,)) and the map (6.2)
is surjective. (|

Corollary 6.1(3) was first proven by Takagi [Tak97, Theorem 4.1] using Kubert—
Lang theory.
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