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ANOTHER LOOK AT RATIONAL TORSION OF MODULAR

JACOBIANS

KENNETH A. RIBET AND PRESTON WAKE

Abstract. We study the rational torsion subgroup of the modular Jacobian
J0(N) for N a square-free integer. We give a new proof of a result of Ohta
on a generalization of Ogg’s conjecture: for a prime number p ∤ 6N , the
p-primary part of the rational torsion subgroup equals that of the cuspidal
subgroup. Whereas previous proofs of this result used explicit computations
of the cardinalities of these groups, we instead use their structure as modules
for the Hecke algebra.

1. Introduction

Let N be a square-free integer and let J0(N) be the Jacobian of the modular
curve X0(N). In the case where N is prime, Ogg computed the order of the
cuspidal subgroup (the subgroup of J0(N) generated by linear equivalence classes
of differences of cusps) [Ogg73] and conjectured that the cuspidal subgroup is the
whole rational torsion subgroup [Ogg75]. Mazur’s proof of Ogg’s conjecture was
one of the principal results of [Maz77].

Ogg’s computation of the order of the cuspidal subgroup has been generalized to
other modular curves by Kubert and Lang (see [KL81] for example). The order of
the cuspidal subgroup for X0(N) with square-free N has been computed by Takagi
[Tak97] using Kubert–Lang theory.

A number of authors have considered the generalization of Ogg’s conjecture to
J0(N) where N is a positive integer that is not necessarily prime. Since the cuspidal
subgroup of J0(N) may not consist entirely of rational points, the generalization
states that the rational torsion subgroup of J0(N) is contained in the cuspidal sub-
group of this Jacobian. See Lorenzini [Lor95], Conrad–Edixhoven–Stein [CES03],
Ohta [Oht13, Oht14], Yoo [Yoo16], and Ren [Ren18] for details. In particular, Ohta
[Oht14] has proven the generalization of Ogg’s conjecture to square-free N . That
is, he proved that the p-primary parts of J0(N)(Q)tor and of the cuspidal subgroup
are equal for p ≥ 5 (and p = 3 if 3 ∤ N). The computation of the order of the class
group by Takagi was a key input in Ohta’s proof.

In this article, we give a new proof that, for a prime p ∤ 6N , the p-primary
parts of J0(N)(Q)tor and of the cuspidal subgroup are equal. Our proof is by “pure
thought”—we do not compute the order of either group but instead analyze their
structure as modules for the Hecke algebra.
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2 ANOTHER LOOK AT RATIONAL TORSION OF MODULAR JACOBIANS

Because we do not consider the p-primary parts for primes p dividing 6N , our
results do not completely recover Ohta’s. We have not investigated the possibility
of adapting our method to handle these primes. See the PhD thesis of Lui [Lui19]
for some computational evidence for the generalized Ogg conjecture for 2- and
3-primary parts.

1.1. Structure of the proof. Fix a prime p ∤ 6N . Let C denote the p-primary
part of cuspidal subgroup and T denote the p-primary part of the rational torsion
subgroup J0(N)(Q)tor. Our proof of the following theorem is based on the structure
of C and T as Hecke modules. See Section 2.1 for precise definitions of the Hecke
operators we use.

Theorem 1.1. The rational torsion subgroup T coincides with its subgroup C.

Let T be the Hecke algebra acting on J0(N) and let I ⊂ T be the Eisenstein
ideal (see Section 2.3 for the precise definitions). The following result is the essential
contribution of this article.

Theorem 1.2. The annihilators of T and C as T-modules satisfy

AnnT(C) ⊆ I ⊆ AnnT(T ).

Because the annihilator of T is contained in the annihilator of its submodule C,
the two inclusions of Theorem 1.2 imply the equalities

(1.3) AnnT(C) = I = AnnT(T ).

We deduce Theorem 1.1 from (1.3) at the end of Section 2.5, using an argument of
Mazur to show that the Pontryagin dual of T is cyclic as a T-module.

Corollary 1.4. The index of I in T is the order of C = T .

Proof. Indeed, the Pontryagin dual of T is isomorphic to T/I because it is a cyclic
T-module by Theorem 2.5 and has annihilator I by (1.3). �

We prove the inclusions I ⊆ AnnT(T ) and AnnT(C) ⊆ I separately, by indepen-
dent arguments. The Eichler–Shimura relation implies T is annihilated by Tq−q−1
for almost all primes q (see Lemma 2.4). So, to prove the inclusion I ⊆ AnnT(T ),
it is enough to show that elements of this type generate I. That is the content of
the following theorem, which we prove in Section 3 using Galois representations.

Theorem 1.5. Let S be a finite set of prime numbers that contains all primes
dividing 6Np. The Eisenstein ideal I is generated by the set of all Tq − q − 1 with
q 6∈ S.

Let T̃ be the Hecke algebra acting on the full space of modular forms (not just

cusp forms) of weight 2 and level Γ0(N). Let Ĩ ⊂ T̃ be the Eisenstein ideal and

J ⊂ T̃ be the ideal generated by the set of all Tq − q − 1 for all q /∈ S. Let

α : T̃/J ։ T̃/Ĩ

be the quotient map arising from the inclusion J ⊆ Ĩ. The content of Theorem 1.5
is that J = Ĩ, or, in other words, that α is an isomorphism. To give the flavor of the
proof of Theorem 1.5, we now explain informally why T̃/J and T̃/Ĩ have the same

minimal primes: Think of Spec(T̃/Ĩ) as the set of normalized Eisenstein eigenforms

and Spec(T̃/J) as the set of those normalized eigenforms whose associated Galois
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pseudorepresentation is ǫ + 1, where ǫ : GQ → Z×
p is the p-adic cyclotomic charac-

ter. Because of oldforms, the map sending an normalized eigenform to its Galois
pseudorepresentation is not necessarily injective. However, for each ℓ | N , the
Uℓ-eigenvalue singles out a root of the characteristic polynomial of Frobenius at ℓ,
and the map sending an normalized eigenform to its pseudorepresentation plus this
additional data is injective. We show that the normalized Eisenstein eigenforms
fill out all the possibilities for roots of the characteristic polynomial of Frobenius at
ℓ with pseudorepresentation ǫ + 1. This shows that Spec(T̃/Ĩ) ⊆ Spec(T̃/J) is an
equality. In Section 3, we give a more precise version of this argument to establish
that α is an isomorphism.

Our proof of the inclusion AnnT(C) ⊆ I is given in Section 5. It is based on
an interpretation, due to Stevens [Ste85], of C in terms of the lattice of Eisenstein
series that have integral periods. We use an integrality result about modular units
to show that this lattice is contained in the lattice of Eisenstein series with integral
q-expansion and thereby exhibit a subquotient of C that has annihilator I.

Remark 1.6. An alternate proof of the inclusion AnnT(C) ⊆ I will be given in
forthcoming work of Jordan, Ribet, and Scholl related to [JRS22]. This proof

uses p-adic Hodge theory to show that the Hecke algebra T̃ is p-saturated in the
endomorphism ring of the generalized Jacobian of X0(N) relative to the cusps, and
then proceeds along the lines of the proof of [Rib83, (1.7)].

Remark 1.7. In Section 4, we prove an integrality result about modular units
(Proposition 4.4) using arithmetic geometry techniques. This integrality also fol-
lows from an explicit description of the modular units given by Takagi [Tak97] using
Kubert–Lang theory. We avoid invoking Takagi’s result both in accordance with
our desire for a ‘pure thought’ proof and to show that our method can be used to
give alternate proofs of some of his results (see Corollary 6.1).

2. Preliminaries

In this section we set up notation for modular forms and Hecke algebras, recall
a duality result, and employ arguments from [Maz77] used to reduce the proof of
Theorem 1.1 to Theorem 1.2.

2.1. Modular forms. Let M2(N) denote the C-vector space of modular forms of
weight 2 and level Γ0(N) and let S2(N) and E2(N) be the subspaces of M2(N)
consisting of cusp forms and Eisenstein series, respectively. For a subring R ⊂ C,
let M2(N,R) ⊂ M2(N) denote the R-module of modular forms whose q-expansion
(at the cusp ∞) is in R[[q]]. Let S2(N,R) = S2(N) ∩ M2(N,R) and E2(N,R) =
E2(N) ∩M2(N,R).

The dimension of E2(N) is 2r − 1, where r is the number of prime divisors of N
(see [DS05, Theorem 4.6.2, pg. 133], for example). For each d | N with d > 1, let
Ed be the element of E2(N) such that for prime numbers ℓ,

aℓ(Ed) =

{

1 if ℓ | d

ℓ if ℓ ∤ d
,

if ℓ | N , and aℓ(Ed) = 1+ ℓ if ℓ ∤ N . These eigenforms form a basis of E2(N). Since
each Ed is in E2(N,Z(p)), we infer that E2(N,Z(p)) is a free Z(p)-module of rank
2r − 1 (although not necessarily with {Ed} as basis).



4 ANOTHER LOOK AT RATIONAL TORSION OF MODULAR JACOBIANS

2.2. Hecke operators. The spaces of modular forms just introduced are equipped
with actions of the classical Hecke operators Tn for n ≥ 1. These operators arise
from correspondences on modular curves (see, for example, [Shi71, Chapter 7]). As
such, they also act on geometric objects such as J0(N) and the divisor group of
cusps, but there is some ambiguity as to how a correspondence acts (using either the
“Picard” or the “Albanese” functoriality—see the discussion in [Rib90, pg. 443–
444]). A summary of our conventions is:

• The endomorphism of J0(N) denoted Tℓ here is the same as the one in
[Rib90, pg. 444] defined using Picard functoriality. It satisfies Tℓ = ξ∗ℓ ,
where ξℓ is the endomorphism defined by Shimura in [Shi71, Chapter 7].

• The action of Tℓ on the cusps is the dual of the “standard” action (for
example, our action of Tℓ on the cusps is the same as the the action of tTℓ

on the cusps described in [Ste82, pg. 15]).

To avoid any ambiguity, we now spell this out in more detail.
We use the following notation for modular curves: Y0(N)an is the quotient of the

upper half-plane by Γ0(N), thought of as a complex analytic manifold, and Y0(N)
is the smooth model of Y0(N)an over Z(p) (recall that p ∤ N , so such a smooth model
exists). We use analogous notations X0(N)an and X0(N) for the closed modular
curve. Let C0(N) = X0(N)−Y0(N) denote the set of cusps. Let J0(N) denote the
Jacobian variety of X0(N).

For a prime number ℓ, let tℓ =
(

1 0
0 ℓ

)

∈ GL2(Q)+ and consider the subgroup

Γ0(N ; ℓ) = Γ0(N) ∩ t−1
ℓ Γ0(N)tℓ. Let Y0(N ; ℓ)an be the quotient of the upper half-

plane by Γ0(N ; ℓ). There is a correspondence

Y0(N ; ℓ)an

π

xxqq
qq
qq
qq
qq tℓ

&&▼
▼▼

▼▼
▼▼

▼▼
▼

Y0(N)an Y0(N)an

where π is the quotient map and tℓ is the map induced by x 7→ tℓx. This corre-
spondence extends uniquely to give a correspondence on X0(N) that preserves the
cusps; we use the same names π and tℓ for the maps in this correspondence. Define
the element Tℓ ∈ End(J0(N)) by

Tℓ = (tℓ)∗π
∗.

The same formula defines an endomorphism Tℓ of the group Div0(C0(N)) of degree-
zero divisors on the cusps. The map

Div0(C0(N)) → J0(N)

sending a divisor to its class is equivariant for these actions of Tℓ.
By identifying M2(N) with the space of differential forms on Y0(N)an, the for-

mula Tℓ = (tℓ)∗π
∗ gives an action of Tℓ on M2(N). This action preserves the

subspaces S2(N) and E2(N), and preserves the R-submodule M2(N,R) if R is a
Z[1/N ]-algebra.

2.3. Hecke algebras. Let T̃ ⊂ End(M2(N)) be the Z(p)-algebra generated by the

Hecke operators Tℓ for all primes ℓ ≥ 1. Let Ĩ ⊂ T̃ be the annihilator of the space
of Eisenstein series. Let T be the image of T̃ in End(S2(N)) and let I ⊂ T be the
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image of Ĩ. As is customary, for a prime divisor ℓ of N , we denote the operator Tℓ

by Uℓ.

2.4. Duality. The following duality is well known. The duality result for cuspforms
(see, for example, [Rib83, Theorem 2.2]) extends to all modular forms because there
is no nonzero mod p modular form of weight 2 and level Γ0(N) with constant q-
expansion when p > 3. This fact can be proven using a mod p Atkin–Lehner-type
result (see [Maz77, Lemma II.5.9, pg. 83] for the prime-level version; the proof
generalizes to higher levels as in [Aga18, Lemma 3.5] or [Oht14, Lemma (2.1.1)])
together with the fact that there are no nonzero mod p modular forms of weight 2
and level 1 [Maz77, Proposition II.5.6, pg. 81]. Alternatively, a nonzero constant is
the q-expansion of a modular form of weight 0, but, by [Kat77, Some Corollaries
(2), pg. 55], a nonzero mod p modular form of weight 2 cannot have the same
q-expansion as a modular form of smaller weight.

Lemma 2.1. Let M = M2(N,Z(p)).

(1) The pairing

(2.2) M × T̃ → Z(p), (f, T ) 7→ a1(Tf)

is a perfect pairing of free Z(p)-modules of finite rank.

(2) Let X ⊂ M be a T̃-submodule. The pairing (2.2) induces an isomorphism

Hom(M/X,Z(p)) ∼= AnnT̃(X).

Moreover, if M/X is torsion free, then (2.2) induces an isomorphism

Hom(X,Z(p)) ∼= T̃/AnnT̃(X).

Proof. The analogue of (1) with Q-coefficients is easy and standard. This analogue
implies that the map

Ψ : M2(N,Z(p)) → HomZ(p)
(T̃,Z(p)), Ψ(f)(T ) = a1(Tf)

is injective and that cokerΨ is a finite abelian p-group. To show that Ψ is an isomor-
phism, it suffices to show that cokerΨ is p-torsion free. Let φ ∈ HomZ(p)

(T̃,Z(p))

be such that pφ = Ψ(f) for some f ∈ M2(N,Z(p)); we will show that φ is in the
image of Ψ, and hence that cokerΨ is p-torsion free. Note that for all n ≥ 1,

an(f) = Ψ(f)(Tn) = pφ(Tn).

Since φ(Tn) ∈ Z(p) for all n ≥ 1, this implies that f (mod p) is a constant and thus
it is 0, as was recalled in the sentences before the statement of the lemma. Hence
g := p−1f is in M2(N,Z(p)) and φ = Ψ(g) is in the image of Ψ. This shows that Ψ
is an isomorphism, completing the proof of (1). Statement (2) follows immediately
from (1). �

Lemma 2.3. The Z(p)-module T̃/Ĩ is free of rank 2r − 1, where r is the number of
prime divisors of N .

Proof. Lemma 2.1(2) applied to X = E2(N,Z(p)) gives an isomorphism

T̃/Ĩ ∼= HomZ(p)
(E2(N,Z(p)),Z(p)).

In particular, T̃/Ĩ is a free Z(p)-module of the same rank as E2(N,Z(p)), which is
2r − 1 as discussed in Section 2.1. �
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2.5. The Eichler–Shimura relation. The following lemma, which is well known,
shows that many of the elements of I annihilate T . In Section 3, we will prove the
inclusion I ⊆ AnnT(T ) by showing that these elements generate I.

Lemma 2.4. For every prime q 6∈ S, the group T is annihilated by Tq − q − 1.

Proof. Let q be a prime that is not in S. The Eichler–Shimura relation states that
Tq = Frq + Vq on J0(N)/Fq

[Maz77, pg. 89], where Frq is the Frobenius endomor-
phism of the group scheme J0(N)/Fq

and Vq is the Verschiebung. Since Frq is the
identity on J0(N)(Fq), this implies that Tq = 1+q on J0(N)(Fq). But, since q ∤ 2N ,
the reduction modulo q map induces an injection T → J0(N)(Fq) of T-modules (see
[Kat81, Appendix], for example), so Tq = 1 + q on T as well. �

2.6. Cyclicity of the dual of T . Theorem 1.1 follows from Theorem 1.2 together
with the following mild generalization of a theorem Mazur [Maz77, Corollary II.14.8
pg. 199], which appears in the work of Ohta [Oht14, Proposition (3.5.4)].

Theorem 2.5 (Mazur, Ohta). The Pontryagin dual of T is cyclic as a T-module.

Proof. It is equivalent to show that, for all maximal ideals m of T, the m-torsion
subgroup of T , which we denote by T [m], has dimension at most 1 as a T/m-vector
space. Since, as was noted in the proof of Lemma 2.4, the reduction map T →
J0(N)(Fp) is injective, T [m] is contained in the m-torsion subgroup of J0(N)[p](F̄p).
Furthermore, as in [Maz77, Proposition II.14.7 pg. 119], the Cartier–Serre isomor-
phism induces an injective homomorphism

J0(N)[p](F̄p)⊗Fp
F̄p →֒ H0(X0(N)/F̄p

,Ω1).

Note that, as in Mazur’s proof, the Cartier–Serre isomorphism is Hecke-equivariant
with respect to the our chosen Hecke action on J0(N) (see also [Wil80, Proposition
6.5]), so this is a homomorphism of T-modules. The m-torsion subgroup of the
right-hand side has dimension at most 1 as a T/m-vector space by the q-expansion
principle. Hence T [m] has dimension at most 1 as a T/m-vector space. �

2.7. Equality of annihilators implies equality. The cyclicity proven in Theorem 2.5
implies that the equality T = C of T-modules follows from the equality AnnT(T ) =
AnnT(C) of annilhilators:

Proof of Theorem 1.1 assuming Theorem 1.2. The inclusion C ⊆ T induces a sur-
jection T∨

։ C∨ of Pontryagin duals. By Theorem 1.2 and (1.3), this surjection is
a map of T/I-modules and C∨ is a faithful T/I-module. Then the map T∨

։ C∨

is an isomorphism because, by Theorem 2.5, T∨ is a cyclic T-module. �

3. Galois representations and the annihilator of T

In this section, we prove Theorem 1.5 and the inclusion AnnT(T ) ⊇ I of Theorem 1.2.
Fix a finite set S of prime numbers containing all primes dividing 6Np.

3.1. Galois representations. Let J ⊂ T̃ be the ideal generated by Tq − q− 1 for
all q 6∈ S.

Lemma 3.1. The ideal J contains the following elements:

(a) Tq − q − 1 for each prime q ∤ N ,
(b) (Uℓ − 1)(Uℓ − ℓ) for each prime ℓ | N , and
(c)

∏

ℓ|N(Uℓ − 1), where the product is over the set of prime divisors of N .
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We will prove Lemma 3.1 using properties of Galois representations associated
to eigenforms. Before continuing with the proof, we review the required properties.
To this end, fix a maximal ideal m ⊂ T̃ and assume that m ⊇ J .

For each minimal prime ideal p ⊂ m, there is a corresponding (not necessarily

cuspidal) eigenform fp with coefficients in Op = T̃m/p (which is a finite extension
of Zp), defined by an(fp) = Tn (mod p). Let Kp be the field of fractions of Op. To
each fp, there is an associated two-dimensional semisimple Galois representation
ρp with coefficients in Kp, contructed by Shimura. See [DDT97, Theorem 3.1]
for a list the properties of ρp, which have been established by the work of many
mathematicians; we will rewrite these properties in terms of a representation ρm
that we now define.

Since Tm is reduced (see [CE98]), there is an injective homomorphism

(3.2) T̃m →֒ T̃m ⊗Q =
∏

p|m

Kp.

The product of the Galois representations ρp is a continuous representation

ρm : GQ → GL2(T̃m ⊗Q)

with the following properties:

(1) ρm is unramified outside Np,
(2) det(ρm) = κcyc, the p-adic cyclotomic character,
(3) tr(ρm)(Frq) = Tq for each prime q ∤ Np, where Frq is an arithmetic Frobe-

nius.

Since m ⊇ J , the Chebotarev density theorem implies that tr(ρm)(σ) ≡ κcyc(σ) + 1
(mod m) for every σ ∈ GQ. This implies that m is ordinary in the sense that Tp

is invertible modulo m. Indeed, a theorem of Fontaine (see [Edi92, Theorem 2.6])
implies that the restriction of tr(ρm) (mod m) to the inertia group at p is the sum

of two non-trivial characters in the non-ordinary case. Let up ∈ T̃×
m denote the unit

root of x2 − Tpx+ p, which exists by Hensel’s lemma.
The restrictions of ρm to decomposition groups at primes dividing Np can be

described as follows:

(4) For every prime ℓ ∤ N and every choice of arithmetic Frobenius Frℓ ∈ GQ

the trace of ρm(Frℓ) is given by

tr(ρm)(Frℓ) = Uℓ + ℓU−1
ℓ .

(5) For every σ in a decomposition group at p, the trace of ρm(σ) is given by

tr(ρm)(σ) = κcyc(σ)λ
−1(σ) + λ(σ)

where λ is the unramified character sending Frobenius to up

Proof of Lemma 3.1. It is enough to show the containment after completion at all
maximal ideals m ⊂ T̃. We can and do assume m ⊇ J because the statement is
clear if Jm = T̃m.

The Chebotarev density implies that the image of tr(ρm) is contained in T̃m and
that Jm is the ideal generated by

tr(ρm)(σ)− κcyc(σ) − 1

for all σ ∈ GQ. It follows from (3) that Tq − q − 1 ∈ Jm for all q ∤ N .
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To prove part (a), it remains to show that Tp−p− 1 ∈ Jm, or, equivalently, that
up − 1 ∈ Jm. Let σ be an element of the inertia group at p such that κcyc(σ) 6≡
1 mod p. Then (5) implies

tr(ρm)(Frp)− κcyc(Frp)− 1 = κcyc(Frp)(u
−1
p − 1) + up − 1 ∈ Jm,

tr(ρm)(σFrp)− κcyc(σFrp)− 1 = κcyc(σ)κcyc(Frp)(u
−1
p − 1) + up − 1 ∈ Jm.

Subtracting these equations, we find that (κcyc(σ) − 1)κcyc(Frp)(u
−1
p − 1) ∈ Jm.

By the assumption on σ, the element (κcyc(σ) − 1)κcyc(Frp) ∈ Zp is a unit, so
(u−1

p − 1) ∈ Jm. Hence Tp − p− 1 ∈ Jm, completing the proof of (a).
For part (b), note that by (4)

tr(ρm)(Frℓ)− ℓ− 1 = Uℓ + ℓU−1
ℓ − ℓ− 1 ∈ Jm.

Since (Uℓ − 1)(Uℓ − ℓ) = Uℓ(Uℓ + ℓU−1
ℓ − ℓ− 1), this implies (Uℓ − 1)(Uℓ − ℓ) ∈ Jm.

For part (c), let x =
∏

ℓ|N(Uℓ − 1). We will show that x = 0 in T̃m by showing

that x maps to zero in each factor Kp under the injective map (3.2). First suppose
that fp is an Eisenstein series. The only eigenforms in E2(N) are the forms Ed

defined in Section 2.1, hence fp = Ed for some d | N with d > 1. In particular,
aℓ(fp) = 1 for every prime ℓ | d, so x maps to zero in that factor. Next suppose
that fp is a cuspform. Then aℓ(fp) = 1 for some ℓ | N by the following lemma of

Ribet and Yoo. Hence x = 0 in T̃m. �

Lemma 3.3 (Ribet, Yoo). Let M be a square-free integer and let p ∤ 6M . Suppose
that f is a newform of weight 2 and level M such that aq(f) ≡ q + 1 (mod p) for
all q ∤ Mp. Then aℓ(f) = 1 for some ℓ | M .

Proof. See [Yoo19]. �

3.2. Proof that J = Ĩ. We now prove Theorem 1.5, which is the claim that J = Ĩ,
by showing that the elements of J listed in Lemma 3.1 generate Ĩ.

Proof of Theorem 1.5. We will show that the natural surjection α : T̃/J ։ T̃/Ĩ is

an isomorphism. This will imply that the elements Tq − q − 1 for q 6∈ S generate Ĩ
and hence also generate I.

Let N = ℓ1 · · · ℓr be the prime factorization of N and let R = Z(p)[x1, . . . , xr].
By Lemma 3.1 part (a), the Z(p)-algebra homomorphism

s : R → T̃/J, xi 7→ Ui − 1

is surjective. Let I ⊂ R be the ideal generated by x1x2 · · ·xr and xi(xi + 1 − ℓi)

for i = 1, . . . , r. The map s induces a surjection s̄ : R/I ։ T̃/J because s(I) = 0
by Lemma 3.1 parts (b) and (c). We claim that R/I is a free Z(p)-module of rank

2r − 1, which is the same as the rank of T̃/Ĩ by Lemma 2.3. Indeed, consider the
ideal I ′ ⊂ I generated by xi(xi + 1 − ℓi) for i = 1, . . . , r. Then R/I ′ is freely
generated by the 2r monomials of degree at most 1 in each xi. The ideal generated
by x1x2 · · ·xr in R/I ′ is equal to its Z(p)-span, which is a direct summand of R/I ′

as Z(p)-modules. Since I = I ′ + x1x2 · · ·xrR, this implies that R/I is free of rank
2r − 1.

The composition

α ◦ s̄ : R/I ։ T̃/Ĩ
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is a surjective homomorphism of free Z(p)-modules of the same finite rank and is
therefore an isomorphism. Since s̄ is surjective, this implies that α is an isomor-
phism, which is the content of the theorem. �

Since AnnT(T ) ⊇ J by Lemma 2.4, Theorem 1.5 implies the inclusion AnnT(T ) ⊇ I,
which is one of the two inclusions of Theorem 1.2.

4. The period lattice of Eisenstein series

In this section, we introduce the period lattice in the space of Eisenstein series.
This lattice is closely related to the cuspidal subgroup of J0(N) and to modular
units by the work of Stevens [Ste85]. We show that the q-expansions of elements of
the period lattice have coefficients in Z(p) by first proving an analogous integrality
property for q-expansions of modular units.

Recall from Section 2.2 the notation Y0(N)an ⊂ X0(N)an for the analytic mod-
ular curves, Y0(N) ⊂ X0(N) for their Z(p)-models, and C0(N) = X0(N) − Y0(N)
for the set of cusps. If R is a commutative Z(p)-algebra, let Y0(N)R and X0(N)R
denote the base-changes of Y0(N) and X0(N) to R.

4.1. The period lattice. For each Eisenstein series f ∈ E2(N), consider the
period map

∫

f : H1(Y0(N)an,Z) → C, defined by
∫

f : γ 7−→

∫

γ

f(z) dz.

The period lattice E is the Z(p)-module consisting of those Eisenstein series f for

which the image of
∫

f is contained in Z(p).

Let U = (O×
Y0(N)an/C

×)⊗Z Z(p) be the Z(p)-module of (analytic) modular units

modulo scalars. We will refer to elements of U as scalar classes of modular units;
note that the divisor of a modular unit depends only on its scalar class. Let
C̃ = Div0(C0(N)) ⊗Z Z(p) be the Z(p)-module of degree-zero divisors with cusp-
idal support. By definition,

C = C̃/div(U).

Stevens establishes the isomorphism

(4.1) D : U
∼
−→ E , D(u) d log(q) = d log(u),

where d log(q) = 2πi dz. He proves that div(u) = Res(2πiD(u)) for all u ∈ U

[Ste85, pg. 521], where Res: E → C̃ is the residue map defined by

Res(f) =
∑

x∈C0(N)

Resx(f(z)dz)[x].

We will use this isomorphism, together with a integrality result for modular units,
to study the integrality of q-expansions of elements of the period lattice.

4.2. Z(p)-integrality of modular units. We show that every (analytic) modular
unit of level Γ0(N) can be written as a complex constant times an Z(p)-integral
modular unit —that is, a unit in the ring of regular functions of the smooth model
of the modular curve over Z(p). Then we show that Z(p)-integral modular units
have q-expansions in Z(p) using the algebraic description of the infinity cusp.

The following lemmas provide the reduction from analytic modular units to
integral modular units in two steps: first from analytic to rational, then from
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rational to integral. The second lemma is established using a similar method to
that used in the proof of the q-expansion principle.

Lemma 4.2. The homomorphism

O×
Y0(N)Q

→ O×
Y0(N)an/C

×

sending a unit on Y0(N)Q to the scalar class of its associated analytic modular unit,
is surjective.

Proof. Since the divisor map div : O×
Y0(N)an/C

× → Div0(C0(N)) is injective, the

lemma states that for each analytic unit uan ∈ O×
Y0(N)an , there is an algebraic unit

u ∈ O×
Y0(N)Q

with the same divisor.

Let uan ∈ O×
Y0(N)an and let D = div(uan) in C̃, and consider the divisor class

D̄ ∈ Pic(X0(N)Q) of D. Then D̄ is in the kernel of the composite map

Pic(X0(N)Q) → Pic(X0(N)C) → Pic(X0(N)an).

The first map is injective by [Sta18, Tag 0CC5], and the second map is injective
(in fact, an isomorphism) by GAGA (see [Ray71, Théorème 4.4, pg. 329]). This
injectivity implies that D̄ = 0 in Pic(X0(N)Q), so D = div(u) for some rational
function u on X0(N)Q. Since D is supported on the cusps, u ∈ O×

Y0(N)Q
as desired.

�

Lemma 4.3. Base change induces an surjection

O×
Y0(N) → O×

Y0(N)Q
/Q×.

Proof. Let u ∈ O×
Y0(N)Q

, thought of as a rational function on the arithmetic surface

Y0(N) with zeros and poles along the special fiber Y0(N)Fp
. Choose a closed point

x ∈ Y0(N)Fp
with residue field k, a finite extension of Fp, and identify the the local

ring at x with W (k)[[T ]], which is possible because Y0(N) is smooth. Consider the
pullback ũ of u to W (k)[[T ]]. Since u is a unit on Y0(N)Q, the constant term ũ(0)
of ũ is non-zero, so we can write ũ(0) = pnα for some n ∈ Z and α ∈ W (k)×.
We claim that p−nu is a unit in OY0(N). Indeed, the divisor of p−nu is supported
on Y0(N)Fp

by assumption, and, since Y0(N) is normal, it must be a union of
irreducible codimension 1 subvarieties. Since Y0(N) is smooth, Y0(N)Fp

itself is
irreducible, so the divisor of p−nu is either empty or all of Y0(N)Fp

. But, by the
definition of n, x is not in the divisor of p−nu, so the divisor is empty and p−nu is
a unit. �

Proposition 4.4. The q-expansion of every element of O×
Y0(N), thought of as an

analytic modular unit, is in Z(p)[[q]][q
−1]×.

Proof. The q-expansion of a modular unit is given by pulling back to the infinity
cusp. The infinity cusp extends to the integral model as a morphism

∞ : Spec(Z(p)[[q]][q
−1]) → Y0(N)

https://stacks.math.columbia.edu/tag/0CC5
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of schemes (defined using the Tate elliptic curve). Hence there is a commutative
diagram

O×
Y0(N)

��

// Z(p)[[q]][q
−1]×

��

O×
Y0(N)an

// C[[q]][q−1]×,

where the horizontal arrows are the q-expansions (that is, pullback along ∞).
This commutativity implies that the q-expansion of every element in the image
of O×

Y0(N) → O×
Y0(N)an belongs to Z(p)[[q]][q

−1]×. �

4.3. q-expansions of elements of the period lattice. We note the effect of the
isomorphism D from (4.1) on q-expansions. Let u ∈ O×

Y0(N)an and let u(q) be the

q-expansion of u and D(u)(q) be the q-expansion of D(u). The chain rule and the
fact that dq = 2πiq dz imply

(4.5) D(u)(q) = q
u′(q)

u(q)
,

where u′(q) = d
dqu(q).

Theorem 4.6. For each f ∈ E, the q-expansion of f has coefficients in Z(p). In
other words, E ⊆ E2(N,Z(p)).

Proof. Let S ⊂ O×
Y0(N)an be the image of the map O×

Y0(N) → O×
Y0(N)an sending an

integral modular unit to the associated analytic modular unit. By Lemma 4.2
and Lemma 4.3, the composition S → O×

Y0(N)an → O×
Y0(N)an/C

× is surjective.

Then, by Steven’s theorem (4.1), D(S) spans E , so it is enough to show that
D(S) ⊂ E2(N,Z(p)).

Let u ∈ S and write the q-expansion of u as qnv for some v ∈ Z(p)[[q]]
×

and

n ∈ Z. By (4.5), the q-expansion of D(u) is n + qv′

v . Since v′ is in Z(p)[[q]], the
q-expansion of D(u) is in Z(p)[[q]] and D(u) ∈ E2(N,Z(p)). �

5. The annihilator of the cuspidal subgroup

We established the inclusion AnnT(T ) ⊇ I in Section 3. To complete the proof
of Theorem 1.2. we need to show that C is large in the sense that AnnT(C) is
contained in I. The following result implies this needed fact.

Proposition 5.1. There is a subquotient of C whose Pontryagin dual is a free
T/I-module of rank 1.

Proof. For this proof, let M = M2(N,Z(p)), S = S2(N,Z(p)), and E = E2(N,Z(p)).

Stevens’s isomorphism D : U
∼
−→ E (4.1) and the inclusion E ⊂ E of Theorem 4.6

induce a natural surjection

C ∼= C̃/Res(E) ։ C̃/Res(E).

On the other hand, the residue theorem gives an exact sequence

0 → S → M
Res
−−→ C̃,
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so the residue map induces an injective homomorphism

M

S + E
→

C̃

Res(E)
.

Note that the residue map is Hecke-equivariant with respect to the action of Hecke
operators on C̃ by Picard functoriality (see [Ste82, pg. 36], for example), which
induces our chosen action of T on C. Hence C has a subquotient that is isomorphic
to M

S+E . Let X = M
S+E ; it remains to show that the Pontryagin dual X∨ of X is

isomorphic to T/I.
Consider the exact sequence

(5.2) 0 → S → M/E → X → 0.

By Lemma 2.1(2), there are duality isomorphisms

HomZ(p)
(S,Z(p)) ∼= T, HomZ(p)

(M/E,Z(p)) ∼= Ĩ .

Since M/E is torsion free, Ext1Z(p)
(M/E,Z(p)) = 0. Because X is finite, there

is are isomorphisms HomZ(p)
(X,Z(p)) = 0 and Ext1Z(p)

(X,Z(p)) ∼= X∨. Applying

HomZ(p)
(−,Z(p)) to (5.2), we obtain an exact sequence

0 → Ĩ → T → X∨ → 0,

so X∨ ∼= T/I. �

The proposition implies that C has a subquotient whose annihilator is I. Since
any element of T that annihilates C will annihilate this subquotient, it follows that
AnnT(C) ⊆ I and this completes the proof of Theorem 1.2. By Corollary 1.4, C
has the same cardinality as its subquotient X . We record some implications of this
as a corollary.

Corollary 5.3.

(1) The period lattice E coincides with the q-expansion lattice E2(N,Z(p)).
(2) There is an isomorphism of T-modules

M

S + E
→ C

sending f ∈ M to the class of Res(f) in C.
(3) The Pontryagin dual of C is a cyclic T-module generated by the homomor-

phism λ : C → Qp/Zp defined as follows: let x ∈ C, choose f ∈ M such that

Res(f) ∈ C̃ represents the class of x, and write f = ae + bg for a, b ∈ Qp,
e ∈ E, and g ∈ S; then define λ(x) = ba1(g) mod Zp.

Proof. Continue with the notation as in the proof of Proposition 5.1. Recall that
X = M

S+E is Pontriagyn dual to T/I, so there is an equality of cardinalities

|X | = |T/I|. The module X is a subquotient of C as follows

(5.4) X
�

� Res // C̃/Res(E) C̃/Res(E)oooo ∼ // C.

Moreover, |C| = |T/I| by Corollary 1.4. The maps in (5.4) imply a string of
inequalities of cardinalities

|T/I| = |X | ≤
∣

∣

∣
C̃/Res(E)

∣

∣

∣
≤

∣

∣

∣
C̃/Res(E)

∣

∣

∣
= |C| = |T/I|.
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Since the beginning and end of the string are equal, all the inequalities are in fact
equalities. This implies that all the maps in (5.4) are isomorphisms.

The fact that the surjection C̃/Res(E) ։ C̃/Res(E) is an isomorphism implies
Res(E) = Res(E). Since Res is injective on E2(N), this shows that E = E , proving
(1). The map described in (2) is the composition of the isomorphisms in (5.4).

The homomorphism λ defined in (3) is the composition of the isomorphism de-
fined in (2) with the map λ′ : X → Qp/Zp defined by λ′(ae+ bg) = ba1(g) mod Zp.
By (2), it is enough to show that λ′ generates the dual of X . First note that λ′

is well defined since M [1/p] = S[1/p]⊕ E[1/p] as Q-vector spaces. The element of
Ext1Zp

(X,Zp) corresponding to λ′ is class of the extension

0 → Zp → Z ′ → X → 0

where Z ′ = {(x, α) ∈ X × Qp | λ′(x) ≡ α mod Zp}. On the other hand, the proof

of Proposition 5.1 shows that Ext1Zp
(X,Zp) is a free T/I-module generated by the

class of the extension

0 → Zp → Z → X → 0

where Z =
M/E ⊕ Zp

〈(g,−a1(g)) : g ∈ S〉
. There is a map

Z → Z ′, (f, α) 7→ (f, α+ ba1(g))

where f = ae + bg ∈ M with e ∈ E, g ∈ S, a, b ∈ Qp, and α ∈ Zp. A simple
computation shows that this map is an isomorphism of extensions. Hence the class
of the extension given by Z ′ generates Ext1Zp

(X,Zp) and λ′ generates the dual
of X . �

6. Complement: explicit bases of Eisenstein series and modular units

We give explicit bases of E and U as Z(p)-modules. For d | N with d > 1, let

hd ∈ U be the scalar class of
(

η(dz)
η(z)

)12N

, where η(z) is the Dekekind eta function.

Let fd = D(hd) ∈ E , and note that

fd(z) = 12N(E2(dz)− E2(z)).

where E2(z) is the (non-holomorphic) normalized Eisenstein series of weight 2 and
level 1.

Corollary 6.1.

(1) The set {fd : d > 1, d | N} is a basis for E2(N,Z(p)) as a Z(p)-module.
(2) The period lattice E coincides with the q-expansion lattice E2(N,Z(p)).
(3) The set {hd : d > 1, d | N} is a basis for U as a Z(p)-module.

Proof. Note that (2) has already been proven in Corollary 5.3(1); we give an alter-
nate proof here. Since each fd is in E , (1) implies that E2(N,Z(p)) ⊆ E . Together
with Theorem 4.6, this inclusion implies (2). Since fd = D(hd) and D is an isomor-
phism, (1) and (2) imply (3).

It remains to prove (1). Let E′ ⊆ E2(N,Z(p)) be the Z(p)-submodule generated
by {fd | d > 1, d | N}. Since the set {fd | d > 1, d | N} is a Q-basis for E2(N,Q)
(see [DS05, Theorem 4.6.2, pg. 133], for example), the index of E′ in E2(N,Z(p))
is finite. To show this index is 1, it is enough to show that the restriction map

(6.2) HomZ(p)
(E2(N,Z(p)),Z(p)) → HomZ(p)

(E′,Z(p))
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is surjective.
For any divisor d | N , define a functional ld : E2(N,Z(p)) → Z(p) by

(6.3) ld(f) =
∑

t|d

µ(d/t)σd/tat(f).

where µ is the Möbius function and σ is the divisor-sum function. In terms of the
duality pairing of Lemma 2.1, ld corresponds to the Hecke operator

td :=
∏

{ℓ|N :ℓ prime}

(Uℓ − ℓ− 1),

in that ld(f) = a1 (tdf). Now let d, s | N with d, s > 1. An elementary computation,
either directly using (6.3) or by computing the action of td on fs, shows

ld(fs) =

{

−12Nd s = d

0 s 6= d.

Since −12Nd ∈ Z×
(p), the elements ℓd generate HomZ(p)

(E′,Z(p)) and the map (6.2)

is surjective. �

Corollary 6.1(3) was first proven by Takagi [Tak97, Theorem 4.1] using Kubert–
Lang theory.
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