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General access to highly valuable a-aminoboronates via late-stage C-H borylation
of amines remains a formidable challenge. To this end, a general, mild, and
photoinduced transition-metal- and strong-base-free radical borylation method
has been developed. This operationally simple method afforded highly regio- and
diastereo-selective late-stage a-borylation products with high functional group
tolerance.
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General and selective metal-free radical

a-C—H borylation of aliphatic amines

Sumon Sarkar," Sidhant Wagulde," Xiangging Jia," and Vladimir Gevorgyan'?*

SUMMARY

Despite recent developments, selective C(sp*)-H borylation of feed-
stock amines remains a formidable challenge. Herein, we have
developed a general, mild, and photoinduced transition-metal-
and strong-base-free method for a-C(sp®)-H borylation of amines.
This protocol features a regioselective 1,5-hydrogen atom transfer
process to access key a-aminoalkyl radical intermediate using
commercially available easy-to-install/remove iodobenzoyl radical
translocating group. Remarkably, this general, efficient, and opera-
tionally simple method allows activation of primary and secondary
a-C-H sites of a broad range of acyclic and cyclic amines toward
highly regio- and diastereo-selective syntheses of valuable a-amino-
boronates. Utility of this protocol has been demonstrated by its
employment in late-stage borylation of structurally complex amines
and formal C-H arylation reaction of amines. Thus, it is expected
that this operationally simple, general, and practical method will
find broad application in organic synthesis and drug discovery.

INTRODUCTION

a-Aminoboronic acids enjoy numerous applications in organic synthesis,' material
science,” and drug discovery® (Figure 1). Traditionally, aminoboronate synthesis re-
lies on pre-functionalized starting materials or multistep routes.” Undeniably,
more attractive approach would be a-C-H borylation of feedstock amines; however,
this remains a formidable challenge.””'” Despite recent developments,'* > exam-
ples of direct a-C-H borylation of amines are extremely scarce in literature and
mostly provide products of terminal- or -site borylation.'®?%® Existing directed
methods typically include transition-metal (TM)-catalyzed guided C-H activation
or deprotonation under strongly basic conditions; thus, both cases involve carbome-
tallation intermediates (A, B; Scheme 1A).%773° TM-catalyzed thermal conditions
often employ amines as a reagent or difficult-to-install/remove directing groups
(DG), such as 2-pyridyl group, on amines. Moreover, positions of functionalization
are often limited to terminal or activated secondary sites.**** The latter approach
requires use of strong base for the deprotonation step and offers a-N-borylation
only at tertiary benzylic sites.’® Thus, a general C-H borylation method operating
under mild conditions is highly desirable. Herein, we report TM- and strong-base-
free, mild C(sp®-H borylation protocol of feedstock amines under operationally
simple, photoinduced conditions operating through radical mechanism (via
intermediate C).

In recent years, metal-free borylation reactions using diboron reagents as radical trap-
ping agents have gained increasing interest in organic synthesis.**>" Thus, we hy-
pothesized that if a-aminoalkyl radical could be accessed via selective hydrogen
atom transfer (HAT),*? % it could be trapped with diboron reagent to afford desired
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THE BIGGER PICTURE

Boronic acid is a functional group
of paramount importance in
organic synthesis, material
science, and drug discovery due
to various cross-coupling
strategies employing boron
compounds to construct complex
structures. Moreover, a-
aminoboronic acid motif, a
bioisostere of amino acid, enjoys
increasing abundance in drugs
and drug candidates. However,
synthesis of many such
compounds remain challenging.
Undoubtedly, the most
straightforward approach is the
late-stage C—H borylation of
feedstock amines and bioactive
molecules, which will also enable
rapid derivatization of
pharmaceutical candidates.
Herein, we report a general, easy-
to-use, mild, metal-free method
for a-C-H borylations of amines
thatis highly regio- and diastereo-
selective and broadly applicable
in late-stage borylation of
complex amine-containing
molecules.
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Figure 1. a-Aminoboronic acid-containing drugs
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aminoboronate.?” Inspired by our previous works on selective activation of

C(sp®-H bonds using radical translocating groups,®”* we envisioned that easy-to-
install and remove and commercially available 2-iodobenzoyl (BZ)-tethered amines
could be employed for a-C-H borylation reaction. Photoinduced single-electron
reduction would generate aryl radical on a DG (D). The followed favored 1,5-HAT at
the proximal a-C(sp®-H site would result in the key aminoalkyl radical E, thus obviating
the requirement of TM or strong base for the C-H bond activation. TM-catalyzed C-H
activation favors primary sites, whereas radical pathway favors activation of weaker
C-H bonds; thus, successful borylation at previously underdeveloped aliphatic
secondary C-H sites was anticipated. The major challenges could involve premature

borylation of more reactive aryl radical D,***”

E,37'67

cyclization or desaturation of the trans-
located a-aminoalkyl radical and hydrodehalogenation via intermolecular HAT
of radical D or E.°® Although guided hydrogen abstraction of amine provides efficient
access to a-aminoalkyl radical E, intermolecular radical trapping of the corresponding
a-aminoalkyl radical remains elusive.®®’ Moreover, despite recent developments,
metal-free borylation of less reactive alkyl radicals, such as a-aminoalkyl radical, re-
mains mostly unsuccessful.>’*® Thus, a general protocol involving diboron-mediated
trapping of a-aminoalkyl radical is yet to be uncovered.*

RESULTS AND DISCUSSION

Gratifyingly, optimization studies®® on borylation of 2-iodobenzoyl (Bz') protected
dibutyl amine 2c allowed to obtain targeted product 3c in 80% isolated yield. The
reaction proceeds with bis(catecolato)diboron (B,caty, 3.5 equiv) under 427 nm light
irradiation and features simple workup procedure upon reaction completion (Fig-
ure 2, entry 1). The reaction is only slightly less efficient with lower excess of
Bycat, or without triethylamine (entries 2 and 3). Control experiments indicated no
reaction with other diboron reagents, such as bis(pinacolato)diboron (Bypin,) or
under dark (entries 4 and 5). More practically, borylation of dibutyl amine can be
performed with respectable efficiency in a semi-one-pot fashion without isolating
the tethered amine intermediate 2c (entry 6). Cyclic piperidine substrate 2j also un-
derwent smooth borylation with 72% of isolated yields (entry 7). Of note, different
radical translocating groups were also tested under these borylation conditions.
Substrates with 2-iodothiobenzoyl (2am), 2-iodobenzenesulfonyl (2an), and
2-iodobenzyl (2ao, 2ap) groups mostly resulted in corresponding reduction (3-A)
and desaturation (3-B) side products with trace or no desired borylation product
(3) formation (entries 8-11).5%
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Scheme 1. Directed a-C-H borylation of amines

With optimized conditions in hand, the generality of this protocol was explored
(Figure 3). To our delight, acyclic amines with primary and secondary C-H sites
delivered borylation product (3a-3e) with up to 93% yield. Acyclic substrates
with competitive a- primary and secondary C-H sites provided regioisomeric mix-
tures (3f/3f" and 3g/3g’), which can be separated by column chromatography.
Expectedly, preference toward the secondary sites was observed. Likely due to
steric reasons, primary (3h) or secondary (3i) C-H sites were preferentially
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Yield of 3 (%)°

Entry  Substrates Deviation from standard conditions

1 2¢ None 84 (80)°

2 2c B,cat; (2 equiv) 70

3 2c Without Etz;N 60

4 2c B,pin; as boron reagent 0

5 2c No light, 80 °C 0

6 2c Directly from dibutyl amine, 58
without isolation of 2¢

7 2j None* 72°

8 2am None o’

9 2an None 0°

10 2ao None trace®

1 2ap None trace®

Figure 2. Optimization of reaction conditions
20.2 mmol scale GC-MS yields. PIsolated yield. “Transesterification required 48 h. “Only reduction by-product (3-A) formed. *Mixture of corresponding
reduction (3-A) and desaturation (3-B) by-products formed.

borylated in the presence of tertiary sites with lower C-H bond dissociation energy

(BDE).®> Next, the scope of the cyclic amines was explored. Azacycles with
different ring sizes (3j-3l) underwent borylation with 61%-82% yields. A broad
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Figure 3. Scope of radical a-C(sp®)-H borylation of amines®
0.2 mmol scale, isolated yields of 3 from corresponding 2.84 21.75 equiv of B,Cat, was used. GC-MS yields for semi-one pot borylation from the

corresponding amine. YIsolated after Boc protection. ®Yield based on recovered starting materials.

range of heterocycles (3m-3x) containing various functional groups, such as ether
(3m), Boc-protected amine (3n), thioether (3r), sulfone (3s), and halides (3t, 3u, and
3x), were found to be competent substrates. Notably, substituted piperidines
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underwent radical borylation with high diastereocontrol. Azacycles with C-4 substi-
tution (3q, 3t-3x) were isolated as single diastereomers.®* This method demon-
strated high functional group tolerance. Thus, sensitive functional groups,
including free amine (3p) and free alcohol (3q), were tolerated under these boryla-
tion reaction conditions. Next, the scope of complex and densely functionalized
molecules was investigated. Similarly, highly regio- and diastereo-selective boryla-
tion was accomplished with C-2 substituted piperidines, such as amino acid 3y
and amino alcohol 3z, albeit with diminished yields. This could be due to a non-se-
lective HAT followed by selective trapping of the unactivated secondary a-amino-
alkyl radical over its less reactive and sterically hindered counterpart. Likewise, tet-
rahydroisoquinoline provided regioselective borylation (3aa) with non-typical
regioselectivity.’” Expectedly, piperidine derivative with multiple types of
weak C-H bonds produced single regioisomer 3ab due to a directed nature of
this transformation. a-C-H borylation works smoothly with complex azacycles
tolerating additional amide (3ac, 3ad), carbamate (3ae), carbamoyl (3af), and
sulfonamide (3ag, 3ah) functionalities, which serve as common DGs under TM-
catalyzed C-H borylation and other C-H activation reactions.”’-*'~** Importantly,
boronate analog of Sunifiram 3ad was accessed with good yield. Likewise,
amine-containing drug fragments of serotonin antagonist LY426965 (3ai) and
chlorcyclizine, buclizine, and meclizine (3aj) underwent radical borylation in good
yields. Expectedly, dopamine derivative delivered secondary site-selective
borylation product (3ak) in good yields. Likewise, a-aminoboronates obtained
from the substrates containing biologically active motif and drug molecules,
such as estrone (3al), cholesterol (3am), and ibuprofen (3an), showcased the
viability of employing this protocol for a late-stage functionalization of complex
amines. Estrone (3al) and cholesterol (3am) substrates also underwent highly dia-
stereo-selective borylation.

In addition to the pinacol esters, other boronates could also be obtained. Thus, cate-
chol boronate (3ja) can be isolated directly upon reaction, however, with diminished
yields. Quenching reaction with fluoride salt afforded fluoroborate 3jb in good
yield.?* Other in situ transesterifications of catecolboronates led to propanediol-
(3jc) and (+)-pinanediol (3jd) boronates. Notably, (+)-pinanediol boronates are
commonly used in stereoselective synthesis.®

Expectedly, this directed borylation method provided complementary regioselec-
tivity (3¢, 3j, and 3m) to that under direct borylation approach, which offers terminal
selectivity in case of acyclicamines (3¢’; Scheme 2A) and g-selectivity in case of cyclic

amines (3j’ and 3m’; Scheme 2B)."¢-29:2¢

The practicality of this method was highlighted by the scale-up experiments
performed with 1.5 equiv of Bycat,, which afforded acyclic (3a) and cyclic (3], 3t,
3v) aminoboronates in good yields (Scheme 3A). Expectedly, methylamine-derived
3a and 3ak’ underwent smooth Suzuki-Miyaura cross-coupling reaction®”-%® to afford
arylated products (4a-4c) in good overall yield, including the in situ arylation and
benzamide deprotection product 4a (Scheme 3B). Moreover, Matteson homologa-
tion of the obtained product provided g-aminoboronate 4d, which was further trans-
formed into B-amino alcohol derivative 4e and functionalized y-aminoboronate
45577 Notably, we have developed LiBH4-mediated mild deprotection of Bz
radical translocating group, which tolerates a broad range of functional groups,
such as alkyl halide (4h), electron-rich arene (4i), amide derivatives (4j-4n), and
different boronates (4m) (Scheme 3C). Moreover, orthogonal deprotection of am-
ides was showcased with piperazine derivative 3n.”?
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Scheme 2. Complementarity of the developed approach with existing direct borylation methods

Next, a series of mechanistic studies were performed to gain insight into the mech-
anism of this reaction. First, radical trapping experiment with 2,2,6,6-Tetramethylpi-
peridin-1-yl)oxyl (TEMPO) led to trace amount of the borylation product 3a” and
notable amounts of the TEMPO-trapping adduct 5a (Scheme 4A). The radical nature
of the transformation was further supported by radical rearrangement experiment
with the substrate containing a cyclopropyl group at the a-position to amine
(2aq), which produced the ring-opening borylation product 6aq (Scheme 4B). The
selective 1,5-HAT process was validated by the deuterium labeling studies, which
confirmed the complete D-atom transfer (2j-D — 3j-D; Scheme 4C). The results of
the light on/off experiment, taken together with the value of the obtained quantum

yield (¢ = 2.6), indicate the involvement of the radical chain mechanism.®*

Based on the literature reports®/-3741:43:47

and the above-mentioned preliminary
studies (Scheme 4),%* the following mechanism for this novel a-borylation reaction
is proposed (Scheme 5). First, a photoinduced homolysis of the C-| bond in F*,
the electron donor-acceptor (EDA) complex of 2 with boron reagent (F), leads to
electrophilic aryl radical D likely via a single-electron transfer (SET) mechanism.”*%*
A subsequent polarity-matched 1,5-HAT generates nucleophilic «a-aminoalkyl
radical E, followed by radical addition to a ligated Bycat, providing G and boryl
radical H, which propagates the radical chain via halogen-atom transfer (XAT) or
HAT with substrate 2. In situ transesterification of catecolboronate G provides
isolable reaction product, pinacol boronate 3. Importantly, N-benzoyl group plays
a key role in the success of this reaction. First, it provides sufficient Thorpe-Ingold
effect. Second, it provides a polarity matching for efficient 1,5-HAT for the genera-
tion of nucleophilic a-aminoalkyl radical. Finally, the presence of N-benzoyl group
suppresses the undesired radical polar crossover (RPC) of a-aminoalkyl radical into
iminium species, leading to desaturation byproduct (3-B), thus favoring efficient

3102 Chem 8, 3096-3108, November 10, 2022
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Scheme 4. Mechanistic studies®*

trapping with diboron reagent. This was supported by the results with benzyl radical
translocating groups (Figure 2, 2an, 2ao), where N-benzyl employment of which pro-
vided a mixture of desaturation and reduction side products.

In conclusion, the first radical a—C(sp3)—H borylation of amines has been developed.
This protocol features photoinduced diboron reagent-mediated mild generation of
aryl radical and selective 1,5-HAT event generating the key a-aminoalkyl radical in-
termediate employing a commercially available, easily installable/removable
2-iodobenzoyl radical translocating group. Remarkably, this method does not
require use of photosensitizer, TM catalyst, or a strong base and allows for efficient,
site-selective C-H activation of broad range of amines, including complex and
pharmaceutically relevant amines. This highly site- and diastereo-selective a-boryla-
tion method is broadly applicable for late-stage functionalization of complex ami-
ne-containing molecules and drugs. It is expected that this operationally simple,
general, and practical method will find broad application in organic synthesis and
drug discovery.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-
filled by the lead contact, Vladimir Gevorgyan (vald@utdallas.edu).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
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