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Sumon Sarkar,1 Sidhant Wagulde,1 Xiangqing Jia,1 and Vladimir Gevorgyan1,2,*

SUMMARY

Despite recent developments, selective C(sp3)–H borylation of feed-
stock amines remains a formidable challenge. Herein, we have
developed a general, mild, and photoinduced transition-metal-
and strong-base-free method for a-C(sp3)–H borylation of amines.
This protocol features a regioselective 1,5-hydrogen atom transfer
process to access key a-aminoalkyl radical intermediate using
commercially available easy-to-install/remove iodobenzoyl radical
translocating group. Remarkably, this general, efficient, and opera-
tionally simple method allows activation of primary and secondary
a-C–H sites of a broad range of acyclic and cyclic amines toward
highly regio- and diastereo-selective syntheses of valuable a-amino-
boronates. Utility of this protocol has been demonstrated by its
employment in late-stage borylation of structurally complex amines
and formal C–H arylation reaction of amines. Thus, it is expected
that this operationally simple, general, and practical method will
find broad application in organic synthesis and drug discovery.

INTRODUCTION

a-Aminoboronic acids enjoy numerous applications in organic synthesis,1 material

science,2 and drug discovery3 (Figure 1). Traditionally, aminoboronate synthesis re-

lies on pre-functionalized starting materials or multistep routes.4–8 Undeniably,

more attractive approach would be a-C–H borylation of feedstock amines; however,

this remains a formidable challenge.9–12 Despite recent developments,13–25 exam-

ples of direct a-C–H borylation of amines are extremely scarce in literature and

mostly provide products of terminal- or b-site borylation.16,20,26 Existing directed

methods typically include transition-metal (TM)-catalyzed guided C–H activation

or deprotonation under strongly basic conditions; thus, both cases involve carbome-

tallation intermediates (A, B; Scheme 1A).27–35 TM-catalyzed thermal conditions

often employ amines as a reagent or difficult-to-install/remove directing groups

(DG), such as 2-pyridyl group, on amines. Moreover, positions of functionalization

are often limited to terminal or activated secondary sites.33,34 The latter approach

requires use of strong base for the deprotonation step and offers a-N-borylation

only at tertiary benzylic sites.30 Thus, a general C–H borylation method operating

under mild conditions is highly desirable. Herein, we report TM- and strong-base-

free, mild C(sp3)–H borylation protocol of feedstock amines under operationally

simple, photoinduced conditions operating through radical mechanism (via

intermediate C).

In recent years, metal-free borylation reactions using diboron reagents as radical trap-

ping agents have gained increasing interest in organic synthesis.36–51 Thus, we hy-

pothesized that if a-aminoalkyl radical could be accessed via selective hydrogen

atom transfer (HAT),52–60 it could be trapped with diboron reagent to afford desired

THE BIGGER PICTURE

Boronic acid is a functional group

of paramount importance in

organic synthesis, material

science, and drug discovery due

to various cross-coupling

strategies employing boron

compounds to construct complex

structures. Moreover, a-

aminoboronic acid motif, a
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increasing abundance in drugs

and drug candidates. However,

synthesis of many such

compounds remain challenging.

Undoubtedly, the most

straightforward approach is the

late-stage C–H borylation of
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molecules, which will also enable

rapid derivatization of

pharmaceutical candidates.

Herein, we report a general, easy-

to-use, mild, metal-free method
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that is highly regio- and diastereo-
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in late-stage borylation of

complex amine-containing

molecules.
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aminoboronate.37 Inspired by our previous works61–68 on selective activation of

C(sp3)–H bonds using radical translocating groups,69–83 we envisioned that easy-to-

install and remove and commercially available 2-iodobenzoyl (BzI)-tethered amines

could be employed for a-C–H borylation reaction. Photoinduced single-electron

reduction would generate aryl radical on a DG (D). The followed favored 1,5-HAT at

the proximal a-C(sp3)–H site would result in the key aminoalkyl radical E, thus obviating

the requirement of TM or strong base for the C–H bond activation. TM-catalyzed C–H

activation favors primary sites, whereas radical pathway favors activation of weaker

C–H bonds; thus, successful borylation at previously underdeveloped aliphatic

secondary C–H sites was anticipated. The major challenges could involve premature

borylation of more reactive aryl radical D,36,39 cyclization or desaturation of the trans-

located a-aminoalkyl radical E,37,67 and hydrodehalogenation via intermolecular HAT

of radical D or E.68 Although guided hydrogen abstraction of amine provides efficient

access to a-aminoalkyl radical E, intermolecular radical trapping of the corresponding

a-aminoalkyl radical remains elusive.68–70 Moreover, despite recent developments,

metal-free borylation of less reactive alkyl radicals, such as a-aminoalkyl radical, re-

mains mostly unsuccessful.37,46 Thus, a general protocol involving diboron-mediated

trapping of a-aminoalkyl radical is yet to be uncovered.46

RESULTS AND DISCUSSION

Gratifyingly, optimization studies84 on borylation of 2-iodobenzoyl (BzI) protected

dibutyl amine 2c allowed to obtain targeted product 3c in 80% isolated yield. The

reaction proceeds with bis(catecolato)diboron (B2cat2, 3.5 equiv) under 427 nm light

irradiation and features simple workup procedure upon reaction completion (Fig-

ure 2, entry 1). The reaction is only slightly less efficient with lower excess of

B2cat2 or without triethylamine (entries 2 and 3). Control experiments indicated no

reaction with other diboron reagents, such as bis(pinacolato)diboron (B2pin2) or

under dark (entries 4 and 5). More practically, borylation of dibutyl amine can be

performed with respectable efficiency in a semi-one-pot fashion without isolating

the tethered amine intermediate 2c (entry 6). Cyclic piperidine substrate 2j also un-

derwent smooth borylation with 72% of isolated yields (entry 7). Of note, different

radical translocating groups were also tested under these borylation conditions.

Substrates with 2-iodothiobenzoyl (2am), 2-iodobenzenesulfonyl (2an), and

2-iodobenzyl (2ao, 2ap) groups mostly resulted in corresponding reduction (3-A)

and desaturation (3-B) side products with trace or no desired borylation product

(3) formation (entries 8–11).84
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With optimized conditions in hand, the generality of this protocol was explored

(Figure 3). To our delight, acyclic amines with primary and secondary C–H sites

delivered borylation product (3a–3e) with up to 93% yield. Acyclic substrates

with competitive a- primary and secondary C–H sites provided regioisomeric mix-

tures (3f/3f’ and 3g/3g’), which can be separated by column chromatography.

Expectedly, preference toward the secondary sites was observed. Likely due to

steric reasons, primary (3h) or secondary (3i) C–H sites were preferentially
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borylated in the presence of tertiary sites with lower C–H bond dissociation energy

(BDE).85 Next, the scope of the cyclic amines was explored. Azacycles with

different ring sizes (3j–3l) underwent borylation with 61%–82% yields. A broad

Figure 2. Optimization of reaction conditions
a0.2 mmol scale GC-MS yields. bIsolated yield. cTransesterification required 48 h. dOnly reduction by-product (3-A) formed. eMixture of corresponding

reduction (3-A) and desaturation (3-B) by-products formed.
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range of heterocycles (3m–3x) containing various functional groups, such as ether

(3m), Boc-protected amine (3n), thioether (3r), sulfone (3s), and halides (3t, 3u, and

3x), were found to be competent substrates. Notably, substituted piperidines
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underwent radical borylation with high diastereocontrol. Azacycles with C-4 substi-

tution (3q, 3t–3x) were isolated as single diastereomers.84 This method demon-

strated high functional group tolerance. Thus, sensitive functional groups,

including free amine (3p) and free alcohol (3q), were tolerated under these boryla-

tion reaction conditions. Next, the scope of complex and densely functionalized

molecules was investigated. Similarly, highly regio- and diastereo-selective boryla-

tion was accomplished with C-2 substituted piperidines, such as amino acid 3y

and amino alcohol 3z, albeit with diminished yields. This could be due to a non-se-

lective HAT followed by selective trapping of the unactivated secondary a-amino-

alkyl radical over its less reactive and sterically hindered counterpart. Likewise, tet-

rahydroisoquinoline provided regioselective borylation (3aa) with non-typical

regioselectivity.32 Expectedly, piperidine derivative with multiple types of

weak C–H bonds produced single regioisomer 3ab due to a directed nature of

this transformation. a-C–H borylation works smoothly with complex azacycles

tolerating additional amide (3ac, 3ad), carbamate (3ae), carbamoyl (3af), and

sulfonamide (3ag, 3ah) functionalities, which serve as common DGs under TM-

catalyzed C–H borylation and other C–H activation reactions.27,31–34 Importantly,

boronate analog of Sunifiram 3ad was accessed with good yield. Likewise,

amine-containing drug fragments of serotonin antagonist LY426965 (3ai) and

chlorcyclizine, buclizine, and meclizine (3aj) underwent radical borylation in good

yields. Expectedly, dopamine derivative delivered secondary site-selective

borylation product (3ak) in good yields. Likewise, a-aminoboronates obtained

from the substrates containing biologically active motif and drug molecules,

such as estrone (3al), cholesterol (3am), and ibuprofen (3an), showcased the

viability of employing this protocol for a late-stage functionalization of complex

amines. Estrone (3al) and cholesterol (3am) substrates also underwent highly dia-

stereo-selective borylation.

In addition to the pinacol esters, other boronates could also be obtained. Thus, cate-

chol boronate (3ja) can be isolated directly upon reaction, however, with diminished

yields. Quenching reaction with fluoride salt afforded fluoroborate 3jb in good

yield.84 Other in situ transesterifications of catecolboronates led to propanediol-

(3jc) and (+)-pinanediol (3jd) boronates. Notably, (+)-pinanediol boronates are

commonly used in stereoselective synthesis.86

Expectedly, this directed borylation method provided complementary regioselec-

tivity (3c, 3j, and 3m) to that under direct borylation approach, which offers terminal

selectivity in case of acyclic amines (3c’; Scheme 2A) and b-selectivity in case of cyclic

amines (3j’ and 3m’; Scheme 2B).16,20,26

The practicality of this method was highlighted by the scale-up experiments

performed with 1.5 equiv of B2cat2, which afforded acyclic (3a) and cyclic (3j, 3t,

3v) aminoboronates in good yields (Scheme 3A). Expectedly, methylamine-derived

3a and 3ak’ underwent smooth Suzuki-Miyaura cross-coupling reaction87,88 to afford

arylated products (4a–4c) in good overall yield, including the in situ arylation and

benzamide deprotection product 4a (Scheme 3B). Moreover, Matteson homologa-

tion of the obtained product provided b-aminoboronate 4d, which was further trans-

formed into b-amino alcohol derivative 4e and functionalized g-aminoboronate

4f.89–91 Notably, we have developed LiBH4-mediated mild deprotection of Bz

radical translocating group, which tolerates a broad range of functional groups,

such as alkyl halide (4h), electron-rich arene (4i), amide derivatives (4j–4n), and

different boronates (4m) (Scheme 3C). Moreover, orthogonal deprotection of am-

ides was showcased with piperazine derivative 3n.92
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Next, a series of mechanistic studies were performed to gain insight into the mech-

anism of this reaction. First, radical trapping experiment with 2,2,6,6-Tetramethylpi-

peridin-1-yl)oxyl (TEMPO) led to trace amount of the borylation product 3a’’ and

notable amounts of the TEMPO-trapping adduct 5a (Scheme 4A). The radical nature

of the transformation was further supported by radical rearrangement experiment

with the substrate containing a cyclopropyl group at the a-position to amine

(2aq), which produced the ring-opening borylation product 6aq (Scheme 4B). The

selective 1,5-HAT process was validated by the deuterium labeling studies, which

confirmed the complete D-atom transfer (2j-D / 3j-D; Scheme 4C). The results of

the light on/off experiment, taken together with the value of the obtained quantum

yield (4 = 2.6), indicate the involvement of the radical chain mechanism.84

Based on the literature reports37,39,41,43,49 and the above-mentioned preliminary

studies (Scheme 4),84 the following mechanism for this novel a-borylation reaction

is proposed (Scheme 5). First, a photoinduced homolysis of the C–I bond in F*,

the electron donor-acceptor (EDA) complex of 2 with boron reagent (F), leads to

electrophilic aryl radical D likely via a single-electron transfer (SET) mechanism.93,94

A subsequent polarity-matched 1,5-HAT generates nucleophilic a-aminoalkyl

radical E, followed by radical addition to a ligated B2cat2 providing G and boryl

radical H, which propagates the radical chain via halogen-atom transfer (XAT) or

HAT with substrate 2. In situ transesterification of catecolboronate G provides

isolable reaction product, pinacol boronate 3. Importantly, N-benzoyl group plays

a key role in the success of this reaction. First, it provides sufficient Thorpe-Ingold

effect. Second, it provides a polarity matching for efficient 1,5-HAT for the genera-

tion of nucleophilic a-aminoalkyl radical. Finally, the presence of N-benzoyl group

suppresses the undesired radical polar crossover (RPC) of a-aminoalkyl radical into

iminium species, leading to desaturation byproduct (3-B), thus favoring efficient

N

X(G = Piv)
[Ir], B2pin2

N

X B

, X = CH2, 57% 
(B = Bpin,  = 6:1)

, X = O, 41%
(B = BF3K)

N

X

Bpin

3j, X = CH2, 72%
3m, X = O, 53%

(G = BzI)
B2cat2

blue LED

n-Bu
N Me

G

n-Bu
N Me

Bz

Bpin

3c, 80%

n-Bu
N

Boc

Bpin[Ir]

, 49%

(G = BzI)

blue LED

[Hartwig]26

B2R4

(G = Boc)

2

2c

GPiv Bz

A  Acyclic amines

B  Cyclic amines

[Hartwig]16, 26 This work

This work

Scheme 2. Complementarity of the developed approach with existing direct borylation methods

ll

3102 Chem 8, 3096–3108, November 10, 2022

Article



Scheme 3. Further transformations of obtained boronates84

aYield based on recovered starting materials. bNMR yields.
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trapping with diboron reagent. This was supported by the results with benzyl radical

translocating groups (Figure 2, 2an, 2ao), whereN-benzyl employment of which pro-

vided a mixture of desaturation and reduction side products.

In conclusion, the first radical a-C(sp3)–H borylation of amines has been developed.

This protocol features photoinduced diboron reagent-mediated mild generation of

aryl radical and selective 1,5-HAT event generating the key a-aminoalkyl radical in-

termediate employing a commercially available, easily installable/removable

2-iodobenzoyl radical translocating group. Remarkably, this method does not

require use of photosensitizer, TM catalyst, or a strong base and allows for efficient,

site-selective C–H activation of broad range of amines, including complex and

pharmaceutically relevant amines. This highly site- and diastereo-selective a-boryla-

tion method is broadly applicable for late-stage functionalization of complex ami-

ne-containing molecules and drugs. It is expected that this operationally simple,

general, and practical method will find broad application in organic synthesis and

drug discovery.

EXPERIMENTAL PROCEDURES
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