
Chem

Article

General and selective metal-free radical α -C–H borylation of aliphatic amines

General access to highly valuable α -aminoboronates via late-stage C–H borylation of amines remains a formidable challenge. To this end, a general, mild, and photoinduced transition-metal- and strong-base-free radical borylation method has been developed. This operationally simple method afforded highly regio- and diastereo-selective late-stage α -borylation products with high functional group tolerance.

Sumon Sarkar, Sidhant Wagulde, Xiangqing Jia, Vladimir Gevorgyan

vlad@utdallas.edu

Highlights

General, mild, transition-metal-free method for $\alpha\text{-C(sp}^3)\text{-H}$ borylation of amines

Highly regio- and diastereoselective radical borylation

Operationally simple method with broad scope and high functional group tolerance

Late-stage borylation of complex amines and drugs

Sarkar et al., Chem *8*, 3096–3108 November 10, 2022 © 2022 Elsevier Inc. https://doi.org/10.1016/j.chempr.2022.07.022

Article

General and selective metal-free radical α -C–H borylation of aliphatic amines

Sumon Sarkar, Sidhant Wagulde, Xiangqing Jia, and Vladimir Gevorgyan 1,2,*

SUMMARY

Despite recent developments, selective C(sp³)-H borylation of feedstock amines remains a formidable challenge. Herein, we have developed a general, mild, and photoinduced transition-metaland strong-base-free method for α -C(sp³)–H borylation of amines. This protocol features a regioselective 1,5-hydrogen atom transfer process to access key α -aminoalkyl radical intermediate using commercially available easy-to-install/remove iodobenzoyl radical translocating group. Remarkably, this general, efficient, and operationally simple method allows activation of primary and secondary α-C-H sites of a broad range of acyclic and cyclic amines toward highly regio- and diastereo-selective syntheses of valuable α -aminoboronates. Utility of this protocol has been demonstrated by its employment in late-stage borylation of structurally complex amines and formal C-H arylation reaction of amines. Thus, it is expected that this operationally simple, general, and practical method will find broad application in organic synthesis and drug discovery.

INTRODUCTION

 α -Aminoboronic acids enjoy numerous applications in organic synthesis, ¹ material science,² and drug discovery³ (Figure 1). Traditionally, aminoboronate synthesis relies on pre-functionalized starting materials or multistep routes. 4-8 Undeniably, more attractive approach would be α -C–H borylation of feedstock amines; however, this remains a formidable challenge. 9-12 Despite recent developments, 13-25 examples of direct α -C-H borylation of amines are extremely scarce in literature and mostly provide products of terminal- or β -site borylation. ^{16,20,26} Existing directed methods typically include transition-metal (TM)-catalyzed guided C-H activation or deprotonation under strongly basic conditions; thus, both cases involve carbometallation intermediates (A, B; Scheme 1A).²⁷⁻³⁵ TM-catalyzed thermal conditions often employ amines as a reagent or difficult-to-install/remove directing groups (DG), such as 2-pyridyl group, on amines. Moreover, positions of functionalization are often limited to terminal or activated secondary sites. 33,34 The latter approach requires use of strong base for the deprotonation step and offers α -N-borylation only at tertiary benzylic sites. 30 Thus, a general C-H borylation method operating under mild conditions is highly desirable. Herein, we report TM- and strong-basefree, mild C(sp³)-H borylation protocol of feedstock amines under operationally simple, photoinduced conditions operating through radical mechanism (via intermediate C).

In recent years, metal-free borylation reactions using diboron reagents as radical trapping agents have gained increasing interest in organic synthesis. $^{36-51}$ Thus, we hypothesized that if α -aminoalkyl radical could be accessed via selective hydrogen atom transfer (HAT), $^{52-60}$ it could be trapped with diboron reagent to afford desired

THE BIGGER PICTURE

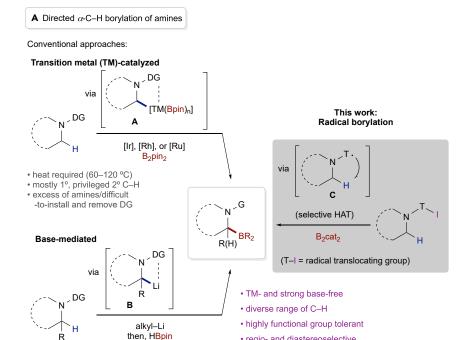
Boronic acid is a functional group of paramount importance in organic synthesis, material science, and drug discovery due to various cross-coupling strategies employing boron compounds to construct complex structures. Moreover, α aminoboronic acid motif, a bioisostere of amino acid, enjoys increasing abundance in drugs and drug candidates. However, synthesis of many such compounds remain challenging. Undoubtedly, the most straightforward approach is the late-stage C-H borylation of feedstock amines and bioactive molecules, which will also enable rapid derivatization of pharmaceutical candidates. Herein, we report a general, easyto-use, mild, metal-free method for α -C-H borylations of amines that is highly regio- and diastereoselective and broadly applicable in late-stage borylation of complex amine-containing molecules.

Figure 1. α-Aminoboronic acid-containing drugs

aminoboronate.³⁷ Inspired by our previous works⁶¹⁻⁶⁸ on selective activation of C(sp³)-H bonds using radical translocating groups, ⁶⁹⁻⁸³ we envisioned that easy-toinstall and remove and commercially available 2-iodobenzoyl (Bzl)-tethered amines could be employed for α -C-H borylation reaction. Photoinduced single-electron reduction would generate aryl radical on a DG (D). The followed favored 1,5-HAT at the proximal α -C(sp³)–H site would result in the key aminoalkyl radical E, thus obviating the requirement of TM or strong base for the C-H bond activation. TM-catalyzed C-H activation favors primary sites, whereas radical pathway favors activation of weaker C-H bonds; thus, successful borylation at previously underdeveloped aliphatic secondary C-H sites was anticipated. The major challenges could involve premature borylation of more reactive aryl radical D, 36,39 cyclization or desaturation of the translocated α -aminoalkyl radical E, 37,67 and hydrodehalogenation via intermolecular HAT of radical D or E.⁶⁸ Although guided hydrogen abstraction of amine provides efficient access to α -aminoalkyl radical E, intermolecular radical trapping of the corresponding α -aminoalkyl radical remains elusive. Moreover, despite recent developments, metal-free borylation of less reactive alkyl radicals, such as α -aminoalkyl radical, remains mostly unsuccessful. 37,46 Thus, a general protocol involving diboron-mediated trapping of α -aminoalkyl radical is yet to be uncovered.⁴⁶

RESULTS AND DISCUSSION

Gratifyingly, optimization studies⁸⁴ on borylation of 2-iodobenzoyl (Bz^I) protected dibutyl amine 2c allowed to obtain targeted product 3c in 80% isolated yield. The reaction proceeds with bis(catecolato)diboron (B₂cat₂, 3.5 equiv) under 427 nm light irradiation and features simple workup procedure upon reaction completion (Figure 2, entry 1). The reaction is only slightly less efficient with lower excess of B₂cat₂ or without triethylamine (entries 2 and 3). Control experiments indicated no reaction with other diboron reagents, such as bis(pinacolato)diboron (B2pin2) or under dark (entries 4 and 5). More practically, borylation of dibutyl amine can be performed with respectable efficiency in a semi-one-pot fashion without isolating the tethered amine intermediate 2c (entry 6). Cyclic piperidine substrate 2j also underwent smooth borylation with 72% of isolated yields (entry 7). Of note, different radical translocating groups were also tested under these borylation conditions. Substrates with 2-iodothiobenzoyl (2am), 2-iodobenzenesulfonyl (2an), and 2-iodobenzyl (2ao, 2ap) groups mostly resulted in corresponding reduction (3-A) and desaturation (3-B) side products with trace or no desired borylation product (3) formation (entries 8-11).84


¹Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, TX 75080, USA

²Lead contact

^{*}Correspondence: vlad@utdallas.edu https://doi.org/10.1016/j.chempr.2022.07.022

• regio- and diastereoselective • room temperature, operationally simple

B Reaction design and potential challenges

strong base requiredonly benzylic C–H

Ŕ

Scheme 1. Directed $\alpha\text{-C-H}$ borylation of amines

With optimized conditions in hand, the generality of this protocol was explored (Figure 3). To our delight, acyclic amines with primary and secondary C-H sites delivered borylation product (3a-3e) with up to 93% yield. Acyclic substrates with competitive α - primary and secondary C-H sites provided regioisomeric mixtures (3f/3f' and 3g/3g'), which can be separated by column chromatography. Expectedly, preference toward the secondary sites was observed. Likely due to steric reasons, primary (3h) or secondary (3i) C-H sites were preferentially

Entry	Substrates	Deviation from standard conditions	Yield of 3 (%)°
1	2c	None	84 (80) ^b
2	2c	B₂cat₂ (2 equiv)	70
3	2c	Without Et₃N	60
4	2c	B ₂ pin ₂ as boron reagent	0
5	2c	No light, 80 °C	0
6	2c	Directly from dibutyl amine, without isolation of 2c	58
7	2j	None ^c	72 ^b
8	2am	None	0 ^d
9	2an	None	0 ^d
10	2ao	None	trace ^e
11	2ap	None	trace ^e

Figure 2. Optimization of reaction conditions

^a0.2 mmol scale GC-MS yields. ^bIsolated yield. ^cTransesterification required 48 h. ^dOnly reduction by-product (3-A) formed. ^eMixture of corresponding reduction (3-A) and desaturation (3-B) by-products formed.

borylated in the presence of tertiary sites with lower C–H bond dissociation energy (BDE). 85 Next, the scope of the cyclic amines was explored. Azacycles with different ring sizes (3j–3l) underwent borylation with 61%–82% yields. A broad

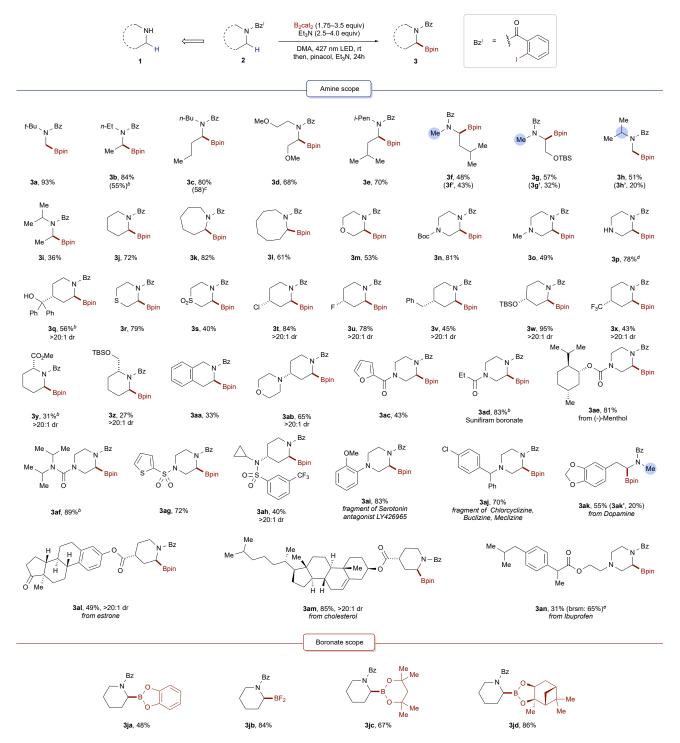


Figure 3. Scope of radical α -C(sp³)–H borylation of amines^a

 $^{\circ}0.2$ mmol scale, isolated yields of 3 from corresponding 2. 84 b1.75 equiv of B_2 Cat $_2$ was used. $^{\circ}$ GC-MS yields for semi-one pot borylation from the corresponding amine. d Isolated after Boc protection. $^{\circ}$ Yield based on recovered starting materials.

range of heterocycles (3m-3x) containing various functional groups, such as ether (3m), Boc-protected amine (3n), thioether (3r), sulfone (3s), and halides (3t, 3u, and 3x), were found to be competent substrates. Notably, substituted piperidines

underwent radical borylation with high diastereocontrol. Azacycles with C-4 substitution (3q, 3t-3x) were isolated as single diastereomers.⁸⁴ This method demonstrated high functional group tolerance. Thus, sensitive functional groups, including free amine (3p) and free alcohol (3q), were tolerated under these borylation reaction conditions. Next, the scope of complex and densely functionalized molecules was investigated. Similarly, highly regio- and diastereo-selective borylation was accomplished with C-2 substituted piperidines, such as amino acid 3y and amino alcohol 3z, albeit with diminished yields. This could be due to a non-selective HAT followed by selective trapping of the unactivated secondary α -aminoalkyl radical over its less reactive and sterically hindered counterpart. Likewise, tetrahydroisoquinoline provided regioselective borylation (3aa) with non-typical regioselectivity.³² Expectedly, piperidine derivative with multiple types of weak C-H bonds produced single regioisomer 3ab due to a directed nature of this transformation. α -C-H borylation works smoothly with complex azacycles tolerating additional amide (3ac, 3ad), carbamate (3ae), carbamoyl (3af), and sulfonamide (3ag, 3ah) functionalities, which serve as common DGs under TMcatalyzed C-H borylation and other C-H activation reactions. 27,31-34 Importantly, boronate analog of Sunifiram 3ad was accessed with good yield. Likewise, amine-containing drug fragments of serotonin antagonist LY426965 (3ai) and chlorcyclizine, buclizine, and meclizine (3aj) underwent radical borylation in good yields. Expectedly, dopamine derivative delivered secondary site-selective borylation product (3ak) in good yields. Likewise, α -aminoboronates obtained from the substrates containing biologically active motif and drug molecules, such as estrone (3al), cholesterol (3am), and ibuprofen (3an), showcased the viability of employing this protocol for a late-stage functionalization of complex amines. Estrone (3al) and cholesterol (3am) substrates also underwent highly diastereo-selective borylation.

In addition to the pinacol esters, other boronates could also be obtained. Thus, catechol boronate (3ja) can be isolated directly upon reaction, however, with diminished yields. Quenching reaction with fluoride salt afforded fluoroborate 3jb in good yield. Other in situ transesterifications of catecolboronates led to propanediol-(3jc) and (+)-pinanediol (3jd) boronates. Notably, (+)-pinanediol boronates are commonly used in stereoselective synthesis. 86

Expectedly, this directed borylation method provided complementary regioselectivity (3c, 3j, and 3m) to that under direct borylation approach, which offers terminal selectivity in case of acyclic amines (3c'; Scheme 2A) and β -selectivity in case of cyclic amines (3j' and 3m'; Scheme 2B). 16,20,26

The practicality of this method was highlighted by the scale-up experiments performed with 1.5 equiv of B_2cat_2 , which afforded acyclic (3a) and cyclic (3j, 3t, 3v) aminoboronates in good yields (Scheme 3A). Expectedly, methylamine-derived 3a and 3ak' underwent smooth Suzuki-Miyaura cross-coupling reaction ^{87,88} to afford arylated products (4a–4c) in good overall yield, including the *in situ* arylation and benzamide deprotection product 4a (Scheme 3B). Moreover, Matteson homologation of the obtained product provided β -aminoboronate 4d, which was further transformed into β -amino alcohol derivative 4e and functionalized γ -aminoboronate 4f. ^{89–91} Notably, we have developed LiBH₄-mediated mild deprotection of Bz radical translocating group, which tolerates a broad range of functional groups, such as alkyl halide (4h), electron-rich arene (4i), amide derivatives (4j–4n), and different boronates (4m) (Scheme 3C). Moreover, orthogonal deprotection of amides was showcased with piperazine derivative 3n. ⁹²

A Acyclic amines

This work
$$(G = Bz^l)$$

Bpin

N-Bu

Bpin

100 °C

[Ir]

100 °C

[Hartwig]²⁶

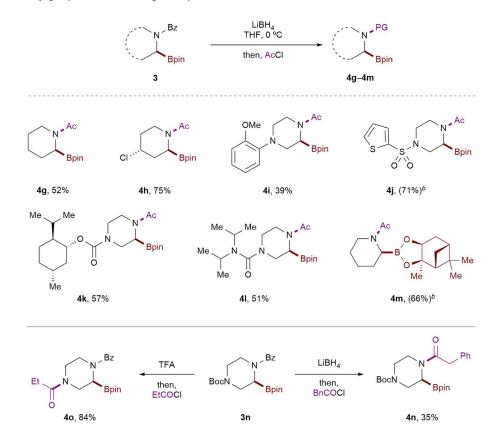
3c', 49%

B Cyclic amines

Scheme 2. Complementarity of the developed approach with existing direct borylation methods

Next, a series of mechanistic studies were performed to gain insight into the mechanism of this reaction. First, radical trapping experiment with 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) led to trace amount of the borylation product 3a'' and notable amounts of the TEMPO-trapping adduct 5a (Scheme 4A). The radical nature of the transformation was further supported by radical rearrangement experiment with the substrate containing a cyclopropyl group at the α -position to amine (2aq), which produced the ring-opening borylation product 6aq (Scheme 4B). The selective 1,5-HAT process was validated by the deuterium labeling studies, which confirmed the complete D-atom transfer (2j- $D \rightarrow 3j$ -D; Scheme 4C). The results of the light on/off experiment, taken together with the value of the obtained quantum yield ($\phi = 2.6$), indicate the involvement of the radical chain mechanism.⁸⁴

Based on the literature reports 37,39,41,43,49 and the above-mentioned preliminary studies (Scheme 4), 84 the following mechanism for this novel α -borylation reaction is proposed (Scheme 5). First, a photoinduced homolysis of the C–I bond in F*, the electron donor-acceptor (EDA) complex of 2 with boron reagent (F), leads to electrophilic aryl radical D likely via a single-electron transfer (SET) mechanism. 93,94 A subsequent polarity-matched 1,5-HAT generates nucleophilic α -aminoalkyl radical E, followed by radical addition to a ligated B_2 cat $_2$ providing G and boryl radical H, which propagates the radical chain via halogen-atom transfer (XAT) or HAT with substrate 2. *In situ* transesterification of catecolboronate G provides isolable reaction product, pinacol boronate 3. Importantly, N-benzoyl group plays a key role in the success of this reaction. First, it provides sufficient Thorpe-Ingold effect. Second, it provides a polarity matching for efficient 1,5-HAT for the generation of nucleophilic α -aminoalkyl radical. Finally, the presence of N-benzoyl group suppresses the undesired radical polar crossover (RPC) of α -aminoalkyl radical into iminium species, leading to desaturation byproduct (3-B), thus favoring efficient



A Scale-up experiments

B Derivatization of products

C Benzoyl group removal and orthogonal deprotection

Scheme 3. Further transformations of obtained boronates⁸⁴

^aYield based on recovered starting materials. ^bNMR yields.

A Radical trapping experiment

5a, 9%

B Radical rearrangement experiment

C Deuterium labeling experiment

Scheme 4. Mechanistic studies⁸⁴

trapping with diboron reagent. This was supported by the results with benzyl radical translocating groups (Figure 2, 2an, 2ao), where N-benzyl employment of which provided a mixture of desaturation and reduction side products.

In conclusion, the first radical α -C(sp³)–H borylation of amines has been developed. This protocol features photoinduced diboron reagent-mediated mild generation of aryl radical and selective 1,5-HAT event generating the key α -aminoalkyl radical intermediate employing a commercially available, easily installable/removable 2-iodobenzoyl radical translocating group. Remarkably, this method does not require use of photosensitizer, TM catalyst, or a strong base and allows for efficient, site-selective C-H activation of broad range of amines, including complex and pharmaceutically relevant amines. This highly site- and diastereo-selective α -borylation method is broadly applicable for late-stage functionalization of complex amine-containing molecules and drugs. It is expected that this operationally simple, general, and practical method will find broad application in organic synthesis and drug discovery.

EXPERIMENTAL PROCEDURES

Resource availability

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Vladimir Gevorgyan (vald@utdallas.edu).

Scheme 5. Proposed reaction mechanism

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate any datasets or code. All relevant procedures and experimental data are provided in the supplemental information.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.chempr. 2022.07.022.

ACKNOWLEDGMENTS

We thank the National Institute of Health (GM120281), National Science Foundation (CHE-1955663), and Welch Foundation (Chair, AT-0041) for financial support. S.S. thanks the UT Dallas Eugene McDermott Graduate Fellowship (202008).

AUTHOR CONTRIBUTIONS

V.G. supervised the project. S.S. designed the strategy. S.S., S.W., and X.J. designed, performed, and analyzed all experiments. S.S. and V.G. wrote this manuscript with input from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 7, 2022 Revised: June 30, 2022 Accepted: July 19, 2022 Published: August 22, 2022

REFERENCES

- Volochnyuk, D.M., Gorlova, A.O., and Grygorenko, O.O. (2021). Saturated boronic acids, boronates, and trifluoroborates: an update on their synthetic and medicinal chemistry. Chemistry 27, 15277–15326. https:// doi.org/10.1002/chem.202102108.
- Brooks, W.L., and Sumerlin, B.S. (2016). Synthesis and applications of boronic acidcontaining polymers: from materials to medicine. Chem. Rev. 116, 1375–1397. https:// doi.org/10.1021/acs.chemrev.5b00300.
- Silva, M.P., Saraiva, L., Pinto, M., and Sousa, M.E. (2020). Boronic acids and their derivatives in medicinal chemistry: synthesis and biological applications. Molecules 25, 4323. https://doi.org/10.3390/ molecules25184323.
- Matteson, D.S., Sadhu, K.M., and Lienhard, G.E. (1981). R-1-acetamido-2phenylethaneboronic acid. A specific transition-state analog for chymotrypsin. J. Am. Chem. Soc. 103, 5241–5242. https://doi. org/10.1021/ja00407a051.
- Leonori, D., and Aggarwal, V.K. (2014). Lithiation-borylation methodology and its application in synthesis. Acc. Chem. Res. 47, 3174–3183. https://doi.org/10.1021/ ar5002473.
- Andrés, P., Ballano, G., Calaza, M.I., and Cativiela, C. (2016). Synthesis of α-aminoboronic acids. Chem. Soc. Rev. 45, 2291–2307. https://doi.org/10.1039/ c5cs00886g.
- Šterman, A., Sosič, I., Gobec, S., and Časar, Z. (2019). Synthesis of aminoboronic acid derivatives: an update on recent advances. Org. Chem. Front. 6, 2991–2998. https://doi. org/10.1039/C9QQ00626E.
- Kubota, K., Miura, D., Takeuchi, T., Osaki, S., and Ito, H. (2021). Synthesis of chiral α-amino tertiary boronates via the catalytic enantioselective nucleophilic borylation of dialkyl ketimines. ACS Catal. 11, 6733– 6740. https://doi.org/10.1021/acscatal. 1.01689
- Mkhalid, I.A., Barnard, J.H., Marder, T.B., Murphy, J.M., and Hartwig, J.F. (2010). C-H activation for the construction of C-B bonds. Chem. Rev. 110, 890-931. https://doi.org/10. 1021/cr900206p.
- Hartwig, J.F. (2011). Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002. https://doi.org/10.1039/ c0cs00156b.
- 11. Hartwig, J.F. (2012). Borylation and silylation of C–H bonds: a platform for diverse C–H bond

- functionalizations. Acc. Chem. Res. 45, 864–873. https://doi.org/10.1021/ar200206a.
- Xu, L., Wang, G., Zhang, S., Wang, H., Wang, L., Liu, L., Jiao, J., and Li, P. (2017). Recent advances in catalytic C-H borylation reactions. Tetrahedron 73, 7123–7157. https://doi.org/10. 1016/j.tet.2017.11.005.
- Iverson, C.N., and Smith, M.R., III. (1999). Stoichiometric and catalytic B–C bond formation from unactivated hydrocarbons and boranes. J. Am. Chem. Soc. 121, 7696–7697. https://doi.org/10.1021/ja991258w.
- Cho, J.Y., Tse, M.K., Holmes, D., Maleczka, R.E., Jr., and Smith, M.R., Ill. (2002). Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds. Science 295, 305–308. https://doi.org/10.1126/science.1067074.
- Murphy, J.M., Lawrence, J.D., Kawamura, K., Incarvito, C., and Hartwig, J.F. (2006). Ruthenium-catalyzed regiospecific borylation of methyl C–H bonds. J. Am. Chem. Soc. 128, 13684–13685. https://doi.org/10.1021/ ia04.4002.
- Liskey, C.W., and Hartwig, J.F. (2012). Iridiumcatalyzed borylation of secondary C–H bonds in cyclic ethers. J. Am. Chem. Soc. 134, 12422– 12425. https://doi.org/10.1021/ja305596v.
- Shi, L., and Xia, W. (2012). Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Soc. Rev. 41, 7687–7697. https://doi.org/10.1039/c2cs35203f.
- Liskey, C.W., and Hartwig, J.F. (2013). Iridiumcatalyzed C–H borylation of cyclopropanes.
 J. Am. Chem. Soc. 135, 3375–3378. https://doi. org/10.1021/ja400103p.
- Preshlock, S.M., Plattner, D.L., Maligres, P.E., Krska, S.W., Maleczka, R.E., Jr., and Smith, M.R., Ill. (2013). A traceless directing group for C–H borylation. Angew. Chem. Int. Ed. Engl. 52, 12915–12919. https://doi.org/10.1002/anie. 201306511.
- Li, Q., Liskey, C.W., and Hartwig, J.F. (2014). Regioselective borylation of the C–H bonds in alkylamines and alkyl ethers. Observation and origin of high reactivity of primary C–H bonds beta to nitrogen and oxygen. J. Am. Chem. Soc. 136, 8755–8765. https://doi.org/10.1021/ ia503474cd
- Kallepalli, V.A., Gore, K.A., Shi, F., Sanchez, L., Chotana, G.A., Miller, S.L., Maleczka, R.E., Jr., and Smith, M.R., III. (2015). Harnessing C-H borylation/deborylation for selective deuteration, synthesis of boronate esters, and late stage functionalization. J. Org. Chem. 80, 8341–8353. https://doi.org/10.1021/acs.joc. 5b01588.

- Larsen, M.A., Wilson, C.V., and Hartwig, J.F. (2015). Iridium-catalyzed borylation of primary benzylic C-H bonds without a directing group: scope, mechanism, and origins of selectivity.
 J. Am. Chem. Soc. 137, 8633–8643. https://doi. org/10.1021/jacs.5b04899.
- Smith, K.T., Berritt, S., González-Moreiras, M., Ahn, S., Smith, M.R., III, Baik, M.H., and Mindiola, D.J. (2016). Catalytic borylation of methane. Science 351, 1424–1427. https://doi. org/10.1126/science.aad9730.
- Larsen, M.A., Oeschger, R.J., and Hartwig, J.F. (2020). Effect of ligand structure on the electron density and activity of iridium catalysts for the borylation of alkanes. ACS Catal. 10, 3415

 3424. https://doi.org/10.1021/acscatal.
 0c0152
- Kim, J.H., Constantin, T., Simonetti, M., Llaveria, J., Sheikh, N.S., and Leonori, D. (2021).
 A radical approach for the selective C-H borylation of azines. Nature 595, 677–683. https://doi.org/10.1038/s41586-021-03637-6.
- Oeschger, R., Su, B., Yu, I., Ehinger, C., Romero, E., He, S., and Hartwig, J. (2020). Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741. https://doi.org/10.1126/science. aba6146.
- Kawamorita, S., Miyazaki, T., Iwai, T., Ohmiya, H., and Sawamura, M. (2012). Rh-catalyzed borylation of N-adjacent C(sp³)-H bonds with a silica-supported triarylphosphine ligand. J. Am. Chem. Soc. 134, 12924–12927. https:// doi.org/10.1021/ja305694r.
- Reyes, R.L., Harada, T., Taniguchi, T., Monde, K., Iwai, T., and Sawamura, M. (2017). Retraction. Chem. Lett. 46, 1747–1750. https://doi.org/10.1246/cl.170853.
- Sarkar, S., Kumar, N.Y., and Ackermann, L. (2017). Ruthenium(III) biscarboxylate-catalyzed borylations of C(sp²)—H and C(sp³)—H bonds. Chemistry 23, 84–87. https://doi.org/10.1002/ chem.201604943.
- Qi, Q., Yang, X., Fu, X., Xu, S., and Negishi, E.I. (2018). Highly enantiospecific borylation for chiral α-amino tertiary boronic esters. Angew. Chem. Int. Ed. Engl. 57, 15138–15142. https:// doi.org/10.1002/anie.201809389.
- Hyland, S.N., Meck, E.A., Tortosa, M., and Clark, T.B. (2019). α-Amidoboronate esters by amide-directed alkane C-H borylation. Tetrahedron Lett. 60, 1096–1098. https://doi. org/10.1016/j.tetlet.2019.03.020.
- Chen, L., Yang, Y., Liu, L., Gao, Q., and Xu, S. (2020). Iridium-catalyzed enantioselective α-C(sp3)–H borylation of azacycles. J. Am.

- Chem. Soc. 142, 12062–12068. https://doi.org/10.1021/jacs.0c06756.
- Zou, X., Li, Y., Ke, Z., and Xu, S. (2022). Chiral bidentate boryl ligand-enabled iridiumcatalyzed enantioselective dual C–H borylation of ferrocenes: reaction development and mechanistic insights. ACS Catal. 12, 1830– 1840. https://doi.org/10.1021/acscatal. 1c05299.
- 34. Yao, W., Yang, J., and Hao, F. (2020). Rucatalyzed selective C(sp³)–H monoborylation of amides and esters. ChemSusChem 13, 121–125. https://doi.org/10.1002/cssc. 201902448.
- Hoque, M.E., Hassan, M.M.M., and Chattopadhyay, B. (2021). Remarkably efficient iridium catalysts for directed C(sp²)–H and C(sp³)–H borylation of diverse classes of substrates. J. Am. Chem. Soc. 143, 5022–5037. https://doi.org/10.1021/jacs.0c13415.
- Candish, L., Teders, M., and Glorius, F. (2017). Transition-metal-free, visible-light-enabled decarboxylative borylation of aryl N-hydroxyphthalimide esters. J. Am. Chem. Soc. 139, 7440–7443. https://doi.org/10.1021/ jacs.7b03127.
- Fawcett, A., Pradeilles, J., Wang, Y., Mutsuga, T., Myers, E.L., and Aggarwal, V.K. (2017). Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286. https:// doi.org/10.1126/science.aan3679.
- Hu, J., Wang, G., Li, S., and Shi, Z. (2018). Selective C-N borylation of alkyl amines promoted by lewis base. Angew. Chem. Int. Ed. Engl. 57, 15227–15231. https://doi.org/10. 1002/anie.201809608.
- Cheng, Y., Mück-Lichtenfeld, C., and Studer, A. (2018). Metal-free radical borylation of alkyl and aryl iodides. Angew. Chem. Int. Ed. Engl. 57, 16832–16836. https://doi.org/10.1002/anie. 201810782.
- Lu, X., Zhang, Z.Q., Yu, L., Zhang, B., Wang, B., Gong, T.J., Tian, C.L., Xiao, B., and Fu, Y. (2019). Free radical pathway cleavage of C—O bonds for the synthesis of alkylboron compounds. Chin. J. Chem. 37, 11–18. https://doi.org/10. 1002/cjoc.201800500
- Wu, J., He, L., Noble, A., and Aggarwal, V.K. (2018). Photoinduced deaminative borylation of alkylamines. J. Am. Chem. Soc. 140, 10700– 10704. https://doi.org/10.1021/jacs.8b07103.
- Sandfort, F., Strieth-Kalthoff, F., Klauck, F.J.R., James, M.J., and Glorius, F. (2018). Deaminative borylation of aliphatic amines enabled by visible light excitation of an electron donor-acceptor complex. Chemistry 24, 17210–17214. https://doi.org/10.1002/ chem.201804246.
- Wu, J., Bär, R.M., Guo, L., Noble, A., and Aggarwal, V.K. (2019). Photoinduced deoxygenative borylations of aliphatic alcohols. Angew. Chem. Int. Ed. Engl. 58, 18830–18834. https://doi.org/10.1002/anie. 201910051
- Mazzarella, D., Magagnano, G., Schweitzer-Chaput, B., and Melchiorre, P. (2019).
 Photochemical organocatalytic borylation of alkyl chlorides, bromides, and sulfonates. ACS Catal. 9, 5876–5880. https://doi.org/10.1021/acscatal.9b01482.

- Friese, F.W., and Studer, A. (2019). Deoxygenative borylation of secondary and tertiary alcohols. Angew. Chem. Int. Ed. Engl. 58, 9561–9564. https://doi.org/10.1002/anie. 201904028.
- Friese, F.W., and Studer, A. (2019). New avenues for C–B bond formation via radical intermediates. Chem. Sci. 10, 8503–8518. https://doi.org/10.1039/c9sc03765a.
- 47. Das, K.K., Paul, S., and Panda, S. (2020). Transition metal-free synthesis of alkyl pinacol boronates. Org. Biomol. Chem. 18, 8939–8974. https://doi.org/10.1039/d0ob01721c.
- Li, J., Wang, H., Qiu, Z., Huang, C.Y., and Li, C.J. (2020). Metal-free direct deoxygenative borylation of aldehydes and ketones. J. Am. Chem. Soc. 142, 13011–13020. https://doi.org/ 10.1021/jacs.0c03813.
- Shu, C., Madhavachary, R., Noble, A., and Aggarwal, V.K. (2020). Photoinduced fragmentation borylation of cyclic alcohols and hemiacetals. Org. Lett. 22, 7213–7218. https:// doi.org/10.1021/acs.orglett.0c02513.
- Shu, C., Noble, A., and Aggarwal, V.K. (2020). Metal-free photoinduced C(sp³)–H borylation of alkanes. Nature 586, 714–719. https://doi. org/10.1038/s41586-020-2831-6.
- Wei, D., Liu, T.M., Zhou, B., and Han, B. (2020). Decarboxylative borylation of mCPBAactivated aliphatic acids. Org. Lett. 22, 234–238. https://doi.org/10.1021/acs.orglett. 9b04218.
- 52. . For pioneering work on generating α -amino radicals from o-iodobenzamides via 1,5-HAT, see: Curran, D.P., and Liu, H.T. (1994). Radical translocation reactions across amides. 1,5-Hydrogen-transfer reactions of o-iodobenzamides and N-(o-iodobenzyl) amides J. Chem. Soc. Perkin Trans. 1, 1377–1393. https://doi.org/10.1039/p19940001377.
- Beatty, J.W., and Stephenson, C.R. (2015). Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res. 48, 1474–1484. https://doi. org/10.1021/acs.accounts.5b00068.
- 54. Shaw, M.H., Shurtleff, V.W., Terrett, J.A., Cuthbertson, J.D., and MacMillan, D.W. (2016). Native functionality in triple catalytic cross-coupling: sp³ C–H bonds as latent nucleophiles. Science 352, 1304–1308. https:// doi.org/10.1126/science.aaf6635.
- Ye, J., Kalvet, I., Schoenebeck, F., and Rovis, T. (2018). Direct α-alkylation of primary aliphatic amines enabled by CO₂ and electrostatics. Nat. Chem. 10, 1037–1041. https://doi.org/10. 1038/s41557-018-0085-9.
- Barham, J.P., and Kaur, J. (2021). Site-selective C(sp³)–H functionalizations mediated by hydrogen atom transfer reactions via α-amino/ α-amido radicals. Synthesis 54, 1461–1477. https://doi.org/10.1055/a-1677-6619.
- Das, S., Murugesan, K., Villegas Rodríguez, G.J., Kaur, J., Barham, J.P., Savateev, A., Antonietti, M., and König, B. (2021).
 Photocatalytic (het)arylation of C(sp³)-H bonds with carbon nitride. ACS Catal. 11, 1593–1603. https://doi.org/10.1021/acscatal.0c05694.

- Valles, D.A., Dutta, S., Paul, A., Abboud, K.A., Ghiviriga, I., and Seidel, D. (2021). α,α'-C-H bond difunctionalization of unprotected alicyclic amines. Org. Lett. 23, 6367-6371. https://doi.org/10.1021/acs.orglett.1c02187.
- Curran, D.P., Kim, D., Liu, H.T., and Shen, W. (1988). Translocation of radical sites by intramolecular 1,5-hydrogen atom transfer. J. Am. Chem. Soc. 110, 5900–5902. https://doi. org/10.1021/ja00225a052.
- Curran, D.P., Abraham, A.C., and Liu, H. (1991). Radical translocation reactions of oiodoanilides: the use of carbon-hydrogen bonds as precursors of radicals adjacent to carbonyl groups. J. Org. Chem. 56, 4335–4337. https://doi.org/10.1021/jo00014a001.
- 61. Parasram, M., Chuentragool, P., Sarkar, D., and Gevorgyan, V. (2016). Photoinduced formation of hybrid aryl Pd-radical species capable of 1,5-HAT: selective catalytic oxidation of silyl ethers into silyl enol ethers. J. Am. Chem. Soc. 138, 6340–6343. https://doi.org/10.1021/jacs. 6b01628.
- Parasram, M., Chuentragool, P., Wang, Y., Shi, Y., and Gevorgyan, V. (2017). General, auxiliaryenabled photoinduced Pd-catalyzed remote desaturation of aliphatic alcohols. J. Am. Chem. Soc. 139, 14857–14860. https://doi.org/ 10.1021/jacs.7b08459.
- Chuentragool, P., Parasram, M., Shi, Y., and Gevorgyan, V. (2018). General, mild, and selective method for desaturation of aliphatic amines. J. Am. Chem. Soc. 140, 2465–2468. https://doi.org/10.1021/jacs.8b00488.
- 64. Ratushnyy, M., Parasram, M., Wang, Y., and Gevorgyan, V. (2018). Palladium-catalyzed atom-transfer radical cyclization at remote unactivated C(sp³)–H sites: hydrogen-atom transfer of hybrid vinyl palladium radical intermediates. Angew. Chem. Int. Ed. Engl. 57, 2712–2715. https://doi.org/10.1002/anie. 201712775
- Chuentragool, P., Yadagiri, D., Morita, T., Sarkar, S., Parasram, M., Wang, Y., and Gevorgyan, V. (2019). Aliphatic radical relay heck reaction at unactivated C(sp³)–H sites of alcohols. Angew. Chem. Int. Ed. Engl. 58, 1794–1798. https://doi.org/10.1002/anie. 201812398.
- 66. Kurandina, D., Yadagiri, D., Rivas, M., Kavun, A., Chuentragool, P., Hayama, K., and Gevorgyan, V. (2019). Transition-metal- and light-free directed amination of remote unactivated C(sp³)–H bonds of alcohols. J. Am. Chem. Soc. 141, 8104–8109. https://doi.org/10.1021/jacs.9b04189.
- Ratushnyy, M., Kvasovs, N., Sarkar, S., and Gevorgyan, V. (2020). Visible-light-induced palladium-catalyzed generation of aryl radicals from aryl triflates. Angew. Chem. Int. Ed. Engl. 59, 10316–10320. https://doi.org/10.1002/anie. 201915962.
- Sarkar, S., Cheung, K.P.S., and Gevorgyan, V. (2020). C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 11, 12974–12993. https:// doi.org/10.1039/d0sc04881i.
- Snieckus, V., Cuevas, J.C., Sloan, C.P., Liu, H.T., and Curran, D.P. (1990). Intramolecular.alpha.-amidoyl-to-aryl

- 1,5-hydrogen atom transfer-reactions. Heteroannulation and alpha.-nitrogen functionalization by radical translocation. J. Am. Chem. Soc. 112, 896-898. https://doi. org/10.1021/ja00158a075.
- 70. Han, G., McIntosh, M.C., and Weinreb, S.M. (1994). A convenient synthetic method for amide oxidation. Tetrahedron Lett. 35, 5813-5816. https://doi.org/10.1016/S0040-4039(00) 78191-3.
- 71. Voica, A.F., Mendoza, A., Gutekunst, W.R., Fraga, J.O., and Baran, P.S. (2012). Guided desaturation of unactivated aliphatics. Nat. Chem. 4, 629-635. https://doi.org/10.1038/
- 72. Wertjes, W.C., Wolfe, L.C., Waller, P.J., and Kalyani, D. (2013). Nickel or phenanthroline mediated intramolecular arylation of sp³ C– H bonds using aryl halides. Org. Lett. 15, 5986–5989. https://doi.org/10.1021/
- 73. Bhakuni, B.S., Yadav, A., Kumar, S., Patel, S., Sharma, S., and Kumar, S. (2014). KOt-Bumediated synthesis of dimethylisoindolin-1ones and dimethyl-5-phenylisoindolin-1-ones: selective C-C coupling of an unreactive tertiary sp³ C-H bond. J. Org. Chem. 79, 2944-2954. https://doi.org/10.1021/jo402776u.
- 74. Choi, G.J., Zhu, Q., Miller, D.C., Gu, C.J., and Knowles, R.R. (2016). Catalytic alkylation of remote C-H bonds enabled by protoncoupled electron transfer. Nature 539, 268-271. https://doi.org/10.1038/ nature 19811.
- 75. Wappes, E.A., Fosu, S.C., Chopko, T.C., and Nagib, D.A. (2016). Triiodide-mediated deltaamination of secondary C-H bonds. Angew. Chem. Int. Ed. Engl. 55, 9974-9978. https://doi. org/10.1002/anie.201604704.
- 76. Chu, J.C., and Rovis, T. (2016). Amide-directed photoredox-catalysed C-C bond formation at unactivated sp³ C–H bonds. Nature 539, 272-275. https://doi.org/10.1038/nature19810.
- 77. Chen, D.F., Chu, J.C.K., and Rovis, T. (2017). Directed γ-C(sp3)-H alkylation of carboxylic acid derivatives through visible light

- photoredox catalysis. J. Am. Chem. Soc. 139, . 14897–14900. https://doi.org/10.1021/jacs. 7b09306.
- 78. Stateman, L.M., Nakafuku, K.M., and Nagib, D.A. (2018). Remote C-H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569-1586. https://doi.org/10.1055/s-0036-
- Morcillo, S.P., Dauncey, E.M., Kim, J.H., Douglas, J.J., Sheikh, N.S., and Leonori, D. (2018). Photoinduced remote functionalization of amides and amines using electrophilic nitrogen radicals. Angew. Chem. Int. Ed. Engl. 57, 12945-12949. https://doi.org/10.1002/anie
- 80. Thullen, S.M., Treacy, S.M., and Rovis, T. (2019). Regioselective alkylative cross-coupling of remote unactivated C(sp3)-H bonds. J. Am. Chem. Soc. 141, 14062-14067. https://doi.org/ 10.1021/jacs.9b07014.
- 81. Zhang, Z., Stateman, L.M., and Nagib, D.A. (2019). Delta C–H (hetero)arylation via Cucatalyzed radical relay. Chem. Sci. 10, 1207-1211. https://doi.org/10.1039/ c8sc04366c.
- 82. Shen, Y., and Rovis, T. (2021). Late-stage N-Me selective arylation of trialkylamines enabled by Ni/photoredox dual catalysis. J. Am. Chem. Soc. 143, 16364-16369. https://doi.org/10. 1021/jacs.1c08157.
- 83. Stateman, L.M., Dare, R.M., Paneque, A.N., and Nagib, D.A. (2022). Aza-heterocycles via copper-catalyzed, remote C-H desaturation of amines. Chem 8, 210-224. https://doi.org/10. 1016/j.chempr.2021.10.022.
- 84. See supplemental information for details.
- 85. Diisopropyl amine provided cyclization byproduct only.
- . For a selected review, see: Collins, B.S.L. Wilson, C.M., Myers, E.L., and Aggarwal, V.K. (2017). Asymmetric synthesis of secondary and tertiary boronic esters Angew. Chem. Int. Ed. Engl. 56, 11700-11733. https://doi.org/10. 1002/anie.201701963.

- 87. Suzuki, A. (2011). Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds (nobel lecture). Angew. Chem. Int. Ed. Engl. 50, 6722-6737. https://doi.org/10.1002/ anie.201101379.
- 88. Molander, G.A., and Shin, I. (2012). Potassium Boc-protected secondary aminomethyltrifluoroborates: synthesis and Suzuki-Miyaura cross-coupling reactions. Org. Lett. 14, 4458-4461. https://doi.org/10.102 ol301955s.
- 89. Xie, Q., and Dong, G. (2022). Programmable ether synthesis enabled by oxa-Matteson reaction. J. Am. Chem. Soc. 144, 8498-8503. https://doi.org/10.1021/jacs.2c03621.
- 90. Varela, A., Garve, L.K., Leonori, D., and Aggarwal, V.K. (2017). Stereocontrolled total synthesis of (-)-stemaphylline. Angew. Chem. Int. Ed. Engl. 56, 2127-2131. https://doi.org/10. 1002/anie 201611273.
- 91. Matteson, D.S., and Lu, J.H. (1998). Asymmetric synthesis of 1-acyl-3,4disubstituted pyrrolidine-2-boronic acid derivatives. Tetrahedron Asymmetry 9, 2423-2436. https://doi.org/10.1016/S0957-4166(98) 00233-X.
- 92. Nystrom, R.F., Chaikin, S.W., and Brown, W.G. (1949). Lithium borohydride as a reducing agent. J. Am. Chem. Soc. 71, 3245-3246. https://doi.org/10.1021/ ja01177a514.
- 93. Crisenza, G.E.M., Mazzarella, D., and Melchiorre, P. (2020). Synthetic methods driven by the photoactivity of electron donoracceptor complexes. J. Am. Chem. Soc. 142, 5461-5476. https://doi.org/10.1021/jacs.
- 94. de Pedro Beato, E., Spinnato, D., Zhou, W., and Melchiorre, P. (2021). A general organocatalytic system for electron donoracceptor complex photoactivation and its use in radical processes. J. Am. Chem. Soc. 143, 12304-12314. https://doi.org/10.1021/jacs.