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ABSTRACT: We report the first palladium hydride enabled
hydroalkenylation of strained molecules. This new mild protocol
proceeds via a regio- and chemoselective hydropalladation step,
followed by a photoinduced radical alkyl Heck reaction. This R F B.ue LED
methodology represents a new reactivity mode for strained molecules /A\

and opens new avenues for photoinduced palladium catalysis. The

reaction is compatible with a wide range of functional groups and can
be applied to complex structures, delivering a diverse array of highly
valuable and modifiable alkenylated cyclobutanes and cyclopropanes.
A hydroalkenylation/diastereoselective rearrangement cascade to-

ward a cyclopentene scaffold has also been demonstrated.

1. INTRODUCTION

In recent years, 3- and 4-membered strained carbocycles have
attracted significant attention in synthesis® and bioconjuga-
tion.? They serve as unusual bioisosteres® in the development
of pharmaceuticals,” owing to their unique chemical and
physical properties. One appealing and atom economical
approach toward these molecules is from precursors with even
higher energies, thus harnessing a thermodynamically favored
strain-release process® (Scheme 1A). Among these,
bicyclo[1.1.0]butanes (BCBs) A and cyclopropenes B display
remarkable ring strain,® which enable them to undergo
transformations that are challenging or unfeasible for non-
strained ring systems. A particularly attractive strategy toward
incorporation of small ring systems in organic molecules is a
C-C bond formation between strained carbocycles and
alkenes. Along this line, Gryko and co-workers disclosed an
elegant Co-catalyzed addition of BCBs to a wide range of
Michael acceptors. This transformation proceeds via the
generation of alkyl radical intermediates, which upon Giese-
type addition deliver disubstituted cyclobutanes C (Scheme
1B).>" In addition, the groups of Glorius, Brown, and Procter
independently reported eficient [2 + 2] cycloaddition of BCBs
with alkenes enabled by thioxanthone (TXT)-photosensitized
energy transfer” or Sml,-catalysis,”’ thus delivering
bicyclo[2.1.1]hexanes D. Due to the inherent nature of these
catalytic systems, however, all these transformations offer
access to reduced products C or D, and thus a valuable and
modifiable alkene moiety is sacrificed. Accordingly, the
development of a new protocol that would preserve syntheti-
cally important olefin functionality is highly desirable.
Likewise, it would be extremely appealing to develop the

© 2022 American Chemical Society

<y ACS Publications

* new mode of reactivity for
BCBs and cyclopropenes

EWGQ/\

Ewg  (Pd-H 2

diastereoselective N

)?C/ rearrangemenf
Me Ph
F i
no. N
| N0 F Ph
e} = \
N “OMe Ma nO

« merging traditional Pd{il) reactivity with photoinduced Pdff) chemistry

analogous alkenylation method for a cyclopropene core, which
is another ideal candidate for strain-release transformations.'®’

Herein, we report the first palladium hydride enabled
hydroalkenylation approach of strained molecules, BCBs and
cyclopropenes, with vinyl arenes and heteroarenes, which
proceeds via a sequential regio- and chemoselective hydro-
palladation of strained C-C bonds, followed by a photo-
induced generation of hybrid palladium C(sp3)-centered
radicals, and a Heck-type coupling reaction (Scheme 1C).
Furthermore, this report also outlines our preliminary findings
on diastereoselective rearrangement of vinyl cyclopropanes
into cyclopentenes.

2. REACTION DESIGN

To achieve alkenylation of small rings, we sought a palladium
catalysis known for its facile oxidative end-game.® Recently,
photoinduced palladium catalysis has become an emerging
field of study.’ We and others have established mild and
eficient generation of carbon-centered radicals from (pseudo)
halides or redox-active esters via single electron transfer (SET)
from photoexcited Pd° catalysts. Apparently, such an activation
mode is not applicable to BCBs and cyclopropenes. Hence, we
searched for generation of radicals from strained molecules via
an alternative Pd-catalyzed strategy. In our recently developed
method for a photoinduced Pd-catalyzed Heck reaction of
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Scheme 1. Reactivity of Strained Molecules with Alkenes®
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diazo compounds,’® we suggested that the generation of alkyl
radicals may proceed through a denitrogenative reaction
between palladium hydride (PdH) and a diazo compound
(Scheme 2A). Accordingly, we hypothesized that the desired
cycloalkyl radicals could be accessed from highly reactive
strained molecules with the aid of putative PdH species.

We envisioned achieving hydroalkenylation of strained
molecules with alkenes via the design plan depicted in Scheme
2B, which combines traditional Pd(Il) reactivity with photo-
induced Pd(l) chemistry. Since two types of (pseudo) alkene
substrates would be involved in the reaction, they must be
differentiated in order to achieve the desired coupling reaction.
As a design principle, we recognized that a n-like central C-C
bond of BCBs or a strained double bond of cyclopropenes
should be more reactive toward hydropalladation with PdH
compared to that of its nonstrained counterpart. Therefore, the
in situ generated PdH species is expected to add onto strained
molecules in a chemoselective manner. The resulting alkyl
Pd(Il) complex, upon visible-light-induced homolysis of the
Pd-C bond, would then generate hybrid Pd(I) cyclobutyl or
cyclopropyl radical species. The capture of these key
intermediates with an alkene and a successive facile 6-H
elimination would lead to the formation of aimed vinyl-
cyclobutane and vinylcyclopropane products. If successful, this
approach would represent a new reaction profile of the
photoinduced Pd 0/1/1l manifold, by introducing a hydro-
palladation process and encompassing a new class of
substrates. Moreover, the ability to directly couple strained
molecules with easily accessible alkenes would facilitate a

Scheme 2. Viability of Photoinduced Palladium Hydride
Catalytic System?
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practical synthesis of small rings with valuable alkenyl
functionality.**

3. RESULTS AND DISCUSSION

3.1. Reaction Optimization. We commenced our studies
with examining a model reaction between gem-difluorocyclo-
propene’? 1a and styrene 2a under standard visible light/Pd
conditions (Table 1). Consistently with our previous
studies,'>"* the combination of Pd(OAc), and bidentate
Xantphos proved to be the most eficient catalytic system. An
extensive evaluation'® of monodentate additive ligand®®*3¢*>
indicated P(2-Furyl), as a superior ligand. Evidently, we
recognized the need for additives to promote the in situ
generation of PdH species. Therefore, in contrast to the
previously developed basic conditions for photoinduced Heck
reactions,%*>® we introduced an acidic environment, where
acetic acid was identified as the key beneficial hydrogen donor,
operating with dimethylphenylsilane as a hydride codonor. It
was also found that employment of tetrabutylammonium
bromide (TBAB), an exogenous halide counterion source, was
crucial for further improvement of the reaction eficiency.'’
Gratifyingly, under these conditions, the desired hydro-
alkenylation product 3a was formed in 80% yield (condition
A, entry 1). Reaction was less eficient in the absence of
hydrosilane (entry 2). Reactions with other bidentate
phosphines failed to provide any product (entries 3 and 4).
Control experiments demonstrated that both Pd catalyst and
HX precursors were essential for this transformation (entries 5,
6). Likewise, thermal reactions under dark conditions did not
lead to any product (entry 7).

Motivated by the successful employment of cyclopropenes
in the hydroalkenylation reaction, we then turned our attention
to BCBs. After re-evaluation of initial reaction parameters,**
we found modified conditions, which allowed hydroalkenyla-
tion reaction of BCB 4a with styrene 2a to be eficiently
performed (condition B, entry 8). Employment of substochio-
metric amounts of hydrosilane hampered the reaction
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Table 1. Reaction Optimization and Control Experiments
FF Pd-H Ph

e

Ph

+ P
conditions A

1a 2a 3a
conditions A
HX precursors
AcOH (2 equiv)
PhMesSiH (9.2 equiv)

[Pdj, ligands

Pd(OAC), (10 molvs)
Xantphos (20 mol%)

Pd-H
+  #™ph Q/\
CO,Bn conditions B BnO,C = " Ph
4a 2a 5a
conditions B
{Pd], ligands HX precursors

AcOH (2 equiv)

Pe(OA) (10 Ma%) o eSiHy (1 6qui)
2

Xantphos (20 mol%)

P(2-Furylj; (20 mol%) TBAB (1 equiv) Nal (2 equiv)
optimal tigands figands
Me Me Me Me
PPh
Q L s
L0 e 28®
e
PPhs 0
Q N o]
@\P(FBU) PPh, PP @
F’Ph2 PPh, 2 P{Bu}; P(tBu); @]
Xantphos P{2-Furyl)s rac-BINAP dibdppf +Bu-Xantphos DPEphos 4b
entry deviation from conditions A yield of 3a (%)° entry deviation from conditions B yield of 5a (%)"
1 none 80° 8 none 68
2 without PhMe,SiH 64 9 PhMeSiH, (0.2 equiv) 40
3 dtbdppt instead of Xantphos 0 10 +Bu-Xantphos instead of Xantphos 0
4 rac-BINAP instead of Xantphos 0 1 DPEphos instead of Xantphos 47
5 Without Pd{OAc), 0 12 40 °C, no light instead of blue LED 75
6 Without AcOH, PhMe,SiH, and TBAB traces 13 4b instead of 4a 48
7 Without light (rt, 40 °C or 100 °C} 0 14 4b, 40 °C, no light 0

0.1 mmol scale; 1a:2a = 1:2. 4a:2a = 1:2. Conditions A: Pd(OAc), (10 mol %), Xantphos (20 mol %), P(2-Furyl), (20 mol %), acetic acid (2
equiv), PhMe SiH (0.2 equiv), TBAB (1 equiv), 1,4-dioxane (0.15 M), blue LED (40 W, 427 nm), 16 h. Condltlons B: Pd(OAc) , (10 mol %),
Xantphos (20 moI %), acetic acid (2 equiv), PhMeSiH (1 equiv), Nal (2 equiv), DCE (0.15 M), blue LED (40 W, 427 nm), 16 h? bYields were

determined by *H NMR spectroscopy using CH,Br, as an internal standard. €0.15 mmol scale, isolated yields.

performance (entry 9). Similarly to the reactions with
cyclopropenes, employment of other bidentate phosphine
ligands resulted in diminished yields (entries 10, 11). Lastly,
control experiments revealed that certain BCB substrates, such
as strained ester 4a, engaged in the reaction in the absence of
light'*® (entry 12), whereas amide 4b was completely
unreactive under such conditions (entries 13, 14).

3.2. Substrate Scope. With the optimized conditions in
hand, the scope of strained molecules in reactions with styrene
and derivatives was examined first (Table 2). It was found that
gem-difluorocyclopropenes possessing different aryl substitu-
ents (3b and 3c) are all capable partners. Moreover, 1,2-
disubstituted gem-difluorocyclopropenes proved to be viable
substrates, delivering hydroalkenylation products 3d-3g with
good diastereoselectivity. Notably, 3d was obtained with
excellent regiocontrol.® Likewise, various BCBs, including
ester 4a, amide 4b, and nitrile 4c, were competent radical
precursors. This reaction can also be performed in an
intramolecular fashion. Thus, 6-exo-trig cyclization of 4d
furnished an interesting spiro-cyclobutyl benzolactam 5g in
reasonable yield.

Next, the generality of alkenes was evaluated. Various para-
substituted styrenes, including methyl, methoxy, fluoro,
boronic ester, amine, and thioether groups, reacted smoothly
to provide the corresponding products 3h—3m in moderate to
good yields. Analogously, meta- and ortho-substituted styrenes
furnished vinyl difluorocyclopropane 3n-3q in reasonable
yields. Disubstituted substrates also showed good reactivity (3r
and 3s). Hydroalkenylation reaction with vinyl heteroarenes

20877

proceeded uneventfully, producing targeted vinyl difluorocy-
clopropanes possessing dihydrobenzofuran (3t), benzodioxole
(3u), pyridine (3v), pyrimidine (3w), and indole (3x) rings.
Notably, indene (3y), as well as a-substituted alkenes (3z-
3ab), reacted well in this hydroalkenylation process. In
addition, TBS-enol ether was proven to be a capable coupling
partner, affording cyclopropyl silyl enol ether 3ac. Finally, the
reaction of 1a with a vinyl derivative of ferrocene and estrone
generated product 3ad and 3ae, highlighting the applicability
of this photoinduced hydroalkenylation protocol in a complex
setting. While all reactions were run until full conversion of
substrates, in some cases, formation of notable amounts of the
reduced cyclopropane side products was observed.

Interestingly, during the investigation of the cyclopropene
scope, we discovered a hydroalkenylation/diastereoselective
rearrangement cascade toward the difluorocyclopentene
scaffold (Table 3). Preliminary study of the scope of this
transformation indicated that gem-difluorocyclopropenes pos-
sessing two phenyl groups at C1, 2 (1b) or phenyl and
thioether substituent (1c) underwent hydroalkenylation
reaction with alkenes 2, followed by a facile ring-expansion
cycloisomerization to produce cyclopentenes 6. Using this
strategy, tricyclic products 6¢c and 6e were smoothly obtained
from indene. Notably, this rearrangement is highly diaster-
eoselective, producing cis-substituted cyclopentenes exclu-
sively.

3.3. Scalability and Diverse Transformations. The
developed hydroalkenylation platform proved to be easily
scalable. Thus, reaction on a 1 mmol scale was performed

https://doi.org/10.1021/jacs.2c09045
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Table 2. Substrate Scope?®
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FY 'en Bno~0 OMe N OMe
n-Bu
3y, 50%7 4a Cholesterol derivative S¢, 78%° 5d, 63%°
dr7:1 5b, 52%°
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N oN NTFO Me
O\/J 8] OMe = Me
ab 5e. 48% 4c 51, 55%° 4d 5g, 54%'
alkenes
Me OMe F Bpin NMes SMe
F Y pn F* Pn F ¥ Pn F Y pn F ¥ pn F ¥ Pn
3h, 63% 3, 72% 3j. 73% 3k, 31% 3l, 34% 3am, 55%
OMe Me
Me CO-Me F
FE = FE = FE = F E = OMe F = F E =
F Ph F Ph F Ph F ¥ pn F Ph F ¥ pn
3n, 50% 30, 40% 3p. 38% 3q. 43% 3r, 63% 3s. 64%
e
Oj OMe N
O 8} / \N , O
F = F = F = F o= F g
7
F¥ n F'¥ Pn F ¥ Pn F F ¥ %, F ¥ Fn
3t, 62% 3u, 70% 3v, 58% 3w, 38% 3x, 64% 3y, 61%
Fe
)
Ph Ph
F F N 8] F — E —
OTBS
F¥ Ph F ¥ Pn F ¥ P FV e
3z, 67% 380, 84% 3ab, 72% Ei;"_' ?01% ; 3ad, 60% Estrone derivative

3ae, 32%

90.15 mmol scale, 1:2 = 1:2, 4:2 = 1:2, isolated yields. °Diastereomeric ratio (dr) and E/Z ratio was determined by *H NMR analysis of crude
reaction mixtures, using CH ,Br, as an internal standard. “Single diastereomer. @Xantphos Pd G3 (10 mol %) was used as a catalyst, and 1 equiv of
PhMe,SiH was used. Xantphos Pd G3: [(4,5-bis(diphenylphosphino)-9,9-dimethylxanthene)-2-(2"-amino-1,1"-biphenyl)]palladium(ll) methane-

sulfonate. °Reaction was performed at 40 °C without light. Styrene was not added.
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Table 3. Hydroalkenylation/Diastereoselective
Rearrangement Cascade’

RS Pd-H
+ A —_—
conditions C
1 2
O F‘I g9 il -
R F Q
PH Ph @ @ .
MeQ

1b Ba, 53% 6b, 70%

MeO
ic Be, 50% 6f, 46%

90.15 mmol scale, 1:2 = 1:2, isolated yields. Conditions C: Xantphos
Pd G3 (10 mol %), Xantphos (20 mol %), acetic acid (4 equiv), Et
Sikl (2 equiv), TBAB (1 equiv), 1,4-dioxane/toluene (0.15 M), blue
LED (40 W, 427 nm), 16 h.

without any additional optimization, furnishing product 3a in
73% vyield (Scheme 3A). In addition, in a nonoptimized
experiment, it was found that this reaction can also be applied
to hydrazones'*¢ to deliver cyclopropyl-containing hydrazone
3af in reasonable yield (Scheme 3B).

Synthetic usefulness of the obtained alkenylated gem-
difluorocyclopropanes was highlighted by the following
transformations (Scheme 3C). Epoxidation and photoinduced
oxidative cleavage'® of the alkene proceeded smoothly,
furnishing epoxide 3ag and aldehyde 3ah, respectively.
Dibromination®® of the olefin provided product 3ai in good
yield with two new functionalizable reaction sites. Additionally,
a semi-one-pot dibromination/dehydrobromination of 3a
delivered alkenyl bromide 3aj. Expectedly, hydrogenation of
an alkene together with regioselective hydrogenolysis** of the
distal C2-C3 bond of cyclopropane ring produced difluor-
opentane 3ak. Finally, alkenylated gem-difluorocyclopropane
3a was successfully employed in the Pd-catalyzed C-C bond
activation/F elimination process,?> followed by alkynylation
with phenylacetylene and cycloisomerization, to deliver aryl
fluoride 3al in reasonable yield.

3.4. Mechanistic Investigations and Proposed Mech-
anism. Naturally, we were eager to elucidate the mechanism of
this novel two-component coupling reaction (Scheme 4). The
involvement of a key PdH species was unambiguously
supported by the following experiments. First, the reaction of
Pd(OAc),, phosphine ligands, and additives was monitored by
'H NMR (Scheme 4A). The appearance of a new resonance
signal in the high-field region (-11.48 ppm) was detected in
'H NMR spectra, which was attributed to the newly formed

Scheme 3. Scalability and Diverse Transformations®

A. 1 mmol scale
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9(A) 1 mmol scale. (B) Reaction with a-ester hydrazone. (C)
Postfunctionalizations. Reaction conditions: (a) m-CPBA (1.5 equiv),
DCM (0.1 M), rt, 24 h; (b) 4-nitrobenzonitrile (1.5 equiv), MeCN
(0.1 M), rt, 390 nm LED, 16 h; (c) LiBr (2 equiv), NaIO (0.5
equiv), H_SO (0.3 equiv), MeCN (0.05 M), rt, 24 h; (d) BI (1.2
equiv), DEM {0.05 M), 0°C, 2 h, then KOH (2 equiv), THF/MeOH
(1/1), 80 °C, 3 h. (e) Pd/C (10 mol %), H_ (1 atm), EtOAc (0.1 M),
rt, 2 h; (f) phenylacetylene (2 equiv), PdZ(TFA)2 (10 mol %), P(t-
Bu)_-HBF (12 mol %), Cs_CO_ (2 equiv), THF (0.2 M), 60 °C, 18
h. m-CPBA: meta- chloroperoxyi)enzmc acid. Pd(TFA) palladium-
(1) trifluoroacetate.

palladium hydride complex.’” Upon addition of BCB 4a and
styrene 2a to this reaction mixture, the expected hydro-
alkenylation product 5a was produced in 43% yield. Next,
upon addition of the independently synthesized palladium(ll)
hydride complex,"’ HPdCI(PPh,),, to cyclopropene la and
styrene 2a, the hydroalkenylation reaction proceeded smoothly
without any exogenous additives (Scheme 4B).

To validate the radical nature of this transformation, we
examined the reaction of cyclopropene 1d in the absence of
styrene under otherwise identical catalytic conditions (Scheme
4C). It was expected that upon hydropalladation of 1d (A) and
a subsequent photoinduced homolysis, the hybrid palladium
cyclopropyl radical B could be produced, which would be
capable of intermolecular hydrogen atom transfer (HAT) from
either face. Indeed, a diastereomeric mixture of reduced
products cyclopropane 3am-cis and 3am-trans (62%, cis:trans
= 1.8:1) was formed, which provided additional support for the
radical pathway for this transformation. It should be noted that
no conversion of the starting material was observed in the

https://doi.org/10.1021/jacs.2c09045
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Scheme 4. Mechanistic Studies’
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9(A) In situ generation of PdH species. (B) PdH complex as a catalyst. (C) HAT of cyclopropyl and cyclobutyl radicals. (D) Deuterium labeling
experiments. (E) Radical probe experiments. (F) Vinyl cyclopropanes as rearrangement intermediates. (G) Thermal rearrangement

absence of light, thus indicating that a direct protonation of
alkyl palladium intermediate A, derived from syn hydro-
palladation, is unlikely. Analogously, when BCB 4b was tested
under alkene-free conditions, the reduced product, cyclobutane
5h, was obtained.

Then, we performed a series of deuterium labeling
experiments to reveal the H-source in this reaction (Scheme
4D). Thus, AcOD was used in the experiment of 1a with 2b.
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The D-incorporation of product 3i-D1 at the 8 position to the
vinyl group, clearly suggested the Brgnsted acid as the major
hydrogen source for the formation of PdH species.
Furthermore, when deuterium-labeled alkene 2b-D was
subjected to the reaction, hydroalkenylation product 3i-D2
was obtained with minor deuterium incorporation at the
cyclopropyl ring, which indicated the recycle of PdH species
after the 8-H elimination step.
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Scheme 5. Proposed Mechanism
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The employment of radical probes and radical traps further
confirmed the radical nature of this transformation. Hence,
reaction of gem-difluorocyclopropene 1a with 2c, possessing a
cyclopropyl substituent, underwent ring-opening of methyl-
enecyclopropyl radical C into a homoallylic radical D. Its
subsequent cyclization at the aryl ring produced bicyclic
product 3aa, whereas competing B-hydrogen loss delivered
linear diene 3an (Scheme 4E). Likewise, a radical probe
experiment of BCB 4a delivered bicyclic product 5i. It was also
shown that reactions of both substrates 1la and 4a were
inhibited in the presence of radical traps, such as (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO).**

Lastly, a pathway of a hydroalkenylation/diastereoselective
rearrangement cascade was investigated. As mentioned above,
the reaction of 1,2-diphenyl cyclopropene 1b with styrene 2a
delivered cyclopentene 6b (Scheme 4F). Thermal ring
expansion of difluorinated alkenyl cyclopropanes containing
an electron-withdrawing group is documented.?® Accordingly,
we presumed that the cascade reaction is likely to proceed via
intermediacy of vinyl cyclopropane E. To validate this
assumption, we subjected the same substrate 1b to the
reaction with a-methylstyrene 2d. It was anticipated that
hybrid Pd(l) tertiary alkyl radical F would undergo 68-H
elimination from a less substituted site, thus delivering an allyl
cyclopropane product not capable of cycloisomerization.
Indeed, the experiment indicated formation of allyl cyclo-
propane 3ao, as a single reaction product. Additional evidence
was obtained by resubjecting the isolated, B-nonsubstituted
vinyl cyclopropane 3a to thermal reactions (Scheme 4G). It
was found that elevated temperatures (150 °C) were required
to initiate its ring expansion, whereas B-phenyl-substituted
akenyl difluorocyclopropane E, likely due to lower activation
barriers,”® underwent spontaneous rearrangement at room
temperature.

Based on the above mechanistic studies, the following
mechanism for photoinduced PdH-catalyzed hydroalkenyla-
tion of strained molecules is proposed (Scheme 5). Upon an
oxidative addition of Pd(0) into HX precursor, the catalytically
active H-Pd(Il1)-X species (X = Br~ or I7) is formed. A
following regio- and chemoselective migratory insertion of
PdH into the double bond of cyclopropenes or n-like central
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C-C bond of BCBs provides alkyl-Pd(I1)-X complex A or
A’. A subsequent homolysis of the Pd—C bond under light
irradiation generates the key hybrid Pd(l) cyclobutyl or
cyclopropyl radical species B or B’. Addition of the latter at the
alkene produces a benzylic radical intermediate C or C'.
Finally, 8-H-elimination delivers hydroalkenylation product 3
or 5, while the resulting H-Pd(Il1)-X complex returns to the
catalytic cycle.

4. CONCLUSION

In summary, we developed the first light-induced Pd-catalyzed
hydroalkenylation reaction of strained molecules, which allows
for expedient synthesis of alkenylated cyclobutanes and
cyclopropanes. Notably, this transformation highlights the
merger of a traditional two-electron hydropalladation process
and photoinduced hybrid Pd-radical chemistry, as intermedi-
acy of both PdH and radical species were confirmed by
mechanistic studies. This transformation demonstrates broad
functional group tolerance and is amenable to late-stage
functionalization of complex molecules. It is anticipated that
this mild method would find broad applications in synthesis
and would inspire development of new transformations.
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