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Abstract This Account summarizes efforts in our group toward syn-
thesis of heterocycles in the past decade. Selected examples of transan-
nulative heterocyclizations, intermediate construction of reactive com-
pounds en route to these important motifs, and newer developments of
a radical approach are outlined.
1 Introduction
2 Transannulative Heterocyclization
2.1 Rhodium-Catalyzed Transannulative Heterocyclization
2.2 Copper-Catalyzed Transannulative Heterocyclization
3 Synthesis of Heterocycles from Reactive Precursors
3.1 Synthesis of Heterocycles from Diazo Compounds
3.2 Synthesis of Heterocycles from Alkynones
4 Radical Heterocyclization
4.1 Light-Induced Radical Heterocyclization
4.2 Light-Free Radical Heterocyclization
7 Conclusion

Key words transannulative heterocyclization, heterocycles, radical
heterocyclization, transition-metal-catalyzed heterocyclization.

1 Introduction

Synthesis of heterocycles is of critical importance to the

development of pharmaceuticals and functional materials.

Discovery and improvement of chemical transformations to

this end have remained highly significant and continued to

grow over the years. This Account updates our group’s con-

tinued efforts in this endeavor, which has spanned advance-

ment of transition-metal (TM)-catalyzed synthesis of het-

erocycles by migratory cascades, carbene formation, and

other transformations to produce a diverse array of hetero-

cyclic scaffolds. We have previously summarized some of

this work.2 In the recent decade, advances in these strate-

gies have seen new development in transannulative hetero-

cyclizations and employment of diazo or alkynone interme-

diates as heterocycle precursors. More recently, radical

strategies have emerged to synthesize these compounds

under mild conditions. This Account will cover these new

developments.

2 Transannulative Heterocyclization

In 1909, Dimroth disclosed that nitrogen atoms within

the ring of triazoles could rearrange via ring–chain isomeri-

zation to become exocyclic nitrogen atoms.3 A similar phe-

nomenon was encountered by Huisgen and von Fraunberg

in 1969, who showed that this type of isomerization, in the

presence of copper, could lead to loss of dinitrogen and an-

nulation under harsh conditions.4 In the late 2000s, Gevorg-

yan developed this ring–chain isomerization phenomenon

into a practical strategy toward heterocycle synthesis,[6a-d,

gevorgyan] paving the way for transannulative heterocycliza-

tion chemistry.[5, anbarasan] These key discoveries are illustrat-

ed in Scheme 1.6 It was found that N-sulfonyltriazole6d,7 1
and pyridotriazoles2b,f,8 2 are convenient carbene precur-

sors, existing in equilibrium with diazo form 3, which can

be trapped by transition metal to produce intermediate 4.

In the case of pyridotriazole 2, the open-chain isomer is fa-

vored when an activating group vicinal to the nitrogen

atom at the peri position is present,9 which enabled the first

Rh-catalyzed transannulation of pyridotriazoles toward im-

idazo[1,5-a]pyridines10 5.6a
© 2023. Thieme. All rights reserved. Synlett 2023, 34, 1554–1562
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Scheme 1  Key discoveries in transition-metal-catalyzed transannula-
tive heterocyclization

The same group disclosed that, by changing the catalyst,

cyclopropenation instead of transannulation was observed,

producing 6. Subsequent regiodivergent cyclopropene rear-

rangement afforded 1,2- or 1,3-disubstituted indolizines 7

and 8, respectively.6b The following year, another key con-

tribution in this area was reported by Gevorgyan and Fokin,

employing triazoles 1 in a Rh-catalyzed transannulation

strategy with nitriles toward imidazoles 9.6c Employment of

silver co-catalyst enabled the analogous transformation to

synthesize pyrroles 10.6d

2.1 Rhodium-Catalyzed Transannulative Heterocy-
clization

The above-outlined key discoveries in TM-catalyzed

transannulative heterocyclizations from stable triazole

compounds opened new opportunities for synthesis that

are being explored to this day.2f One such avenue focused

on overcoming the substrate specificity of the reaction,

which limited the types of heterocycles and substitution

patterns accessible by this transformation.

For instance, while the intermolecular transannulation

reaction to synthesize pyrroles was achieved employing

terminal alkynes, the requisite ylide intermediacy prohibit-

ed using internal alkynes toward fused diversely substitut-

ed pyrroles in an intramolecular fashion.6d This limitation

was resolved by using a carbene–alkyne metathesis mecha-

nism enabling the efficient and generalizable fused pyrrole

12 synthesis using tethered internal alkynes 11 (Scheme

2).11
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Scheme 2  Intramolecular transannulation of alkynyl triazoles via 
alkyne–carbene metathesis

Further development of this transformation involved

the expansion of scope of pyridotriazoles to diversify the

substitution pattern around the target heterocycles. To this

end, unactivated pyridotriazoles 13 were employed to syn-

thesize 2-pycolylamines 14 and imidazo[1,5-a]pyridines

using a Rh-based catalytic system. This methodology avoid-

ed the use of activating groups at the 3- and 7-positions to

afford compounds 15 in good yields (Scheme 3).12

Scheme 3  Synthesis of 2-picolylamines and imidazo[1,5-a]pyridines by 
Rh-catalyzed N–H insertion of pyridyl carbenes derived from pyridotri-
azoles

Denitrogenative transannulation strategies toward het-

erocycle synthesis were further expanded by Gevorgyan to

include 1,2,3-thiadiazole substrates 16 toward diversely

substituted thiophenes 18 (Scheme 4).13 Ring–chain isom-

erization of 16 to A, followed by denitrogenation yields

metallocarbene B. Formation of ylide intermediate C and

cycloisomerization or [3+2] cycloaddition with internal

alkyne 17 could yield zwitterion D. Alternatively, [2+1] cyc-

loaddition with 17 could afford cyclopropene E, capable of

ring expansion and catalyst release to yield thiophene 18.

Scheme 4  Modular synthesis of multisubstituted thiophenes from 
1,2,3-dithiazoles via rhodium thiavinyl carbene

In 2017, Lee developed a sequential Rh-catalyzed [2+1]

cyclopropanation, followed by Pd-catalyzed ring expansion

and manganese oxide oxidation in one pot, to produce in-

dolizines.14 More recently, Hu and Xu reported a denitroge-

native [4+1] cycloaddition reaction between pyridotri-

azoles and propargylic alcohols to produce 1,2-dihydrofu-

rans.15 Rostovskii also employed a rhodium-based catalytic

system in a denitrogenative dearomative 1,6-cyclization of

pyridines and aziridines to synthesize H-pyrido[1,2-a]pyra-

zines.16

2.2 Copper-Catalyzed Transannulative Heterocy-
clization

Aiming at developing a transannulation strategy that

was generalizable to pyridotriazole substrates not bearing

an activating group, Gevorgyan discovered that the desired

transformation toward diversely substituted indolizines 21
could be achieved under aerobic copper-catalyzed condi-

tions (Scheme 5).17 For the first time, electronically distinct

pyridotriazoles and terminal acetylenes bearing aryl (21a–

c), heteroaryl (21g), or alkyl groups (21d,e) could undergo

transannulation under conditions featuring inexpensive

copper catalyst. Furthermore, even unsubstituted pyrido-

triazoles were efficient precursors for indolizine 21f.
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Scheme 5  Cu-catalyzed transannulation reaction of pyridotriazoles 
with terminal alkynes under aerobic conditions: efficient synthesis of 
indolizines

The proposed mechanism for this reaction involves the

initial formation of copper acetylide A, which reacts with

chain isomer, diazo compound B, to generate copper carbe-

ne intermediate C (path a, Scheme 6). Alternatively, this in-

termediate could be formed from the reaction of copper

carbene H with alkyne substrate (path b). Alkyne migratory

insertion (C → D) and nucleophilic attack by pyridine at the

electrophilic copper-activated alkyne could produce inter-

mediate E. Otherwise, the in situ generated intermediates F
or G could also lead to E. Protodecupration of the latter then

yields product 21 and regenerates the copper catalyst.

Scheme 6  Proposed mechanism for the Cu-catalyzed transannulation 
reaction of pyridotriazoles with terminal alkynes

The intramolecular version of this reaction was tackled

next to synthesize the corresponding tri-, tetra-, and penta-

cyclic-fused indolizines 23 (Scheme 7).18

Scheme 7  Copper-catalyzed transannulation of pyridotriazoles toward 
fused polycyclic indolizines

Pyridotriazoles 22, tethered at the 3-position with alkyl

and aryl alkynes, undergo Dimroth-type isomerization to-

ward intermediate A. Denitrogenation in the presence of

copper catalyst produces metallocarbene B, capable of in-

tramolecular [3+2] cycloaddition to directly produce 23. Al-

ternatively, cyclopropene C could be formed via [2+1] cyc-

loaddition, followed by its subsequent cycloisomerization

to yield indolizine 23. Product could also be formed from

intermediate D, resulting from carbene–alkyne metathesis.

During reaction development, it was found that Lewis acid

(LA) could also catalyze this reaction in the absence of cop-

per catalyst. The proposed intermediate E, formed upon LA

coordination with alkyne, could induce denitrogenation to

generate cationic intermediate F, which upon cascade cy-

clization would produce 23. Alternative coordination by LA
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at C3 of pyridotriazole G could engender the intramolecular

cyclization–denitrogenation step to produce cationic inter-

mediate H. A subsequent aza-Nazarov cyclization would

produce indolizine 23. It is worth noting that, due to the

importance of these heterocyclic scaffolds, methods to syn-

thesize diversely substituted subunits are highly signifi-

cant. This has been achieved by engaging mechanistically

distinct protocols, like cycloisomerizations of alkynylpyri-

dines19 and skipped propargyl imines,20 as well as cascade

reactions including two-component organocopper-mediat-

ed SN2′ substitution cascade reaction.21

Aerobic copper-catalyzed reactions represent a vast

area of research, of which only a few examples are high-

lighted in this Account.22 Our group’s multifocal interests in

reaction development span beyond employment of copper–

carbene mechanistic manifolds. For example, C–H oxygen-

ation employing aerobic copper catalysis afforded chrome-

none scaffolds in good to excellent yields.23 The reaction

was further developed to work without Cu catalyst, using

potassium persulfate and in some cases a catalytic amount

of silver nitrate. In a collaborative extension of the group’s

efforts in developing multicomponent coupling reactions,24

a batch and continuous-flow copper-catalyzed A3 reaction

toward imidazo[1,2-b]thiazoles was reported in 2017.25

3 Synthesis of Heterocycles from Reactive 
Precursors

As mentioned above, heterocyclic molecules can be syn-

thesized using stable precursors, like pyridotriazoles. These

methods must rely on pushing the equilibrium forward to-

ward the ring-opened diazo intermediates, which are the

main players in this transformation. Thus, methods to pre-

pare key precursors to synthesize diverse heterocyclic scaf-

folds are in high demand. For example, employment of fu-

rans, featuring low energy of aromaticity as substrates for

synthesis of high-value indoles, was reported under a one-

pot protocol with broader functional group tolerance com-

pared to that for the previously reported two-step meth-

ods.26 Other important precursors, such as silacycles, were

investigated in prior work.27 In 2018, a palladium-catalyzed

method for the synthesis of pyrido[1,2-a]indoles by mild,

base-induced conditions was reported, employing aryl- and

cyano-substituted ortho-picolylbromoarenes as precur-

sors.28

3.1 Synthesis of Heterocycles from Diazo Com-
pounds

Gevorgyan reported the pyridine-group-assisted addi-

tion of diazo compounds to imines in the 3-component

coupling reaction of 2-aminopyridines 24, aldehydes 25,

and diazo compounds 26 (Scheme 8).29 Employment of the

resulting -diazoesters 27 in LA-catalyzed denitrogenative

desaturation and lactonization afforded pyrimidinone 29.

The report also featured N-iodosuccinimide-mediated syn-

thesis of imidazo[1,2-a]pyridine 28. The reaction involves

the in situ formation of iodonium B from intermediate A,

which, upon subsequent nucleophilic attack, deprotona-

tion, and HI elimination, produces 28.

Scheme 8  Pyridine-assisted three-component coupling toward diazo 
compounds and their application in the synthesis of heterocycles

Shortly after, the same group reported the use of the di-

azo scaffold 27 in a diastereoselective cyclization to produce

triazolines 30.30 The reaction begins with deprotonation of
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cyclized intermediate E, a resonance form of enolate F,

which undergoes stereoselective alkylation to yield a single
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serves as a precursor for these transformations was found

to be active as a lipid–protein interaction inhibitor in a re-

cent biochemical study.31

3.2 Synthesis of Heterocycles from Alkynones

In continuation of Gevorgyan’s extensive work on devel-

opment of chemical reactions involving migrations,2d,19a,32

the group published gold-catalyzed 1,3-transposition of

ynones 31 into diynenones 32 (Scheme 9).33 Synthesized

diynenone 32a was subjected to a variety of conditions to

produce heterocycles bearing the alkyne functionality: ad-

dition of hydrazine, cycloaddition with sodium azide, reac-

tion with benzamidine hydrochloride, and condensation

with ethyl acetoacetate and ammonium acetate to efficient-

ly produce pyrazole 33, triazole 34, pyrimidine 35, and pyr-

idine 36, respectively.

Scheme 9  Gold-catalyzed 1,3-transposition of ynones and heterocy-
clization

4 Radical Heterocyclization

Recent decades have brought a resurgence of radical

strategies as mild, generalizable, and complementary ap-

proaches to classical two-electron methods. Thus, radical-

based method development toward synthesis of heterocy-

cles has thus become an active area of research.34

4.1 Light-Induced Radical Heterocyclization

As described above, the ring–chain isomerization equi-

librium of pyridotriazoles can be pushed forward under

mild conditions if there is an activating group, or under

harsh conditions in the case of unactivated substrates.2f Ex-

pansion of this reaction toward a mild, TM-free protocol

could enable the Gevorgyan group to access the corre-

sponding carbene B upon nitrogen loss (Scheme 10). Inves-

tigation of the UV/Vis absorption spectra led to the discov-

ery that 3-arylpyridotriazoles undergo isomerization and

denitrogenation under visible light to produce free carbene

B.35 This intermediate was utilized in various transforma-

tions, including arylation in the presence of boronic acids

37, and C–X bond insertion with alcohols, anilines, amides,

sulfonamides, and carboxylic acids 38. Cyclopropanation

with various alkenes afforded compounds 39 in moderate

to excellent yields.

Photoinduced TM-catalyzed radical reactions have also

been employed toward the synthesis of heterocycles. In re-

cent years, Gevorgyan reported the use of photoexcited pal-

ladium catalytic system to generate aryl,36 vinyl,37 and al-

kyl38 radicals.39 This catalytic system enabled the C–O bond

cleavage of aryl triflates toward oxindoles 41 and isoindo-

lin-1-ones 43 (Scheme 11).40

The proposed mechanism involves generating hybrid

palladium radical species A, which could occur by photoex-

citation of in situ formed Pd(0) followed by single-electron

transfer (SET) with the substrate (Scheme 12). Alternatively,

oxidative addition (OA) between 40 and Pd(0) could yield

intermediate B, which can undergo ligand exchange (C), fol-

lowed by a reductive elimination to produce D. Potentially,

intermediates B–D could undergo SET and homolysis to

generate A. A subsequent 1,5-hydrogen atom transfer (HAT)

between aryl radical and tertiary C–H then produces trans-

posed alkyl radical E, which is posed for intramolecular cy-

clization (F) and oxidation to afford product and regenerate

the catalyst.
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pyridotriazoles
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Scheme 12  Proposed mechanism for oxindole synthesis

Further elaboration of the Pd(0/II/I) manifold to include

the alkyl-Heck-type coupling between alkyl radicals and N-

containing olefins resulted in the synthesis of pyridazines

46 in one pot (Scheme 13).41 The mechanism of the reac-

tion starts with the SET between photoexcited palladium

complex and alkyl halide or redox active ester to produce

nucleophilic hybrid alkyl palladium radical A, capable of

radical addition to hydrazone 44 producing the nitrogen-

centered radical B. The latter, either upon direct oxidation

or recombination (C) followed by -hydride elimination,

could yield alkylated diazene D, which under basic condi-

tions is tautomerized to hydrazone E. Importantly, this

product can be isolated exclusively as the E-isomer, which is

highly challenging to access by other methods. When sub-

strates containing a pendant leaving group are employed

(45), nucleophilic substitution yields the desired pyridopyr-

azines 46 in moderate to high yields.

Scheme 13  Synthesis of E-hydrazones and pyridopyrazines

4.2 Light-Free Radical Heterocyclization

Metalloradicals can serve as radical carbene equiva-

lents, thus providing an alternate reactivity trend to use in

new reaction development. In 2018, Chattoppadhyay re-

ported the cobalt porphyrin catalyzed denitrogenative tran-

sannulation reaction of pyridotriazoles and alkynes to pro-

duce indolizines.42 More recently, Gevorgyan reported em-

ployment of pyridotriazoles 47 and isothiocyanates 48 or

xanthate esters 49 to afford the corresponding thiazolohet-

erocycles 50 (Scheme 14).43 The proposed reaction mecha-

nism involves Co porphyrin metalloradical reaction with

chain isomer A to produce upon denitrogenation an electro-

philic -Co(III)pyridyl radical B. The latter undergoes radi-

cal addition to either the isothiocyanate 48 or to the car-

bonyl sulfide D, a product of the in situ Chugaev elimination

of xanthate ester, to produce radical intermediate E. Termi-

nal radical cyclization regenerates the catalyst and yields

reaction product 50. Further developments of metalloradi-

cal chemistry toward heterocycle synthesis has been exten-

sively reported and updated.8c,5,32

Scheme 11  Visible-light-induced palladium-catalyzed generation of 
aryl radicals from aryl triflates toward oxindoles and isoindolin-1-ones
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Scheme 14  Co-catalyzed transannulation of pyridotriazoles with iso-
thiocyanates and xanthate esters

5 Conclusion

The discovery of denitrogenative transformations to-

ward synthesis of heterocycles provided a new avenue to-

ward monocyclic and fused heterocyclic scaffolds. This area

has grown and evolved toward the end of the last decade to

include radical approaches as versatile and complementary

protocols, which inherently enable efficient transforma-

tions under room temperature and/or visible-light-induced

conditions.

New methods for assembly of heterocycles have evolved

into a vast and highly active area of research. Nonetheless,

the remaining long-standing challenges still include the

need for more general and mild transformations with im-

proved atom economy, high regio-, enantio-, and diastereo-

selectivity, and employment of inexpensive catalysts.
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