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Abstract2

Prevention, mitigation, and regulation of bacterial contaminants in groundwater re-3

quire a fundamental understanding of the mechanisms of transport and attachment in4

complex geological materials. Discrepancies in bacteria transport behaviors observed5

between field studies and laboratory experiments indicate an incomplete understanding6

of dynamic bacteria transport and immobilization processes in realistic heterogeneous7

geologic systems. Here, we develop a new experimental approach for in situ quantifica-8

tion of dynamic bacteria transport and attachment distribution in geologic media that9

relies on radiolabeling Escherichia coli with positron-emitting radioisotopes and quan-10

tifying transport with three-dimensional (3D) positron emission tomography (PET)11

imaging. Our results indicate that the highest bacterial attachment occurred at the12

interfaces between sand layers oriented orthogonal to the direction of flow. The pre-13

dicted bacterial attachment from a 3D numerical model matched the experimental14

PET results, highlighting that experimentally-observed bacteria transport behavior15

can be accurately captured with a distribution of a first-order irreversible attachment16
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model. This is the first demonstration of direct measurement of attachment coefficient17

distributions from bacteria transport experiments in geologic media and provides a18

transformational approach to better understand bacterial transport mechanisms, im-19

prove model parameterization, and accurately predict how local geologic conditions20

can influence bacterial fate and transport in groundwater.21
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Sypnosis25

A new technique using radiolabeled bacteria and PET imaging shows highest bacterial at-26

tachment in groundwater occurs at sand layer interfaces. It improves understanding and27

prediction of bacteria transport in groundwater.28

Introduction29

Studying the transport and fate of colloidal bacteria in groundwater systems is important30

for limiting water-borne disease1,2 and has important implications for the persistence and31

mobility of other contaminants such as metals in soils,3 nonaqueous phase liquid biodegra-32

dation,4 and denitrification of groundwater.5 One of the most common bacteria found in33

water resources is Escherichia coli (E. coli). Widespread land application of animal waste34

containing E. coli and other pathogens poses a persistent risk to groundwater systems, es-35

pecially due to the long-term survival rates of E. coli in the subsurface.6–10 Mitigating these36

risks requires an improved understanding of bacterial colloid transport and immobilization37

under complex hydrogeologic conditions.38

Similar to colloids, mechanistic descriptions of bacterial transport in porous media are39
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often adapted from colloid filtration theory (CFT).11–16 While CFT has been widely applied40

to quantitatively predict the likelihood of colloids contacting the grain surfaces during trans-41

port, it fails to account for reversible colloid attachment, heterogeneous deposition rates42

(kf ), bacteria straining, pore-size exclusion, and influence of microbial properties such as43

cell motility and bacterial surface properties. Here, the term bacterial/colloid attachment is44

used as an encompassing term to describe immobilization of bacteria that can be caused45

by mechanisms such as electrostatic forces of attraction, steric forces, hydration forces,46

shear forces, surface topology, etc.17 Pore size exclusion refers to the inability of colloids47

to pass through a pore space due to small pore throat-to-colloid size ratio leading to col-48

loids being excluded from certain pores downstream.18–20 CFT is a mechanistic approach49

developed at the pore scale to predict the attachment rate coefficient that applies at the50

continuum scale. However, complexities exist outside the unit collectors underlying CFT,51

which has driven various approaches to manipulate rate coefficients directly at the contin-52

uum scale without mechanistically simulating the pore scale processes such as incorporating53

multi-rate attachment,21,22 depth-dependent straining,19,23 parameters to account for pore54

size exclusion,24,25 sorption/retardation-like terms,26 statistical/stochastic colloid modeling55

approaches,26,27 and Lagrangian model frameworks.28–3156

At the column scale, a key challenge is the unique parameterization of bacteria trans-57

port models using traditional experimental data that exhibit spatially-variable attachment58

coefficients,32 short and long-term detachment statistics,26,33 early breakthrough observa-59

tions,25,34 and long-tail breakthrough curve behavior.35,36 Mechanistic simulations of colloid-60

surface interactions at the pore- and nano-scale have been shown to generate some of these61

phenomena;16,37 however, observational linkages between these multi-scale processes remain62

challenging. Specifically, bacterial effluent concentration measurements have repeatedly been63

shown to be insufficient for the unique interpretation of colloid attachment, dispersion, and64

pore water velocity.22,38,39 Despite this gap, current methods for retention profile determi-65

nation are laborious, one-dimensional in space, and typically only provide profiles at one66
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instance in time—at the time of destructive column analysis.22,4067

Three-dimensional (3D) in situ imaging has the potential to provide spatial and tem-68

poral bacteria transport and attachment information that is necessary to characterize and69

understand dynamic and heterogeneous systems. Previous studies have utilized in situ ap-70

proaches including optical imaging of fluorescent colloids in transparent media,38,41 X-ray71

micro-computed tomography (X-ray µCT),42–44 and magnetic resonance imaging.45,46 How-72

ever, optical and magnetic resonance imaging approaches are constrained to idealized systems73

such as glass bead packs or silica gel46,47 rather than geologic soils and aquifer materials45,4674

and X-ray µCT is constrained to small spatial scales (<1 cm), limiting the applicability of75

these types of in situ measurements in under realistic environmental and geologic condi-76

tions. While transport studies of fluorescent bacteria48–52 have provided valuable insights77

into the pore-scale deposition and transport mechanisms of E. coli in sands, bacteria at-78

tachment rates in those studies were inferred from fitting breakthrough curves and in some79

cases 1D retention profiles and thus were not able to uniquely measure the attachment rate80

distributions.81

Positron emission tomography (PET) is a medical imaging technique that relies on the82

emission, detection, and reconstruction of high-energy photons from positron-emitting radi-83

olabeled compounds.53 Tomographic reconstruction methods provide a way to acquire three-84

dimensional time-lapse images of the radiolabeled compound distribution in geologic materi-85

als. Radioisotopes that release high energy photons (511 keV) during positron emission and86

annihilation events are ideally suited for geologic materials that otherwise cause significant87

photoelectric adsorption and attenuation of lower energy photons.54,55 PET imaging thus88

provides a powerful non-destructive approach for characterizing dynamic in situ transport89

and attachment of bacteria radiolabeled with positron-emitting radioisotopes.90

Utilization of PET imaging for quantification of bacteria transport and attachment in col-91

umn experiments first requires radiolabeling the bacteria with a positron-emitting radioiso-92

tope. Bacteria have been radiolabeled using two different approaches—siderophore-derived93
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chelators56–61 and a glucose analog uptake.62 While these approaches are being developed for94

in vivo bacteria imaging in medicine,63 they have not yet been leveraged to study bacteria95

transport dynamics in environmental or geologic systems.96

In this study, we describe an approach for radiolabeling E. coli using [18F]-fluorodeoxyglucose97

(FDG) that enables three-dimensional time-lapse quantification of bacterial transport in ge-98

ologic materials with positron emission tomography. Measured attachment rate coefficient99

(kf ) distributions were used to parameterize a 3D continuum-scale transport model with100

first-order kinetic attachment. The model results of bacterial attachment in the heteroge-101

neous sand column were compared with the experimental results from PET to evaluate the102

accuracy of this image-based spatially-resolved kf quantification approach.103

Methods104

Three-dimensional image-based quantification of E. coli transport and attachment in sand-105

packed columns requires radiolabeling bacteria with a positron-emitting radioisotope, in situ106

imaging of radiolabeled bacteria with PET, and mathematical interpretation of PET images.107

To verify attachment measurement accuracy, a deterministic bacteria transport model was108

constructed based on the calculated transport and attachment distributions.109

Radiolabeling methodology110

The gram-negative E. coli strain P8 (ATCC® BAA-1429), referred to as P8 throughout the111

remainder of this manuscript, was used in this study because it is a nonpathogenic surrogate112

bacteria strain for the pathogenic E. coli O157:H7.64–67 Prior to PET imaging, extensive113

batch radiolabeling experiments were done to optimize the experimental timing and growth114

conditions that produced the highest and most stable uptake and retention of [18F]-FDG by115

E. coli P8.116

Bacteria were radiolabeled by adding [18F]-FDG to a 40 mL culture of bacteria grown117
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in Luria-Bertani (LB), centrifuging at 10,000 rpm for 12 minutes, washing with phosphate-118

buffered saline (PBS), and resuspending the bacterial cells in 40 mL of nutrient-free 1 mM119

NaCl saline solution buffered to a pH range of 6.5 to 7. The bacteria were left to uptake the120

[18F]-FDG for 15 minutes at room temperature (25°C). After [18F]-FDG uptake, the bacterial121

solution was centrifuged at 10,000 rpm and washed with PBS to remove excess aqueous122

phase [18F]-FDG in the supernatant. In the batch experiments, the excess [18F]-FDG in the123

supernatant was monitored as a function of time for up to three hours. Additional details124

of the radiolabeling and batch study verification workflows are provided in the Supporting125

Information (SI).126

For the PET imaging experiments, the target concentration of [18F]-FDG in the injected127

bacterial suspension was 1-1.5 mCi/ml. Our previous work found that this level of radioac-128

tivity produces the highest signal-to-noise images without saturating the PET scanner. 55 To129

reach this optimal radio-concentration, the initial bacterial suspension was concentrated to130

a smaller volume after the uptake procedure, knowing the radiolabel uptake and retention131

percentages from batch experiments, the initial radionuclide activity (in mCi) from a dose132

calibration chamber, and the decay rate of 18F. After concentrating the radiolabeled P8 to133

achieve the ideal concentration, the bacterial suspension was ready for injection into the134

sand column. The final cell suspension was confirmed to be stable in a separate parallel135

experiment through time-course optical density measurements and details are provided in136

the SI Section 5.137

PET imaging column experiments138

To quantify spatial and temporal distributions of solute and bacteria in sand-packed columns,139

both conservative solute tracer ([18F]-FDG) and radiolabeled bacteria pulse injection exper-140

iments were imaged with PET. Sands collected from Adams County, Wisconsin were sep-141

arated into two portions through dry sieving, a coarser portion (355-595 µm sieves) and a142

finer portion (<355 µm sieve). The coarser sand (M356 sand) and finer sand (M324 sand)143
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with grain size modes of 356 µm and 324 µm, respectively, were wet-packed inside a column144

into layers perpendicular to the long axis of the flow in the order of M356, M324, and M356145

from inlet to outlet as shown in Figure 1. The Fe(II) oxide content of M324 and M356 sands146

was found to be 10.7 ±0.4µ mol/g and 13.2±1.5 µ mol/g, respectively, using dithionite-147

citrate extraction method. We purposefully packed the columns using these similar sand148

sizes to examine the extent to which PET imaging can detect minor differences in transport149

behavior in a system with subtle heterogeneity. The heterogeneous column was connected150

to an experimental platform with dual-piston continuous-flow pumps and saturated with 1151

mM NaCl buffered at pH 6.5-7 with 5 mM NaHCO3 until a steady state was reached at 1.83152

ml/min. Further details of column packing and experiment procedures are described in the153

SI.154

The PET experiments involved a pulse injection experiment of 1 mL [18F]-FDG in 1155

mM NaCl as a conservative solute tracer and followed by a second pulse injection experi-156

ment of 1 mL concentrated radiolabeled E. coli P8 suspension in the same saline solution.157

The radio-concentration of each pulse-injected solution was approximately 1-1.5 mCi/ml.158

The injected cell concentration was approximately 7.6×1010 CFUs based on standard plate159

counting technique68 and the pulse duration was equivalent to 0.056 pore volume (PV) (see160

SI). The entire column was simultaneously and continuously scanned for 60 minutes during161

the tracer pulse injection experiment, followed by another 60-minute scan of the bacteria ex-162

periment with the Siemens Inveon PET scanner. PET image acquisition and reconstruction163

was performed according to previously established methods.54,69 The images were coarsened164

before data analysis as described in the SI. A similar column experiment was also conducted165

using non-radiolabeled E. coli and the attachment coefficient kf was quantified by fitting166

the breakthrough curves measured by the UV-Vis spectrophotometer. The attachment co-167

efficients from the PET experiment using radiolabeled bacteria were compared to the fitted168

kf from UV-Vis experiment to examine the impact of [18F]-FDG on bacterial cell transport.169

Radiotracer concentrations in the influent and effluent fluids were also measured. Bacterial170
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effluent in the later half of the breakthrough curve was discretely sampled. The radioactivity171

of the aqueous-phase bacterial in the effluent was compared to that of the bulk solution to172

verify the efficacy of our radiolabeling approach (see SI Section 4). These measurements173

ensure that the PET imaging was quantifying bacterial transport and not free (unattached)174

[18F]-FDG.175

Figure 1: (Top) X-ray computed tomography (CT) image of the heterogeneous column
packed with M356 and M324 sands with their respective grain size distributions (lower left).
Voxel dimension in the CT image is 0.316 mm x 0.316 mm. (Lower right) Micro-CT image
of M356 sand shows the silicate grain matrix (light grey), oxide mineral grains (white), and
pore space (darker grey). Each voxel in the micro-CT image is 3.12 µm x 3.12 µm.

Spatially resolved bacterial attachment calculation176

The PET scan results provide bacteria breakthrough curves that can be interpreted to quan-177

tify transport and attachment information in every 1.553 mm x 1.553 mm x 1.592 mm voxel178

(n) in the column. The scans throughout the pulse injections provide the total radioactiv-179

ity concentration in both aqueous and solid phases. Once the aqueous bacteria pulse was180

displaced out of the column by the non-radioactive background solution, no bacteria were181

assumed to be in the aqueous phase. At that moment, the observed radioactivity in the182

PET images represents only the solid-phase attached bacteria concentration.183

Calculation of the attachment coefficient in each voxel from the reconstructed PET image184

is derived from the advection-dispersion equation with a first-order attachment term (see185
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derivations in SI Section 5). This calculation of kf requires measurements of the solid-phase186

attached bacterial concentration S∗/C0 and integration of the bacterial breakthrough curve187

(C/C0) to be evaluated numerically using the composite trapezoidal rule (see SI, Equation188

4). Both the voxel-scale attached bacterial concentration and breakthrough curves were189

obtained from PET imaging data. Boundaries between layers in the column were identified190

based on the known mass fractions of the packed sand layers. The attached bacterial fraction191

(S∗/C0) and the calculated kf were grouped accordingly based on the voxel locations within192

these layers for comparison between the sand layers. However, the values of S∗/C0 and kf193

in the first and last voxels in the columns along the z-direction (distance slice) were both194

excluded so as not to include partial volume artifacts near the inlet and outlet end caps.195

Image data and scripts used for image analysis and attachment coefficient calculation are196

provided in the repository referenced in the Acknowledgements.197

Three-dimensional first-order bacteria transport model198

Results from PET experiments were used for parameterizing a three-dimensional numeri-199

cal model of the bacterial transport and attachment behavior observed in the column ex-200

periments. The model was constructed in MODFLOW 200570 and MT3DMS71 using the201

Python-based Flopy packages.72 The transport model solves the advection-dispersion equa-202

tion with a first-order irreversible deposition term (Equation 1, SI). The model was built203

to simulate bacteria transport in the same length column with a porosity ϕ = 0.39 and204

dispersivity α = 0.13 cm. The bulk column porosity and dispersivity were found by fit-205

ting an analytical model to the breakthrough curves of fluorescein dye tracer and bacteria206

in identical column experiments. Breakthrough curves in those experiments were obtained207

by measuring concentration using a UV-Vis spectrophotometer (Shimadzu UV-1900i). The208

ratio of the transverse dispersivity and the longitudinal dispersivity was assumed 1:10 (or209

0.1) in the standard isotropic model.73210

The model was discretized to identically match the PET image discretization. The initial211
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3D column shape was defined as a grid with 17 cells x 17 cells x 57 cells in the x-y-z direction,212

where xy plane is orthogonal to the long axis of the column. Similar to the PET images,213

each cell in the model had a dimension of 1.553 mm x 1.553 mm x 1.592 mm. The cylindrical214

shape of the column was preserved in the model by inactivating the cells outside the column215

geometry. A constant head (Dirichlet) boundary condition was applied at the outlet of216

the column. A constant flow rate condition equal to the experimental injection rate of217

1.826 mL/min was applied as the inlet boundary condition. The initial condition was zero218

concentration at time t=0. Identical to the experiment, a 1 mL pulse of bacteria was injected219

and immediately displaced by solution with no bacteria or tracer.220

The three-dimensional attachment coefficients measured from PET as described in the221

previous section were used to describe the attachment coefficient kf in each corresponding222

grid cell of the model. The 3D model output was used to calculate bacterial attachment223

maps (S∗/C0) based on the voxel-scale kf and bacteria breakthrough curves using Equation224

3 in the SI. This spatially-resolved attachment map calculated from the numerical model225

output was then compared with the attachment measured from the PET images. Results226

from the model were used to validate that the PET analysis method can directly quantify227

the kf distribution in heterogeneous geologic column experiments. The full model input and228

output files are available in a repository provided in the Acknowledgements.229

Results and Discussions230

Validation of radiolabeling methodology for determination of bac-231

terial transport and attachment232

Batch experiments (SI, Figure S2) showed that approximately 82.5% of [18F]-FDG was taken233

up by E. coli P8 grown in LB broth and suspended in 1 mM NaCl and an average of 81.4%234

of the radiolabeled was retained by the cells after resuspension in fresh saline solution (1235

mM NaCl). The raw bacteria concentration data in the effluent samples (available in a236
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repository listed in the Acknowledgment) were used to generate the breakthrough curve237

in Figure S3. The amount of FDG in bacteria versus free solution in the column effluent238

collected 10 minutes after the start of pulse injection was ca. 83%, similar to the level239

of retention observed in batch experiments. Because virtually all unattached [18F]-FDG240

labeled bacteria and free [18F]-FDG were eluted from the column after 14 minutes (SI, Figure241

S3), any radioactivity remaining in the column at that time was assumed to be attached242

bacteria. These results confirm that the radiolabeling of the P8 cells with [18F]-FDG was243

sufficiently stable to permit the determination of bacterial attachment in the column by PET244

analysis at 14 minutes after pulse injection. The small amount of radioactivity continuously245

present in the column effluent toward the end of the experiment (SI, Figure S3) can be246

attributed to a combination of free [18F]-FDG released from attached bacteria, as well as a247

small amount of radiolabeled bacteria tailing in secondary minimum association with surfaces248

that were re-entrained into the bulk fluid. This release was minor, however, compared to the249

amount of radioactivity associated with the attached bacteria at the time of PET analysis.250

Collectively, these results confirm that our radiolabeling methodology was sufficient to enable251

the calculation of spatially-resolved bacterial transport and attachment in the column.252

Three-dimensional quantification of bacteria transport in heteroge-253

neous sand pack254

Bacterial transport was quantified in situ using the voxel-scale concentration of radioactivity255

measured with PET in the sand-packed column. The normalized concentration of the radio-256

tracer and radiolabeled bacteria throughout the columns as a function of time is shown in257

Figure 2. From these images, it is clear that the E. coli P8 pulse experienced greater apparent258

dispersion and substantial attachment during transport relative to the 18F-FDG conservative259

radiotracer. Nonuniform plume shapes of both the tracer and bacteria at early timesteps260

(e.g. PV = 0.30) were driven by nonuniform fluid injection across the face of the inlet cap261

that inevitably arose at the transition from small diameter tubing to a larger diameter (2.54262
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cm) column. Some minor plume distortion was also driven by small-scale heterogeneity at263

the interfaces between the inlet and middle sand layers as illustrated in the X-ray CT im-264

age of the column (Figure 1, top). Overall, these time-course concentration maps from PET265

data provided dynamic spatially-resolved tracer and bacterial concentrations throughout the266

entire column over the course of the experiments. These data provided breakthrough curves267

at the voxel-scale that were used to calculate spatially-resolved attachment rate coefficients.268

Figure 2: Two-dimensional slices from the 3D PET images showing time-course concentration
(C/C0) of the radiotracer 18F-FDG (left) and radiolabeled P8 bacteria (right) during separate
pulse injection experiments in the heterogeneous sand-packed column. Color scale indicates
the normalized concentration that was averaged around the center longitudinal slice of the
column. Each voxel size is 1.553 mm x 1.553 mm x 1.592 mm. PET concentration images
are shown at 2, 5, and 8 minutes (PV = 0.30, 0.61, and 0.92, respectively) from the start of
the pulse injection. This figure highlights the ability to resolve in situ time-lapse bacteria
transport behavior with PET imaging.

Bacteria attachment distributions in layered sandpacks269

Bacterial attachment and deposition rate coefficients were quantified from the PET data270

immediately after the bacteria pulse passed through the column. At approximately 14 min-271

utes after the initiation of the bacterial pulse injection (PV = 1.53), the mobile bacteria had272

completely exited the column. After this time, the PET-measured radioactivity inside the273
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column represents the bacteria that were attached to the sand matrix (denoted as S∗/C0).274

This inference was possible because of E. coli P8 stable retention of radiotracer over the275

course of 3.5 hours, well exceeding the column transport experiment duration (SI, Figure276

S2). The attached bacterial concentration (S∗/C0) was also quantified at the voxel-scale277

level in the entire 3D column. Using these measurements of voxel-scale breakthrough curves278

and attached bacterial concentrations, the attachment coefficients (kf ) were directly cal-279

culated using Equation 4 in the SI. The breakthrough curves were voxel volume-averaged280

concentration of bacteria measured as a function of time.281

The attachment coefficients averaged along the longitudinal slices of the column are shown282

in Figure 3 along with the one-dimensional profile of slice-average kf . Probability density283

of kf in each sand layer is plotted in Figure 4 for statistical comparison of the attachment284

distributions between layers and between experiments. More bacteria were attached in the285

middle M324 sand layer than in the inlet and outlet layers packed with M356 sand. As a286

result, both the inlet and outlet layers with M356 sand had similar modal values of kf =287

0.020 min−1, which was smaller than modal kf = 0.035 min−1 in the slightly finer M324 sand288

(Figure 4). However, the maximum concentration of attached bacteria was at the interfaces289

between the two sand types (located around 2-2.5 cm and 6.5 cm from the column inlet).290

Skewness towards higher kf in the inlet layer kf distribution shown in Figure 4 was due to the291

higher kf values at the interfacial regions being included in the inlet layer. The attachment292

coefficients at the interfaces were at least twice as large as the modal kf in both layers,293

ranging from 0.050 up to 0.090 min−1. Compared with similar UV-Vis column experiments294

using non-concentrated and non-radiolabeled bacteria suspension, the kf fitted from the295

spectrophotometric breakthrough curve fell within the range of the local kf distributions296

measured from PET experiment. This agreement in the attachment coefficients indicates297

that the radioactive label [18F]-FDG had negligible impact on the cell transport of E. coli.298

Earlier mean arrival time breakthrough of bacteria relative to the solute tracer in the UV-Vis299

experiment suggests that pore-size exclusion is likely in the PET experiments as has been300
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observed in other studies.18,25,74,75301

Figure 3: (Top) Two-dimensional distribution of attachment coefficients (kf ) averaged along
the center longitudinal axis of the column after the bacterial pulse exited column at τ=14
min (PV = 1.53) since pulse injection. Each voxel size is 1.553 mm x 1.553 mm x 1.592
mm. (Bottom) One-dimensional slice-averaged kf in the sand column. Higher attachment
coefficients were observed at the interfaces between the sand layers (dashed lines), and finer
M324 sand exhibited greater kf values than M356 sand.

Figure 4: Probability density distributions of attachment coefficients (kf ) in each sand layer
(solid points) fitted with lognormal distribution curves (lines). Inlet M356 sand layer had
similar distribution to outlet M356 sand layer, albeit having a higher kf tailing due to
higher attachment at the interface. The finer M324 sand exhibited slightly higher range of
kf distribution than M356 sand.

Numerical model parameterization from PET data302

The three-dimensional attachment coefficient distribution calculated from the PET images303

and shown in Figure 3 was incorporated into the 3D numerical model to calculate E. coli at-304

tachment in the heterogeneous column. The model-calculated bacterial attachment matched305
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closely with the experimental PET results as illustrated in both the 2D and 1D profiles in306

Figure 5. The 1D profiles show that the bacteria attached (S∗/C0) at the coarse inlet and307

outlet layers ranged from 0.010 to 0.013, and was higher in the middle layer (S∗/C0 = 0.012-308

0.017). More bacteria were attached at the interface near the inlet (S∗/C0 = 0.015-0.025)309

than at the second interface down-gradient (S∗/C0 = 0.010-0.016). A second simulation was310

conducted assuming a single kf , which was determined from the average kf of all the voxels311

calculated from PET results. The experimental PET data highlight variability in bacterial312

attachment as opposed to an exponential decrease in deposition with distance suggested by313

the homogeneous kf model (Figure 5, top) and other bacterial transport studies in unfavor-314

able conditions. These results highlight that kf can be directly quantified in situ from PET315

data and can be described as a heterogeneous parameter field in a transport model. Un-316

der such heterogeneity, the first-order transport model with irreversible attachment closely317

reproduced the bacteria attachment behavior observed in the column experiments.318
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Figure 5: (Top) Comparison of the 1D slice-average bacterial attachment (S∗/C0) between
PET result and two numerical model predictions. The heterogeneous model was run based on
the 3D heterogeneous kf distribution measured from PET. The homogeneous model assumed
a single kf = 0.029 min−1 for the entire column, which was the average kf value in all voxels
of the column from PET measurement. (Middle and bottom) Two-dimensional slice-average
S∗/C0 maps for the numerical model and PET measured data, respectively. The voxel size
in these maps is 1.553 mm x 1.553 mm x 1.592 mm. The predicted attachment from the
heterogeneous model matched closely with the experiment PET result, indicating an accurate
quantification of spatially-resolved bacteria attachment coefficients.

Discussion of calculated bacteria attachment319

The attachment rate coefficients measured in this study are comparable with literature val-320

ues in previous studies of bacteria transport in sand packs, but direct comparison is difficult321

due to differences in experimental conditions such as pore-water velocity, ionic strength (IS),322

pH, bacteria strain, injected bacteria mass, bacteria concentration, sand grain properties,323

and mineralogy. The average kf results of 0.020 to 0.035 min−1 for M356 and M324 sands in324

Figure 3 were measured under an ionic strength (IS) of 1 mM NaCl, circumneutral pH, and325

flow rate Q=1.826 ml/min (pore-water velocity vp= 0.924 cm/min). Previous studies based326

on experiments with similar IS, pH, grain size, and sand type have resulted in kf values327
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that were similar (kf = 0.0175-0.0238 min−1),76 two to three times lower (kf =7.59×10−3
328

min−1),77 and almost 10 times lower (kf= 3.68E-3 min−1)48 than the values observed in Fig-329

ure 3. However, these results were based on different flow rates, strains of E. coli, sand pack330

mineralogy, and different volumes and masses of injected bacteria. Given these differences,331

our experimental kf results can be considered consistent with values found in the literature.332

The higher experimental kf found for M324 sand (finer) than M356 sand (coarser) is con-333

sistent with literature values but does not explain the observation of the highest attachment334

coefficients occurring at the interface between sand layers. Many studies have observed bac-335

teria retention decreasing with increasing grain size,23,78 as expected from colloid filtration336

theory. However, some studies have found that small grain size variation did not display337

significant impacts on bacteria attachment compared to other factors such as pore volumes338

of bacteria injected and pore size,48,79 cell motility,76,80,81 grain properties (surface area, an-339

gularity, roughness),82 or metal oxide content.83 Other bacteria deposition mechanisms such340

as aggregation, ripening, straining, and/or hydrodynamic bridging could contribute to the341

attachment behaviors observed;48,78,84,85 however, direct attribution of these mechanisms to342

the observed pattern is not possible without corresponding pore-scale observations.343

In this study, the porosity between M324 and M356 sands only differed by 1-3% and344

differences in grain size distribution were subtle (Figure 1). Despite these subtle differences,345

the observation of attachment differences at the interfaces illustrates the capability of PET346

imaging during column experiments in detecting small changes in bacteria concentration347

and attachment in subtly heterogeneous geologic materials with greater precision relative to348

other macroscale methods.349

The presence of oxide minerals is a potential source of the higher attachment near the350

sand layer interfaces or spatial variation in the retention rate coefficients within the layers.351

Higher bacterial attachment is often observed with higher content of oxide minerals as a352

result of favorable attachment conditions. In particular, this behavior has been observed on353

oxyhydroxide-coated surfaces83,86–91 as well as aluminum-coated sands.86,92–97 The presence354
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of oxide minerals is also detected through the micro-CT image of sand M324 as white grains355

with higher X-ray attenuation in Figure 1. However, variation in volumetric oxide content356

is not significant enough to be quantified or visualized with X-ray CT in the column scale.357

Thus, oxide minerals remain the potential cause of greater colloid deposition at the sand358

interfaces. Studying the influence of spatially variable oxide content on bacterial attachment359

using PET imaging is an area of future work.360

A likely mechanism for higher attachment at the sand layer interfaces is that these areas361

are local transitional regions in pore-scale velocity distribution and where local porosity362

could be reduced due to potential packing differences. Packing and/or differences in grain363

size may have also contributed to increasing pore-scale complexity which has been observed364

to widen pore-water velocity distributions98–101 and could lead to more colloids reaching the365

grain surface based on previous pore-scale simulation studies.79,102–105 Under unfavorable366

attachment conditions, bacteria attachment is largely driven by local variations in velocity.367

This has been observed in experiments and models at grain-grain contacts,48 near grain368

surfaces where roughness leads to enhanced attachment,15,106 and regions of decreasing pore369

water velocity.79,82,107–110370

Implications371

While bacterial radiolabeling with [18F]-FDG for use in PET imaging has been investigated372

in the clinical settings,63 geoscientific application of PET has been limited to monitoring flow373

and transport in porous and fractured media.111–115 In this study, the combination of radi-374

olabeling E. coli with positron-emitting radioisotopes and imaging the dynamic 3D E. coli375

distributions in heterogeneous sand-packed columns provides measurements of in situ bacte-376

ria transport and attachment in geologic materials at the Darcy scale. This radiolabeling and377

imaging approach enables the direct quantification of spatially-variable bacteria attachment378

coefficients in heterogeneous geologic media. Consistent with other studies, higher E. coli379
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P8 attachment was observed in the slightly finer M324 sand compared to the M356 sands380

despite the minor difference in porosity and grain size distribution. The highest bacteria381

attachment was observed at the interfaces between the different sand layers, highlighting the382

importance of studying bacteria transport in nonideal geologic media.383

The demonstrated ability of the 3D model—parameterized with the measured attachment384

distributions—to reproduce the experimental results suggests that with more measurements385

across different geological media and environmental conditions, it may be possible to de-386

scribe fundamental attachment rate coefficient information (e.g. PDFs) in a process-based387

framework. Overall, the bacterial radiolabeling and PET imaging technique is applicable in388

geologic media and soils to enable transport studies under more realistic conditions. Under-389

standing the role of different processes and geologic conditions on attachment rate distribu-390

tions could enable more accurate bacteria transport and attachment prediction in geologic391

systems at larger scales.392
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