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Abstract

Prevention, mitigation, and regulation of bacterial contaminants in groundwater re-
quire a fundamental understanding of the mechanisms of transport and attachment in
complex geological materials. Discrepancies in bacteria transport behaviors observed
between field studies and laboratory experiments indicate an incomplete understanding
of dynamic bacteria transport and immobilization processes in realistic heterogeneous
geologic systems. Here, we develop a new experimental approach for in situ quantifica-
tion of dynamic bacteria transport and attachment distribution in geologic media that
relies on radiolabeling Fscherichia coli with positron-emitting radioisotopes and quan-
tifying transport with three-dimensional (3D) positron emission tomography (PET)
imaging. Our results indicate that the highest bacterial attachment occurred at the
interfaces between sand layers oriented orthogonal to the direction of flow. The pre-
dicted bacterial attachment from a 3D numerical model matched the experimental
PET results, highlighting that experimentally-observed bacteria transport behavior

can be accurately captured with a distribution of a first-order irreversible attachment
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model. This is the first demonstration of direct measurement of attachment coefficient
distributions from bacteria transport experiments in geologic media and provides a
transformational approach to better understand bacterial transport mechanisms, im-
prove model parameterization, and accurately predict how local geologic conditions

can influence bacterial fate and transport in groundwater.
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Sypnosis

A new technique using radiolabeled bacteria and PET imaging shows highest bacterial at-
tachment in groundwater occurs at sand layer interfaces. It improves understanding and

prediction of bacteria transport in groundwater.

Introduction

Studying the transport and fate of colloidal bacteria in groundwater systems is important

2 and has important implications for the persistence and

for limiting water-borne disease®
mobility of other contaminants such as metals in soils,® nonaqueous phase liquid biodegra-
dation,* and denitrification of groundwater.® One of the most common bacteria found in
water resources is Escherichia coli (E. coli). Widespread land application of animal waste
containing E. coli and other pathogens poses a persistent risk to groundwater systems, es-
pecially due to the long-term survival rates of E. coli in the subsurface.% % Mitigating these
risks requires an improved understanding of bacterial colloid transport and immobilization

under complex hydrogeologic conditions.

Similar to colloids, mechanistic descriptions of bacterial transport in porous media are
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often adapted from colloid filtration theory (CFT).1¢ While CFT has been widely applied
to quantitatively predict the likelihood of colloids contacting the grain surfaces during trans-
port, it fails to account for reversible colloid attachment, heterogeneous deposition rates
(kf), bacteria straining, pore-size exclusion, and influence of microbial properties such as
cell motility and bacterial surface properties. Here, the term bacterial/colloid attachment is
used as an encompassing term to describe immobilization of bacteria that can be caused
by mechanisms such as electrostatic forces of attraction, steric forces, hydration forces,
shear forces, surface topology, etc.!” Pore size exclusion refers to the inability of colloids
to pass through a pore space due to small pore throat-to-colloid size ratio leading to col-
loids being excluded from certain pores downstream.!®2° CFT is a mechanistic approach
developed at the pore scale to predict the attachment rate coefficient that applies at the
continuum scale. However, complexities exist outside the unit collectors underlying CFT,
which has driven various approaches to manipulate rate coefficients directly at the contin-
uum scale without mechanistically simulating the pore scale processes such as incorporating

19,23

multi-rate attachment,?'?? depth-dependent straining, parameters to account for pore

24,25

size exclusion, sorption/retardation-like terms,?¢ statistical /stochastic colloid modeling

26,27 28-31

approaches, and Lagrangian model frameworks.
At the column scale, a key challenge is the unique parameterization of bacteria trans-
port models using traditional experimental data that exhibit spatially-variable attachment

26,33

coefficients,? short and long-term detachment statistics, early breakthrough observa-

2534 and long-tail breakthrough curve behavior.3%3¢ Mechanistic simulations of colloid-

tions,
surface interactions at the pore- and nano-scale have been shown to generate some of these
phenomena; 1637 however, observational linkages between these multi-scale processes remain
challenging. Specifically, bacterial effluent concentration measurements have repeatedly been
shown to be insufficient for the unique interpretation of colloid attachment, dispersion, and

pore water velocity.?23%3% Despite this gap, current methods for retention profile determi-

nation are laborious, one-dimensional in space, and typically only provide profiles at one
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instance in time—at the time of destructive column analysis. 224°

Three-dimensional (3D) in situ imaging has the potential to provide spatial and tem-
poral bacteria transport and attachment information that is necessary to characterize and
understand dynamic and heterogeneous systems. Previous studies have utilized in situ ap-
proaches including optical imaging of fluorescent colloids in transparent media,3®4! X-ray

42-44

micro-computed tomography (X-ray nCT), and magnetic resonance imaging. >4 How-

ever, optical and magnetic resonance imaging approaches are constrained to idealized systems

146,47 45,46

such as glass bead packs or silica ge rather than geologic soils and aquifer materials
and X-ray pCT is constrained to small spatial scales (<1 ¢m), limiting the applicability of
these types of in situ measurements in under realistic environmental and geologic condi-
tions. While transport studies of fluorescent bacteria?® 52 have provided valuable insights
into the pore-scale deposition and transport mechanisms of F. coli in sands, bacteria at-
tachment rates in those studies were inferred from fitting breakthrough curves and in some
cases 1D retention profiles and thus were not able to uniquely measure the attachment rate
distributions.

Positron emission tomography (PET) is a medical imaging technique that relies on the
emission, detection, and reconstruction of high-energy photons from positron-emitting radi-
olabeled compounds.?® Tomographic reconstruction methods provide a way to acquire three-
dimensional time-lapse images of the radiolabeled compound distribution in geologic materi-
als. Radioisotopes that release high energy photons (511 keV) during positron emission and
annihilation events are ideally suited for geologic materials that otherwise cause significant
photoelectric adsorption and attenuation of lower energy photons.®*®® PET imaging thus
provides a powerful non-destructive approach for characterizing dynamic in situ transport
and attachment of bacteria radiolabeled with positron-emitting radioisotopes.

Utilization of PET imaging for quantification of bacteria transport and attachment in col-
umn experiments first requires radiolabeling the bacteria with a positron-emitting radioiso-

tope. Bacteria have been radiolabeled using two different approaches—siderophore-derived



%661 and a glucose analog uptake. % While these approaches are being developed for

o chelators
s in vivo bacteria imaging in medicine,% they have not yet been leveraged to study bacteria

o transport dynamics in environmental or geologic systems.

o7 In this study, we describe an approach for radiolabeling E. coli using [**F]-fluorodeoxyglucose
e (FDG) that enables three-dimensional time-lapse quantification of bacterial transport in ge-

o ologic materials with positron emission tomography. Measured attachment rate coefficient

wo (ky) distributions were used to parameterize a 3D continuum-scale transport model with

w first-order kinetic attachment. The model results of bacterial attachment in the heteroge-

102 neous sand column were compared with the experimental results from PET to evaluate the

s accuracy of this image-based spatially-resolved k; quantification approach.

« Methods

s Three-dimensional image-based quantification of E. coli transport and attachment in sand-
106 packed columns requires radiolabeling bacteria with a positron-emitting radioisotope, in situ
w7 imaging of radiolabeled bacteria with PET, and mathematical interpretation of PET images.
s To verify attachment measurement accuracy, a deterministic bacteria transport model was

w0 constructed based on the calculated transport and attachment distributions.

o Radiolabeling methodology

ur The gram-negative E. coli strain P8 (ATCC®) BAA-1429), referred to as P8 throughout the
2 remainder of this manuscript, was used in this study because it is a nonpathogenic surrogate
13 bacteria strain for the pathogenic E. coli O157:H7.54°%7 Prior to PET imaging, extensive
us batch radiolabeling experiments were done to optimize the experimental timing and growth
us  conditions that produced the highest and most stable uptake and retention of ['**F]-FDG by

¢ F. coli P8.

1

=

17 Bacteria were radiolabeled by adding ['®F]-FDG to a 40 mL culture of bacteria grown
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in Luria-Bertani (LB), centrifuging at 10,000 rpm for 12 minutes, washing with phosphate-
buffered saline (PBS), and resuspending the bacterial cells in 40 mL of nutrient-free 1 mM
NaCl saline solution buffered to a pH range of 6.5 to 7. The bacteria were left to uptake the
['8F]-FDG for 15 minutes at room temperature (25°C). After ['**F]-FDG uptake, the bacterial
solution was centrifuged at 10,000 rpm and washed with PBS to remove excess aqueous
phase ["®F]-FDG in the supernatant. In the batch experiments, the excess ["*F]-FDG in the
supernatant was monitored as a function of time for up to three hours. Additional details
of the radiolabeling and batch study verification workflows are provided in the Supporting
Information (SI).

For the PET imaging experiments, the target concentration of ["*F]-FDG in the injected
bacterial suspension was 1-1.5 mCi/ml. Our previous work found that this level of radioac-
tivity produces the highest signal-to-noise images without saturating the PET scanner.® To
reach this optimal radio-concentration, the initial bacterial suspension was concentrated to
a smaller volume after the uptake procedure, knowing the radiolabel uptake and retention
percentages from batch experiments, the initial radionuclide activity (in mCi) from a dose
calibration chamber, and the decay rate of ®F. After concentrating the radiolabeled P8 to
achieve the ideal concentration, the bacterial suspension was ready for injection into the
sand column. The final cell suspension was confirmed to be stable in a separate parallel
experiment through time-course optical density measurements and details are provided in

the SI Section 5.

PET imaging column experiments

To quantify spatial and temporal distributions of solute and bacteria in sand-packed columns,
both conservative solute tracer (['**F]-FDG) and radiolabeled bacteria pulse injection exper-
iments were imaged with PET. Sands collected from Adams County, Wisconsin were sep-
arated into two portions through dry sieving, a coarser portion (355-595 pm sieves) and a

finer portion (<355 pm sieve). The coarser sand (M356 sand) and finer sand (M324 sand)
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with grain size modes of 356 pm and 324 pm, respectively, were wet-packed inside a column
into layers perpendicular to the long axis of the flow in the order of M356, M324, and M356
from inlet to outlet as shown in Figure 1. The Fe(II) oxide content of M324 and M356 sands
was found to be 10.7 £0.4p mol/g and 13.2+1.5 pu mol/g, respectively, using dithionite-
citrate extraction method. We purposefully packed the columns using these similar sand
sizes to examine the extent to which PET imaging can detect minor differences in transport
behavior in a system with subtle heterogeneity. The heterogeneous column was connected
to an experimental platform with dual-piston continuous-flow pumps and saturated with 1
mM NaCl buffered at pH 6.5-7 with 5 mM NaHCO; until a steady state was reached at 1.83
ml/min. Further details of column packing and experiment procedures are described in the
SI.

The PET experiments involved a pulse injection experiment of 1 mL [®*F]-FDG in 1
mM NaCl as a conservative solute tracer and followed by a second pulse injection experi-
ment of 1 mL concentrated radiolabeled E. coli P8 suspension in the same saline solution.
The radio-concentration of each pulse-injected solution was approximately 1-1.5 mCi/ml.
The injected cell concentration was approximately 7.6x10'® CFUs based on standard plate
counting technique® and the pulse duration was equivalent to 0.056 pore volume (PV) (see
SI). The entire column was simultaneously and continuously scanned for 60 minutes during
the tracer pulse injection experiment, followed by another 60-minute scan of the bacteria ex-
periment with the Siemens Inveon PET scanner. PET image acquisition and reconstruction
was performed according to previously established methods. % The images were coarsened
before data analysis as described in the SI. A similar column experiment was also conducted
using non-radiolabeled E. coli and the attachment coefficient k; was quantified by fitting
the breakthrough curves measured by the UV-Vis spectrophotometer. The attachment co-
efficients from the PET experiment using radiolabeled bacteria were compared to the fitted
k; from UV-Vis experiment to examine the impact of ['**F]-FDG on bacterial cell transport.

Radiotracer concentrations in the influent and effluent fluids were also measured. Bacterial
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effluent in the later half of the breakthrough curve was discretely sampled. The radioactivity
of the aqueous-phase bacterial in the effluent was compared to that of the bulk solution to
verify the efficacy of our radiolabeling approach (see SI Section 4). These measurements

ensure that the PET imaging was quantifying bacterial transport and not free (unattached)

['8F]-FDG.
600 T
o
c
400 3
&
. 200 2
{ c
| 0o 3
| 73
\ -200
M324
\ _— o
o M3s6 N
— o
200 400 600 800 3

Grain size [um]

Figure 1: (Top) X-ray computed tomography (CT) image of the heterogeneous column
packed with M356 and M324 sands with their respective grain size distributions (lower left).
Voxel dimension in the CT image is 0.316 mm x 0.316 mm. (Lower right) Micro-CT image
of M356 sand shows the silicate grain matrix (light grey), oxide mineral grains (white), and
pore space (darker grey). Each voxel in the micro-CT image is 3.12 pm x 3.12 pm.

Spatially resolved bacterial attachment calculation

The PET scan results provide bacteria breakthrough curves that can be interpreted to quan-
tify transport and attachment information in every 1.553 mm x 1.553 mm x 1.592 mm voxel
(n) in the column. The scans throughout the pulse injections provide the total radioactiv-
ity concentration in both aqueous and solid phases. Once the aqueous bacteria pulse was
displaced out of the column by the non-radioactive background solution, no bacteria were
assumed to be in the aqueous phase. At that moment, the observed radioactivity in the
PET images represents only the solid-phase attached bacteria concentration.

Calculation of the attachment coefficient in each voxel from the reconstructed PET image

is derived from the advection-dispersion equation with a first-order attachment term (see
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derivations in SI Section 5). This calculation of k; requires measurements of the solid-phase
attached bacterial concentration S*/Cj and integration of the bacterial breakthrough curve
(C/Ch) to be evaluated numerically using the composite trapezoidal rule (see SI, Equation
4). Both the voxel-scale attached bacterial concentration and breakthrough curves were
obtained from PET imaging data. Boundaries between layers in the column were identified
based on the known mass fractions of the packed sand layers. The attached bacterial fraction
(5*/Cp) and the calculated ky were grouped accordingly based on the voxel locations within
these layers for comparison between the sand layers. However, the values of S*/Cy and ky
in the first and last voxels in the columns along the z-direction (distance slice) were both
excluded so as not to include partial volume artifacts near the inlet and outlet end caps.
Image data and scripts used for image analysis and attachment coefficient calculation are

provided in the repository referenced in the Acknowledgements.

Three-dimensional first-order bacteria transport model

Results from PET experiments were used for parameterizing a three-dimensional numeri-
cal model of the bacterial transport and attachment behavior observed in the column ex-
periments. The model was constructed in MODFLOW 20057 and MT3DMS™ using the
Python-based Flopy packages.™ The transport model solves the advection-dispersion equa-
tion with a first-order irreversible deposition term (Equation 1, SI). The model was built
to simulate bacteria transport in the same length column with a porosity ¢ = 0.39 and
dispersivity a« = 0.13 cm. The bulk column porosity and dispersivity were found by fit-
ting an analytical model to the breakthrough curves of fluorescein dye tracer and bacteria
in identical column experiments. Breakthrough curves in those experiments were obtained
by measuring concentration using a UV-Vis spectrophotometer (Shimadzu UV-1900i). The
ratio of the transverse dispersivity and the longitudinal dispersivity was assumed 1:10 (or
0.1) in the standard isotropic model. ™

The model was discretized to identically match the PET image discretization. The initial
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3D column shape was defined as a grid with 17 cells x 17 cells x 57 cells in the x-y-z direction,
where xy plane is orthogonal to the long axis of the column. Similar to the PET images,
each cell in the model had a dimension of 1.553 mm x 1.553 mm x 1.592 mm. The cylindrical
shape of the column was preserved in the model by inactivating the cells outside the column
geometry. A constant head (Dirichlet) boundary condition was applied at the outlet of
the column. A constant flow rate condition equal to the experimental injection rate of
1.826 mL/min was applied as the inlet boundary condition. The initial condition was zero
concentration at time t=0. Identical to the experiment, a 1 mL pulse of bacteria was injected
and immediately displaced by solution with no bacteria or tracer.

The three-dimensional attachment coefficients measured from PET as described in the
previous section were used to describe the attachment coefficient k; in each corresponding
grid cell of the model. The 3D model output was used to calculate bacterial attachment
maps (5*/Cp) based on the voxel-scale k¢ and bacteria breakthrough curves using Equation
3 in the SI. This spatially-resolved attachment map calculated from the numerical model
output was then compared with the attachment measured from the PET images. Results
from the model were used to validate that the PET analysis method can directly quantify
the k¢ distribution in heterogeneous geologic column experiments. The full model input and

output files are available in a repository provided in the Acknowledgements.

Results and Discussions

Validation of radiolabeling methodology for determination of bac-

terial transport and attachment

Batch experiments (SI, Figure S2) showed that approximately 82.5% of ['®F]-FDG was taken
up by E. coli P8 grown in LB broth and suspended in 1 mM NaCl and an average of 81.4%
of the radiolabeled was retained by the cells after resuspension in fresh saline solution (1

mM NaCl). The raw bacteria concentration data in the effluent samples (available in a

10
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repository listed in the Acknowledgment) were used to generate the breakthrough curve
in Figure S3. The amount of FDG in bacteria versus free solution in the column effluent
collected 10 minutes after the start of pulse injection was ca. 83%, similar to the level
of retention observed in batch experiments. Because virtually all unattached ["*F]-FDG
labeled bacteria and free ["®F]-FDG were eluted from the column after 14 minutes (SI, Figure
S3), any radioactivity remaining in the column at that time was assumed to be attached
bacteria. These results confirm that the radiolabeling of the P8 cells with ['®F]-FDG was
sufficiently stable to permit the determination of bacterial attachment in the column by PET
analysis at 14 minutes after pulse injection. The small amount of radioactivity continuously
present in the column effluent toward the end of the experiment (SI, Figure S3) can be
attributed to a combination of free ['"*F]-FDG released from attached bacteria, as well as a
small amount of radiolabeled bacteria tailing in secondary minimum association with surfaces
that were re-entrained into the bulk fluid. This release was minor, however, compared to the
amount of radioactivity associated with the attached bacteria at the time of PET analysis.
Collectively, these results confirm that our radiolabeling methodology was sufficient to enable

the calculation of spatially-resolved bacterial transport and attachment in the column.

Three-dimensional quantification of bacteria transport in heteroge-

neous sand pack

Bacterial transport was quantified in situ using the voxel-scale concentration of radioactivity
measured with PET in the sand-packed column. The normalized concentration of the radio-
tracer and radiolabeled bacteria throughout the columns as a function of time is shown in
Figure 2. From these images, it is clear that the E. coli P8 pulse experienced greater apparent
dispersion and substantial attachment during transport relative to the *F-FDG conservative
radiotracer. Nonuniform plume shapes of both the tracer and bacteria at early timesteps
(e.g. PV = 0.30) were driven by nonuniform fluid injection across the face of the inlet cap

that inevitably arose at the transition from small diameter tubing to a larger diameter (2.54

11
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cm) column. Some minor plume distortion was also driven by small-scale heterogeneity at
the interfaces between the inlet and middle sand layers as illustrated in the X-ray CT im-
age of the column (Figure 1, top). Overall, these time-course concentration maps from PET
data provided dynamic spatially-resolved tracer and bacterial concentrations throughout the
entire column over the course of the experiments. These data provided breakthrough curves

at the voxel-scale that were used to calculate spatially-resolved attachment rate coefficients.
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Figure 2: Two-dimensional slices from the 3D PET images showing time-course concentration
(C/Cy) of the radiotracer '*F-FDG (left) and radiolabeled P8 bacteria (right) during separate
pulse injection experiments in the heterogeneous sand-packed column. Color scale indicates
the normalized concentration that was averaged around the center longitudinal slice of the
column. Each voxel size is 1.553 mm x 1.553 mm x 1.592 mm. PET concentration images
are shown at 2, 5, and 8 minutes (PV = 0.30, 0.61, and 0.92, respectively) from the start of
the pulse injection. This figure highlights the ability to resolve in situ time-lapse bacteria
transport behavior with PET imaging.

Bacteria attachment distributions in layered sandpacks

Bacterial attachment and deposition rate coefficients were quantified from the PET data
immediately after the bacteria pulse passed through the column. At approximately 14 min-
utes after the initiation of the bacterial pulse injection (PV = 1.53), the mobile bacteria had

completely exited the column. After this time, the PET-measured radioactivity inside the

12
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column represents the bacteria that were attached to the sand matrix (denoted as S*/Cp).
This inference was possible because of E. coli P8 stable retention of radiotracer over the
course of 3.5 hours, well exceeding the column transport experiment duration (SI, Figure
S2). The attached bacterial concentration (S*/Cj) was also quantified at the voxel-scale
level in the entire 3D column. Using these measurements of voxel-scale breakthrough curves
and attached bacterial concentrations, the attachment coefficients (k;) were directly cal-
culated using Equation 4 in the SI. The breakthrough curves were voxel volume-averaged
concentration of bacteria measured as a function of time.

The attachment coefficients averaged along the longitudinal slices of the column are shown
in Figure 3 along with the one-dimensional profile of slice-average k;. Probability density
of ks in each sand layer is plotted in Figure 4 for statistical comparison of the attachment
distributions between layers and between experiments. More bacteria were attached in the
middle M324 sand layer than in the inlet and outlet layers packed with M356 sand. As a
result, both the inlet and outlet layers with M356 sand had similar modal values of k; =
0.020 min~*, which was smaller than modal k; = 0.035 min~! in the slightly finer M324 sand
(Figure 4). However, the maximum concentration of attached bacteria was at the interfaces
between the two sand types (located around 2-2.5 cm and 6.5 cm from the column inlet).
Skewness towards higher £ in the inlet layer k; distribution shown in Figure 4 was due to the
higher k; values at the interfacial regions being included in the inlet layer. The attachment
coefficients at the interfaces were at least twice as large as the modal k; in both layers,
ranging from 0.050 up to 0.090 min~—!. Compared with similar UV-Vis column experiments
using non-concentrated and non-radiolabeled bacteria suspension, the k¢ fitted from the
spectrophotometric breakthrough curve fell within the range of the local k; distributions
measured from PET experiment. This agreement in the attachment coefficients indicates
that the radioactive label ['*F]-FDG had negligible impact on the cell transport of E. coli.
Earlier mean arrival time breakthrough of bacteria relative to the solute tracer in the UV-Vis

experiment suggests that pore-size exclusion is likely in the PET experiments as has been

13
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Figure 3: (Top) Two-dimensional distribution of attachment coefficients (k) averaged along
the center longitudinal axis of the column after the bacterial pulse exited column at 7=14
min (PV = 1.53) since pulse injection. Each voxel size is 1.5563 mm x 1.553 mm x 1.592
mm. (Bottom) One-dimensional slice-averaged ky in the sand column. Higher attachment
coefficients were observed at the interfaces between the sand layers (dashed lines), and finer
M324 sand exhibited greater ky values than M356 sand.
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Figure 4: Probability density distributions of attachment coefficients (k) in each sand layer
(solid points) fitted with lognormal distribution curves (lines). Inlet M356 sand layer had
similar distribution to outlet M356 sand layer, albeit having a higher £y tailing due to
higher attachment at the interface. The finer M324 sand exhibited slightly higher range of
k¢ distribution than M356 sand.

Numerical model parameterization from PET data

The three-dimensional attachment coefficient distribution calculated from the PET images
and shown in Figure 3 was incorporated into the 3D numerical model to calculate E. coli at-

tachment in the heterogeneous column. The model-calculated bacterial attachment matched

14
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closely with the experimental PET results as illustrated in both the 2D and 1D profiles in
Figure 5. The 1D profiles show that the bacteria attached (S*/Cy) at the coarse inlet and
outlet layers ranged from 0.010 to 0.013, and was higher in the middle layer (5*/Cy = 0.012-
0.017). More bacteria were attached at the interface near the inlet (S*/Cy = 0.015-0.025)
than at the second interface down-gradient (S*/Cy = 0.010-0.016). A second simulation was
conducted assuming a single k¢, which was determined from the average k; of all the voxels
calculated from PET results. The experimental PET data highlight variability in bacterial
attachment as opposed to an exponential decrease in deposition with distance suggested by
the homogeneous k; model (Figure 5, top) and other bacterial transport studies in unfavor-
able conditions. These results highlight that k; can be directly quantified in situ from PET
data and can be described as a heterogeneous parameter field in a transport model. Un-
der such heterogeneity, the first-order transport model with irreversible attachment closely

reproduced the bacteria attachment behavior observed in the column experiments.
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Figure 5: (Top) Comparison of the 1D slice-average bacterial attachment (S*/Cj) between
PET result and two numerical model predictions. The heterogeneous model was run based on
the 3D heterogeneous k; distribution measured from PET. The homogeneous model assumed
a single ky = 0.029 min~! for the entire column, which was the average k; value in all voxels
of the column from PET measurement. (Middle and bottom) Two-dimensional slice-average
S*/Cy maps for the numerical model and PET measured data, respectively. The voxel size
in these maps is 1.553 mm x 1.553 mm x 1.592 mm. The predicted attachment from the
heterogeneous model matched closely with the experiment PET result, indicating an accurate
quantification of spatially-resolved bacteria attachment coefficients.

Discussion of calculated bacteria attachment

The attachment rate coefficients measured in this study are comparable with literature val-
ues in previous studies of bacteria transport in sand packs, but direct comparison is difficult
due to differences in experimental conditions such as pore-water velocity, ionic strength (IS),
pH, bacteria strain, injected bacteria mass, bacteria concentration, sand grain properties,
and mineralogy. The average k; results of 0.020 to 0.035 min~* for M356 and M324 sands in
Figure 3 were measured under an ionic strength (IS) of 1 mM NaCl, circumneutral pH, and
flow rate Q=1.826 ml/min (pore-water velocity v,= 0.924 cm/min). Previous studies based

on experiments with similar IS, pH, grain size, and sand type have resulted in k; values
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354

that were similar (k; = 0.0175-0.0238 min~!),”® two to three times lower (k; =7.59x1073
min~'),”” and almost 10 times lower (k;= 3.68E-3 min~—!)*® than the values observed in Fig-
ure 3. However, these results were based on different flow rates, strains of F. coli, sand pack
mineralogy, and different volumes and masses of injected bacteria. Given these differences,
our experimental ky results can be considered consistent with values found in the literature.

The higher experimental k; found for M324 sand (finer) than M356 sand (coarser) is con-
sistent with literature values but does not explain the observation of the highest attachment
coefficients occurring at the interface between sand layers. Many studies have observed bac-

23,78 as expected from colloid filtration

teria retention decreasing with increasing grain size,
theory. However, some studies have found that small grain size variation did not display

significant impacts on bacteria attachment compared to other factors such as pore volumes

48,79 76,80,81

of bacteria injected and pore size, cell motility, grain properties (surface area, an-

82 or metal oxide content.® Other bacteria deposition mechanisms such

gularity, roughness),
as aggregation, ripening, straining, and/or hydrodynamic bridging could contribute to the
attachment behaviors observed; %8485 however, direct attribution of these mechanisms to
the observed pattern is not possible without corresponding pore-scale observations.

In this study, the porosity between M324 and M356 sands only differed by 1-3% and
differences in grain size distribution were subtle (Figure 1). Despite these subtle differences,
the observation of attachment differences at the interfaces illustrates the capability of PET
imaging during column experiments in detecting small changes in bacteria concentration
and attachment in subtly heterogeneous geologic materials with greater precision relative to
other macroscale methods.

The presence of oxide minerals is a potential source of the higher attachment near the
sand layer interfaces or spatial variation in the retention rate coefficients within the layers.
Higher bacterial attachment is often observed with higher content of oxide minerals as a
result of favorable attachment conditions. In particular, this behavior has been observed on

83,86-91

oxyhydroxide-coated surfaces as well as aluminum-coated sands.®%%2 97 The presence
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of oxide minerals is also detected through the micro-CT image of sand M324 as white grains
with higher X-ray attenuation in Figure 1. However, variation in volumetric oxide content
is not significant enough to be quantified or visualized with X-ray CT in the column scale.
Thus, oxide minerals remain the potential cause of greater colloid deposition at the sand
interfaces. Studying the influence of spatially variable oxide content on bacterial attachment
using PET imaging is an area of future work.

A likely mechanism for higher attachment at the sand layer interfaces is that these areas
are local transitional regions in pore-scale velocity distribution and where local porosity
could be reduced due to potential packing differences. Packing and/or differences in grain
size may have also contributed to increasing pore-scale complexity which has been observed

98101 and could lead to more colloids reaching the

to widen pore-water velocity distributions
grain surface based on previous pore-scale simulation studies. 102719 Under unfavorable
attachment conditions, bacteria attachment is largely driven by local variations in velocity.
This has been observed in experiments and models at grain-grain contacts,*® near grain

15,106

surfaces where roughness leads to enhanced attachment, and regions of decreasing pore

water velocity. 7%:82:107-110

Implications

While bacterial radiolabeling with ['"*F]-FDG for use in PET imaging has been investigated
in the clinical settings,% geoscientific application of PET has been limited to monitoring flow
and transport in porous and fractured media.'*15 In this study, the combination of radi-
olabeling F. coli with positron-emitting radioisotopes and imaging the dynamic 3D F. coli
distributions in heterogeneous sand-packed columns provides measurements of in situ bacte-
ria transport and attachment in geologic materials at the Darcy scale. This radiolabeling and
imaging approach enables the direct quantification of spatially-variable bacteria attachment

coefficients in heterogeneous geologic media. Consistent with other studies, higher FE. coli
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P8 attachment was observed in the slightly finer M324 sand compared to the M356 sands
despite the minor difference in porosity and grain size distribution. The highest bacteria
attachment was observed at the interfaces between the different sand layers, highlighting the
importance of studying bacteria transport in nonideal geologic media.

The demonstrated ability of the 3D model—parameterized with the measured attachment
distributions—to reproduce the experimental results suggests that with more measurements
across different geological media and environmental conditions, it may be possible to de-
scribe fundamental attachment rate coefficient information (e.g. PDFs) in a process-based
framework. Overall, the bacterial radiolabeling and PET imaging technique is applicable in
geologic media and soils to enable transport studies under more realistic conditions. Under-
standing the role of different processes and geologic conditions on attachment rate distribu-
tions could enable more accurate bacteria transport and attachment prediction in geologic

systems at larger scales.
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