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ABSTRACT 

 

The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. 
Performance in this task is believed to indicate an age-related deficit in episodic memory 
stemming from a decreased ability to pattern separate among similar experiences. 
However, cognitive processes other than memory ability might impact task performance. 
In this study, we investigated whether non-mnemonic decision-making processes 
contribute to the age-related deficit in the MDT. We applied a hierarchical Bayesian 
version of the Ratcliff Diffusion Model to the MDT performance of 26 younger and 31 
cognitively normal older adults. It allowed us to decompose decision behavior in the MDT 
into different underlying cognitive processes, represented by specific model parameters. 
Model parameters were compared between groups and differences were evaluated using 
the Bayes factor. Our results suggest that the age-related decline in MDT performance 
indicates a predominantly mnemonic deficit rather than differences in non-mnemonic 
decision-making processes. In addition, this mnemonic deficit might also involve a 
slowing in processes related to encoding and retrieval strategies, which are relevant for 
successful memory as well. These findings help to better understand what cognitive 
processes contribute to the age-related decline in MDT performance and may help to 
improve the diagnostic value of this popular task.  
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INTRODUCTION 

By 2050, the global population over the age of 65 is projected to nearly double from 12% 
to 22% (World Health Organization 2021). While memory decline is one of the hallmark 
cognitive changes observed with aging, episodic memory, in particular, shows a clear and 
steady decline with increasing age (Nilsson 2003). An even more severe decline in 
episodic memory is a feature of the early stages of Alzheimer's disease (AD) (Weintraub 
et al. 2012) which affects more than 6.5 million Americans today (Alzheimer's Association 

2022). To ensure successful early detection and diagnosis, it is crucial to understand and 
distinguish episodic memory changes that are part of the normal aging process from 
those that may be an indication of pathological aging.  

The Mnemonic Discrimination Task (MDT), a modified object recognition memory task, 
has become a widely used digital cognitive assessment tool in the learning and memory 
as well as the aging and AD fields, due to its sensitivity to detect early and subtle changes 
in episodic memory (Leal and Yassa 2018). The utility of this task is further indicated by 
its recent inclusion as a key outcome measure in large-scale clinical trials in amnestic 
mild cognitive impairment, a prodrome for AD (Rosenzweig‐Lipson et al. 2021) as well as 

asymptomatic AD (Sperling et al. 2014).  

In the MDT, participants undergo incidental encoding of object stimuli and, after a brief 
delay, are administered an old/new recognition test with exact repetitions (targets), novel 
items (foils), and items perceptually similar to those viewed during the study phase (lures). 
Participants’ capacity to correctly reject similar lure items as “New” is taken as a measure 
of their mnemonic discrimination performance. This performance is thought to reflect their 
capacity for pattern separation, a neural computation that reduces mnemonic interference 
among similar experiences by creating and storing non-overlapping neural 
representations (Yassa and Stark 2011). A large body of evidence reviewed elsewhere 
(Leal and Yassa 2018) has demonstrated empirically that this ability is highly dependent 
on the hippocampus and, in particular, the dentate gyrus (DG) and CA3 subfields.  

A large body of literature has now demonstrated that performance on the MDT, 
specifically the lure discrimination performance, is reliably diminished in older adults, in 
comparison to unaffected performance on repeated targets and novel foils. In other 
words, older adults are generally more likely to falsely recognize similar lure items and 
identify them as “Old” rather than “New”. This is in the absence of dementia or other 
comorbidities, which could additionally affect performance in these other conditions. The 
performance deficit in lure discrimination is believed to stem mainly from a decreased 
ability to pattern separate among similar experiences, owing to age-related circuit 
alterations in the DG and CA3 regions of the hippocampus that have been investigated 
across species (see reviews by Leal and Yassa 2015; Wilson et al. 2006). Neuroimaging 
studies in humans have demonstrated that lure discrimination deficits in older adults are 
linked to structural and functional alterations in the DG/CA3 region and its input pathways 
in the entorhinal cortex (Sinha et al. 2018; Reagh et al. 2018; Yassa et al. 2011b, 2011a).  

Despite the abundance of work demonstrating performance deficits in the MDT in older 
adults and linking this to neurobiological underpinnings, an area that has received much 
less attention is dissecting the cognitive processes that underlie the reported age-related 
performance decline. It is increasingly appreciated that the MDT is likely not a process-
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pure task and that cognitive processes other than memory ability might impact the 
outcome of task performance (i.e., the learning-performance distinction; Cahill et al. 
2001). Non-mnemonic processes that contribute to MDT performance may also decline 
with age and thus may obscure what changes are truly driven by memory decline. 

Earlier work attempted to systematically exclude other confounds that could contribute to 
the age-related decline in lure discrimination performance in the MDT, by assessing 
various alterations in task design, instructions, attentional and intentional strategies 
during encoding (Stark et al. 2015). Consistency of the age-related deficit across all 
manipulations led to the general conclusion that it is likely neurobiological changes in the 
hippocampus that result in age-related deficits in mnemonic lure discrimination. However, 
these manipulations in task design still did not allow for the direct measurement and 
evaluation of the mnemonic component. In addition, other processes that might not have 
been challenged by the implemented task manipulations could still contribute to 
performance differences. Therefore, it is still difficult to conclude from this study whether 
it is a mnemonic deficit in lure discrimination that underlies the age-related decline in lure 
discrimination performance. A few recent studies have further attempted to shed light on 
the possible contribution of other component processes to MDT performance. For 
example, one study showed that visual perceptual deficits in older adults are associated 
with mnemonic lure discrimination deficits (Davidson et al. 2019). Another study showed 
that depending on the test format, perceptual ambiguity, and executive function could 
play significant roles in mnemonic discrimination performance in older adults (Gellersen 
et al. 2021). A significant limitation of these studies is that they still leave the possibility of 
confounding factors as they all rely on linking performance either to standard 
neuropsychological assessments of memory (e.g., verbal list recall) or other aspects of 
cognitive function like attention, perception, or executive function.  

In the current study, we take a different approach to investigate the potential contributions 
of non-mnemonic processes to the age-related decline in MDT performance. We 
recognize that a participant’s timed “Old”/”New” endorsement of an image is the result of 
a decision-making process. This decision is based on several cognitive processes that 
altogether contribute to the final decision. A key contributor is the memory ability itself. 
However, the time that the participant takes to respond also contributes to a decision. 
This is termed response caution and is a key consideration in speeded decision making 
due to the speed-accuracy trade-off – the phenomenon in which the more time a decision-
maker takes to make a decision, the more likely it is to be accurate, and vice versa 
(Wickelgren 1977; Bogacz et al. 2010). Another process that can contribute to decision 
making is the presence of a response bias – the general tendency to respond more often 
with one of the response alternatives (Stanislaw and Todorov 1999). Thus, individual 
differences in response caution or response bias, or both can confound interpretations of 
task performance. 

To investigate the extent to which age-related decline in mnemonic lure discrimination 
performance is driven by differences in these non-mnemonic decision-making processes, 
we use the Ratcliff Diffusion Decision Model (Forstmann et al. 2016; Ratcliff 1978). The 
Diffusion Decision Model (DDM) is a popular mathematical process model that 
decomposes decision behavior in speeded two-choice response tasks into the different 
underlying cognitive processes. It, therefore, allows us to measure directly the 
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psychological processes that underlie MDT performance. In contrast to previous MDT 
analysis methods that reduce performance to a singular metric (e.g., “lure discrimination 
index (LDI)”, “pattern separation bias”, or  “d-prime”) (Stark et al. 2019a; Yassa et al. 
2011a; Stark et al. 2015), this model presents a more sophisticated and comprehensive 
analysis of decision behavior. Although the previous measures attempt to account for a 
response bias as a potential confound to overall performance, they cannot identify other 
underlying cognitive processes that contribute to task performance. This is chiefly 
because they are entirely based on decision accuracy but do not consider the time a 
participant takes to make a response (reaction time - RT). Decision accuracy and reaction 
time are related to one another but carry important and distinct information about the 
underlying cognitive processes. By disregarding the reaction time, summary measures 
provide an incomplete, possibly even inaccurate picture of behavior. For example, they 
do not consider the speed-accuracy tradeoff and are therefore confounded by response 
caution.  

 

Figure 1. Graphical Illustration of the main parameters in the Ratcliff Diffusion Model. δ= drift rate indicating the average 
amount of information that can be extracted from a stimulus and memory and accumulated across time, β= starting 
point indicating an initial bias toward one of the two response alternatives. A starting point at 0.5 indicates no response 
bias, α = boundary separation indicating the amount of evidence that one needs to accumulate before a response can 

be made,  = non-decision time. Encompasses all non-decision processes during encoding and response execution. 

In contrast, the DDM considers all aspects of the behavioral data jointly -accuracy and 
the shapes of the RT distributions for correct and incorrect responses. Another key 
advantage of the model is that it inherently accounts for the speed-accuracy trade-off and 
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response caution (Forstmann et al. 2016). The model assumes that two-choice decisions 
are based on the noisy accumulation of information about a stimulus over time. 
Accumulation of information starts from a specific starting point and accumulates toward 
one of two decision boundaries. Each boundary represents one of two possible responses 
(e.g., “Old”/”New”). Once a boundary is reached a decision is made with the 
corresponding response (Ratcliff et al. 2016; Ratcliff and McKoon 2008) (Figure 1).  

The DDM estimates four latent parameters that can be interpreted in terms of specific 
cognitive processes that underlie the decision behavior (Ratcliff 2002; Voss et al. 2004): 

drift rate (δ), boundary separation (α), starting point (β) and non-decision time (). The 
boundary separation parameter (α) represents response caution in the model. It defines 
the amount of evidence that one needs to accumulate before a response can be made. 
The starting point parameter (β) represents an a priori response bias toward one of the 
two response alternatives. We will consider both of these parameters as representing 
non-mnemonic contributions to the decision-making in the MDT. The drift rate parameter 
(δ), on the other hand, is the key parameter that is driving the mnemonic decision and is 
therefore representing the mnemonic contribution to performance. In the context of the 
MDT, the drift rate can be understood as an index of mnemonic discrimination ability. It 
reflects the quality of evidence that a participant can extract from a currently observed 
lure image and from a stored memory and accumulate over time to identify a lure as 

“New”. Lastly, the non-decision time parameter () in the model represents the non-
decision component. It is not part of the decision process and therefore does not make 
any contribution to the choice behavior in the model. It encompasses the mean duration 
of all non-decision processes during encoding and motor response execution. To improve 
the fit of the DDM to experimental data, Roger Ratcliff included an across-trial variability 

of the parameters δ,  and β (Ratcliff and Tuerlinckx 2002; Ratcliff 1978; Ratcliff and 
Rouder 1998; Laming 1968). Therefore, the DDM model is sometimes also called the 
Ratcliff Diffusion model.  

In the current study, we apply the Ratcliff Diffusion Model to the decision behavior of older 
and younger adults performing the MDT. We estimate for each of the model parameters 

(α, β, δ, ) that represent different cognitive processes, the group difference between 
younger and older adults. We then evaluate the strength of the evidence for each 
parameter group difference based on the Bayes factor by comparing the ratio of the 
likelihood that the difference is 0. A series of models are compared, and the best-
performing model is chosen based on the Deviance Information Criterion (DIC). Due to 
the many benefits of a hierarchical extension of the model, we implemented here a 
Hierarchical Bayesian version of the DDM (Vandekerckhove et al. 2011). The hierarchical 
approach has been shown to be superior to standard methods when the number of data 
points per participant is low, as typically found in memory studies (Ratcliff and Childers 
2015). Instead of using any of the existing diffusion-model fitting packages we used a 
custom-designed model that gave us full flexibility regarding parameter specification and 
model assumptions.  

 

MATERIALS AND METHODS 

Participants 
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The study sample consisted of 26 young adults (ages 18-29 years) and 31 older adults 
(ages 60-91 years). These numbers account already for 5 participants that had to be 
excluded as described later. See Table 1 for demographics and neuropsychological test 
scores. Individuals in the young group were recruited from the community and screened 
for major neurological or psychiatric conditions, as well as a history or current substance 
use disorder using an in-house short medical screening questionnaire. If participants 
responded with “yes” to any of the substance use questions, a follow-up phone interview 
was performed where the National Institute on Drug Abuse (NIDA) Quick Screen 
(http://www.drugabuse.gov/nidamed/screening/) was administered to assess the severity 
of substance involvement. Only subjects that were categorized as low or moderate risk 
(cutoff < 26) were included in the study. All older adults in this study were recruited from 
the community as well and enrolled in a large longitudinal study of aging and preclinical 
Alzheimer’s disease (BEACoN Study, NIA R01AG053555 PI: Yassa). They were 
thoroughly screened for history of major health conditions including but not limited to 
neurological disorders, psychiatric disorders, chronic illnesses, medications, history of 
recreational drug use, smoking and alcohol use, and questions about the intactness of 
visual and auditory abilities (e.g.: “Do you wear a hearing aid?”). Additionally, the 
determination of “clinically normal” status was based on several levels of evaluation that 
allowed us to exclude those with mild cognitive impairment (MCI) or dementia. All 
participants had a Clinical Dementia Rating (CDR) score of 0, and a Mini-Mental State 
Exam (MMSE) score of 27 or above. Performance on standardized neuropsychological 
assessments was all within 1 standard deviation of age-based norms. All participants 
(young and old) were screened for depression using the Beck Depression Inventory (BDI 
cut-off < 14, Beck et al. 1961) and insomnia using the Pittsburgh Sleep Quality Index 
(PSQI Global Score cut-off < 8, Buysse et al. 1989). They had all normal or corrected-to-
normal vision and were not color blind. All participants gave written informed consent prior 
to participation in the study. After completing the study, participants were debriefed and 
compensated with electronic gift card payments. The study was approved by the 
Institutional Review Board at the University of California, Irvine.  

GROUP OLD YOUNG 

N 31 26 

Age (years) 73.3 (7.3) 24.1 (3.2) 

Sex 21F 17F 

Education (years) 16.1 (2.4) 16.1 (2.6) 

RAVLT-Delayed (A7) 10 (3.3)  

MMSE 28.1 (1.3)  

 
Table 1. Characteristics of all participants included in this study. All data are reported as mean (sd). RAVLT, Rey-
Auditory Verbal Learning Test; MMSE, Mini-Mental State Examination.  

 

Testing Procedures 

http://www.drugabuse.gov/nidamed/screening/
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The Mnemonic Discrimination Task was administered to all participants in this study in a 
testing session that lasted approximately 15 minutes. The task was programmed in 
PsychoPy 3 (Peirce et al. 2019) and presented on an Apple computer with a 24-inch 
monitor that was placed approximately 27 inches away from participants. A keyboard, 
placed at a comfortable distance, was used to enter responses. Paper index cards were 
placed between the keyboard and the monitor to orient the participants to the correct 
response button press.  

 

Figure 2. Illustrative diagram of the Mnemonic Discrimination Task (MDT). Pictures were shown one at a time. During 
the study phase, participants were asked to give indoor/outdoor judgments. The test phase followed right after the study 
phase. In the test phase participants were asked to give old/new judgments.  

 

The MDT procedure consisted of two phases (Figure 2). During the incidental study 
phase, participants were presented with 120 colored images of everyday objects 
displayed at the center of the screen. Participants were instructed to quickly make 
“Indoor” or “Outdoor” judgments for each image using the ‘F’ and ‘J’ keys, respectively. 
Each image was presented for 2000 msec with a 500 msec inter-stimulus interval (fixation 
cross). The test phase followed immediately after and included 160 images: 40 trials were 
exact repetitions of previously seen images (targets), 40 trials were novel images (foils), 
and 80 trials were images that were perceptually similar but not identical to previously 
seen images (lures). Lure trials were distributed into 40 high similarity lures and 40 low 
similarity lures (with respect to the original object items). Each item was presented for 
2000 msec with a 500 msec inter-stimulus interval (fixation cross). Similarity rankings 
were based on a prior study (Lacy et al. 2011). For each image participants had to quickly 
judge whether it was “Old” or “New” using again the ‘F’ and ‘J’ keys, respectively. 
Importantly, participants were instructed to answer “Old” only for any image that they 
thought was the exact image from the study session, and to answer “New” to all other 
images, including any image that might have looked similar to a study image but was not 
exactly the same. Participants were further instructed to always keep their fingers on the 
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keys during the test and to respond as fast and as accurately as possible. Only responses 
made within the 2000 msec display time were recorded and in both study and test phase, 
the images remained on the screen for the full 2000 msec regardless of response time to 
ensure that exposure time was matched across trials.  

To ensure that participants understood task instructions, they were first administered a 
short practice run prior to the actual task, which included 4 trials, one from each category. 
A performance of 75% correct had to be achieved to continue to the actual task. If the 
performance was below 75% task instructions were explained again and the practice trial 
was repeated.  

 

Quality Control Procedures 

Prior to fitting the DDM, trials with no response were removed from the data, resulting in 
the removal of 220 “no response” trials in the older group (7 trials per participant) and 68 
“no response” trials in the younger group (2.6 trials per participant). Note that Bayesian 
models consider the number of data points while approximating parameter estimations. 
A lower number of trials would be expressed in more uncertainty of the estimated 
parameters (see next section). Next, RT data was preprocessed to remove contaminants. 
Contaminants that were suspected to be fast guesses were removed by using an 
exponentially weighted moving average (EWMA) control method (see Vandekerckhove 
and Tuerlinckx 2007). This method identifies the minimal RT where responses start to 
deviate from what would be expected when guessing. This minimal RT is then used as a 
lower cut-off and all RTs below this cut-off are censored. This led to a removal of 5% of 
the data for older adults and 5.55% for younger adults. An upper cut-off was already 
implemented during the experiment by not recording any RTs that were slower than 2000 
msec.  

To ensure that only data from participants that understood and followed the task 
instructions was used, we excluded participants whose recognition memory performance 
for the foils and targets was two or more standard deviations below the respective group 
mean. Recognition memory performance for the foils was assessed based on the correct 
rejection rate for the foil stimuli (number of “New” responses for foils divided by the total 
number of foil responses). Recognition memory for targets was assessed based on the 
target hit rate (number of “Old” responses for targets divided by the total number of target 
responses). Based on those criteria two older and three younger participants were 
excluded.  

 

Hierarchical Bayesian Diffusion Decision Model 

Accuracy and response time for each trial for each participant were fit to a Hierarchical 
Bayesian Diffusion Decision model by using custom-designed models in JAGS version 
4.3.0, an open source program for the analysis of Bayesian models using Markov Chain 
Monte Carlo (MCMC) (https://sourceforge.net/projects/mcmc-jags/). A series of models 
with increasing complexity in terms of the number of hierarchical levels and the permitted 
variation of parameters across those levels were specified and fit to the data. There are 
two general characteristics of Bayesian hierarchical models that are also important 

https://sourceforge.net/projects/mcmc-jags/
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features of the models specified in the current study. They are hierarchical because lower 
levels are nested in higher levels. This means that each parameter estimate at a given 
level is constrained by a normal distribution of that parameter at the higher order level. 
Each normal distribution is defined by a mean µ and a standard deviation σ. The Bayesian 
aspect of the model refers to the fact that each parameter is estimated by defining a prior 
distribution of the parameter’s likelihood, which is then updated to a posterior distribution 
after observing the data (Vandekerckhove et al. 2011). Accordingly, each parameter 
estimate in the model is represented by such a posterior distribution to account for the 
uncertainty associated with the estimation. More uncertainty is reflected in a wider 
posterior. 

The Deviance Information Criterion (Spiegelhalter et al. 2014, for a discussion of DIC see 
Spiegelhalter et al. 1994), which evaluates relative model performance based on a 
balance between model complexity and model fit, was used to determine the model with 
the best architecture. The model architecture with the smallest DIC (indicating the best 
fitting model) was chosen for diffusion model parameter estimation (Model 7). A list of all 
models and their DICs can be found in Supplementary Table S1. We will refer to Model 
7 below as the Full Model since it is comprehensive and exploratory. We also estimated 
DDM parameters for the old and young group with two standard diffusion model fitting 
methods -the two chi-square method (for description of the method, see Ratcliff and 
Tuerlinckx 2002) and the publicly available Diffusion model fitting package fast-dm (Voss 
and Voss 2007) (see Supplementary Table S2). A comparison and discussion of these 
and other fitting methods can be found in Ratcliff and Childers (2015).  

The Full Model included four levels of hierarchy: a group level g, a participant level s, a 
condition level c (targets, foils, high similarity lures, low similarity lures), and a trial level 

t. All four DDM parameters (δ, β, , α) were allowed to randomly vary across groups and 
participants. Accordingly, each parameter was estimated for each group and each 

participant. The parameters δ, β,  were also allowed to vary across trials and were 
therefore estimated for each trial. Furthermore, the drift rate parameter δ representing 
mnemonic discrimination ability in our model was also allowed to vary across conditions 
as the discrimination ability was expected to differ depending on the image type (foil, 
target, lure).  

Although DDM parameters were estimated at each of the four hierarchical levels our 
primary objective was to determine the cognitive decision-making processes in which the 
older and younger groups differed. We, therefore, focused on comparing the means of 

the DDM parameters (α, β, , δTarget, δFoil, δHighSim, δLowSim) at the group level. To facilitate 
a comparison of the group means, we specified the model to directly estimate group 
difference parameters. One group difference parameter was estimated for each of the 
DDM parameters and represented the difference in the group means between the older 

and younger adults (αDiff, βDiff, Diff, δDiffTarget, δDiffFoil, δDiffHighSim, δDiffLowSim). For δ, a 
difference parameter was estimated for each condition. To ensure comparable variance 
of the estimated parameters in both groups, the group means for each DDM parameter 
were derived from the following linear combination in the model: 

 

GroupMeanxOLD = GroupMidx  - 0.5 * Group Difference parameterx  
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GroupMeanxYNG = GroupMidx + 0.5 * Group Difference parameterx 

x = DDM parameters (α, β, , δTarget, δFoil, δHighSim, δLowSim) 

The estimated GroupMid parameter was the same for both groups and represented a 
DDM parameter value that was in between the two group means.  

Lastly, the upper boundary in our model was designated as the “New” response and the 
lower boundary as the “Old” response. For the interpretation of the drift rate values, it 
follows that positive values of the estimated δ group mean reflect an average 
accumulation of evidence toward the “New” response and negative values reflect an 
average accumulation of evidence toward the “Old” response. A graphical representation 
of the Full Model and the nesting of its levels is shown in Figure 3. The JAGS code for 
this and all other models can be found at https://github.com/Yassa-TNL/diffusion-model-
mdto/tree/master/jags_files 

 

 

Figure 3. A graphical representation of our Hierarchical Bayesian Diffusion Model (Full Model) to investigate the 
difference in model parameters between older and younger adults in the MDT. The shaded node indicates the observed 
(bivariate) data (response type (correct/incorrect) and response time). Unshaded nodes indicate parameters that are 

being estimated in the model. The parameters β and  are indexed for group (g), participant (s), and trial (t) meaning 
that we allowed those parameters to be different for each group, participant, and trial. δ is additionally indexed for 
condition (c) meaning that δ was also allowed to differ across conditions. α was allowed to differ across the two groups 
and participants.  

 

https://github.com/Yassa-TNL/diffusion-model-mdto/tree/master/jags_files
https://github.com/Yassa-TNL/diffusion-model-mdto/tree/master/jags_files
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DDM Parameter Estimation 

Parameters were estimated with the joint probability of each choice response (correct or 
incorrect) and its response time being distributed according to a Wiener distribution with 

four parameters Y(gsct) ~ Wiener (α(gs), δ(gsct), β(gsct), (gsct)). Estimation was 
performed according to the Bayesian approach. First, prior distributions were defined for 
all parameters, which were then updated to posterior distributions. Accordingly, each 
parameter estimate is described by a posterior distribution which is a probability 
distribution that quantifies the uncertainty about the estimated model parameter after 
having observed the data.  

Posterior distributions were estimated simultaneously for all model parameters through 
Markov-chain Monte Carlo (MCMC) methods. Data were sampled using 6 independent 
chains each containing 250,000 samples. The first 80,000 samples were discarded as 
burn-in to ensure convergence of the chains. The R-hat statistic was used to confirm 
convergence in all chains (Gelman and Rubin 1992). Parameters with values below a 
threshold of 1.05 across all chains were considered as successfully converged. The 
defined prior distributions for all parameters are listed in Figure 3. All priors were 
uninformative but with theoretically informed limits on the possible range of each 
parameter. For the GroupMid and the Difference parameters, we used uninformative 
priors that were centered at 0 but still allowed for values other than 0.  

 

Evaluating Evidence for Group Differences Using the Bayes Factor 

To evaluate the difference between the older and younger groups for each of the DDM 
parameters individually in the Full Model, we used the Savage-Dickey density ratio 
(Dickey and Lientz 1970) as a simple method to compute the Bayes factor (BF). We 
calculated the BF for each Group Difference parameter by taking the ratio of a Difference 
parameter’s prior distribution value at 0 to the Difference parameter’s posterior distribution 
value at 0. This BF thus compares how the likelihood of the Group Difference being 0 in 
a given Difference parameter changes after having observed the data. A BF of k, when 
greater than 1, indicates that it is k times less likely that a difference parameter equals 0 
after seeing the data than before (prior). This can be interpreted as evidence in favor of 
the hypothesis that there is a group difference. On the other hand, a BF of m, when lower 
than 1, indicates that it is 1/m more likely that a difference parameter equals 0 after seeing 
the data than before. This can be interpreted as evidence in favor of the hypothesis that 
there is no group difference. Lastly, a BF around 1 indicates that observing the data did 
not provide any additional information about how the likelihood of a Group Difference 
being 0 changes and we therefore have no evidence in favor of either hypothesis. 

 

Model Optimization and Selection of Final Reduced Model 

The Full Model allowed for group differences in all DDM parameters and the evidence for 
a group difference was evaluated for each parameter individually. Therefore, this model 
can be viewed as an exploratory model aiming to identify for which parameters there is 
evidence for a group difference. Accordingly, evidence in the Full Model considers the 
likelihood of a group difference for each parameter individually and independent of the 
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other parameters’ group difference likelihood and in the context of all DDM parameters 
being allowed to differ between groups. We then wanted to re-estimate model parameters 
and re-evaluate the evidence for a group difference from the exploratory model in a more 
proper model context. We used the exploratory model to discover the underlying data 
structure (e.g. in what parameters group differences exist) and then used the reduced 
model to run parameter estimations in the more accurate data structure. We, therefore, 
specified a last model (Final Reduced Model) that was informed by the results of the Full 
Model. Different than in the Full Model, in the Final Reduced Model, we allowed group 
differences only in those parameters that we found evidence for in the Full Model (we will 
refer to these parameters as “final parameters”) while group differences in the remaining 
parameters were set to 0. Evidence for the likelihood of a group difference in the Final 
Reduced Model is considered therefore in the context of no other group differences being 
allowed. Another important difference is that in the Reduced Model the evidence for the 
likelihood of the group differences was evaluated for all parameters jointly as opposed to 
individually. It is important to note that the Bayes Factor that is calculated in the Final 
Reduced Model is still valid, even when we test in this case a hypothesis that was inspired 
by previously looking at the data in the Full Model. The Full Model and the Final Reduced 
Model did not differ in any other respect. 

 

To evaluate the joint likelihood of a group difference for the final parameters in the Final 
Reduced Model, we calculated a multidimensional version of the Savage-Dickey Density 
ratio. For this, we defined one multivariate normal distribution based on the prior 
distributions for the final parameters. This resulted in a multidimensional prior distribution 
with a mean at (0, 0, 0) (according to the mean of each individual prior distribution at 0) 
and the covariance matrix corresponding to a diagonal matrix that consists of the 
variances of each of the individual priors. We then calculated the value of this 3D prior 
distribution at (0, 0, 0). Next, we used the sampled data from the posteriors of the final 
parameters (which were sampled simultaneously) to create a 3D posterior distribution 
and to calculate the value at (0, 0, 0) in that distribution as well. Our 3D BF was then 
calculated by taking the ratio of the 3D prior distribution value at (0, 0, 0) to the 3D 
posterior distribution value at (0, 0, 0). A general overview of the steps of the modeling 
procedure can be found in Figure 4. 

 

Figure 4.  General scheme of the steps of the modeling procedure. Model 7 (Full Model) allowed group differences in 
all parameters. The Reduced Model was designed based on evidence from the Full Model and allowed group 
differences only in DDM parameters that we found evidence for in the Full Model (final parameters). BF: Bayes Factor 
(calculated as the Savage-Dickey Density ratio).›  
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Evaluating Model Performance 

To assess the quality of the model fit we modeled reaction time distributions with correct 
and incorrect responses based on the estimated model parameters. Responses were 
modeled for 40 trials for each condition and participant and compared to the observed 
data.  

The modeled data was obtained by sampling from the posterior distributions of each 

diffusion model parameter (δ, β,  from posteriors at trial level; α from the posterior at 
participant level) and entering the sampled diffusion model parameter values into the 
Wiener Distribution. The sampling procedure was repeated 250,000 times for each trial. 
This generated for each of the 40 trials a posterior predictive distribution of 250,000 
responses with each response being represented by a reaction time and accuracy 
(correct or incorrect). 

We first compared the modeled and observed accuracy for each participant and condition. 
For this we calculated for every trial in the modeled dataset the percentage of “New” 
responses (corresponding to the correct response) in the samples of the posterior 
predictive. We then averaged the accuracies across all trials in each condition and 
participant and compared it to the accuracies in the observed dataset.  

We additionally calculated the percentage of overlap between the modeled and the 
observed response types. For this, we obtained the modeled accuracy by determining the 
response type (correct or incorrect) of a given trial based on a majority vote for one of the 
two boundaries (corresponding to a response type) in the samples of the posterior 
predictive. Trials that were ‘no response’ trials in the observed data set were not modeled. 
We then calculated for each condition and participant the percentage of trials where 
responses were matching between the modeled and the observed trials. 

Lastly, we compared how well the modeled reaction time distributions describe the 
observed ones. For this, we approximated the reaction time distributions by calculating 
the 0.1, 0.5, and 0.9 quantiles and compared the modeled and observed quantiles. The 
observed quantiles were obtained by using the reaction time distribution of all trials within 
a given response category (correct and incorrect), condition, and participant and 
calculating the density function. The density function was then used to calculate a 
cumulative distribution. The points where the probability was 0.1, 0.5, and 0.9 represent 
the corresponding reaction time quantiles.       

The modeled quantiles were calculated by first determining the response category 
(correct and incorrect) of a modeled trial based on the response category in the observed 
dataset of that corresponding trial. Then only RTs of samples in the posterior distribution 
that predicted the same boundary (corresponding to response type) as in the observed 
data were used. Lastly, the RTs of all modeled trials that belong to the same response 
category, condition, and participant were put together, and quantiles were calculated as 
in the observed data set described above.    

 

RESULTS 
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Quality Check of Model Performance 

The comparisons between the modeled and the observed data for the Full Model and the 
Final Reduced Model indicate that the models fitted the empirical data well. Figures 5a 
and 5b show the modeled and observed accuracy and the overlap in the modeled and 
observed response types for the Full Model. Figure 6 shows the overlap between the 
modeled and observed quantiles of the reaction time distributions for the Full Model. The 
corresponding graphs for the Final Reduced Model can be found in the Supplementary 
Figures S2 and S3.  

 

 

Figure 5. Quality check of our model performance. a. The modeled and observed accuracy for the Full Model. The 
modeled accuracy data fit the observed accuracy data well. Each cross represents the accuracy of one participant 
averaged across all trials within each condition. b. Overlap between the modeled and observed response type 
(“Old”/“New”). Individual data points represent the percentage of agreement in response type between the observed 
and modeled dataset for each participant and condition. 

 

a. b. 
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Figure 6. Quality check of model performance. Overlap between the modeled and observed 0.1, 0.5, and 0.9 quantiles 
of the modeled and observed reaction time distributions for the Full Model. Each data point represents the RT of one 
participant per condition and response type (“Old”/”New”). 

 

Group Differences in Diffusion Model Parameters (Full Model) 

RTs in each condition for the young and older group and the lure discrimination index 
(LDI) are presented in the Supplementary Figure S1. Similar to previous studies, older  in 
comparison to younger adults showed a significantly lower LDI in the two lure conditions 
indicating a poorer mnemonic lure discrimination performance in older adults.   

 

Table 2 shows the posterior group mean estimates for each of the Diffusion model 
parameters for the young and the old group and the Bayes Factors for the corresponding 
Group Difference parameters for the Full Model. 

We found evidence for a group difference in the non-decision time parameter . A 
difference between the old and young group in the non-decision time was approximately 

4 times more likely after having observed the data (BF for Diff = 4.44). The posterior 
group mean estimates showed a 90 ms longer non-decision time in older adults in 
comparison to younger adults (0.80 ms vs. 0.71 ms).                  

 

Model parameter YOUNG OLD 
Bayes 
Factor 

Group Diff 

Response caution (α) 1.42 [1.37, 1.47] 1.43 [1.37, 1.49] 0.08 

Response bias (β) 0.48 [0.45, 0.52] 0.48 [0.46, 0.50] 0.16 

Encoding/Motor Response () 0.71 [0.67, 0.77] 0.80 [0.75, 0.84] 4.44 

Discrimination ability (δ)    

Target -2.56 [-2.99, -2.23] -2.35 [-2.69, -2.07] 0.23 

Lure (HighSim) 0.00 [-0.29, 0.28] -0.91 [-1.18, -0.68] > 10 000 

Lure (LowSim) 1.05 [0.76, 1.37] 0.06  [-0.17, 0.30] > 10 000 

Foil 3.85 [3.45, 4.61] 3.30  [2.96, 3.93] 0.94 
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Table 2. Posterior group mean estimates (means of the posterior distributions at the group level) of the Diffusion Model 
Parameters for old and young and the corresponding 95% Bayesian credibility intervals (95% probability that the 
population parameter lies in the interval) of the Full Model. The last column shows the Bayes Factor (Savage-Dickey 
Density ratio). A BF of k, when > 1, indicates that it is k times less likely that a difference parameter equals 0 after 
seeing the data. This is interpreted as evidence in favor of the hypothesis that there is a group difference. A BF of m, 
when <1, indicates that it is 1/m more likely that a difference parameter equals 0 after seeing the data. This is interpreted 
as evidence in favor of the hypothesis that there is no group difference. For drift rate interpretation: positive values are 
linked to the “New” response which is represented by the upper threshold in the model. Negative values are linked to 
the “Old” response which is represented by the lower threshold. A drift rate value around 0 indicates that no evidence 
could be extracted, and the participant is guessing.  

 

More interestingly, for both lure conditions we found evidence for a group difference in 
the drift rate parameter δ which is indexing mnemonic discrimination ability in our task. 
The likelihood for a group difference between old and young in drift rate for the Lure 
(HighSim) and the Lure (LowSim) condition was > 10 000 times more likely respectively 
(BF for δDiffHighSim = 10 310, BF for δDiffLowSim = 42 509) after having observed the data. 
A benefit of the drift rate parameter is that it provides information about the quality of 
evidence that a participant can extract from the stimulus and from memory and hence it 
allows us to analyze the nature of the age-related differences in more detail. A positive 
drift rate indicates that on average the information accumulation drifts toward the upper 
boundary corresponding to the “New” response. A negative drift rate indicates information 
accumulation toward the lower boundary corresponding to the “Old” response. The 
numerical value of the drift rate on the other hand informs about the magnitude of this 
drift. Higher drift rate values indicate a faster accumulation of information toward the 
boundary and hence a faster approaching of a boundary. Higher drift rate values are 
typically observed in easier task conditions and result in higher accuracy and faster RT. 
Accordingly, we found that in the lure (LowSim) condition, the drift rate in younger adults 
indicated that younger adults accumulated evidence toward the correct “New” response 
while a drift rate close to 0 in the older adults group indicated that older adults could not 
reliably accumulate evidence toward either one of the response boundaries (group mean 
estimates δ Lure (LowSim): 1.05 (young) vs. 0.06 (old)). When the similarity of the lures 
increased in the lure (HighSim) condition, the drift rate close to 0 in younger adults 
indicated that now younger adults could not accumulate evidence toward either of the 
response boundaries. However, for the older adults group the drift rate indicated now that 
older adults accumulated on average information toward the incorrect “Old” response 
(group mean estimates δ Lure (HighSim): 0.00 (young) vs. -0.91 (old)). We did not learn 
anything new from the data in regard to a group difference in drift rate for the foil condition 
as indicated by the BF for δDiffFoil around 1. However, the likelihood of no group difference 
in the drift rate parameter for the target condition was approximately 4 times more likely 
after having observed the data (BF for δDiffTarget = 0.23) (see Figure 7 for a comparison 
of all drift rates across conditions and participant groups).                  
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Figure 7. A. Estimated drift rate (δ) group means (means of the posterior distributions at the group level) for older and 
younger adults for all four conditions. A negative drift rate represents on average “Old” responses. A positive drift rate 
represents on average “New” responses. Older adults show a drift rate around 0 for the lure (LowSim) condition 
indicating on average that they were not able to accumulate evidence towards either of the response boundaries (similar 
to younger adults in the lure (HighSim) condition. A negative drift rate in the lure (HighSim) condition indicates on 
average that older adults accumulate evidence towards the incorrect “Old” response for highly similar lures. B. 

Estimated non-decision time () group means for older and younger adults. Older adults have a 90ms longer non-
decision time. 

                              

We further found evidence that the old and young groups did not differ in the response 
caution parameter α and the response bias parameter β. The likelihood of no difference 
between groups in response caution was approximately 13 times more likely (BF for αDiff 
= 0.08) and in response bias approximately 6 times more likely (BF for βDiff = 0.16). 
Although the posterior group mean estimates for the older and younger adults indicated 
a slight bias toward the “Old” response in both groups (posterior group mean estimate β 
for old and young: < 0.5), the 95% Bayesian credible intervals included 0.5 (β at 0.5 
indicates no response bias) hence the probability of no response bias in both age groups 
was still 95%. The two chi-square and the fast-dm fitting methods replicated the group 

differences in , δ Lure (LowSim), and δ Lure (HighSim) (see Supplementary Table S2). 

 

Group Differences in Diffusion Model Parameters (Final Reduced Model) 

Based on the results from the Full Model we investigated in the Final Reduced Model 
evidence for the joint likelihood of a group difference in the δ parameters in the two lure 

conditions and  (δDiffHighSim, δDiffLowSim, Diff). Table 3 shows the posterior group mean 
estimates of the Final Reduced Model. The drift rate and non-decision time estimates 
differed only marginally from the estimates in the Full Model confirming once again the 
group differences we describe in the Full Model. The 3D Bayes Factor for the joint 
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likelihood of a group difference in δ (HighSim), δ (LowSim) and  was >10 000 indicating 
that the likelihood of a group difference in all 3 parameters is more than 10 000 times 
more likely after having observed the data.  

 

Model parameter YOUNG OLD 
3D Bayes 
Factor for 
Group Diff 

Response caution (α) 1.43 [1.39, 1.46] 1.43 [1.39, 1.46]  

Response bias (β) 0.48 [0.46, 0.50] 0.48 [0.46, 0.50]  

Encoding/ 

Motor Response () 0.71 [0.66, 0.76] 0.80 [0.76, 0.85]  

Discrimination ability (δ)    

Target -2.45 [-2.71, -2.23] -2.45[-2.71, -2.23]  

Lure (HighSim) 0.00 [-0.28, 0.27] -0.94, [-1.23, -0.70]  

Lure (LowSim) 1.01 [0.74, 1.30] 0.07 [-0.18, 0.31]  

Foil 3.55 [3.26, 3.91] 3.55 [3.26, 3.91]  

δLure (HighSim),  

δLure (LowSim),    > 10 000 

 

Table 3. Posterior group mean estimates (means of the posterior distributions at the group level) of the Diffusion Model 
Parameters for old and young and the corresponding 95% Bayesian credibility intervals (95% probability that the 
population parameter lies in the interval) of the Final Reduced Model. The last column shows the 3D Bayes Factor 
(Savage-Dickey Density ratio) for the joint likelihood of a group difference for the parameters δLure (HighSim), δLure 

(LowSim), and . The BF of 10 000 indicates that the likelihood of a group difference in all three parameters is more 
than 10 000 times more likely after seeing the data. This is interpreted as evidence in favor of the hypothesis that there 

is a group difference in δLure (HighSim), δLure (LowSim), and . For drift rate interpretation: positive values are linked 
to the “New” response which is represented by the upper threshold in the model. Negative values are linked to the “Old” 
response which is represented by the lower threshold. A drift rate value around 0 indicates that no evidence could be 
extracted, and the participant is guessing.  

 

Lastly, we decided to evaluate the magnitude of the group difference in the δ (HighSim), 

δ (LowSim) and  parameters. For this, we examined how much the parameter values 
would differ between a representative old participant and a representative yung 
participant based on the estimated group mean differences and group standard 
deviations in the Final Reduced Model. We generated a representative distribution for an 

old and a young participant for δ (HighSim), δ (LowSim) and  by sampling from the group 
mean and group standard deviation posterior distributions of the respective parameter 
(we had different standard deviation distributions for each parameter. But the standard 
deviation for delta were the same across conditions but different for old and young). Using 
these representative participant posterior distributions, we calculated the probability that 

a representative old participant would have a higher , a lower δ (HighSim), and a lower 
δ (LowSim) than a representative young participant, respectively. The probability was 
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calculated by dividing the number of samples that satisfy the criterion out of all the 
samples from the representative posterior distributions. Representative distribution 
parameters were sampled at the same time while all other parameters during the model 
estimation were sampled.  

The representative participant distribution indicated that the likelihood of a representative 
older adult having a lower drift rate in the lure (LowSim) condition or lure (HighSim) 
condition was 87% respectively. The likelihood of a representative older adult having a 

higher  than a representative young adult was 70%. These likelihoods suggest that 
despite individual variability within each age group, the differences in group means, which 
we found evidence for based on the BFs, are also meaningful at the individual participant 
level.  

 

DISCUSSION 

In the current study, we used the Ratcliff Diffusion Model to investigate whether 
differences in non-mnemonic decision-making processes underlie the well-documented 
age-related decline in lure discrimination performance in the MDT or if this decline is 
solely based on a deficit in mnemonic ability. Our results from the Full and the Reduced 
Model provide supporting evidence that the age-related decline in lure discrimination 
performance is largely driven by differences in mnemonic discrimination abilities. In 
comparison to younger adults, older adults showed in both lure conditions a poorer 
mnemonic discrimination ability as measured by the drift rate parameter. In addition, we 
also found a slowing in the non-decision time in older adults, indicating that older adults 
are slower in processes like the speed of encoding and executing the motor response. 
Differences in non-mnemonic decision processes like response caution and response 
bias did not contribute to the decline in performance in older adults.  

 

Non-mnemonic decision-making processes do not contribute to age-related 
decline in MDT performance 

It has been proposed that in addition to a decline in hippocampal pattern separation, an 
age-related decline in lure discrimination performance in the MDT could be related to 
age-related changes in decision-making processes during memory judgments 
(Pishdadian et al. 2020). For example, a recent meta-analysis reported a more liberal 
response bias (higher tendency toward “Old” responses) in older adults in recognition 
memory tasks (Fraundorf et al. 2019). However, the presence of a response bias in 
older adults was not consistently observed across different studies and varied as a 
function of study material, study task, and test task. To our knowledge, the presence of 
an age-related response bias in the MDT has never been systematically evaluated. The 
focus was rather on comparing performance measures like d-prime and LDI across 
groups that were assumed to not be confounded by a response bias. In the current 
study, we show that there is no difference in response bias between older and younger 
adults that contributes to the age-related decline in mnemonic lure discrimination 
performance. This is also interesting because we have a higher proportion of stimuli in 
our task for which the response “New” is the correct response. Past studies have found 
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evidence for a response bias when manipulating stimulus proportion (Leite & Ratcliff, 
2011, Criss, 2010). While speculative, the absence of a response bias could be related 
to the specific task instructions, in which participants attention was drawn to the 
similarity aspect of the task. This may have made them look at each stimulus more 
carefully and consequently mitigate the impact of a response bias.                                                                                                                                      
It is important to note, that bias manipulation can be modeled in two different ways in 
the Diffusion Model – by changes to the response bias or the zero point of the drift rate. 
In the study from Leite & Ratcliff manipulation of stimulus proportion caused changes to 
the response bias parameter but manipulations in the decision cut-off in their task were 
reflected in changes to the zero-point position of the drift rate. Manipulating both 
simultaneously, lead to changes in both parameters. Similarly, Criss (2010) reported in 
her recognition memory study effects of stimulus proportion increase on the response 
bias parameter and effects of list-strength increase (words were presented either one 
time or 5 times at study) on the zero point of the drift rate. However, a simultaneous 
manipulation of both aspects was not investigated in this study.   
In addition to the stimulus proportion difference in our task, we also have potentially 
another bias manipulation through the different similarity-levels of the stimuli (e.g. a higher 
bias to respond with “New” for high-similarity lures than for low-similarity lures). It is 
possible that in our specific task the response bias was reflected in changes to the zero 
point position of the drift rate, rather than by changes in the response bias parameter. 
The exact effects of different bias manipulations might be specific to a task and task 
instructions. It will need to be further investigated what model parameters are sensitive to 
what kind of bias manipulation in memory tasks. 

                                                                                                                                     

Response caution is another decision process that could contribute to differences in 
mnemonic lure discrimination performance in the MDT. Studies that employed a Diffusion 
Model analysis have often reported a higher response caution in older adults in perceptual 
decision making and standard recognition memory (McGovern et al. 2018; Spaniol et al. 
2006; Ratcliff et al. 2004). A higher response caution typically results in slower but more 
accurate decisions. Considering older adults are less accurate, more often incorrectly 
labeling lures “Old”, we would rather expect a lower response caution in older adults. 
Previous MDT performance measures were not able to take the influence of age-related 
differences in response caution to performance into account because they did not 
consider the decision time. Using the DDM, we show here for the first time that, at least 
in our study, older and younger adults do not differ in their response caution during MDT 
performance. Studies have shown that response caution can be increased in an 
experiment when accuracy is emphasized in the task instructions (Thapar et al. 2003; 
Voss et al. 2004). It is therefore possible that we did not observe any group differences 
in response caution due to our specific task instructions, which ask participants to respond 
as fast and as accurately as possible. Similarly, in a recognition memory task used by 
Spaniol et al. 2006 in which participants received instructions that emphasized both 
accuracy and speed, no age-related difference in response caution was found (Spaniol 
et al. 2006). 
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Drift rate reveals a memory bias toward “Old” in older but not in younger adults 

In contrast to previous MDT performance measures that were used to infer mnemonic 
lure discrimination ability, the drift rate measure from the DDM represents likely a more 
accurate index of mnemonic lure discrimination ability. This is because, unlike previous 
measures that were based solely on accuracy data, the drift rate parameter is derived 
from a model that considers the accuracy and the response time (including the shape of 
the RT distributions) and it accounts for both dependent measures simultaneously. This 
allows for a consideration of the speed-accuracy trade-off and allows us to assess 
mnemonic ability that is not contaminated by differences in response bias or response 
caution (White et al. 2010). Accordingly, we were able to show here with a more accurate 
measure, the drift rate, that the age-related decline in mnemonic lure discrimination 
performance is driven by a deficit in mnemonic abilities. Furthermore, because the drift 
rate informs about the quality of the evidence that participants can extract from the current 
lure and from a previously formed memory representation, we were also able to analyze 
the nature of the age-related deficit in more detail. We found different mechanisms of 
older adults’ mnemonic lure discrimination deficit across the two lure conditions. For lures 
that shared only low similarity with previously seen images, older adults showed poorer 
mnemonic discrimination ability than younger adults because they were not able to extract 
meaningful evidence from the lure images and from memory. The drift rate indicated that 
decisions about the “Old”/”New” status of low similarity lures in older adults were largely 
driven by noisy fluctuations of information resulting in correct decisions only at chance 
level. However, for lures that had a high similarity to previously seen images the drift rate 
showed that the mnemonic discrimination deficit in older adults was predominantly 
characterized by extracting information that indicated incorrectly that a lure is an old 
image. The tendency of older adults to extract evidence from the current image and 
memory that makes them recognize a highly similar lure as an old image is characteristic 
of a memory bias toward “Old”. Note that a memory bias toward “Old” is distinct from a 
response bias toward “Old”. A memory bias indicates that the underlying reason for 
incorrect “Old” judgments to lures is a memory effect, while a response bias toward “Old” 
indicates an effect at the response level -a tendency to respond more often with “Old” 
(Spaniol et al. 2008; White et al. 2010). Due to the methodological shortcomings of 
previous MDT performance measures as discussed earlier, previous measures were not 
able to provide clear evidence for a memory bias. These measures are more confounded 
by other processes, and are not a direct measure of the quality of evidence that 
participants are able to extract.  

The observation of a memory bias toward “Old” is in agreement with the prevailing 
hypothesis that older adults show a decline in mnemonic lure discrimination due to an 
increased propensity toward over-generalization. The underlying reason of this over-
generalization is thought to lie in an age-related shift in hippocampal network dynamics 
away from pattern separation and toward pattern completion. Pattern completion 
describes a neural computation that contributes to memory function by retrieving a 
previously stored pattern based on a partial cue. In line with this theory, we have 
previously shown, based on BOLD signal activity changes, that signal to increases in lure 
similarity (consistent with pattern separation) in the DG/CA3 subfields is attenuated in 
older adults  (Yassa et al. 2011b). For low similarity lures, pattern separation signals were 
observed similarly in young and older adults. However, for high similarity lures, pattern 
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separation signals diminished in older adults (suggesting pattern completion) while 
remaining high in younger adults. These findings supported a theoretical prediction of 
how the input/output transfer functions of the DG/CA3 in old and young adults are shifted 
(Yassa et al. 2011b). The transfer function describes pattern separation and completion 
behavior in the hippocampus as a function of change in input. It is suggested that in older 
adults the transfer function is shifted in a way where larger amounts of change in input 
are required for the DG/CA3 to switch from pattern completion to pattern separation. The 
requirement for larger changes was termed representational rigidity and re-capitulated 
findings in studies of aged rats (Wilson et al. 2006).  

There are some important differences between the current study and the aforementioned 
neuroimaging work, which do not allow us to directly relate our DDM behavioral results to 
the above-described pattern separation signal behavior in the DG/CA3. In contrast to the 
explicit instructions in the current study where participants were asked to give overt 
memory judgments, participants in the Yassa et al. (2011) study were instructed to give 
“Indoor” “Outdoor” judgements while viewing repeated, novel and lure images in a 
continuous presentation and hence encoding of the “Old”/”New” status of an image was 
incidental. It has been shown that BOLD signal activity patterns in the hippocampus differ 
between the overt and incidental task designs (Motley and Brock Kirwan 2012; Stark et 
al. 2019b), likely due to varying demands on top-down feedback and decision-making 
processes. Nevertheless, our findings are consistent with the theoretical prediction of an 
age-related shift in the transfer function of the DG/CA3 and a higher tendency for pattern 
completion resulting in over-generalization in older adults. 

In our study, the discrimination ability in older adults for low-similarity lures was 
comparable to the discrimination ability for high-similarity lures in younger adults. This 
suggests that older adults need indeed larger amounts of change to show a comparable 
mnemonic discrimination ability to younger adults. Furthermore, our results suggest a 
higher tendency toward over-generalization in older adults. Older adults went from poor 
discrimination ability for low similarity lures to an incorrect memory bias toward “Old” 
(consistent with the idea of pattern completion) for high similarity lures. In contrast, no 
indication of a memory bias toward “Old” and therefore no indication for over-
generalization was observed in the younger adults for the same similarity level. Instead, 
younger adults transitioned from having good discrimination ability for low similarity lures 
to poor discrimination ability for high similarity lures.  

 

Slower non-decision time in older adults: relevant for poor mnemonic ability?  

In addition to an age-related decline in mnemonic ability as indicated by lower drift rates, 
we also found that older adults had a longer non-decision time compared to young adults. 
An age-related slowing in the non-decision time parameter is a reliable finding which has 
been previously reported (Ratcliff et al. 2004; Spaniol et al. 2006). It is typically interpreted 
as reflecting an age-related slowing in processes related to encoding and response 
execution. As an extra-decisional component, the non-decision parameter is assumed to 
not influence the response choice and hence accuracy (in the model it mostly determines 
the location of the leading edge of the reaction time distributions) (Ratcliff and Tuerlinckx 
2002; Wagenmakers 2009). However, we argue that the age difference that we found 
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here in the non-decision component, could also contribute to the decreased mnemonic 
discrimination ability in older adults that is reflected in the lower drift rate parameter. 

This is because the non-decision parameter is not well specified in the model as it 
encompasses the sum of the duration of any other process that does not contribute to the 
decision process. This is not limited to encoding and response execution processes but 
can also include processes related to accessing and evaluating memory representations 
(Ratcliff and McKoon 2008; Wagenmakers 2009). From a theoretical point of view, a 
slower non-decision time when reflecting a slowing in encoding and memory access and 
evaluation could contribute to a decrease in mnemonic lure discrimination ability as these 
processes play an important role in the successful formation and retrieval of memories. 
This idea is also plausible from the model’s perspective as the DDM parameters are not 
independent and correlations between the non-decision parameter and the drift rate have 
been reported (Ratcliff and Smith 2004; Thapar et al. 2003). 

It has been indeed shown that strategic retrieval processes relevant to memory access 
and evaluation are contributing to successful lure discrimination performance in the MDT. 
During overt memory judgments, participants likely employ a recall-to-reject strategy 
(Kirwan and Stark 2007; Stark et al. 2019b; Trelle et al. 2017). This strategy involves 
retrieving the originally stored representation from memory and comparing it with the 
currently presented image to correctly identify the lure as an item not previously viewed. 
The recall-to-reject strategy is thought to place significant demands on cognitive control 
and strategic retrieval processes which include accessing the details of a memory 
representation, constructing a mental image, maintaining this image in working memory, 
and mentally evaluating the details with the currently presented image (Van der Linden 
et al. 2009; Badre and Wagner 2007). These control processes are considered part of the 
executive functions that are supported by the prefrontal cortex (PFC), a region that is also 
affected by aging. Older adults have been shown to be impaired in PFC-mediated 
executive functions and the recall-to-reject strategy (Trelle et al. 2017; Cohn et al. 2008; 
Buckner 2004). A recent study by Gellersen et al. (2021) showed that strategic retrieval 
ability indexed by tests of executive function best-explained performance in a yes/no 
version of the MDT in older adults (Gellersen et al. 2021). Another study by Wais et al. 
2018 used transcranial magnetic stimulation to perturb the normal neural function of the 
mid-ventrolateral prefrontal cortex, a region implicated in cognitive control of high-fidelity 
long-term memory retrieval. The perturbation led to a subsequent diminished 
discrimination of similar lures in the MDT indicating that PFC-mediated strategic retrieval 
processes are crucial for the retrieval of high-fidelity memory representations in the MDT 
(Wais et al. 2018). Consistent with these reports, a recent investigation in aged rats using 
a LEGO object-based MDT, showed that temporary inactivation of the prefrontal cortex 
(PFC) during test using the GABA agonist muscimol impaired mnemonic discrimination 
performance, suggesting that PFC-mediated retrieval processes play a critical role in this 
process (Johnson et al. 2021).  

The cognitive control and strategic retrieval processes that are required for a successful 
recall-to-reject strategy are likely part of the non-decision time in the DDM because, like 
general encoding and response execution processes, they do not depend on the nature 
of the currently presented stimulus (Wagenmakers 2009). In line with this idea, Spaniol 
et al. (2006) reported that the non-decision component was affected by the type of 
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retrieval that participants engaged in (Spaniol et al. 2006). The non-decision time was 
slower for episodic retrieval in comparison to semantic retrieval. This effect was more 
pronounced in older adults. Considering the lack of perceptual differences between 
episodic and semantic stimuli during the study phase in this study, the differences in non-
decision time were likely driven by differential processes during the test phase. The 
authors speculated that it could indicate an adaptive response to perceived changes in 
task difficulty (e.g., a slowing of motor operations during the more difficult episodic task). 
Alternatively, the slowing in the non-decision time for episodic retrieval could also indicate 
the recruitment of additional cognitive control and retrieval processes more necessary for 
episodic than semantic retrieval (Moscovitch and Melo 1997). In summary, the age-
related slowing in the non-decision component in our study could indicate an age-related 
slowing in cognitive control and strategic retrieval processes, in addition to a slowing in 
encoding and response execution. This slowing in cognitive control and strategic retrieval 
processes could put older adults at a disadvantage. When given the same amount of time 
as the younger adults, it could make it more difficult for older adults to successfully 
implement the recall-to-reject strategy, thereby contributing to a poorer mnemonic 
discrimination ability. 

The slowing in the non-decision time could also reflect a slowing in encoding processes 
during the test phase, which could also contribute to poorer mnemonic lure discrimination 
ability in older adults. Recent evidence suggests that in addition to hippocampus-
dependent processes like pattern separation, successful mnemonic lure discrimination in 
older adults is also affected by processes relevant to the perceptual processing and 
encoding of a high-fidelity representation. For example, it has been shown that visual 
perception and the ability to form detailed representations correlate with MDT 
performance in older adults (Davidson et al. 2019). In addition, poorer mnemonic lure 
discrimination performance in older adults can be at least partially accounted for by an 
age-related slowing in processing speed during the study phase of the MDT (Foster and 
Giovanello 2020). This could lead to older adults being able to encode fewer details of an 
image when given the same amount of time as younger adults. It stands to reason that 
the construction and encoding of a high-fidelity representation at study phase and at test  
is a prerequisite for a correct endorsement of a lure as “New”. The current analysis 
focused on data during the test phase of the MDT. Therefore, the slower non-decision 
time reported in this work would rather indicate slower encoding processes for the test 
stimuli. However, it is reasonable to assume that older adults would be also slower at 
encoding of the stimuli during the study phase. This would put them at a time 
disadvantage in being able to encode high-fidelity representations, which are needed for 
a correct judgment in the test phase.  

 

Study Limitations 

A limitation of this study is that while the DDM identifies the component processes that 
contribute to a memory judgment decision as a whole, it cannot break down the distinct 
processes that contribute to the mnemonic ability component. The use of the Diffusion 
Model’s drift rate only informs whether a participant has a good mnemonic ability 
(indicated by being able to extract a good quality of evidence) or poor mnemonic ability 
(indicated by extracting a poor quality of evidence). However, the drift rate cannot inform 
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about what specific processes determine a good or bad mnemonic ability. Although our 
drift rate findings are in line with the idea of age-related changes in the hippocampus and 
a bias toward over-generalization, it has not been investigated whether the drift rate 
measure in the context of the MDT is directly linked to hippocampus function and 
presumable pattern separation and completion. As discussed above, other processes 
related to retrieval strategies and encoding of high-fidelity representations have been 
shown to be relevant to successful mnemonic lure discrimination and a slowing in these 
processes could be contributing to the poor mnemonic ability and lower drift rates in older 
adults. Although the slower non-decision time in older adults suggests that these 
processes show an age-related slowing, we are not able to identify to which individual 
degree the encoding and retrieval processes are slowed down because we are not able 
to tease the individual non-decision processes in the DDM apart. In sum, while we were 
able to show that the age-related decline in mnemonic lure discrimination performance is 
predominantly based on an age-related deficit in mnemonic ability, we cannot identify with 
the DDM which memory-relevant processes exactly underlie the poorer mnemonic ability 
in older adults. Another limitation is that we cannot make conclusions about what brain 
regions are involved in the age-related decline in mnemonic ability. We cannot provide 
any evidence that the poorer mnemonic ability in older adults is driven by changes in the 
hippocampus as we did not investigate brain regions or patterns of neural activity. As 
mentioned above it has not been investigated whether the drift rate is linked to 
hippocampal function and what brain regions make contributions to the drift rate in the 
MDT. A meta-analysis of perceptual decision-making studies identified a fronto-parietal 
network that was related to the drift rate (Mulder et al. 2014). However, most likely, the 
neural substrate of the drift rate will be specific to the task and the type of evidence that 
is accumulated. It is therefore not clear whether this extends to mnemonic tasks and 
requires further study. 

 

Future Directions 

Recently, the drift rate was suggested as a novel cognitive marker of preclinical AD due 
to its higher sensitivity in comparison to other more traditional performance measures. 
The drift rate has been shown to distinguish healthy from pathological aging. Older 
cognitively healthy adults with a family history of AD showed a decreased drift rate in 
comparison to older cognitively healthy adults who did not have a family history of AD in 
an episodic recognition memory task (Aschenbrenner et al. 2016). Another study found 
lower drift rates in memory-disordered patients in comparison to unimpaired controls 
using an item recognition and lexical decision task. Drift rates in mild Alzheimer's disease 
patients were also lower than in Mild Cognitive impairment (MCI) (Ratcliff et al. 2022). 
Using statistical and machine learning methods the same study found that the drift rate 
together with the other model parameters was 83% accurate at distinguishing memory-
disordered adults from unimpaired controls. This demonstrates that the consideration of 
the performance in all component processes together in the Diffusion model might be 
particularly beneficial to the diagnostics of pathological aging. Moreover, it is likely that 
the relative sensitivity of the drift rate and the other diffusion model parameters to 
preclinical AD processes will also depend on the particular task that is administered. 
Considering the high sensitivity of the MDT, drift rate measures derived from this task 
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may provide an even more sensitive cognitive marker to identify early signs of 
pathological aging. Therefore, future studies applying hierarchical Bayesian diffusion 
modeling to the MDT in older adults at risk for AD may be very informative.   

In summary, our study provides evidence that the underlying source of the age-related 
decline in MDT performance is predominantly a deficit in mnemonic ability in older adults 
rather than differences in non-mnemonic decision-making processes like response 
caution and response bias. Furthermore, an age-related slowing in encoding or strategic 
retrieval processes could be involved in this deficit. Further work is needed to identify 
what specific processes that are relevant to successful memory are contributing to this 
mnemonic ability deficit and link it with neural circuit changes with aging.  
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SUPPLEMENTARY MATERIALS 

 

 

Model Model structure DIC 

Model 0 ⍺ (g), β (g), 𝜏 (g), 𝛿 (g, c) 10688.25 

Model 1 ⍺ (g), β (g), 𝜏 (g), 𝛿 (g, c, s) 9567.33 

Model 2 ⍺ (g), β (g), 𝜏 (g, s), 𝛿 (g, c, s) 6573.04 

Model 3 ⍺ (g), β (g, s), 𝜏 (g, s), 𝛿 (g, c, s) 6496.65 

Model 4 ⍺ (g, s), β (g, s), 𝜏 (g, s), 𝛿 (g, c, s) 6390.63 

Model 5 ⍺ (g, s), β (g, s), 𝜏 (g, s, t), 𝛿 (g, c, s) 2553.64 

Model 6 ⍺ (g, s), β (g, s, t), 𝜏 (g, s, t), 𝛿 (g, c, s) 2344.74 

Model 7 (Full model) ⍺ (g, s), β (g, s, t), 𝜏 (g, s, t), 𝛿 (g, c, s, t) 438.61 

 

Supplementary Table S1. Models of different complexity (number of hierarchical levels 
(g: Group, c: Condition, s: Subject, t: Trial) and permitted variation of model parameters 
(⍺: Boundary separation, β: Response Bias, 𝜏: Non-decision time, 𝛿: drift-rate) across 
these levels) that were fitted to the data and their Deviance Information Criterions (DICs). 
Based on the lowest DIC, Model 7 was chosen for analysis.  

 

 

  



 

 

Supplementary Table S2. Estimated group means for Diffusion Decision Model 
Parameters based on our Hierarchical Bayesian model (Full model) using Markov-chain 
Monte Carlo (MCMC), and two standard fitting methods -the publicly available fast-dm 
package (outliers removed) and the two chi-square fitting method. Group differences in 
Model parameters are evaluated based on the Bayes factor (Savage-Dickey Density 
ratio) for our Full Model, and t-test for independent groups for the latter two fitting 
methods. The last two columns list the p-values for the t-tests. The group differences in 

the non-decision time (), and the drift rate parameter for the two lure conditions ( 

(HighSim) and ( (LowSim)) that we found evidence for in our Hierarchical Bayesian 
model, were also found using the fast-dm and the two chi-square fitting methods. 
However, note that the exact values of the group mean estimates differ across the three 
fitting methods. For a discussion and analysis of the two standard fitting methods 
mentioned here, and others, including a Hierarchical Bayesian method, and how they 
compare in their performance of recovering model parameters see Ratcliff and Childers 
(2015). This work showed that for a small number of 40 observations per condition, the 
Hierarchical Bayesian method provided superior parameter recovery in contrast to the 
standard two chi-square method. The authors concluded that a Hierarchical Bayesian 
model approach is the method of choice when the number of observations is small.  

 

 

 

 

 

 

 

 

 

 

 

 

Full Model Fastdm ChiSquare Full Model Fastdm ChiSquare Full Model (BF) Fastdm (p-value) ChiSquare

Response caution (α) 1.43 (1.37,1.49) 1.56 0.19 1.42 (1.37,1.47) 1.5 0.18 0.08 0.12 0.07

Response bias (β) 0.48 (0.46, 0.5) 0.49 0.52 0.48 (0.45,0.52) 0.5 0.5 0.16 0.31 0.2

Encoding/ 0.80 (0.75,0.84) 0.75 0.82 0.71 (0.67,0.77) 0.68 0.74 4.44            <0.01            <0.01

Motor Response (t)

Discrimination ability (δ)

Target -2.35 (-2.69,-2.07) -2.24 -0.45 -2.56 (-2.99,-2.23) -3.15 -0.56 0.23            <0.05            <0.01

Lure (HighSim) -0.91 (-1.18,-0.68) -0.11 0 0.00 (-0.29,0.28) -0.91 -0.15             >10 000          <0.001          <0.001

Lure (LowSim) 0.06 (-0.17,0.3) 0.67 0.11 1.05 (0.76,1.37) -0.08 -0.01             >10 000          <0.001          <0.001

Foil 3.3 (2.96,3.93) 1.91 0.36 3.85 (3.45,4.61) 2.36 0.4 0.94            <0.05 0.14

OLD YOUNG Group difference



A.                                                           B.   

 

  

 

Supplementary Figure S1. A. Reaction Times for the younger and older adults group 
and each task condition. Error bars show the standard deviation. B. Lure Discrimination 
Index for younger and older adults for the two lure conditions. The LDI assesses lure 
discrimination performance by calculating the difference between the probability of giving 
a “similar” response to the lure items minus the probability of giving a “similar” response 
to the foils. Groups were compared using an independent t-test. * p<0.0001 
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Supplementary Figure S2. Quality check of model performance. A. The modeled and 
observed accuracy for the Reduced Model. The modeled accuracy data fit the observed 
accuracy data well. Each cross represents the accuracy of one participant averaged 
across all trials within each condition. B. Overlap between the modeled and observed 
response type (“Old”/ “New”). Individual data points represent the percentage of 
agreement in response type between the observed and modeled dataset for each 
participant and condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Supplementary Figure S3. Quality check of model performance. Overlap between the 
modeled and observed 0.1, 0.5, and 0.9 quantiles of the modeled and observed reaction 
time distributions for the Reduced Model. Each data point represents the RT of one 
participant per condition and response type (“Old”/ ”New”). 

 


