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A Finite-Strain Phase-Field Description of Thermomechanically-Induced
Fracture in Shape Memory Alloys

M.M. Hasan · M. Zhang · T. Baxevanis

Abstract A finite-strain, phase-field model for thermomechanically-induced fracture in shape memory al-
loys (SMAs), i.e., fracture under loading paths that may take advantage of either the superelastic response
or the shape memory effect in SMAs, is presented based on the Eulerian logarithmic (Hencky) strain and
the logarithmic objective rate. Based on experimental observations suggesting that SMAs fracture in a
stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase transforma-
tion is assumed to contribute in crack formation and growth indirectly through stress redistribution.
The model is restricted to quasistatic mechanical loading (no latent heat effects) and thermal loading
sufficiently slow with respect to the time rate of heat transfer by conduction (no thermal gradients),
and can describe phase transformation and orientation of martensite variants from a self-accommodated
state. A single fracture toughness value is assumed, that of martensite, thus, the temperature range of
interest is below Md, which is the temperature above which the austenite phase is stable. The numerical
implementation of the model in an efficient scheme is described and its ability to reproduce experimental
observations on the fracture response of SMAs and handle complex geometries and loading conditions is
demonstrated.

1 Introduction

Shape memory alloys (SMAs) undergo large, hysteretic, stress–strain–temperature excursions when sub-
jected to appropriate thermomechanical loading due to a reversible, solid to solid, phase transformation
from austenite to martensite [1–6]. Toughness enhancement during crack advance, i.e., slow and sta-
ble crack extension, is observed in these materials associated with extrinsic shielding resulting from
inelastic deformation left in the wake of the advancing crack [7–10], similarly to ductile materials. Trans-
formation from austenite to martensite [11–21], and vice versa [11, 22, 23], (re)orientation of martensite
variants [23, 24], transformation-induced contraction [25], overload and transformation-induced plastic-
ity [20, 24, 26, 27], and thermomechanical coupling associated to latent heat [28, 29] have an impact on
the toughness enhancement observed. Large-scale phase transformation in front of a crack, resulted, for
example, due to thermal actuation, promotes crack advance, counteracting the aforementioned stabilizing
effect of the irrecoverable deformation left in the crack’s wake [27, 30–32].

Despite the aforementioned apparent similarity with the fracture response of ductile materials, SMAs
belong to a relatively brittle class of materials, that of intermetallics, and fail by cleavage of crystallo-
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graphic planes, which, depending on the local precipitate size and concentration, is assisted by ductile
tearing [8, 33–35]. Experimental observations [34] and unit cell studies [36] suggest that the work ex-
pended on the intrinsic damage mechanisms, i.e., void nucleation and growth, has a minor contribution
to the work balance during crack growth, which is stress-driven. Currently, the numerical investigations of
fracture of SMAs either totally ignore the fracture process or, as customary for elastic–plastic materials,
couple a fracture process model to the deformation field of a growing crack. The former investigations,
which are further justified by direct evidence of restricted dislocation activity close to the crack tip as
compared to conventional ductile materials [37], are either based on (i) linear elastic fracture mechanics
tools, assuming that the mechanical fields in the near-tip region are dictated by a linear elastic response,
such as the virtual crack closure technique [26, 30], or (ii) nonlinear elastic fracture mechanics tools
to simulate steady-state crack growth based on the path-independence of the J-integral in such condi-
tions [12, 13, 22, 23, 28]. The latter investigations model the fracture process with cohesive elements
obeying a bilinear traction–separation law described by the cohesive strength σc and the work of sep-
aration G along the crack plane [11, 16]. The calibration of the phenomenological traction–separation
parameters, chosen to give best fit of crack growth experimental data, is a formidable task in SMAs.

The aim, herein, is to develop a phenomenological continuum model for SMAs within the framework
of the phase-field approach to fracture. The major advantage of the phase-field approach over the afore-
mentioned discrete fracture models lies on its ability to model crack nucleation, complex crack patterns,
branching and merging, in both 2D and 3D, without ad hoc additions to the theory and without adaptive
mesh refinement for sufficiently fine mesh resolutions. This stems from the regularization of the sharp
crack surface topology by a diffusive crack zone governed by a scalar auxiliary variable, a phase field,
which interpolates between the unbroken and the broken state of the material. In the phase-field ap-
proach to fracture, also known as variational approach to fracture [38, 39], the solution to the fracture
problem is found as the minimizer of a global energy functional that includes a volumetric approxima-
tion of total fracture energy. Thus far, the phase-field approach to fracture has been focused mostly on
brittle materials [40–57] with proposed modifications to fracture in ductile materials [58–67], compos-
ites [68–70], rubbery polymers [71–73], hydrogen embrittlement [74, 75], hydraulic fracturing [76–79],
geomaterials [80–86] and piezoelectric solids [87]. Recently, the phase-field approach to fracture has been
extended to fatigue as well [88–104].

The proposed model accounts for reversible phase transformation from austenite to self-accommodated
and/or oriented martensite, orientation of martensite variants, temperature and load dependence of the
hysteresis width, asymmetry between forward and reverse phase transformation, and is flexible enough
to address the deformation response in the concurrent presence of several phases, i.e., when austenite,
self-accommodated and oriented martensite co-exist in the microstructure. The model is formulated based
on the Eulerian logarithmic strain, sometimes referred to as true or natural or Hencky strain, which is
the only strain measure that its corotational rate (associated with the so-called logarithmic spin) is the
rate of deformation tensor, also-called stretching [105, 106]. Additive split of the rate of deformation
results in an additive decomposition of strain and, thus, in a simple model structure and an easy imple-
mentation procedure. The model adopts a single value for the energy expended to create new surfaces,
which corresponds to the fracture toughness of martensite. Thus, the model is applicable for temperatures
below Md, since, as recently shown [36, 107], the fracture toughness of SMAs is piece-wise constant with
respect to temperature, below and above Md, with the value below Md corresponding to the fracture
toughness of martensite and that above corresponding to austenite. For nominal temperatures above Md

the austenite phase is stable and the deformation response of the SMA is similar to that of a conven-
tional metal. Furthermore, the model neglects plastic deformation and assumes that inelastic deformation
associated with phase transformation and orientation of martensite variants contributes to the fracture
response only through stress redistribution, underpinning the experimental evidence [108] and numerical
studies [108, 109] that the fracture process in SMA is stress-driven. The model is shown to reproduce
experimental observations, such as fracture during cooling under a constant bias load, transformation
and/or orientation-induced toughening, and it is verified on complex geometries and loading conditions,
including mixed-mode fracture.



A Finite-Strain Phase-Field Description of Thermomechanically-Induced Fracture in Shape Memory Alloys 3

It should be noted that recently a phase-field model for fracture of SMAs was proposed in litera-
ture [110, 111], which in contrast to the one proposed herein (i) is formulated under the small-strain as-
sumption, (ii) is restricted to phase transformation, i.e., cannot describe orientation of self-accommodated
martensite, (iii) is restricted to isothermal mechanical loading conditions, and (iv) assumes that fracture
is driven by the total strain energy density, i.e., assumes that the total work of transformation-induced
deformation can be directly expended on the intrinsic damage mechanisms.

The remaining of the paper is organized as follows. In Section 2, the model’s formulation by pos-
tulating a microforce balance is described. In Section 3, verification simulations are presented depicting
the model’s ability to capture the experimentally observed fracture response of SMAs under mechanical
and/or actuation loading. A summary of the paper is given in Section 4.

2 Formulation

2.1 Kinematics

Let Q0 define the reference configuration of a continuum body, with its particles associated with their
position X ∈ Q0, undergoing a motion ϕt : Q0 → Qt, where t ∈ R is the time, Qt is the current
configuration, and the particles’ current position is labeled x ∈ Qt.

The Eulerian logarithmic strain

h =
1

2
ln b =

m∑
α=1

lnλαbα, (2.1)

is defined as the logarithmic measure of the left Cauchy-Green deformation tensor b = FFT (F =
∂Xϕt is the deformation gradient, λα are the m distinct eigenvalues of b, bα are the corresponding
eigenprojections, and the notation ∂a denotes differentiation with respect to the generic variable a) and
its conjugate Kirchhoff stress

τ = Jσ, (2.2)

where J = detF > 0 is the Jacobian of the deformation and σ the Cauchy stress.
The Eulerian logarithmic (Hencky) strain is the only strain measure whose objective time rate with

respect to a corrotational frame yields the total stretching (or rate of deformation) D = 1
2

(
L + LT

)
,

where L = ḞF−1 stands for the velocity gradient, i.e.,

h̊ = ḣ + hΩL −ΩLh = D, (2.3)

where the superscript “˚” denotes the objective logarithmic time rate of any tensor a

å = ȧ+ aΩL −ΩLa, (2.4)

defined by the logarithmic spin ΩL = W+
n∑

α 6=β

(
1+(λα/λβ)
1−(λα/λβ) + 2

ln(λα/λβ)

)
bαDbβ (W = 1

2

(
L− LT

)
is the

vorticity and “ ˙ ” denotes material time rate.)
On account of (2.4), relation

˙
RLaRLT = RLåRLT (2.5)

holds, where the logarithmic rotation, RL, is defined from the differential equation

Ṙ
L

= ΩLRL; RL|t=0 = δ, (2.6)

where δ is the unit tensor with components δij = 1 if i = j and δij = 0 if i 6= j. The left hand side of (2.5)
represents the material time rate of a Lagrangian quantity and, thus, (2.6) generates a one-parameter
subgroup of rotations that define a locally rotating coordinate system in which the material time rates
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of the obtained rotated tensors remain unaltered by superposed spatial rigid body motions [106]. Time
integration of (2.5), assuming a = h and h|t=0 = 0, yields

h = RLT
(∫ t

0

RLh̊RLTdt

)
RL (2.3)

= RLT
(∫ t

0

RLDRLTdt

)
RL, (2.7)

and, thus, additive decomposition of total stretching D results in additive decomposition of the Hencky
strain.

2.2 Conservation Principles

The phase-field model for fracture of SMAs is derived by postulating a microforce balance [112]. The
local forms of the postulated balance laws are derived from their respective global forms, given below,
which hold for all subgerions Bt of the continuum body, Qt, with a sufficiently smooth boundary ∂Bt.
All integrands are at least C0-continuous.

2.2.1 Balance of mass ∫
B0

ρ0 dX =

∫
Bt
ρ dx⇒ ρ0 = ρJ, (2.8)

where ρ (ρ0) is the mass density per unit (reference) volume.

2.2.2 Balance of linear momentum (equilibrium)∫
∂Bt

t ds+

∫
Bt
ρb dx = 0⇒∇x · τ + ρ0b = 0, (2.9)

where t = σ · n denotes the traction, b the body force, n the outward unit normal of ∂Bt, and ∇x· the
divergence operator.

2.2.3 Balance of angular momentum∫
∂Bt

r× t ds+

∫
Bt

r× ρb dx = 0⇒ τ = τT , (2.10)

where r denotes the position vector of a material point and × is the cross product between two vectors.

2.2.4 Microforce balance

An internal scalar microforce π and a vector stress ζ that exerts a scalar traction ζ · n on ∂Bt are
postulated [112], ∫

∂Bt
ζ · n ds+

∫
Bt
ρπ dx = 0⇒∇x · ζ + ρπ = 0. (2.11)
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2.2.5 Energy balance

The energy balance is stated as

˙∫
Bt
ρu dx =

∫
∂Bt

t · u̇ ds+

∫
Bt
ρb · u̇ dx+

∫
∂Bt

(ζ · n)ċ ds+

∫
Bt
ρr dx−

∫
∂Bt

q · n ds

(2.11)⇒ ρu̇ =
1

J
τ : h̊ + ζ · ∂xċ− ρπċ+ ρr −∇x · q, (2.12)

where u is the internal energy per unit mass density, u is the displacement vector, c is the phase-field
parameter (or order parameter) to be further defined below, q is the heat flux, and r is a heat source.

Under the assumptions r = 0 and ∇x · q = 0, the above equation simplifies to

ρu̇ =
1

J
τ : h̊ + ζ · ∂xċ− ρπċ. (2.13)

2.2.6 Entropy inequality principle

Under the above assumptions, the second law of thermodynamics reads as

˙∫
Bt
ρsdx ≥ −

∫
∂Bt

q · n
T

ds⇒ ρṡ ≥ q · ∂xT
T 2

,

where s is the entropy per unit mass density and T is the absolute temperature.
Assuming ∂xT = 0, the entropy inequality principle can be stated in terms of dissipation, D, as

D = ρṡT ≥ 0, (2.14)

In view of the energy balance equation (2.13) and the Legendre transformation,

u = G+
1

ρ0
τ : h + Ts, (2.15)

where G is the Gibbs free energy, the dissipation inequality can be further stated as

D = − 1

J
τ̊ : h− ρsṪ + ζ · ∂xċ− ρπċ− ρĠ ≥ 0. (2.16)

The assumption of a uniform throughout the material, at every instant, temperature distribution,
∂xT = 0, corresponds to assuming the rate of both the mechanical and thermal loading being sufficiently
slow with respect to the time rate of heat transfer by conduction.

2.3 Constitutive Response

The constitutive equations can be derived in a thermodynamically consistent manner by postulating the
Gibbs free energy and a volumetric approximation of total fracture energy.

The total strain tensor, h, is decomposed

h = he + hin = he + ht + ho, (2.17)

into a elastic, he, and inelastic, hin, part. The inelastic part is further decomposed into ht and ho,
representing the strain contributions of transformation from austenite to martensite and orientation of
self-accommodated martensite, respectively1.

Note that thermal strains are neglected, an approximation that restricts the model to temperature
ranges required for the shape memory effect within which thermal strain is an order of magnitude smaller

1 Oriented martensite forms from self-accommodated martensite under mechanical load with or without thermal inputs.
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than the transformation strain. The thermal expansion of oriented martensite is anisotropic, dependent
on the volume fraction of oriented martensite and the orientation direction, and its implementation is
described in [123].

The logarithmic rate of the inelastic strain tensor is taken to be

h̊
in

= h̊
o

+ h̊
t

=

√
3

2

(
ξḢNo + ξ̇HNt

)
, (2.18)

where the martensite volume fraction, ξ, is restricted by 0 ≤ ξ ≤ 1 and the effective inelastic strain, H, by
0 ≤ H ≤ Hmax, No and Nt are the flow directions for orientation and phase transformation, respectively.
The multiplier

√
3/2 has been introduced so that H is the measure of the effective inelastic strain, i.e.,

H =
√

2
3hin : hin. It is noted that ξH can be interpreted as ξoHmax, where ξo = ξH/Hmax denotes the

oriented martensite volume fraction.

The volumetric approximation of total fracture energy adopted is through a crack density functional
Γc ∫

Γt

Gcds ≈
∫
Qt
GcΓc(c, ∂xc)dx, (2.19)

where the evolving internal discontinuity boundary, Γt, represents a set of discrete cracks, Gc is the energy
expended to create a unit area of fracture surface, and the damage-like, phase-field variable, 0 ≤ c ≤ 1,
approximates the fracture surfaces, taking the value 0 away from the crack and the value 1 within the
crack. The crack density functional is typically given as

Γc(c, ∂xc) =
1

4`

(
c2 + 4`2∂xc · ∂xc

)
, (2.20)

where ` > 0 is a model length parameter that controls the width of the smooth approximation of the
cracks.

2.3.1 Thermodynamic Potential

The Gibbs free energy potential, G, is defined as

G(τ , T, ξ,hin, κo, κt, κr, c, ∂xc) = Gd(τ , T, ξ,hin, κo, κt, κr, c) + GcΓc(c, ∂xc)
(2.20)

=

− 1

ρ0
m−1(c)Wτ + c(ξ)

[
T − T0 − T ln

(
T

T0

)]
− s0(ξ)T + u0(ξ)− 1

ρ0
τ : hin

+
1

ρ
go(κo) +

1

ρ
gt(κt) +

1

ρ

Gc
4`

[
c2 + 4`2∂xc · ∂xc

]
, (2.21)

where Wτ = 1
2τ : S(ξ) : τ . The degradation function 0 ≤ m(c) ≤ 1, is such that m(0) = 1, m(1) = 0, and

m′ < 0, where the prime denotes differentiation with respect to argument. The function m(c) = (1− c)2
is assumed. The model parameters S, c, s0, and u0 denote the compliance tensor, specific heat, specific
entropy at the reference state, and specific internal energy at the reference state, respectively, which are
assumed to be different for each phase, and the density ρ is assumed to be the same regardless of phase. The
effective value of phase-dependent parameters, S, c, s0, and u0, in virtue of (2.21), are evaluated in terms
of the martensite volume fraction, ξ, by the rule of mixtures, i.e., a(ξ) = aA+ ξ

(
aM − aA

)
= aA+ ξ∆a,

where a stands for any of the phase-dependent parameters. The internal state variables go and gt describe
the free energy blocked in the microstructure due to orientation and transformation, respectively, which
depend only on the respective isotropic hardening variables, κt and κo.
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2.3.2 Constitutive Relations

Inequality (2.16) reads, via chain rule differentiation on G with respect to the internal variables set, as

D = − 1

J
τ̊ : h− ρsṪ − ρ∂τG : τ̊ − ρ∂TGṪ − ρ∂ξGξ̇ − ρ∂hinG : h̊

in

− ρ∂κtGκ̇t − ρ∂κoGκ̇o − ρ∂∂xcG · ∂xċ− ρ∂cGċ+ ζ · ∂xċ− ρπċ ≥ 0. (2.22)

Standard thermodynamical arguments, applied to the dissipation inequality (2.22), yield the consti-
tutive relationships

h = −ρ∂τG = m−1(c)
∂Wτ

∂τ
+ hin

(2.17)⇒ τ = m(c)C : he, where C = S−1 (2.23)

s = −∂TG = c ln

(
T

T0

)
+ s0, (2.24)

ζ = ρ∂∂xcG = 2Gc`∂xc (2.25)

and the reduced dissipation expression

D = pξ̇ + τ :
(
h̊
t

+ h̊
o
)

+ µtκ̇t + µoκ̇o − (ρ0π + µc) ċ ≥ 0, (2.26)

where

p = −ρ0∂ξG =
1

2
m−1(c)τ : ∆S : τ − ρ0∆c

[
T − T0 − T ln

(
T

T0

)]
+ ρ0∆s0T −∆u0, (2.27)

µa = −ρ0∂κaG, (2.28)

µc = −ρ0∂cG, (2.29)

and a stands for any of the superscripts o, t or r.

Assuming the material to be strongly dissipative, inequality (2.26) is satisfied if


Do = τ : h̊

o
+ µoκ̇o > 0; h̊

o
6= 0,

Dt = pξ̇ + τ : h̊
t

+ µtκ̇t > 0; ξ̇ 6= 0,

Dc = − (ρ0π + µc) ċ > 0; ċ > 0,

(2.30)

are enforced. It is assumed that these inequalities are obeyed at all times so that the dissipation inequality
is concurrently satisfied.

In view of (2.29) and (2.21), the above dissipation inequality (2.30c) reads as

Dc = −
(
ρ0π − ∂c

[
m−1(c)

]
Wτ +

Gc
2`
c

)
ċ ≥ 0

and can be satisfied by assuming

ρ0π = ∂c
[
m−1(c)

]
Wτ −

Gc
2`
c. (2.31)
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2.3.3 Evolution of Internal State Variables

Inequalities (2.30) are used to determine the kinetic relations for the internal state variables, i.e., the flow
rules, as follows [113].
Flow rules associated with orientation.– A potential function associated with orientation is postulated

Qo (τ , µo) ≡ ξ (τ − µo − Y o) , (ξ 6= 0) (2.32)

where τ =
√

3
2τ
′ : τ ′ stands for the von Mises Kirchhoff stress (τ ′ = τ − 1

3 tr(τ )δ is the deviatoric

Kirchhoff stress tensor), and Y o is a positive scalar. Assuming generalized normality, the orientation
related internal state variables then read as{

h̊
o

= λ̇o∂τQ
o = λ̇oξ∂τ τ ,

κ̇o = λ̇o∂µoQ
o = −λ̇oξ.

(2.33)

Flow rules associated with forward phase transformation.– Assuming

Qtf (τ , p, µt) ≡ Hσ + p− µt − Y t, (2.34)

where Y t is a strictly positive scalar, the transformation related internal state variables are given by
h̊
t

= λ̇tf∂τQ
t
f = λ̇tfH∂τ τ ,

ξ̇ = λ̇tf∂pQ
t
f = λ̇tf ,

κ̇t = λ̇tf∂µtQ
t
f = −λ̇tf ,

(2.35)

or {
h̊
t

= ξ̇H∂τ τ ,

κ̇t = −ξ̇.
(2.36)

Flow rules associated with reverse phase transformation.– Assuming

Qtr
(
τ , µt

)
≡ −τ : hin

ξ
− p+ µt − Y t, (2.37)

the flow rules for reverse phase transformation are given by
h̊
in

= λ̇tr∂τQ
t
r = −λ̇tr hin

ξ ,

ξ̇ = λ̇tr∂pQ
t
r = −λ̇tr,

κ̇t = λ̇tr∂µtQ
t
r = λ̇tr,

(2.38)

or equivalently by {
h̊
in

= ξ̇
ξh

in,

κ̇t = −ξ̇.
(2.39)

Thus, it is assumed that the direction of the inelastic strain recovery is governed by the average
direction of the martensite variants and the magnitude of its rate is proportional to the rate of martensite
volume fraction so that there can be no inelastic strain whenever the martensite volume fraction is zero
and vice versa.
Hardening functions associated with phase transformation and orientation.– The branched hardening
function that changes with transformation direction, introduced in [114], is adopted for phase transfor-
mation

µt(κt) = µt(ξ) :=


1
2a
t
1

[
1 + ξn

t
1 − (1− ξ)n

t
2

]
+ at3; ξ̇ > 0,

1
2a
t
2

[
1 + ξn

t
3 − (1− ξ)n

t
4

]
− at3; ξ̇ < 0,

(2.40)
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which allows for the experimentally observed asymmetry in forward and reverse phase transformation
and for smooth transitions between the elastic and phase transformation regimes. The coefficients at1−at3
are material parameters while the exponents nt1−nt4, which take values in the interval (0, 1], do not have
an associated material property but are directly chosen to best fit the four corners of the transformation
hysteresis plots.

A similar power-law form for the hardening function associated with orientation is introduced [113]

µo(κo; ξ) = µo(ξH; ξ) :=
1

2
ao1

{
1 +

(
H

Hmax

)no1
−
[
1−

(
H

Hmax

)]no2}
, (2.41)

where ao1 is a material parameter and 0 < no1 ≤ 1, 0 < no2 ≤ 1 are chosen to best fit the transitions
between the elastic and orientation regimes.
Yield functions.– The dissipation inequalities (2.30) now read as

Do = λ̇oξ {τ : ∂τ (τ)− µo} ≥ 0; h̊
o
> 0,

Dt =

{
ξ̇ {Hτ : ∂τ (τ) + p− µt} ≥ 0; ξ̇ > 0,

ξ̇
{
τ :hin
ξ + p− µt

}
≥ 0; ξ̇ < 0,

Dc ≡ 0.

(2.42)

Given the convexity of the potential functions Qo, Qtf , and Qtr, the following yield functions are
assumed that satisfy the above dissipation inequalities

Φo (τ , µo) = Qo (τ , µo) = τ − µo − Y o ≤ 0,{
Φtf (τ , p, µt) = (1− C)Hτ + p− µt − Y t ≤ 0,

Φtr(τ , p, µ
t) = −

[
(1 + C)τ :hin

ξ + p− µt
]
− Y t ≤ 0.

(2.43)

Note that Φtf (τ , p, µt) < Qtf (τ , p, µt) and Φtr(τ , p, µ
t) < Qtr(τ , p, µ

t), where the introduced parameter

0 < C < 1 in the expressions of Φtf and Φtr accounts for the dissimilar slopes of the transformation
boundaries on the SMA phase diagram.

2.3.4 Tension/compression asymmetry in stiffness degradation, prevention of interpenetration of the
crack faces, and crack irreversibility

In an effort to prohibit crack propagation under compression, only the tensile part of the elastic strain
energy density, W+

he , is assumed to serve as the driving force for crack growth, which is defined through
the energy decomposition into a positive and a negative part, introduced by [40, 41],

W+
he =

1

2
λ〈tr he〉2 + µ tr

[
(h+
e )2
]
, W−he =

1

2
λ (tr he − 〈tr he〉)2 + µ tr

[
(h−

e )2
]

(2.44)

where
h+
e =

∑
α

〈hα〉nα ⊗ nα, h−e = he − h+
e , (2.45)

are the positive and negative components of the elastic strain tensor, respectively, defined through its
spectral decomposition, he =

∑
α h

e
αnα ⊗ nα, where λ and µ are the Lamé constants, and

〈x〉 =

{
0, x < 0

x, x ≥ 0.

Furthermore, the constitutive response (2.23) is modified to read

τ = m(c)∂hW
+
he + ∂hW

−
he = m(c)

[
λ〈tr he〉δ + 2µh+

e

]
+
[
λ (tr he − 〈tr he〉) δ + 2µh−e

]
, (2.46)
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in order to prevent the interpenetration of the crack faces. Similarly the driving force for phase transfor-
mation, p, given in (2.27), is modified to read

p =
1

2
m(c)∆λ〈tr he〉2 +∆µ tr

[
(h+
e )2
]

+
1

2
∆λ (tr he − 〈tr he〉)2 +∆µ tr

[
(h−

e )2
]

− ρ0∆c
[
T − T0 − T ln

(
T

T0

)]
+ ρ0∆s0T −∆u0. (2.47)

Thus, (2.31) is now written as

ρ0π = −m′(c)H− Gc
2`
c, (2.48)

where the history functional, H, which satisfies the Kuhn-Tucker conditions for loading and unloading

W+
h −H ≤ 0, Ḣ ≥ 0, Ḣ

(
W+
h −H

)
= 0, (2.49)

is introduced to enforce crack irreversibility [40], i.e., ċ ≥ 0.
Note that due to Poisson’s ratio effects, compressive stresses may still contribute to the increase

of damage; other schemes to describe the tension/compression asymmetry in the stiffness degradation
response are proposed in [115].

2.3.5 Strong-form, boundary-value problem

In summary, the strong-form, boundary-value problem of the constitutive response reads as
Mechanical Equilibrium (2.9). –

∇x · τ + ρ0b = 0, (2.50)

Microforce Balance ((2.11), (2.25), (2.48)). –

2JGc`∇x · ∂xc = m′(c)H+
G0c
2`
c, (2.51)

Constitutive equations (2.46). –

τ = m(c)
[
λ〈tr he〉δ + 2µh+

e

]
+
[
λ (tr he − 〈tr he〉) δ + 2µh−e

]
, (2.52)

Evolution equations ((2.33), (2.36), (2.39)). –
h̊
o

= λ̇oξ∂τ τ ,{
h̊
t

= ξ̇H∂τ τ ; ξ̇ > 0,

h̊
in

= ξ̇hin
ξ ; ξ̇ < 0,

(2.53)

Yield surfaces (2.54). –
Φo = τ − µo − Y o = 0,{
Φtf = (1− C)Hτ + p− µt − Y t = 0,

Φtr = −
[
(1 + C)τ :hin

ξ + p− µt
]
− Y t = 0,

(2.54)

where µo, p and µt are given in (2.41), (2.27), and (2.40), respectively.
The equilibrium equations are subject to the boundary conditions
Boundary Conditions. – 

u
∣∣
∂Qut

= ū,

σ · n
∣∣
∂Qtt

= t̄,

∂c

∂x
· n
∣∣∣
∂Qt

= 0,

(2.55)

where ū and t̄ are prescribed displacement and tractions on the Dirichlet, ∂Qut , and von Neumann, ∂Qtt,
boundaries, respectively (∂Qt = ∂Qut ∪ ∂Qtt and ∅ = ∂Qut ∩ ∂Qtt).
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2.4 Damage Evolution in 1D Problem

To obtain an insight into the damage evolution, the solution of the 1D boundary-value problem is given
in this section.

Assuming tensile stretching and in the absence of body forces, the strong form of the balance equations,
(2.50) and (2.51), and the constitutive relation, (2.46), read as

∂τ

∂x
= 0,

2Gc`
∂2c

∂x2
= m′(c)H+

Gc
2`
c,

τ = m(c)E(ξ)he

(2.56)

Thus, τ is independent of the spatial variable, i.e., τ is homogeneous, and ignoring the spatial derivatives
of c and assuming m(c) ≡ (1− c)2, (2.56) reduces to

τ = (1− c)2E(ξ)he,

c =
2H

2H+
Gc
2`

. (2.57)

Thus, the critical values of stress, strain and damage after which both the stress and damage decrease
in value upon an increase in strain can be found as

τc =
9

16

√
E(ξ)Gc

6`
,

hec =

√
Gc

6`E(ξ)
,

cc =
1

4
.

(2.58)

The above expressions are the ones derived from the 1D problem of the phase-field description of
brittle fracture (elastic materials) by replacing τ by σ, hec by εc, and E(ξ) by E [42]. Both the critical
values of stress and elastic strain are dependent on transformation through the value of E(ξ) while the
critical value of the phase-field is independent of model and material parameters.

It should be noted that the model could be alternatively formulated by adopting a different crack den-
sity (and degradation) functional, whose generalized form reads as Γc(c, ∂xc) = 1

w0

[
1
`w(c) + 4` (∂xc · ∂xc)

]
;

w0 = 8
∫ 1

0

√
w(s)ds, where w(c) ∈ [0, 1], subject to the constraints w(0) = 0 and w(1) = 1, is a function

that governs the shape of the regularized profile of the phase field, and w0 > 0 is a normalization con-
stant, such that an elastic phase is included in the damage response [39] or the critical stress becomes
independent of ` [57].

2.5 Numerical Implementation

The variational form of the boundary-value problem given above reads as:
Given b and t̄, find (u, c) ∈ Vu ×H1(Qt), such that

∫
Qt

[τ : ∇v − ρ0b · v] dx−
∫
∂Qt

t̄ · v ds = 0,∫
Qt

[
2JGc` ∂xc · ∂xw +m′(c)Hw +

G0c
2`
cw

]
dx = 0

(2.59)
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for all (v, w) ∈ V0
u ×H1(Qt), where

Vu =
{
u ∈ H1(Qt);u

∣∣
∂Qut

= ū
}
, V0

u =
{
u ∈ H1(Qt);u

∣∣
∂Qut

= 0
}
. (2.60)

Following the Galerkin method and a usual finite-element approximation of the functional spaces of
the weak form, the discretized version of the above equation can be solved by a single-pass staggered
scheme [40] as follows.

Given the converged values {un, cn,Hn,hinn , κon, κtn} at the n-increment and the predefined tempera-
ture value at the the n+ 1-increment, Tn+1:

1. Compute cn+1 from the microforce balance equation using Hn.
2. Compute un+1 from the mechanical equilibrium equation using the Newton’s method, which results

in an iterative loop inside the global (top-level) loop of load incrementation. At every iteration during
this loop, compute the stress corresponding to a change of the strain field through another iteration
loop, the Closest Point Projection Return Mapping Algorithm [113], under the approximation

τ (un+1,h
in
n+1, Tn+1, cn+1)

= m(cn+1)
{
λ tr

[
he
(
un+1,h

in
n+1, Tn+1, cn+1

)]
δ + 2µh+

e

(
un+1,h

in
n+1, Tn+1, cn+1

)}
+
{
λ
[
tr he

(
un+1,h

in
n+1, Tn+1, cn+1

)
−〈tr he

(
un+1,h

in
n+1, Tn+1, cn+1

)
〉
]
δ+2µh−e

(
un+1,h

in
n+1, Tn+1, cn+1

)}
,

by pushing forward all tensorial state variables from the previous global iteration, an, to the cur-

rent configuration RLT

n+1

(
RL
nanRLT

n

)
RL
n+1, where RL is updated in closed form as described

in [113], [116] (pp. 91-92), [117] (pp. 297).
3. Determine the history variable

Hn+1 =

{
W+
h

(
un+1,h

in
n+1, Tn+1, cn+1

)
, W+

h

(
un+1,h

in
n+1, Tn+1, cn+1

)
> Hn,

Hn, otherwise,

The above algorithm is implemented in ABAQUS suite by exploiting the analogy between the mi-
croforce balance and heat transfer equations via a UMAT and a HETVAL subroutine [118, 119]. The
above implementation is conditionally stable and requires the load increments employed to be sufficiently
small [48, 120–122]. A comparison between the staggered and monolithic ABAQUS implementations can be
found in [119].

3 Results

The calibration of the constitutive model regarding phase transformation and orientation is described in
detail in [113]. The fracture toughness can be calibrated by compact-tension experiments as described
in [36, 107] while the length scale parameter ` should be selected with consideration of the size of the
domain/mesh of potential simulations and the ultimate tensile strength of the material [40, 42]. The
simulations presented below are based on the model parameters given in Table 3.1. It should be noted
that the fracture energy is amplified in simulations based on the finite element discretization; a scaled
fracture toughness, e.g., Gsc = Gc/[1 + hd/(4`)], where hd is the minimum mesh size (hd =

√
A (or 3

√
A)

is the area (or volume) of an element), could be used in the simulations instead [124]. For the examples
below, the domains along the crack path are discretized such that hd < `/3.
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Table 3.1: Parameter values used in the simulations.

(a) Elastic constants

parameter value

EA [MPa] 74000
νA 0.33
EM [MPa] 62000
νM 0.33

(b) Phase transformation/Orientation parameters

parameter value parameter value

Ms [K] 340 Hmax 0.06
Mf [K] 320 nt

1 1
As [K] 367 nt

2 1
Af [K] 379 nt

3 1
CA [MPa K−1] 8 nt

4 1
CM [MPa K−1] 15 n0

1 1
Y 0 [MPa] 190 n0

2 1
a01 [MPa] 220

(c) Phase-field parameters

parameter value

` [mm] 0.6

Gc [MPa.mm] 128

3.1 Uniaxial Isothermal & Isobaric Loading

The constitutive material response is depicted first by simulations performed under uniaxial isothermal
and isobaric conditions. The uniaxial isothermal stress–strain response at three different temperatures is
shown in Figure 3.1. At T = 298 K, the material is initially in a self-accommodated martensite state and
undergoes orientation of martensite variants upon loading while at T = 353 K, the material is initially in
the austenite phase and undergoes stress-induced phase transformation (Figure 3.1a). At T = 385 K, the
material displays a superelastic response upon unloading (during unloading c remains constant). Note that
in these simulations and all that follow no reverse phase transformation is permitted for c > cc = 1/4. The
isobaric strain–temperature response under three bias load levels is shown in Figure 3.2. Under σ = 0 MPa,
the material, initially in the austenite phase, transforms to self-accommodated martensite, under σ =
200 MPa, to a mixture of self-accommodated and oriented martensite, and under σ = 300 MPa, to oriented
martensite. Note the difference in the transformation strain value between the three simulations. From
the simulations, it is apparent that the model accounts for reversible phase transformation from austenite
to self-accommodated and/or oriented martensite, orientation of martensite variants, and can address the
deformation response in the concurrent presence of several phases, i.e., austenite, self-accommodated and
oriented martensite.

3.2 Stable Crack Growth under Actuation

In this section, the model’s ability to reproduce the experimentally observed crack growth under “ac-
tuation” loading conditions is demonstrated. The numerical simulations are performed on an infinite
center-cracked SMA plate subjected to uniform cooling from T = 400 K, with ∆T=4× 10−3 K, under a
far-field constant uniaxial tensile load applied in the perpendicular to the crack plane direction, σ∞ = 280
MPa. Due to symmetry, one quarter of the plate is discretized by 53,340 eight-noded quadrilateral plane-
strain elements with reduced integration. The far-field stress level is chosen to be low enough for the crack
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Fig. 3.1: Stress–strain response under uniaxial isothermal loading (a) at T = 298 K and T = 353 K and
(b) at T = 385 K.
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Fig. 3.2: Strain–temperature response under isobaric conditions.

to propagate due to mechanical loading alone but high enough for the crack to grow during cooling. As
already discussed in [30], stress redistribution due to large-scale transformation occurring in regions “in
front” of the crack tip results in raising the driving force for crack growth, i.e., the elastic strain energy
density (see Figure 3.3), while stress redistribution due to transformation left in the wake of the crack
(“behind” the crack tip) as crack advances results in crack shielding and, therefore, in stable crack growth.
That is phase transformation affects both the driving force for crack growth and the crack growth kinetics
due to the induced stress redistribution that facilitates crack growth when occurring in a fan in front
of the crack tip and shields the crack when occurring behind this fan. The martensite volume fraction,
ξ, and damage, c, distributions at the initiation of crack advance and during crack growth are shown in
Figure 3.4. The normalized temperature, [CM (T −MS)]/σ∞, versus the normalized crack length, ∆a/a0,
plot in Figure 3.5, where ∆a is the crack extension and a0 is the initial half crack length, shows the
resulting resistance (“R-curve”-type) response. The normalization chosen is the one proposed in [125].
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Increments
H

Isothermal
Isobaric

Fig. 3.3: Driving force for damage, H, at the crack tip of the infinite center-cracked plate subjected to
cooling under a constant far-field load applied in the perpendicular to the crack plane direction. The
solid line represents the evolution of the driving force during the isothermal application of the bias load,
σ∞ = 280 MPa, at T = 400 K and the dashed line the subsequent evolution during cooling while the bias
load remains constant.

   

(a)

390 7

(b)

Fig. 3.4: Martensite volume fraction, ξ, (a) and damage, c, (b) distributions on the infinite center-cracked
plate subjected to cooling under a constant far-field load applied in the perpendicular to the crack plane
direction at T = 390 K, which corresponds to initiation of crack advance, and during crack growth at
T = 376 K.
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Fig. 3.5: Crack growth resistance for the infinite center-cracked plate subjected to cooling under a constant
far-field load applied in the perpendicular to the crack plane direction.

3.3 3D crack growth simulations

The efficiency of the numerical implementation of the model is verified by crack growth simulations in
3D complex geometries resulting in mixed-mode fracture.

The fracture response of a 3D notched plate is simulated with the notch inclined along the thickness
under both isothermal and actuation loading conditions. The geometric configuration has been adopted
from [46]. In the isothermal simulation, a displacement of 4 mm is applied, with a fixed increment of
∆u=10−3mm, at T = 353 K on the bearing surface of the upper pin hole while bearing surface of the
lower pin hole is kept fixed. The third hole is traction free, placed with an offset from the center so as
to induce mixed-mode fracture conditions. A total of 100,943 linear tetrahedral elements are used for
discretizing the whole domain. The martensite volume fraction, ξ, evolution and crack growth pattern at
different stages of loading are shown in Figure 3.6. The force generated at the pin holes is plotted against
the applied displacement in Figure 3.6b. The crack front progressively turns, propagates in a stable
manner and eventually becomes perpendicular to the free surface. In another simulation, a constant
load of F = 90 KN is applied on the bearing surface of the upper pin hole at T = 400 K keeping the
lower pin hole fixed. The plate is then cooled with ∆T=8× 10−3 K. The martensite volume fraction, ξ,
evolution and crack growth pattern at different stages of cooling are shown in Figure 3.7. The resulting
displacement–temperature curve is shown in Figure 3.7b. The crack starts growing stably at T = 395.1 K.
During cooling, the resulting large-scale phase transformation promotes crack advance leading to an
unstable crack growth at T = 390.6 K.

Lastly, the fracture response of a SMA torque tube is simulated under torque at T = 353 K. An initial
through thickness circumferential notch is assumed. A rotation θ about the longitudinal axis is applied,
with a fixed ∆θ = 4× 10−4 rad, on one end of the tube while the other end is kept fixed. The crack
pattern at different stages of loading is shown in Figure 3.8. Two cracks start propagating spirally from
the initial notch and eventually merge with each other splitting the tube into three pieces.

Conclusions

A finite-strain, phase-field description of the fracture response of shape memory alloys (SMAs) is pre-
sented. The finite-strain formulation is based on the Eulerian logarithmic strain, the objective logarithmic
rate and the additive decomposition of the rate of deformation, and the phase-field one on a postulated
microforce balance equation. Based on experimental observations and numerical simulations, it is assumed
that fracture is stress-driven and only the elastic strain energy contributes to the driving force for crack
formation and growth, i.e., the work of inelastic deformation (orientation of martensite variants or phase
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Fig. 3.6: Fracture of a 3D notched plate under isothermal loading condition at T = 353 K. (a) Geometry
and boundary conditions. All measures given are in mm. (b) Force–displacement curve at a pin hole up to
crack reaching the traction-free hole. (c) Martensite volume fraction, ξ, evolution (iso-surfaces of ξ = 1)
and (d) crack pattern (iso-surfaces of c = 1) at three applied displacement values.
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(d)

Fig. 3.7: Fracture of a 3D notched plate during cooling under a constant bias load. a) Geometry and
boundary conditions. All measures given are in mm. (b) Displacement–temperature curve at a pin hole
up to crack reaching the traction-free hole. (c) Iso-surfaces of ξ = 1, at three different temperatures. (d)
Iso-surfaces of c = 1 at three different temperatures.
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(a)

c = 1

(b)

Fig. 3.8: Fracture of a torque tube under isothermal torsion at T = 353 K. (a) Geometry and boundary
conditions. All measures given are in mm. (b) Crack pattern at different stages of loading.

transformation) is assumed to have a negligible contribution to the evolution of the intrinsic damage mech-
anisms at the fracture process zone. The model is shown able to reproduce experimental observations on
the fracture response of SMAs, such as (i) isothermal orientation and phase transformation toughening,
i.e., stable crack growth under isothermal loading of an SMA in an initially self-accommodated marten-
site state or in austenite at a temperature below Md, and (ii) initiation of crack advance and subsequent
stable crack growth during cooling of an SMA in the austenite sate under a sufficiently high bias load
level (termed actuation loading). The model and its numerical implementation are further verified by
simulations of complex 3D structures under isothermal and actuation loading conditions. The proposed
phase field framework to fracture in SMAs, envisioned to facilitate optimum design of SMA components,
could be augmented to describe e.g., reorientation, tension-compression asymmetry, minor loops, plastic
deformation, and latent heat effects.
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37. T. Ungàr, J. Frenzel, S. Gollerthan, G. Ribárik, L. Balogh, and G. Eggeler. On the competition between the stress-
induced formation of martensite and dislocation plasticity during crack propagation in pseudoelastic niti shape memory
alloys. J. Mater. R., 32(23):4433–4442, 2017. doi: 10.1557/jmr.2017.267.

38. B. Bourdin, G.A. Francfort, and J.J. Marigo. Numerical experiments in revisited brittle fracture. J. Mech. Phys.
Solids, 48(4):797–826, 2000.

39. G.A. Francfort and J.J. Marigo. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids,
46(8):1319–1342, 1998.

40. C. Miehe, M. Hofacker, and F. Welschinger. A phase field model for rate-independent crack propagation: Robust
algorithmic implementation based on operator splits. Comp. Meth. Appl. Mech. Engng., 199(45–48):2765–2778, 2010.

41. C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of fracture: Variational
principles and multi-field FE implementations. Int. J. Num. Meth. Engng., 83(10):1273–1311, 2010.

42. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, and C.M. Landis. A phase-field description of dynamic
brittle fracture. Comp. Meth. Appl. Mech. Engng., 217–220:77–95, 2012.

43. M.J. Borden, T.J.R. Hughes, C.M. Landis, and C.V. Verhoosel. A higher-order phase-field model for brittle fracture:
Formulation and analysis within the isogeometric analysis framework. Comp. Meth. Appl. Mech. Engng., 273:100–118,
2014.

44. C. Kuhn and R. Müller. A continuum phase field model for fracture. Eng. Fract. Mech., 77(18):3625–3634, 2010.
45. P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, and D. Raabe. Elasto-viscoplastic phase field modelling of anisotropic

cleavage fracture. J. Mech. Phys. Solids, 99:19–34, 2017.
46. M. Ambati, T. Gerasimov, and L. De Lorenzis. A review on phase-field models of brittle fracture and a new fast

hybrid formulation. Comp. Mech., 55(2):383–405, 2014.
47. K.D. Nguyen, C.L. Thanh, F. Vogel, H. Nguyen-Xuan, and M. Abdel-Wahab. Crack propagation in quasi-brittle

materials by fourth-order phase-field cohesive zone model. Th. Appl. Fract. Mech., 118:103236, 2022.
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110. M. Simoes and E. Mart́ınez-Pañeda. Phase field modelling of fracture and fatigue in shape memory alloys. Comp.
Meth. Appl. Mech. Engng., 373:113504, 2021.

111. M. Simoes, C. Braithwaite, A. Makaya, and E. Mart́ınez-Pañeda. Modelling fatigue crack growth in shape memory
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