
Math. Res. Lett.
Volume 29, Number 1, 101–130, 2022

Resolvent estimates, wave decay, and

resonance-free regions for

star-shaped waveguides

T. J. Christiansen and K. Datchev

Using coordinates (x, y) ∈ R× R
d−1, we introduce the notion that

an unbounded domain in R
d is star shaped with respect to x =

±∞. For such domains, we prove estimates on the resolvent of the
Dirichlet Laplacian near the continuous spectrum. When the do-
main has infinite cylindrical ends, this has consequences for wave
decay and resonance-free regions. Our results also cover examples
beyond the star-shaped case, including scattering by a strictly con-
vex obstacle inside a straight planar waveguide.

1. Introduction

Let Ω ⊂ Rd, d ≥ 2, be an open set of infinite volume, and equip the Laplacian
∆ on Ω with Dirichlet boundary conditions. We wish to understand how the
behavior of the resolvent of the Laplacian near the spectrum is related to the
geometry of Ω, and to deduce consequences for wave evolution and decay,
and for the distribution of resonances when these can be defined.

When Rd \ Ω is bounded, this is the celebrated obstacle scattering prob-
lem. Then a particularly favorable geometric assumption, going back to the
original work of Morawetz [Mo61], is that the obstacle is star shaped. In
this paper we adapt this assumption to the study of waveguides, which are
domains bounded in some directions and unbounded in others. We focus
especially on domains with cylindrical ends (which have one infinite dimen-
sion), but our resolvent estimates hold for domains with more general ends.
Our results also cover the problem of scattering by a strictly convex obstacle
inside a straight planar waveguide (see Figure 1) for which we prove a resol-
vent estimate in Theorem 4, wave decay in Theorem 6, and a resonance-free
region in Theorem 8.

Our analysis is based on the following definition, which applies to some
but not all strictly convex obstacles inside a straight planar waveguide.
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Theorem 5. Suppose that Ω satisfies the assumptions of Theorem 1, The-

orem 2, Theorem 3, or of Theorem 4. Suppose additionally that Ω has cylin-

drical ends. Let f1, f2 ∈ C∞
c (Ω) be given, and let u(t) solve (1.7). Then for

any χ ∈ C∞
c (Ω) and for any m ∈ N there is a constant C such that

∥χ(u(t)− up(t))∥Hm(Ω) ≤ Ct−1 for t sufficiently large,

where up(t) is a term corresponding to the projection of the initial data

(f1, f2) onto any eigenvalues and embedded resonances of the Dirichlet Lapla-

cian on Ω. If (1.1) holds, then there are no such eigenvalues and embedded

resonances, and up(t) ≡ 0.

For a more detailed description of up(t), see Theorem 1.1 of [ChDa23].
The only case of Theorem 5 in which we do not show up(t) ≡ 0 is that of a
convex obstacle inside a straight planar waveguide such that (1.1) does not
hold.

To state our next result, let Y be the disjoint union of Y− and Y+, let ∆Y

be the Dirichlet Laplacian on Y , and let {φj}∞j=0 be a complete orthonormal

set of eigenfunctions of ∆Y , with corresponding eigenvalues σ2j , so that

(1.8) −∆Y φj = σ2jφj , 0 < σ1 ≤ σ2 ≤ · · · .

We get an improvement of Theorem 5 under an additional assumption on
the eigenvalues of −∆Y . The assumption is that there are positive constants
cY and NY , such that

(1.9) σj′ − σj ≥ cY σ
−NY

j ,

whenever σj′ > σj . Note that this assumption allows the eigenvalues of −∆Y

to have high multiplicities, but forbids distinct eigenvalues from clustering
too closely together.

Theorem 6. Suppose that the assumptions of Theorem 5 hold, and also

that (1.9) holds. Then for each k0 ≥ 2 we can write

u(t) = up(t) +

k0−1∑

k=1

t−1/2−k
∞∑

j=1

(eitσjbj,k,+ + e−itσjbj,k,−) + ur,k0
(t),
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for some bj,k,± ∈ C∞(Ω), where up(t) is as in Theorem 5, and where for any

χ ∈ C∞
c (Ω) and m ∈ N there is a constant C so that

∞∑

j=0

∥χbj,k,±∥Hm(Ω) < +∞, k = 1, 2, ..., k0 − 1,

and

∥χur,k0
(t)∥Hm(Ω) ≤ Ct−k0 for t sufficiently large.

If (1.1) holds, then up(t) ≡ 0.

For a more detailed description of the bj,k,±, see Theorem 1.2 and Lemma
4.7 of [ChDa23]. In particular, Theorem 6 shows that

∥χ(u(t)− up(t))∥ ≤ Ct−3/2.

This is sharp when Ω = (0,∞)× Y , where Y ⊂ Rd−1 is bounded, by the
computation in Section 1.1 of [ChDa23], in particular equation (1.6) there.

The fact that if (1.1) holds, then up(t) ≡ 0 in Theorems 5 and 6, depends
on the following result ruling out eigenvalues and real resonances. Although
this is perhaps well known (see, for example, [MoWe87, Theorem 3.1] for
a similar result), we include a proof both for completeness and because it
uses an integration by parts identity similar to that used in the proofs of
Theorems 1, 2, 3, and 4.

Theorem 7. Suppose that Ω satisfies the assumption (1.1) and has cylin-

drical ends. Then the Dirichlet Laplacian on Ω has no eigenvalues. For such

Ω, the Dirichlet Laplacian on Ω has resonances embedded in the continuous

spectrum if and only if Ω is the product R× Ỹ for some set Ỹ ⊂ Rd−1.

By separation of variables and direct computation (as in Section 1.1
of [ChDa23]) one checks that if Ω = R× Ỹ then the Dirichlet Laplacian
on Ω has threshold resonances at every point in the Dirichlet spectrum of
−∆Ỹ . Theorem 7 shows that no other sufficiently regular domains Ω with
cylindrical ends obeying (1.1) can have any poles of the Dirichlet resolvent
on the real axis. Theorem 7 is a consequence of Theorem 1 when Ω has only
one end; we prove the general case in Section 5.

The proofs of Theorems 5 and 6 depend upon results on resonance-
free regions in a neighborhood of the spectrum. Because these are more
complicated to state, we present them below in Theorem 8 in Section 6. Once
Theorems 7 and 8 are established, Theorems 5 and 6 are direct consequences
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of Theorems 3.2 and 4.1 of [ChDa23] (see also Theorems 1.1 and 1.2 of
[ChDa23]).

1.3. Background and context

A wave decay rate for star-shaped compact obstacles was proved by Morawetz
in [Mo61], and the results there were refined and extended in many papers,
including [LaMoPh63, Mo72, Ra78], and more recently revisited and adapted
to hyperbolic scattering by Hintz and Zworski in [HiZw17, HiZw18].

Our results here build on those in [ChDa21, ChDa23] for manifolds
with cylindrical ends, which in turn are based on the spectral and scat-
tering theory of waveguides and manifolds with cylindrical ends developed
in [Go74, Ly76, Gu89, Me93, Chr95, Pa95]. The main novelty in the present
paper is the resolvent estimates in Theorems 1, 2, 3, and 4. These rely on
integration by parts identities in the spirit of Morawetz [Mo61].

Waveguides appear in models of electron motion in semiconductors
and of propagation of electromagnetic and sound waves; see for example
[LoCaMu99, Ra00, RaBaBaHu12, ExKo15, BoGaWo17]. There are many
results establishing the existence of eigenvalues for waveguides, under suit-
able geometric conditions. Something of a survey can be found in [KrKř05].
The result in [BuGeReSi97] holds in a setting in some sense opposite to
ours, and shows in particular that if Ω ⊂ R2 has cylindrical ends and obeys
xνx ≥ 0, xνx ̸≡ 0, then there is at least one eigenvalue. There are nonexis-
tence results for eigenvalues in [MoWe87, DaPa98, BrDiKr20], and another
for a resonance at the bottom of the spectrum in [GrJe09]. Some weaker
wave decay results (expansions up to o(1) as t→ ∞) for planar waveguides
can be found in [Ly76, HeWe06].

The resonance-free region we establish in Theorem 8 is a close analogue
of a corresponding region for manifolds with cylindrical ends established in
[ChDa21], and relies on a resolvent identity due to Vodev [Vo14]. An exis-
tence result for resolvent poles (in the presence of appropriate quasimodes)
on waveguides can be found in [Ed02]. Upper bounds on the number reso-
nances for manifolds with cylindrical ends are given in [Ch02].

Previous work also shows that our results cannot carry over directly to
the case of Neumann boundary conditions. For example, in [DaPa98], exam-
ples are given of domains Ω with cylindrical ends satisfying the hypotheses
of Theorems 3 and 7 but whose Neumann Laplacians have eigenvalues. More
simply, if Ω = (0,∞)× (−1, 1), then Ω satisfies the hypotheses of Theorem 1,
but the Neumann Laplacian has infinitely many embedded resonances (see
Section 1.1 of [ChDa23]).



Resolvent estimates for star-shaped waveguides 109

1.4. Outline

In Section 2 we review background regarding Sobolev spaces and establish
notation. In Section 3 we prove Theorem 1. In Section 4 we prove Theo-
rems 2, 3, and 4. In Section 5 we prove Theorem 7. In Section 6 we obtain
a resonance-free region in a neighborhood of the spectrum.

2. Preliminaries and notation

Throughout the paper we assume that ∂Ω is Lipschitz, and that every point
p on ∂Ω has a neighborhood Up such that either Up ∩ Ω is convex or Up ∩ ∂Ω
is C1,1.

We denote by C∞
c (Ω) the space of functions in C∞(Rd) with compact

support in Ω, and by C∞
c (Ω) the space of restrictions to Ω of functions in

C∞(Rd) with compact support in Rd. We use three different kinds of Sobolev
spaces on Ω. We denote by Hk(Ω) the Sobolev space of functions in L2(Ω)
whose partial derivatives up to kth order are in L2(Ω), and by Hk

0 (Ω) the
closure of C∞

c (Ω) in Hk(Ω). We denote by Hk
comp(Ω) the space of functions

in Hk(Ω) with compact support in Ω (by [Gr85, Theorem 1.4.3.1] this is the
same as the space of restrictions to Ω of compactly supported functions in
Hk(Rd)), and similarly by Lp

comp(Ω) the space of functions in Lp(Ω) with
compact support in Ω.

We integrate by parts using Green’s theorem (see [Gr85, Theorem 1.5.3.1]).
We use the fact that C∞

c (Ω) is dense in Hk
comp(Ω) (see [Gr85, Theorem

1.4.2.1]), and that the trace map H1
comp(Ω) → L2(∂Ω) is continuous (see

[Gr85, Theorem 1.5.1.3]).
We define the Dirichlet resolvent by taking the Friedrichs extension of ∆

with domain C∞
c (Ω) (see pages 82 and 83 of [Ta96II, Chapter 8, Section 2]).

For z ̸∈ [0,∞) we have

(2.1) (−∆− z)−1 : L2(Ω) → D := {u ∈ H1
0 (Ω): ∆u ∈ L2(Ω)}.

We denote by Dcomp the set of functions in D with compact support in Ω.
The regularity assumption on ∂Ω is made so as to ensure that

(2.2) Dcomp = H2
comp(Ω) ∩H1

0 (Ω).

Near points on ∂Ω where ∂Ω is C∞, (2.2) follows from [Ta96I, Chapter
5, Theorem 1.3]). Near points where ∂Ω is C1,1, (2.2) follows from [Gr85,
Corollary 2.2.2.4]. Near points where Ω is convex, (2.2) follows from [Gr85,
Theorem 3.2.1.2] (see also [Ta96I, Chapter 5, Section 5, Exercise 7]).
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For real E and ε we write for brevity

P = P (E, ε) = −∆− E − iε.

We use ∥ · ∥ and ⟨·, ·⟩ to denote the norm and inner product on L2(Ω),
and prime to denote differentiation with respect to x.

3. Domains with one end

We begin the proof of Theorem 1 with an integration by parts identity in
the spirit of Morawetz and others. This identity, along with some variants
of it, also plays a central role in the proofs of Theorems 2, 3, 4, and 7.

Lemma 1. Let Ω ⊂ Rd be an open set such that every point p on ∂Ω has

a neighborhood Up such that either Up ∩ Ω is convex or Up ∩ ∂Ω is C1,1. Let

w ∈ C3(R) be real valued, and suppose w, w′, w′′, w′′′ are all bounded. Let

u ∈ D and let E, ε ∈ R. Then

⟨w′u′, u′⟩ = 1

4
⟨w′′′u, u⟩+ 1

2
Re⟨Pu, (wu)′⟩+ 1

2
Re⟨wu′, Pu⟩

+ ε Im⟨wu′, u⟩+ 1

2

∫

∂Ω
w|∂νu|2νx,

(3.1)

where w = w(x).

Proof. Let u, v ∈ C∞
c (Ω). We use a positive commutator argument with

w∂x as commutant. Computing this commutator two ways we have

⟨[w∂x, ∂2x]u, v⟩ = −2⟨w′u′′, v⟩ − ⟨w′′u′, v⟩

= 2⟨w′u′, v′⟩+ ⟨w′′u′, v⟩ − 2

∫

∂Ω
w′u′v̄νx,

(3.2)

and

(3.3) ⟨[w∂x, ∂2x]u, v⟩ = ⟨[P,w∂x]u, v⟩ = ⟨Pwu′, v⟩ − ⟨wPu′, v⟩.

We write the right hand side of (3.3) in terms of Pu and Pv by integrating
by parts to obtain

(3.4) ⟨Pwu′, v⟩ = ⟨wu′, (P + 2iε)v⟩+
∫

∂Ω

(
wu′∂ν v̄ − ∂ν(wu

′)v̄
)
,
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and

(3.5) −⟨wPu′, v⟩ = ⟨Pu, (wv)′⟩ −
∫

∂Ω
w(Pu)v̄νx.

Combining (3.3), (3.4), and (3.5) gives

⟨[w∂x, ∂2x]u, v⟩ = ⟨Pu, (wv)′⟩+ ⟨wu′, Pv⟩ − 2iε⟨wu′, v⟩

+

∫

∂Ω

(
wu′∂ν v̄ − ∂ν(wu

′)v̄ − w(Pu)v̄νx
)
,

and combining also with (3.2) gives

2⟨w′u′, v′⟩ =− ⟨w′′u′, v⟩+ ⟨Pu, (wv)′⟩+ ⟨wu′, Pv⟩ − 2iε⟨wu′, v⟩

+

∫

∂Ω

(
wu′∂ν v̄ − ∂ν(wu

′)v̄ − w(Pu)v̄νx + 2w′u′v̄νx
)
,

(3.6)

for all u, v ∈ C∞
c (Ω). By density, (3.6) also holds for all v ∈ H2

comp(Ω). Now
let us specialize to the case that v ∈ H2

comp(Ω) ∩H1
0 (Ω). Then (3.6) becomes

2⟨w′u′, v′⟩ = −⟨w′′u′, v⟩+ ⟨Pu, (wv)′⟩+ ⟨wu′, Pv⟩ − 2iε⟨wu′, v⟩

+

∫

∂Ω
wu′∂ν v̄.

(3.7)

Again by density, we also have (3.7) for all u ∈ H2
comp(Ω) and v ∈ H2

comp(Ω) ∩
H1

0 (Ω).
Specializing further to the case that u = v, taking real parts of both

sides, and using

−Re⟨w′′u′, u⟩ = 1

2
⟨w′′′u, u⟩, u′|∂Ω = νx∂νu,

gives (3.1) for all u ∈ Dcomp. To prove (3.1) for all u ∈ D, use a partition of
unity to write u as a locally finite sum of functions in Dcomp. □

For the proof of Theorem 1 we will use

w(x) = 1− (1 + x)−δ, x ≥ 0.

We will need the Hardy’s inequality in the form of [HaLiPo34, Theorem 330]:

(3.8) ∥
√
w′′′u∥ ≤ 2

√
1 + δ√
2 + δ

∥
√
w′u′∥, for all u ∈ H1

0 (Ω),
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which is proved by writing

∥
√
w′′′u∥2 = −2Re⟨w′′u′, u⟩

≤ 2∥
√
w′′′u∥

∥∥∥∥
w′′

√
w′′′

u′
∥∥∥∥ = 2

√
1 + δ√
2 + δ

∥
√
w′′′u∥∥

√
w′u′∥.

Proof of Theorem 1. We simplify (3.1), assuming additionally that

(3.9) (1 + x)
3+δ

2 Pu ∈ L2(Ω).

Then, since 0 < w ≤ 1 and the last term of (3.1) is nonpositive by (1.1), we
have

∥
√
w′u′∥2 ≤ 1

4
∥
√
w′′′u∥2 +

∥∥∥∥
Pu√
w′

∥∥∥∥ ∥
√
w′u′∥

+
1

2

∥∥∥∥
w′Pu√
w′′′

∥∥∥∥ ∥
√
w′′′u∥+ ε∥u′∥∥u∥.

(3.10)

We first estimate the last term on the right using

(3.11) ⟨∆u, u⟩ = −∥∇u∥2,

which gives

∥u′∥2 ≤ Re⟨Pu, u⟩+ E∥u∥2 ≤
∥∥∥∥
Pu√
w′′′

∥∥∥∥ ∥
√
w′′′u∥+ E∥u∥2,

and

ε∥u∥2 = − Im⟨Pu, u⟩ ≤
∥∥∥∥
Pu√
w′′′

∥∥∥∥ ∥
√
w′′′u∥.

Combining these gives

ε2∥u∥2∥u′∥2 ≤ (E + ε)

∥∥∥∥
Pu√
w′′′

∥∥∥∥
2

∥
√
w′′′u∥2,

and plugging into (3.10) gives

∥
√
w′u′∥2 ≤ 1

4
∥
√
w′′′u∥2 +

∥∥∥∥
Pu√
w′

∥∥∥∥ ∥
√
w′u′∥+ 1

2

∥∥∥∥
w′Pu√
w′′′

∥∥∥∥ ∥
√
w′′′u∥

+
√
E + ε

∥∥∥∥
Pu√
w′′′

∥∥∥∥ ∥
√
w′′′u∥.

Now we use Hardy’s inequality (3.8) to estimate all occurrences of ∥
√
w′′′u∥

on the right by ∥
√
w′u′∥. We then cancel a factor of ∥

√
w′u′∥ from all terms,



Resolvent estimates for star-shaped waveguides 113

and move the first term on the right over to the left. This gives

1

2 + δ
∥
√
w′u′∥ ≤

∥∥∥∥
Pu√
w′

∥∥∥∥+

√
1 + δ√
2 + δ

∥∥∥∥
w′Pu√
w′′′

∥∥∥∥+ 2

√
1 + δ√
2 + δ

√
E + ε

∥∥∥∥
Pu√
w′′′

∥∥∥∥ .

Now use w′ ≤ δ and w′′′ ≤ (1 + δ)(2 + δ)w′ to combine terms:

∥
√
w′u′∥ ≤ 2

√
(1 + δ)(2 + δ)

(
1 + δ +

√
E + ε

)∥∥∥∥
Pu√
w′′′

∥∥∥∥ .

Using (3.8) again gives

∥
√
w′′′u∥ ≤ 4(1 + δ)

(
1 + δ +

√
E + ε

)∥∥∥∥
Pu√
w′′′

∥∥∥∥ .

Plugging in the formula for w′′′ and using δ ≤ 1 to simplify the constants
gives

(3.12) ∥(1 + x)−
3+δ

2 u∥ ≤ 3

δ
(1 +

√
E + ε)

∥∥∥(1 + x)
3+δ

2 Pu
∥∥∥ ,

for all u ∈ D satisfying (3.9). For any v ∈ L2(Ω), by (2.1) we may substitute

u = P−1(1 + x)−
3+δ

2 v into this last estimate to obtain

∥(1 + x)−
3+δ

2 P−1(1 + x)−
3+δ

2 v∥ ≤ 3

δ
(1 +

√
E + ε)∥v∥,

for all E ≥ 0 and ε > 0.
Applying the Phragmén–Lindelöf principle to the functions

z 7→ ⟨(1 + x)−
3+δ

2 (−∆− z)−1(1 + x)−
3+δ

2 u, v⟩/(1 +
√
−z), u, v ∈ L2(Ω),

in the sectors

{z ∈ C | αRe z < | Im z|}, α > 0,

(as in e.g. the end of the proof of (1.6) of [ChDa21]) gives the conclusion. □

4. Domains with multiple ends

The proofs of Theorems 2, 3, and 4 are more elaborate versions of the proof
of Theorem 1. In comparison with the setting of Theorem 1, we still have
the integration by parts identity (3.1), with which we control u′. However,
we no longer have x > 0 throughout Ω, and hence can no longer use Hardy’s
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inequality (3.8) to estimate u purely in terms of u′. To compensate for this,
we apply (3.8) to a cut-off version of u in (4.3) below. For the proofs of
Theorems 2 and 3, we choose the cut-off such that the resulting remainder
term is supported where we have the flaring estimate (1.4). We then use
variants of (3.1), proved in Lemmas 2 and 3 below, to control u in the
flaring region by ∂νu on the boundary of the flaring region, and then the
flaring estimate (1.4) and the original integration by parts identity (3.1) to
control ∂νu on the boundary of the flaring region.

We begin by proving the new integration by parts identities that we will
need.

Lemma 2. Let µ = µ(x) be C1, real valued, and bounded with bounded

derivative. Let u ∈ D, and let E, ε ∈ R. Then

⟨µ′u′, u′⟩+ E⟨µ′u, u⟩ = 2Re⟨µPu, u′⟩ − 2ε Im⟨µu, u′⟩

+

d−1∑

j=1

⟨µ′∂yj
u, ∂yj

u⟩+
∫

∂Ω
µ|∂νu|2νx.

(4.1)

Proof. Let u ∈ C∞
c (Ω). Adding together the identities

⟨µ′u′, u′⟩ = −2Re⟨µu′′, u′⟩+
∫

∂Ω
µ|u′|2νx,

−⟨µ′∂yj
u, ∂yj

u⟩ = 2Re⟨µ∂yj
u, ∂yj

u′⟩ −
∫

∂Ω
µ|∂yj

u|2νx

= −2Re⟨µ∂2yj
u, u′⟩+

∫

∂Ω

(
2Reµ∂yj

uū′νyj
− µ|∂yj

u|2νx
)
,

E⟨µ′u, u⟩ = −2Re⟨µEu, u′⟩+ E

∫

∂Ω
µ|u|2νx.

gives

⟨µ′u′, u′⟩+ E⟨µ′u, u⟩ = 2Re⟨µPu, u′⟩ − 2ε Im⟨µu, u′⟩+
d−1∑

j=1

⟨µ′∂yj
u, ∂yj

u⟩

+

∫

∂Ω

(
µ|u′|2νx + Eµ|u|2νx +

d−1∑

j=1

(
2Reµ∂yj

uū′νyj
− µ|∂yj

u|2νx
) )
.

By density this holds for u ∈ H2
comp, and specializing to u ∈ Dcomp and using

u′|∂Ω = νx∂νu, ∂yj
u|∂Ω = νyj

∂νu,
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gives (4.1) for u ∈ Dcomp. To prove (4.1) for all u ∈ D, use a partition of
unity to write u as a locally finite sum of functions in Dcomp. □

Lemma 3. Let u, yju ∈ D, let E, ε ∈ R, and let j ∈ {1, . . . , d− 1}. Then

∥∂yj
u∥2 = 1

2
Re⟨Pu, ∂yj

(yju)⟩+
1

2
Re⟨yj∂yj

u, Pu⟩

+ ε Im⟨yj∂yj
u, u⟩+ 1

2

∫

∂Ω
yj |∂νu|2νyj

.
(4.2)

Proof. This is proved in the same way as Lemma 1, but with the commutator
[w∂x, ∂

2
x] replaced by [yj∂yj

, ∂2yj
]. □

Proof of Theorem 2. Fix x0 ∈ I and a closed interval [x0 − r, x0 + r] ⊂ I and
cut-off functions χ0, χ1, χ2, χ3 ∈ C∞

c (I), taking values in [0, 1], such that
χ0 ≡ 1 near [x0 − r, x0 + r] and χj+1 ≡ 1 near suppχj for j = 0, 1, 2. Below
we abbreviate χj(x) as χj .

We claim that Hardy’s inequality (3.8) implies

(4.3) ∥(1 + |x− x0|)−
3+δ

2 u∥ ≤ 2

2 + δ
∥(1 + |x− x0|)−

1+δ

2 u′∥+ C∥χ1u∥.

Indeed, by (3.8) we have

∥(1 + |x− x0|)−
3+δ

2 (1− χ0)u∥

≤ 2

2 + δ
∥(1 + |x− x0|)−

1+δ

2 (1− χ0)u
′∥

+
2

2 + δ
∥(1 + |x− x0|)−

1+δ

2 χ′
0u∥,

(4.4)

which combined with ∥(1 + |x− x0|)−
3+δ

2 χ0u∥ ≤ ∥χ1u∥ gives (4.3).
Now apply (3.1) with w ∈ C3(R) such that

• w′(x) > 0 and xw(x) ≥ 0 for all x,

• and w′(x) = δ(1 + |x− x0|)−1−δ when |x− x0| ≥ r.



116 T. J. Christiansen and K. Datchev

Note that, with this choice of w, and for any fixed γ > 0, by (3.8) the first
term on the right hand side of (3.1) obeys

1

4
⟨w′′′u, u⟩ ≤

(
δ(δ + 1)(δ + 2)

4
+ γ

)
∥(1 + |x− x0|)−

3+δ

2 (1− χ0)u∥2

+ C∥χ0u∥2

≤
(
δ(δ + 1)

2
+

2γ

δ + 2

)
∥(1 + |x− x0|)−

1+δ

2 (1− χ0)u
′∥2

+ C∥χ1u∥2.

(4.5)

As long as δ < 1 (which we may assume without loss of generality), we can
choose γ small enough that

δ(δ + 1)

2
+

2γ

δ + 2
< δ.

With γ so chosen, after plugging (4.5) into (3.1) we can subtract the first
term on the right hand side of (4.5) to the left of (3.1), to obtain

∥(1 + |x|)− 1+δ

2 u′∥2 −
∫

∂Ω
w|∂νu|2νx

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ ∥χ1u∥2,
(4.6)

where, here and below, the implicit constants in ≲ are uniform for u ∈
D, ε ∈ (0, 1], and E ≫ 1 large enough. Then, using the fact that wνx ≤ 0
everywhere by (1.1), and that (1.4) implies νxw ≤ −1/C < 0 on suppχ3, we
obtain

∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

∂Ω
|χ3∂νu|2

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ ∥χ1u∥2.
(4.7)

Adding (4.3) gives

∥(1 + |x|)− 3+δ

2 u∥2 + ∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

∂Ω
|χ3∂νu|2

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ ∥χ1u∥2.
(4.8)

The first two terms on the right side of (4.8) will be handled later as
in the proof of Theorem 1. To handle the last term apply (4.1) with µ
chosen to be nondecreasing such that xµ(x) ≥ 0, µ′ = 1 near suppχ1, and
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suppµ′ ⊂ χ−1
2 (1). After discarding two terms with a favorable sign, that

gives

(4.9) E∥χ1u∥2 ≤ E⟨µ′u, u⟩ ≲ ⟨|Pu|, |u′|⟩+ ε⟨|u|, |u′|⟩+
d−1∑

j=1

∥χ2∂yj
u∥2,

which, combined with (4.8), gives

(4.10) ∥(1 + |x|)− 3+δ

2 u∥2 + ∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

∂Ω
|χ3∂νu|2

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ E−1
d−1∑

j=1

∥χ2∂yj
u∥2.

Now apply (4.2), with u replaced by χ2u, and note that [∂yj
, χ2] = 0, to

get, for each j,

∥χ2∂yj
u∥2 ≲ ⟨|χ2Pu|+ |[P, χ2]u|, |χ2u|+ |χ2∂yj

u|⟩

+ ε⟨|χ2∂yj
u|, |χ2u|⟩+

∫

∂Ω
|χ2∂νu|2,

(4.11)

which implies

∥χ2∂yj
u∥2 ≲ ⟨|χ2Pu|, |χ2u|+ |χ2∂yj

u|⟩+ ε⟨|χ2∂yj
u|, |χ2u|⟩

+ ∥χ3u∥2 + ∥χ3u
′∥2 +

∫

∂Ω
|χ2∂νu|2.

(4.12)

This in turn implies, since ε ∈ (0, 1],

(4.13) ∥χ2∂yj
u∥2 ≲ ∥χ2Pu∥2 + ∥χ3u∥2 + ∥χ3u

′∥2 +
∫

∂Ω
|χ2∂νu|2.

Plugging (4.13) into (4.10) gives, for E large enough,

∥(1 + |x|)− 3+δ

2 u∥2 + ∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

∂Ω
|χ3∂νu|2

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ E−1∥χ2Pu∥2.

We now estimate the first two terms on the right in the same way that the
last three terms in (3.10) were estimated in the proof of Theorem 1. Then
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dropping the last two terms on the left gives

∥(1 + |x|)− 3+δ

2 u∥2 ≲ E∥(1 + |x|) 3+δ

2 Pu∥2.

□

Proof of Theorem 3. Here we use coordinates (x, y) ∈ R2. We begin as in
the proof of Theorem 2, but when we get up to the analogue of (4.7) we
have instead

∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

ΓF

|χ3∂νu|2 ≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ ∥χ1u∥2,

that is, the integral over ∂Ω is replaced by an integral over ΓF . We then
proceed as before, up to the analogue of (4.10), where we have instead

∥(1 + |x|)− 3+δ

2 u∥2 + ∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

ΓF

|χ3∂νu|2

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ E−1∥χ2∂yu∥2.
(4.14)

At this stage it does not work to apply (4.2) alone as in the proof of The-
orem 2, with u replaced by χ2u, as this produces a remainder

∫
∂Ω |χ2∂νu|2

on the right which cannot be handled by the
∫
ΓF

|χ3∂νu|2 we have on the
left. To deal with this we will remove the part of the remainder over ∂Ω \ ΓF

using a multiple of the identity

(4.15) 0 = Re⟨Pu, ∂yu⟩+ ε Im⟨∂yu, u⟩+
1

2

∫

∂Ω
|∂νu|2νy,

which is just (4.2) with the commutator [y∂y, ∂
2
y ] replaced by [∂y, ∂

2
y ] = 0.

More precisely, define cut-offs ψk ∈ C∞
c (Ω) such that ψk = χ2 on Ωk and

ψk = 0 otherwise. Multiply ak by (4.15) applied to ψku, and subtract the
result from (4.2) applied to ψku. Then use [ψk, ∂y] = 0 as in (4.11) to get

∥ψk∂yu∥2 ≲ ⟨|ψkPu|+ |[P, ψk]u|, |ψku|+ |ψk∂yu|⟩+ ε⟨|ψk∂yu|, |ψku|⟩

+

∫

ΓF

|ψk∂νu|2.

Estimating as in (4.12) and (4.13) gives

∥ψk∂yu∥2 ≲ ∥ψkPu∥2 + ∥χ3u∥2 + ∥χ3u
′∥2 +

∫

ΓF

|ψk∂νu|2.
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• For all x ∈ R, w′
±(x) > 0.

• If x < x1 or x > x5, then w+(x) = w−(x) and w′
+(x) = w′

−(x) =
δ(1 + |x− x3|)−δ−1.

• Each of x2 and x4 is contained in an open interval on which

w′
+(x) = w′

−(x) = δ(1 + |x− x3|)−δ−1.

• The equalities w+(x4) = 0 and w−(x2) = 0 hold.

Proof. We will define w± via w+(x) =
∫ x
x4
w′
+(t)dt and w−(x) =

∫ x
x2
w′
−(t)dt

in order to satisfy the last condition. Let ρ0 =
1
3 minj=1,2,3,4(xj+1 − xj). Set

(4.16) w′
±(x) =





δ(1 + |x− x3|)−δ−1 if x < x1 or x > x5
δ(1 + |x− x3|)−δ−1 if |x− x2| < ρ0

or |x− x4| < ρ0
h±,1(x) if x1 ≤ x ≤ x2 − ρ0
h±,2(x) if x2 + ρ0 ≤ x ≤ x4 − ρ0
h±,3(x) if x4 + ρ0 ≤ x ≤ x5

for some h’s yet to be chosen. Now choose strictly positive h±,1 h±,2, h±,3

so that the resulting functions w′
± as defined above are C2, w′

±(x) > 0 for
all x, and so that

∫ x1

x2
w′
−(t)dt =

∫ x1

x4
w′
+(t)dt and

∫ x5

x2
w′
−(t)dt =

∫ x5

x4
w′
+(t)dt.

The conditions on the integrals guarantee that w+(x) = w−(x) if x < x1 or
x > x5. Satisfying this condition on the integrals may be accomplished by
first choosing h±,2, h−,3, and h+,1, and then choosing h+,3 and h−,1 so that
the integral conditions are satisfied. □

Proof of Theorem 4. We begin by naming the coordinates of certain points
on ∂O as in Figure 5. Set yM = max{y : (x, y) ∈ O for some x ∈ R}, ym =
min{y : (x, y) ∈ O for some x ∈ R}, and let (xM , yM ), (xm, ym) denote the
corresponding points on ∂O. Likewise, set x± = ±max{±x : (x, y) ∈ O
for some y ∈ R}, and let (x±, y±) be the corresponding points in ∂O. By
the strict convexity of O, each of these points is uniquely defined. With-
out loss of generality, we may assume xM ≥ xm. Since the case xM = xm
is covered by Theorem 3, we assume for the remainder of the proof that
xM > xm.

Let r1 =
1
3 min(x+ − xM , xM − xm, xm − x−), and set

(4.17) x1 = x− + r1, x2 = xm, x3 =
xm + xM

2
, x4 = xM , x5 = x+ − r1.
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With these choices, set w± to be the functions given in Lemma 4. We shall
use these w± to define a single function w on Ω, which is adapted to account
for the fact that the “highest” and “lowest” points of ∂O, (xM , yM ) and
(xm, ym), have different x coordinates. Otherwise, our function w will be
very similar to the weights w we have used earlier.

We can write

Ω \
((

(−∞, x−)× {y−}
)
∪
(
(x+,∞)× {y+}

))
= Ω+ ∪ Ω−

where Ω± are disjoint connected open sets. We label these so that (−∞, x−)×
(y−, 1) ⊂ Ω+; that is, Ω+ is the “upper” of the two components. Now define

(4.18) w(x, y) =





w+(x) if (x, y) ∈ Ω+

w−(x) if (x, y) ∈ Ω−

w+(x) if (x, y) ∈ (−∞, x−)× {y−}
or if (x, y) ∈ (x+,∞)× {y+}.

By our choice of w±, w is C3 on Ω. Moreover, wνx ≤ 0 on ∂O, with equality
only at the points (xm, ym) and (xM , yM ).

We now claim that, for u ∈ D, (3.1) holds, even though our w is not
independent of y. To see this, with u, v ∈ C∞

c (Ω) apply (3.6) on Ω± with w
replaced by w±, and then add the resulting equalities. The boundary terms
involving ∂Ω± \ (∂Ω ∩ ∂Ω±) sum to 0. The remainder of the proof follows as
in the proof of Lemma 1. Alternatively, observe that the proof of Lemma 1
only used the fact that ∂yw ≡ 0, and not that w is independent of y.

Set

K =
⋃

±

supp(w′
±(x)− δ(1 + |x− x3|)−1−δ).

and note that by our choice of w±, there is a CK > 0 so that

wνx ≤ −CK < 0 on (K × (−1, 1)) ∩ ∂O.

Moreover, there is an open set I, I ⊂ (x−, x+) ⊂ R, K ⊂ I, and a CI > 0 so
that

wνx ≤ −CI < 0 on (I × (−1, 1)) ∩ ∂O.
The use of this I is very similar to the use of I of Theorem 3. Moreover, the
union of curves (I × (−1, 1)) ∩ ∂O plays a role similar to that of ΓF from
Theorem 3.

Now choose χ0, χ1, χ2, χ3 ∈ C∞
c (I), taking values in [0, 1], so that χ0 ≡

1 near K and χj+1χj = χj for j = 0, 1, 2.
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Next, we note that (4.4) is valid for our χ0, which in turn implies that
(4.3) is valid for our χ1. Then, just as in the proof of (4.6), if δ < 1 we can
show that

∥(1 + |x|)− 1+δ

2 u′∥2 −
∫

∂Ω
w|∂νu|2νx ≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ ∥χ1u∥2

and

−
∫

∂Ω
w|∂νu|2νx ≥ CI

∫

(I×(−1,1))∩∂O
|∂νu|2.

Proceeding as in the proofs of Theorems 2 and 3, we get to the analogue of
(4.8):

∥(1 + |x|)− 3+δ

2 u∥2 + ∥(1 + |x|)− 1+δ

2 u′∥2 +
∫

(I×(−1,1))∩∂O
|χ3∂νu|2

≲ ⟨|Pu|, |u|+ |u′|⟩+ ε⟨|u′|, |u|⟩+ ∥χ1u∥2.

We now apply (4.1) with µ ∈ C1(Ω) chosen such that ∂yµ ≡ 0, µ(xm, ym) =
µ(xM , yM ) = 0, µ′ ≥ 0, µ′ = 1 near suppχ1, and suppµ′ ⊂ χ−1

2 (1). The con-
struction of such a µ follows along the same lines as (but is simpler than)
the construction of w above. That gives (4.9), after which the proof proceeds
just like the proof of Theorem 3. □

5. Absence of eigenvalues and embedded resonances

For the proof of Theorem 7, we use a variant of Lemma 1. For R > 0, let

ΩR
.
.= {(x, y) ∈ Ω : |x| < R}.

Denote ∥v∥2L2(ΩR) =
∫
ΩR

|v|2 and ⟨u, v⟩ΩR
=

∫
ΩR
uv.

Lemma 5. Let u ∈ D, R > 0, and let E, ε ∈ R. Then with ∇y denoting

the gradient in the y variables only,

∥u′∥2L2(ΩR) =
1

2
Re⟨Pu, (xu)′⟩ΩR

+
1

2
Re⟨xu′, Pu⟩ΩR

+ ε Im⟨xu′, u⟩ΩR
+

1

2

∫

∂Ω∩∂ΩR

x|∂νu|2νx

+
1

2

∑

±

Re

∫

∂ΩR∩{x=±R}

(
±u′u+R(−|∇yu|2 + E|u|2 + |u′|2)

)
.

(5.1)
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Moreover,

0 = Im⟨Pu, (xu)′⟩ΩR
+ Im⟨xu′, Pu⟩ΩR

− 2εRe⟨xu′, u⟩ΩR

+
∑

±

∫

∂ΩR∩{x=±R}
εR|u|2 ± Imu′u.

(5.2)

Proof. The proof of (5.1) is essentially that of Lemma 1. In particular, we
use (3.6), replacing Ω by ΩR. In addition, we use w(x) = x. Then follow-
ing the outline of Lemma 1 and taking real parts gives (5.1). The equality
(5.2) follows from the same argument, but taking the imaginary part of the
resulting equation, rather than the real part. □

Proof of Theorem 7. We give a proof by contradiction. Suppose the Dirich-
let Laplacian on Ω has an eigenvalue E1 or a resonance embedded in the
continuous spectrum at E1. Let u be an associated eigenfunction or outgoing
resonance state. Then by separation of variables there are constants γj so
that
(5.3)

u(x, y) =
∑

σ2
j<E1

γje
i|x|

√
E1−σ2

jφj(y) +
∑

σ2
j≥E1

γje
−|x|

√
σ2
j−E1φj(y), |x| ≥ R0,

with notation as in (1.6) and (1.8). To see (5.3), recall that the outgoing
condition says that

(5.4) u|{±x>R0} =

(
lim
ε↓0

(−∆± − E1 − iε)−1f±

) ∣∣∣
{±x>R0}

,

for some f± ∈ L2
comp(R± × Y±), where −∆± is the Dirichlet resolvent on

R± × Y±. (The choice of outgoing condition is not essential, and one could
also use an incoming condition, replacing i by −i in (5.4) and in (5.3)).
Furthermore, by (5.4), the sum over σ2j ≥ E1 in (5.3) converges in L2(Ω ∩
{|x| > R0}), and hence we have

(5.5)
∑

σ2
j>E1

|γj |2e−2R0

√
σ2
j−E1(σ2j − E1)

−1/2 < +∞.

We first prove that E1 cannot be an eigenvalue, since this is easier.
Suppose E1 is an eigenvalue, so that u is an associated eigenfunction.

Since u ∈ L2, we must have γj = 0 when σj ≤ E1. By (5.5), u and its deriva-
tives tend to 0 exponentially in |x|.
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Using Lemma 5 with E = E1 and ε = 0 we find

∥u′∥2L2(ΩR) =
1

2

∫

∂Ω∩∂ΩR

x|∂νu|2νx

+
1

2

∑

±

Re

∫

∂ΩR∩{x=±R}

(
±u′u+R(−|∇yu|2 + E1|u|2 + |u′|2)

)
.

(5.6)

Taking the limit in as R→ ∞ and using the exponential decay of u and its
derivatives gives

∥u′∥2L2(Ω) =
1

2

∫

∂Ω
x|∂νu|2νx ≤ 0.

But this means that u is independent of x. Since u ∈ L2(Ω) is nontrivial,
this is a contradiction.

The argument for showing there are no resonances embedded in the
continuous spectrum is similar, but requires some further computations.

Suppose u is a resonance state associated to E1 ∈ R. Applying (5.2) with
E = E1, ε = 0 and using (5.3) along with the orthonormality of {φj} gives,
for sufficiently large R,

0 = Im
∑

±

±
∫

∂ΩR∩{x=±R}
u′u =

∑

σ2
j<E1

√
E1 − σ2j |γj |2,

which in turn implies that γj = 0 if σ2j < E1.

Returning to (5.3), note again that by (5.5) the terms with σ2j > E are
exponentially decaying in |x| along with their derivatives, while those with
σ2j = E1 have x derivative 0. From (5.3) and using these observations,

∫

∂ΩR∩{x=±R}

(
±u′u+R((−|∇yu|2 + E1|u|2 + |u′|2)

)

=

∫

∂ΩR∩{x=±R}

(
±u′u+R((∆yu)u+ E1|u|2 + |u′|2)

)
,

is exponentially decreasing in R. Again taking the limit of (5.6) as R→ ∞
we have

∥u′∥2L2(Ω) =
1

2

∫

∂Ω
x|∂νu|2νx ≤ 0,

so that u′ ≡ 0. But a nontrivial u with u′ ≡ 0 and −∆u = E1u can only sat-
isfy Dirichlet boundary conditions on ∂Ω if ∂Ω is invariant under translation
in the x direction; that is, Ω = R× Ỹ for some Ỹ ⊂ Rd−1. □
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6. Resonance-free regions

For a domain Ω ⊂ Rd which has cylindrical ends, the resolvent of the Dirich-
let Laplacian (−∆− z)−1 has a meromorphic continuation to a Riemann
surface Ẑ. Resolvent estimates of the type of Theorems 1, 2, 3, and 4 imply,
essentially via an application of [ChDa21, Theorem 5.6], that there is a re-
gion near the continuous spectrum in which the meromorphic continuation
of the resolvent is in fact analytic. To make a precise statement, we first
introduce the space to which the resolvent continues.

The continuous spectrum of −∆ is given by [σ21,∞), where σ21 is the
smallest Dirichlet eigenvalue of −∆Y . For general domains or manifolds
with cylindrical ends, there may, in addition, be eigenvalues of −∆, either
in (0, σ21) or embedded in the continuous spectrum. For z ∈ C so that z is
not in the spectrum of −∆ set R(z) = (−∆− z)−1 : L2(Ω) → L2(Ω). As an
operator from L2

comp(Ω) into L
2
loc(Ω), the resolvent R(z) has a meromorphic

continuation to the Riemann surface Ẑ which we describe next.
The Riemann surface Ẑ is determined by the set {σ2j } of Dirichlet eigen-

values of −∆Y . For z ∈ C \ [σ21,∞), define τj(z) = (z − σ2j )
1/2, where we

take the square root to have positive imaginary part. Then Ẑ is the minimal
Riemann surface so that for each j ∈ N, τj(z) is an analytic, single-valued
function on Ẑ. The Riemann surface Ẑ forms a countable cover of C, rami-
fied at points corresponding to σ2j , j ∈ N. For any z ∈ Ẑ, Im τj(z) > 0 for all

but finitely many j. We call the “physical region” the portion of Ẑ in which
Im τj(z) > 0 for all j ∈ N. In the physical region and away from eigenvalues
of −∆, R(z) is a bounded operator on L2(Ω). For further details about the
construction of Ẑ and a proof that the resolvent of −∆ on Ω has a mero-
morphic continuation to Ẑ, see [Gu89], [Me93, Section 6.7], or [ChDa23,
Section 2].

We define a distance on Ẑ as follows: for z, z′ ∈ Ẑ,

(6.1) d(z, z′) .
.= sup

j
|τj(z)− τj(z

′)|.

That this is a metric is shown in [ChDa21, Section 5.1].
For E > |σ1|, denote by E ± i0 the points in Ẑ which are on the bound-

ary of the physical region and which are obtained as limits lim±δ↓0E + iδ.
These points correspond to the continuous spectrum of −∆. If E > σ2j , then

±τj(E ± i0) > 0, and if σ2j > E then τj(E ± i0) ∈ iR+.
The next theorem describes quantitatively a region near the boundary

of the physical space in which the resolvent is guaranteed to be analytic.
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Theorem 8. Let Ω ⊂ Rd be a domain with cylindrical ends which in ad-

dition satisfies the conditions of one of Theorem 1, 2, 3, or 4, and let

χ ∈ L∞
comp

(Ω). Then there are positive constants C1, C2, and E0 so that

χR(z)χ is analytic in {z ∈ Ẑ : d(z, E ± i0) < C1(1 + E)−1} for all E ≥ E0,

and in this same region ∥χR(z)χ∥ ≤ C2(1 + E)1/2.

After a semiclassical rescaling, the proof of this theorem is the same as
the proof of [ChDa21, Theorem 5.6]. More specifically, we write (−∆− E) =
h−2(−h2∆− 1) with h = E−1/2. Then the O(E1/2) resolvent bound implied
by Theorem 1, 2, 3, or 4 corresponds to a O(h−3) resolvent bound for the
scaled operator.
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Henri Poincaré, 3:5 (2002), pp. 895–920.

[ChDa21] T. J. Christiansen and K. Datchev. Resolvent estimates on

asymptotically cylindrical manifolds and on the half line.



Resolvent estimates for star-shaped waveguides 127
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[Gu89] L. Guillopé. Théorie spectrale de quelques variétés à bouts.
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