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SEMICLASSICAL RESONANCE ASYMPTOTICS FOR THE DELTA
POTENTIAL ON THE HALF LINE

KIRIL DATCHEV AND NKHALO MALAWO

ABSTRACT. We compute resonance width asymptotics for the delta potential on the half-line, by
deriving a formula for resonances in terms of the Lambert W function and applying a series expan-
sion. This potential is a simple model of a thin barrier, motivated by physical problems such as
quantum corrals and leaky quantum graphs.

1. INTRODUCTION

The analysis of scattering by thin barriers is important for many physical problems, including
quantum corrals [BZH10] and leaky quantum graphs [EO08]. In [GS15, G15, G16, G19a, G19b]
Galkowski—-Smith and Galkowski study the distribution of resonances for operators of the form

—h2A + h2h™%5yq,

where h > 0 is a semiclassical parameter, A is the Laplacian on R", and dyq is a delta function
on the boundary of an open bounded set 2 with smooth boundary 9€2. The factor of A~% models
a barrier whose interaction with waves depends on frequency (having a nontrivial dependence is
typical in physical systems: see [BZH10]), with the positive parameter a determining how quickly
the strength of the barrier grows with frequency.

In this paper we consider the corresponding operator on the half line (0, c0), namely

— 1202 + h2h 6y, (1)

where d7 is the Dirac delta function centered at z = 1, with Dirichlet boundary condition at z = 0.
In this setting we can analyze scattering more simply, fully, and precisely than is possible in the
more complicated higher-dimensional case.

A number z € C\ {0} is a resonance of (1) if and only if there is a continuous function u such
that

u(x) =sin(zz/h) for 0<z <1,
(z) = Ce'=/h for x>1, (2)
u'(1=) — ' (14) + ™ %u(1) = 0,
for some constant C, where u/(1—) and u/(14) are respectively the derivatives from the left and
from the right of w at = 1. A solution to (2) exists if and only if

sin(z/h) = Ce™*/", (z/h) cos(z/h) — (iz/h)Ce**/" + h=*Ce™*/M = 0,

or, equivalently,

e

h=e?#/h _ = 4 24z /h = 0. (3)
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The values of Im z for solutions to (3) are called the resonance widths, and they give the rates
of decay of waves. Our main results establish semiclassical asymptotics for all resonance widths,
apart from resonances near zero and near infinity. The behavior is logarithmic when o < 1 and
polynomial when a > 1.
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FiGUre 1. This figure illustrates Theorem 1 with A~ = 0.1 and « = 0.7. The black
curve is the leading approximation —Im z = gln |2h*~! Re z| and the blue and red
curves are the real and imaginary parts of (3). The resonances occur where the blue
and red curves intersect.

Theorem 1. Let a € (0,1) and e € (0,1) be given. Then there is hy > 0 such that, when h € (0, ho],
all solutions to (3) satisfying

e< |zl <1/, (4)
obey

h 5
0<—Tmz—7n 12 Rez| < Zh3_2"5_2 (5)

Theorem 2. Let a« > 1 and € € (0,1) be given. Then there is hg > 0 such that, when h € (0, ho],
all solutions to (3) satisfying (4) obey

|Im z + (Re 2)2h297 Y < 7h29H L In2 (A=) 4 34~ 4pte=3, (6)

We have not attempted to optimize the numerical constants; the main point is the dependence
on h and a. The asymptotics (5) and (6) refine lower bounds obtained for much more general
problems by Galkowski: see in particular [G19b, Section 1.B]. In our simpler situation, we obtain
a formula for the resonances in terms of the Lambert W function in equation (15) below. Applying
the known series for this function (see equations (8) and (9) below) leads to a full convergent series
expansion for the resonances; thus our methods could be elaborated to give any number of further
terms in the expansions (5) and (6), giving the resonance widths to any desired accuracy.

To compare our results with the higher-dimensional setting studied in [G16, G19b], let us focus
on the case Rez ~ 1. Then our results give widths of order %ln(2h°‘_1) when o < 1 and h?*~!
when « > 1: stronger point interaction, i.e. a larger factor in front of ¢; in (1), leads to slower
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FiGURE 2. This figure illustrates Theorem 2 with A = 0.1 and a = 2. The black
curve is the leading approximation —Imz = (Rez)2h?*~! and the blue and red
curves are the real and imaginary parts of (3). The resonances occur where the blue
and red curves intersect.

decay. By contrast, Galkowski’s results for a thin barrier supported on a circle in two-dimensions
give widths of order % In(2h*~1) when a < 5/6 and h?*~2/3 when 5/6 < a < 1; see Theorems 1
and 2 of [G16]. The key difference is that the shift between logarithmic and polynomial behavior
occurs at a = 1 in the one-dimensional setting, and at & = 5/6 in the higher-dimensional setting.
As explained in [G16, G19b], resonances polynomially close to the real axis when a > 5/6 arise
from singularities propagating along glancing rays.

In our one-dimensional setting, there are no such glancing rays, and resonances polynomially
close to the real axis are caused by reflection. The reason for the change of behavior between
a < 1 and a > 1 is most easily seen by computing the reflection coefficient of the model operator
—h%02 + h2h =8y, on the real line, at energy 22, which is

h2—2a
R=—F—%—;
422 4 h2-2a

see e.g. Section 2.5 of [G95]. As h — 0, we have R — 0 if @ < 1, and R — 1 if @ > 1. Thus there
is a small amount of reflection when a < 1 and a large amount when o > 1.

The operator we are studying can be related to an operator of the form —65 — 04 by rescaling.
More specifically, put y = h~™“z. Then

(—h202 + h27205) — %) = hz—za(_ag — 0q — 7{5)7 where a=h"% z,=h"""z

This scaling also highlights the role of the transitional value oo = 1.

The asymptotics in the case o = 1 are more complicated. Figure 3 suggests that the approxima-
tion of Theorem 1 is more accurate at high energies and the approximation of Theorem 2 is more
accurate at low energies. In both cases the resonance widths have size h but the z dependence is not
the same. To get a precise asymptotic for & = 1 would require a finer analysis than is done below.
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Specifically, it would be necessary to distinguish high and low energies, as the leading behavior
appears to be algebraic in Re z when Re 2 is small and logarithmic when Re z is large.
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Ficure 3. This figure illustrates the case a = 1 with h = 0.1. The lower black
curve is the approximation —Im z = (Re 2)?h?*~! and the upper black curve is the
approximation —Imz = %1n\2h°‘_1 Rez|. The blue and red curves are the real
and imaginary parts of (3). The resonances occur where the blue and red curves
intersect. Note that the lower black curve more closely approximates the resonances
at lower energies. As the energy increases, the upper black curve is a better approx-
imation.

In [G15, Theorem 2.6], Galkowski studies a variant of our problem with h=%§ replaced by h=%¥’,
the derivative of the Dirac delta function. In that case the decay rates are of order 14%hIn(1/h)
when o < —1 and of order A3*t2® when o > —1. Other examples of strings of resonances on such
logarithmic and polynomial curves can be found in [R58, Z87, B97, DKK15, BFRZ16, G17, HW20].
The large argument expansion of the Lambert W function has been previously used to compute
resonance asymptotics in [DKK15, D18, C20], and it has been used for Schrédinger equations
with Dirac delta functions in [KS10, HM16, S16]. The closest of these papers to ours are Herbst
and Mavi’s [HM16] and Sacchetti’s [S16]; the main difference is that the results in [HM16, S16]
correspond to the asymptotic regime z — 0 where the difference between o < 1 and o > 1 is
not visible. See the discussion following equation (15) for more. See [AGHKHO05, Chapter II.2]
and references therein for more general results concerning the resonances of finitely many J- and
d’-interactions on the real line, and see [DZ19] for a broader introduction to resonances.
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2. THE LAMBERT W FUNCTION

We begin by reviewing some needed facts about the Lambert W function from [CGHJK96]. This
is the function which solves the equation

xze® =y. (7)

For any y, (7) has a countable infinity of complex solutions, x = Wy(y), where k varies over Z.
We will be studying solutions to (7) with y > 1. Then Wy(y) can be expanded in a convergent
series, with coefficients given in terms of the Stirling numbers [}'], where [}'] is the number of ways
to arrange p objects into ¢ cycles (see [GKP89, Chapter 6]). More specifically, by equations (4.18),
(4.19), and (4.20) of [CGHJK96], we have

Wi(y) = In(y) + 2mik — In(In(y) + 27ik) + Ry, (8)
where
_ Z Z n(y) + 2mik)  In(In(y) 4 2mik) L (9)
B prar o] im )+ 2mik)itm In(y) + 27ik ’
and

1 ilg+m
- 1) ]
Cjm (-1 [j—I—l]

Here and below the branch of In is taken so that —7 < ImInz < 7 for all z € C\ {0}.

Lemma 1. The series (9) is absolutely convergent for y large enough and k € Z. More precisely
we have the tail estimate

In(In(y) + 2mik)
In(y) + 2mwik ‘ = Z

In"(In(y) + 2mik)
" (In(y) + 2mik)itm

L —

320, m=>1, (§,m)#(0,1)

(10)
In(In(y) + 2ik) |*
In(y) + 2mik |’
and
In(In(y) + 27@/@) < 1, (1)
In(y) + 2mik 2
for y large enough.
Proof. We have
L
n e n Uy m
y 720, m>1, (jm)#£(0,1) y 12)
- In"(In(y) + 27wik) y) + 2mik)
_mz 0m (In(y) + 2mik)™ ‘ mzljzl “m +2mk)ﬂ+m"
Now use cg,m, = 1/m and (11) to write
n(y) +2mik)| _ 1 i In( ln )+ 2mik)|™ _ |[In(In(y) + 2mik) |2 (13)
= )+ 2mwik)™ 2 — ) + 2mik In(y) + 2mik
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For the other term, write

>3

m=1 j=1

n(y) + 2mik) |
) + 2mik)itm|

|In(y) + 2mk\ Z

Since the double sum is absolutely convergent for large y (see page 349 of [CGHJKO96]), for every
large y the terms

]m

(14)

ln ln ) + 2mik) Z |cj,m|
) + 2mik |In(y) + 2mik|i—1

In(In(y) + 2wik) Z |cjml
In(y) + 2mik |In(y) + 2mik|i—1

tend to zero as m — oo. Moreover, as y increases, the terms get smaller. Hence, there is N such
that, setting y = N, for every m > 1 we have

In(In(N) + 27ik) |¢j.m|
: — < N.
In(N) + 2mik ‘ Z |In(N) + 2mik|i—1 —

Plugging that into (14) gives

>3

m=1 j=1

ln ln ) +2mik)  In(N) + 2mik mn
+ omik  In(In(N) + 2mik)

2N|In(N) + 2mk‘| |1n(ln(y) + 27ik)|
= |In(In(N) + 2mik)|  |In(y) + 2mik|>

]m

(y) + 2mik)
+2mk)ﬂ+m ~ |In(y —|—2mk:| Z

for y large enough. If y is large enough, then

ON|In(N) + 2rik|
| In(In(N) + 27ik)

| < |In(In(y) + 2mik)|,

which implies

In(In(y) + 2mik) |?
In(y) + 2mik

0o 00
>3 few
1j5=1

m=
Plugging this and (13) into (12) gives (10). O

(y) + 2mik) <
)+ 2mik)itm |~

3. PROOFS OF THEOREMS
We rewrite (3) as
(—2izh™ ! + h_a)e_%z’fl*hﬂ = h%""",
and then solve for z using (8) with
x=—2izh ' +h,

and
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Thus the solutions to (3) are given by

ih

2
h

= Z5(111(3/) + 2mik — In(In(y) + 2mik) — h™* + Ry)

(Wi(y) —h™%)

2k =

ih (15)
= 5(27rik + In(h™%) — In(In(y) + 27wik) + Ry).

_ % <2m’k I <ln(y)h4_—a2mk> + Rk> ,

where k varies over Z. At this point, let us mention that Herbst and Mavi [HM16] and Sacchetti
[S16] use a version of this equation to analyze resonances for the problem —0d2 + ad, with a — oo,
but with @ > 0 and k fixed. Thus, Herbst and Mavi’s and Sacchetti’s analysis would correspond to
the asymptotic regime z — 0 in our paper.

Below we keep the subscript k£ to emphasize the role of this integer in our estimates, but note
that 2, is the same as the z as in the statements of the Theorems. In our next lemma we show
that the first term in the right hand side of (15) is the dominant term, and thus that & is roughly
of size h=1.

Lemma 2. For k such that zj given by (15) obeys (4), we have
e/2 < mlklh < 2/e, (16)
for h small enough.

Proof. We begin with the proof of the first inequality of (16). Assume for the sake of contradiction
that m|k|h < /2. By (10) and (11) we have |R| < 1. Combining the first inequality of (4) with
(15), and plugging in |Ry| < 1, gives

Rl (1 omik\| h
< [ay] < whlk| + 5 ‘111 (W)‘ o2

Then, using 7|k|h < £/2, we have

e<h

«

I <ln(y) + 271'2]{5) ‘ h
h_
If A is small enough, this implies

< hlln|ln(y) + 2mik|| ,

| ™

or
/M) < |n(y) + 2mik| <A™ +Inh™® 4 ¢/h,

which is a contradiction (for A small enough).
For the proof of the second inequality of (16), assume for the sake of contradiction that w|k|h >
2/e. Combining the first inequality of (4) with (15), and plugging in |R| < 1, gives

h 1 2mik h
wh|k| — 5 ‘ln (W)‘ -3 <zl < 1/e.

If h is small enough, this implies

h , 3
mhlk| — 5 IIn|In(y) + 2mik|| < %
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or
3
exp (27r|/€| - h5> —27|k| < In(y),

Using now w|k|h > 2/e gives

4 3 4
22 ) F — —ay.
exp <h5 hs) e < In(y) =h™* +In(h™%); (17)
indeed, since the function f(x) := €% — x is increasing on (a,o0), we have f(2w|k|) > f(4/he)
with a = 3/he. Finally, (17) is a contradiction for h small enough. O

We now proceed to the proofs of the theorems. We simplify the logarithm on the right hand side
of (15) differently for & < 1 and « > 1, according to which term on the inside is larger.

Proof of Theorem 1. Since « € (0,1), the first inequality of (16) implies that
|2mik| > eh™! > In(h™%) + h™% = In(y), (18)

for h small enough, and we write

In(y) + 2mik , In(y)
In{ ——— | =In(2 N4+ In|l
n( o > n(2mikh®) + n( + ik )

which, inserted into (15), gives

th . In(y)
%= — (2mik — In(2mikh®) + R},), where R, =Ri—1In <1 + 27Tik:> .

Using |Ri| <1 as in Lemma 2, and (18), we get

|Ry.| < [Ri| +1n

In( In(
H‘Jr‘ <1+>‘<1+1n2+77/2<4 (19)
Hence

h h
Rez, = —mhk + 5 arg(2mikh®) — 5 Im Ry,
h h (20)
Im 2, = -5 In |27kh®| + §R6R;€.
From these equations, we can already see the leading order behavior of the resonances.

To get a precise statement with good remainder estimates, we manipulate the equations (20) in
the following way. Taking real and imaginary parts of (3) gives

h=%e 2mz/h co5(2Re 2, /h) = h™® + 2Im z;h !
h=%e~2m /b gin(2 Re 2, /h) = —2Re z:h L.
Squaring the equations and adding them using cos? + sin? = 1 gives
etz /h(4(Re 21,)? + 4(Im 2;)?) N etIm2k/h(41m 2, L ATz /h

h2—2a pl—a =1
or
CAMOZ (14 4Tm ez h 4 (4(Re 2)? + 4(Im 24)2)h2 )
= In(4(Re 2;)2h%* %) +1In(1 + t),
where

4(Im zg)? + 4Tm 2Rt~ + p272

t =
4(Re zi)?



SEMICLASSICAL RESONANCE ASYMPTOTICS FOR THE DELTA POTENTIAL ON THE HALF LINE 9

Combine with 0 <In(1+¢) <t to get

0 < _4Imzk

— In(4(Re 2)2h2"2) < t. (21)

From (20) we have, using (16), (19), and | arg(2mikh®)| = 7/2, that

h
| Re z| > %—%—thg}z/i’), and |Im 2| < hIn(4e 'R ).

That gives
2112 —1lpa—1 —1lpa—-1\pl—a 2—2a 22«
£ < 4h*1In”(4e='h* 1) + 4hln(4de~th*HR > + b < h < 522002,
4(Re zx)? 2(Re zx)?
Plugging into (21) gives (5). O

Proof of Theorem 2. Since @ > 1, the second inequality of (16) implies that
|2mik| < 4e7'h7! < In(h™%) + ™% = In(y),
for h small enough, and we write

1 27
I < n(y) + 2mik

= ) =1In (14 h%In(h™%) + 2mikh®)

which, inserted into (15), gives

Rez, = g (—27Tk 4+ Imln (1 + h%In(h™%) + 277@']{;]1”) —Im Rk) ,
(22)
Im 2z, = g (— In ‘1 + h%In(h™%) + 2m'kha‘ + Re Rk) )

This time the manipulations between (20) and (21) are not necessary, but we must expand further
to get a nonvanishing imaginary part. We will use the approximation In(1 4 ¢) ~ ¢. To bound the
remainder, we write

In |14 h*In(h™*) + 2mikh®| = In(1 + 20% In(h™*) + K** In*(h~*) + 47°k*h>?),
and use the estimate 0 < —In(1 +t) +t < #2/2, with
t = 2h*In(h™%) + R In?(h™%) + 472k>*n*, (23)
to write, using m2k? < 4e72h 2,

—h2*In?(h™%) < —1In(1 + 2% In(h™%) + h2* In?(h™%) 4 47%k*h%%) + 2h% In(h™%) 4 4n’k*h%®

t2
< 5 o h2a ln2(h7a)
1
= 5(2h* (A7) + h2%1n?(h™%) + 472k*h?%)2 — B2 In%(h™?)

<130 *pt™ 4 2n% In? (h™9),
which implies
‘ —In|1+ A% In(h™) 4 2mikh®| + A In(h™) 4 21°k*R°*| < 65 R + B2*In*(h™%).  (24)

where the first term on the right is dominant when « < 2 and the second term is dominant when
o> 2.
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Inserted into (22), that gives

h
[Tm 2+ 72 R2R2TH = O | = In[1 4 A% In(h™") + 2mikh®| + Re Ry + 2m°k*h*" |

2 (25)
<5 (|Re Ry — h®In(h™)| + 65e*A**~* + B2 In?(h ™)) ,
where for the inequality we added and subtracted h%In(h™%), and used (24).
To deal with Ry term, using In(y) = h=% + In(h=%) and [27ik| < 4e71h~!, we have
In(In(y) + 27wik) | In? | In(h=9) + h=o 4 2mik| + (arg(In(h=2) + h=o 4 27ik))2
In(y) + 2wik | (In(h=%) + h=2)2 + (27k)? (26)
In(h=®) |In|In(y) + 27ik| + iw/2|/ In(h~%) _
< < 2h%In(h™®
- h@ |1+ h*In(h=%) + ho2mik| - n(h™),
for h sufficiently small, so, by (10),
In(1 2mi
‘R _ 1’1( n(y) + ka) ’ < 8h2a IHQ(h_a). (27)

In(y) + 2mik

Next,
In(In(y) + 27ik)

R
“ TIn(y) + 2mik

R InATY = (R Inh) G :;) ,

where ¢t is as in (23) and

_ Iln(l+¢) 1 2kh® arg(Iny + 2mik) In(1+1)

=h*Inh 4+ -——=+ -h%In(1+t¢ —

§ L e e U Gy Ry v 2In(h—2)
<E+#+1hat+i<t
—2 2In(h) 2 In(h—e) = 7

for h small enough. That implies
In(In(y) + 2mik)
In(y) 4 2mik

—th®Inh @ < Re —h%Inh™® <0,

which implies
In(In(y) + 27ik)
In(y) + 27ik
Substituting (27) and (28) into (25) gives

—h¥Inh~% < 2R%* (W) + W30 (h™%) + 47°k2h3* Inh™.  (28)

| Im 2, + m2k%R% T < g(nhh In2(h=%) 4+ A3 In3(h™%) + 16 2A3* 2 In(h™%) + 65 2p1o4)
< 6h29T L In?(h™%) 4 33~ 1pta—3,
Returning to the real part, from (22), and using again (26) and (27), we have
|Re z, + mkh| = g| arg (14 h%In(h™%) + 2mikh®) — Im Ry,|
< wkht 4 4p2 2 pm 4 BT In e < 3e7 1A,
which implies, after factoring and using also (4),
|T2k2R% T — (Re 21,) 2021 < 3¢ TR |nkh® — Re z3h® Y| < 97231,

and hence
| Im 2, + (Re z;)2h2*7 Y < 72T In? (%) + 34~ 1p1a—3,
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O

Concluding remarks. At the beginning of the proof of Theorem 1, we used (18) to say that
|2mik| always dominates In(y) when « € (0,1) whenever € < |z| < 1/e. At the beginning of the
proof of Theorem 2, we similarly saw that In(y) always dominates |27ik| when « > 1 for this range
of z. But when a = 1, neither of these terms dominates the other for all z in this range. It would
be necessary to distinguish large and small z using a finer analysis in this case.
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