
SEMICLASSICAL RESONANCE ASYMPTOTICS FOR THE DELTA

POTENTIAL ON THE HALF LINE

KIRIL DATCHEV AND NKHALO MALAWO

Abstract. We compute resonance width asymptotics for the delta potential on the half-line, by
deriving a formula for resonances in terms of the Lambert W function and applying a series expan-
sion. This potential is a simple model of a thin barrier, motivated by physical problems such as
quantum corrals and leaky quantum graphs.

1. Introduction

The analysis of scattering by thin barriers is important for many physical problems, including
quantum corrals [BZH10] and leaky quantum graphs [E08]. In [GS15, G15, G16, G19a, G19b]
Galkowski–Smith and Galkowski study the distribution of resonances for operators of the form

−h2∆+ h2h−αδ∂Ω,

where h > 0 is a semiclassical parameter, ∆ is the Laplacian on R
n, and δ∂Ω is a delta function

on the boundary of an open bounded set Ω with smooth boundary ∂Ω. The factor of h−α models
a barrier whose interaction with waves depends on frequency (having a nontrivial dependence is
typical in physical systems: see [BZH10]), with the positive parameter α determining how quickly
the strength of the barrier grows with frequency.

In this paper we consider the corresponding operator on the half line (0,∞), namely

− h2∂2
x + h2h−αδ1, (1)

where δ1 is the Dirac delta function centered at x = 1, with Dirichlet boundary condition at x = 0.
In this setting we can analyze scattering more simply, fully, and precisely than is possible in the
more complicated higher-dimensional case.

A number z ∈ C \ {0} is a resonance of (1) if and only if there is a continuous function u such
that

u(x) = sin(zx/h) for 0 < x < 1,

u(x) = Ceizx/h for x > 1,

u′(1−)− u′(1+) + h−αu(1) = 0,

(2)

for some constant C, where u′(1−) and u′(1+) are respectively the derivatives from the left and
from the right of u at x = 1. A solution to (2) exists if and only if

sin(z/h) = Ceiz/h, (z/h) cos(z/h)− (iz/h)Ceiz/h + h−αCeiz/h = 0,

or, equivalently,

h−αe2iz/h − h−α + 2iz/h = 0. (3)

K. Datchev was supported in part by NSF grant DMS-1708511. N. Malawo was supported in part by an REU
Grant from the Purdue Math Department Tong Endowment. The authors are grateful to Jeffrey Galkowski and
Maciej Zworski for helpful discussions, and also to the anonymous referees for their comments and corrections.
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2. The Lambert W function

We begin by reviewing some needed facts about the Lambert W function from [CGHJK96]. This
is the function which solves the equation

xex = y. (7)

For any y, (7) has a countable infinity of complex solutions, x = Wk(y), where k varies over Z.
We will be studying solutions to (7) with y � 1. Then Wk(y) can be expanded in a convergent
series, with coefficients given in terms of the Stirling numbers [pq ], where [pq ] is the number of ways

to arrange p objects into q cycles (see [GKP89, Chapter 6]). More specifically, by equations (4.18),
(4.19), and (4.20) of [CGHJK96], we have

Wk(y) = ln(y) + 2πik − ln(ln(y) + 2πik) +Rk, (8)

where

Rk =

∞
∑

j=0

∞
∑

m=1

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m
=

ln(ln(y) + 2πik)

ln(y) + 2πik
+ · · · , (9)

and

cj,m =
1

m!
(−1)j

[

j +m

j + 1

]

.

Here and below the branch of ln is taken so that −π < Im ln z ≤ π for all z ∈ C \ {0}.

Lemma 1. The series (9) is absolutely convergent for y large enough and k ∈ Z. More precisely

we have the tail estimate
∣

∣

∣

∣

Rk −
ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

≤
∑

j≥0, m≥1, (j,m) 6=(0,1)

∣

∣

∣

∣

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

2

,

(10)

and
∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

≤
1

2
, (11)

for y large enough.

Proof. We have
∣

∣

∣

∣

Rk −
ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

≤
∑

j≥0, m≥1, (j,m) 6=(0,1)

∣

∣

∣

∣

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m

∣

∣

∣

∣

=
∞
∑

m=2

∣

∣

∣

∣

c0,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)m

∣

∣

∣

∣

+
∞
∑

m=1

∞
∑

j=1

∣

∣

∣

∣

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m

∣

∣

∣

∣

.

(12)

Now use c0,m = 1/m and (11) to write

∞
∑

m=2

∣

∣

∣

∣

c0,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)m

∣

∣

∣

∣

≤
1

2

∞
∑

m=2

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

m

≤

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

2

. (13)
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For the other term, write

∞
∑

m=1

∞
∑

j=1

∣

∣

∣

∣

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m

∣

∣

∣

∣

=

1

| ln(y) + 2πik|

∞
∑

m=1

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

m ∞
∑

j=1

|cj,m|

| ln(y) + 2πik|j−1
.

(14)

Since the double sum is absolutely convergent for large y (see page 349 of [CGHJK96]), for every
large y the terms

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

m ∞
∑

j=1

|cj,m|

| ln(y) + 2πik|j−1

tend to zero as m → ∞. Moreover, as y increases, the terms get smaller. Hence, there is N such
that, setting y = N , for every m ≥ 1 we have

∣

∣

∣

∣

ln(ln(N) + 2πik)

ln(N) + 2πik

∣

∣

∣

∣

m ∞
∑

j=1

|cj,m|

| ln(N) + 2πik|j−1
≤ N.

Plugging that into (14) gives

∞
∑

m=1

∞
∑

j=1

∣

∣

∣

∣

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m

∣

∣

∣

∣

≤
N

| ln(y) + 2πik|

∞
∑

m=1

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik
·

ln(N) + 2πik

ln(ln(N) + 2πik)

∣

∣

∣

∣

m

≤
2N | ln(N) + 2πik|

| ln(ln(N) + 2πik)|
·
| ln(ln(y) + 2πik)|

| ln(y) + 2πik|2
,

for y large enough. If y is large enough, then

2N | ln(N) + 2πik|

| ln(ln(N) + 2πik)|
≤ | ln(ln(y) + 2πik)|,

which implies
∞
∑

m=1

∞
∑

j=1

∣

∣

∣

∣

cj,m
lnm(ln(y) + 2πik)

(ln(y) + 2πik)j+m

∣

∣

∣

∣

≤

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

2

.

Plugging this and (13) into (12) gives (10). �

3. Proofs of Theorems

We rewrite (3) as

(−2izh−1 + h−α)e−2izh−1+h−α

= h−αeh
−α

,

and then solve for z using (8) with

x = −2izh−1 + h−α,

and

y = h−αeh
−α

.
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Thus the solutions to (3) are given by

zk =
ih

2
(Wk(y)− h−α)

=
ih

2
(ln(y) + 2πik − ln(ln(y) + 2πik)− h−α +Rk)

=
ih

2
(2πik + ln(h−α)− ln(ln(y) + 2πik) +Rk).

=
ih

2

(

2πik − ln

(

ln(y) + 2πik

h−α

)

+Rk

)

,

(15)

where k varies over Z. At this point, let us mention that Herbst and Mavi [HM16] and Sacchetti
[S16] use a version of this equation to analyze resonances for the problem −∂2

x + αδa with α → ∞,
but with a > 0 and k fixed. Thus, Herbst and Mavi’s and Sacchetti’s analysis would correspond to
the asymptotic regime z → 0 in our paper.

Below we keep the subscript k to emphasize the role of this integer in our estimates, but note
that zk is the same as the z as in the statements of the Theorems. In our next lemma we show
that the first term in the right hand side of (15) is the dominant term, and thus that k is roughly
of size h−1.

Lemma 2. For k such that zk given by (15) obeys (4), we have

ε/2 ≤ π|k|h ≤ 2/ε, (16)

for h small enough.

Proof. We begin with the proof of the first inequality of (16). Assume for the sake of contradiction
that π|k|h < ε/2. By (10) and (11) we have |Rk| ≤ 1. Combining the first inequality of (4) with
(15), and plugging in |Rk| ≤ 1, gives

ε ≤ |zk| ≤ πh|k|+
h

2

∣

∣

∣

∣

ln

(

ln(y) + 2πik

h−α

)∣

∣

∣

∣

+
h

2
.

Then, using π|k|h < ε/2, we have

ε ≤ h

∣

∣

∣

∣

ln

(

ln(y) + 2πik

h−α

)∣

∣

∣

∣

+ h.

If h is small enough, this implies

ε

2
≤ h |ln | ln(y) + 2πik|| ,

or

eε/(2h) ≤ | ln(y) + 2πik| ≤ h−α + lnh−α + ε/h,

which is a contradiction (for h small enough).
For the proof of the second inequality of (16), assume for the sake of contradiction that π|k|h >

2/ε. Combining the first inequality of (4) with (15), and plugging in |Rk| ≤ 1, gives

πh|k| −
h

2

∣

∣

∣

∣

ln

(

ln(y) + 2πik

h−α

)∣

∣

∣

∣

−
h

2
≤ |zk| ≤ 1/ε.

If h is small enough, this implies

πh|k| −
h

2
|ln | ln(y) + 2πik|| ≤

3

2ε
,
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or

exp

(

2π|k| −
3

hε

)

− 2π|k| ≤ ln(y),

Using now π|k|h > 2/ε gives

exp

(

4

hε
−

3

hε

)

−
4

hε
≤ ln(y) = h−α + ln(h−α); (17)

indeed, since the function f(x) := ex−a − x is increasing on (a,∞), we have f(2π|k|) > f(4/hε)
with a = 3/hε. Finally, (17) is a contradiction for h small enough. �

We now proceed to the proofs of the theorems. We simplify the logarithm on the right hand side
of (15) differently for α < 1 and α > 1, according to which term on the inside is larger.

Proof of Theorem 1. Since α ∈ (0, 1), the first inequality of (16) implies that

|2πik| ≥ εh−1 > ln(h−α) + h−α = ln(y), (18)

for h small enough, and we write

ln

(

ln(y) + 2πik

h−α

)

= ln(2πikhα) + ln

(

1 +
ln(y)

2πik

)

,

which, inserted into (15), gives

zk =
ih

2
(2πik − ln(2πikhα) +R′

k), where R′
k = Rk − ln

(

1 +
ln(y)

2πik

)

.

Using |Rk| ≤ 1 as in Lemma 2, and (18), we get

|R′
k| ≤ |Rk|+ ln

∣

∣

∣

∣

1 +
ln(y)

2πik

∣

∣

∣

∣

+
∣

∣

∣
arg

(

1 +
ln(y)

2πik

)

∣

∣

∣
≤ 1 + ln 2 + π/2 ≤ 4. (19)

Hence

Re zk = −πhk +
h

2
arg(2πikhα)−

h

2
ImR′

k,

Im zk = −
h

2
ln |2πkhα|+

h

2
ReR′

k.

(20)

From these equations, we can already see the leading order behavior of the resonances.
To get a precise statement with good remainder estimates, we manipulate the equations (20) in

the following way. Taking real and imaginary parts of (3) gives

h−αe−2 Im zk/h cos(2Re zk/h) = h−α + 2 Im zkh
−1

h−αe−2 Im zk/h sin(2Re zk/h) = −2Re zkh
−1.

Squaring the equations and adding them using cos2+sin2 = 1 gives

e4 Im zk/h(4(Re zk)
2 + 4(Im zk)

2)

h2−2α
+

e4 Im zk/h(4 Im zk)

h1−α
+ e4 Im zk/h = 1

or

−
4 Im zk

h
= ln

(

1 + 4 Im zkh
α−1 + (4(Re zk)

2 + 4(Im zk)
2)h2α−2

)

= ln(4(Re zk)
2h2α−2) + ln(1 + t),

where

t =
4(Im zk)

2 + 4 Im zkh
1−α + h2−2α

4(Re zk)2
.
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Combine with 0 ≤ ln(1 + t) ≤ t to get

0 ≤ −
4 Im zk

h
− ln(4(Re zk)

2h2α−2) ≤ t. (21)

From (20) we have, using (16), (19), and | arg(2πikhα)| = π/2, that

|Re zk| ≥
ε

2
−

hπ

4
− 2h ≥ ε/3, and | Im zk| ≤ h ln(4ε−1hα−1).

That gives

t ≤
4h2 ln2(4ε−1hα−1) + 4h ln(4ε−1hα−1)h1−α + h2−2α

4(Re zk)2
≤

h2−2α

2(Re zk)2
≤ 5h2−2αε−2.

Plugging into (21) gives (5). �

Proof of Theorem 2. Since α > 1, the second inequality of (16) implies that

|2πik| ≤ 4ε−1h−1 < ln(h−α) + h−α = ln(y),

for h small enough, and we write

ln

(

ln(y) + 2πik

h−α

)

= ln
(

1 + hα ln(h−α) + 2πikhα
)

,

which, inserted into (15), gives

Re zk =
h

2

(

−2πk + Im ln
(

1 + hα ln(h−α) + 2πikhα
)

− ImRk

)

,

Im zk =
h

2

(

− ln
∣

∣1 + hα ln(h−α) + 2πikhα
∣

∣+ReRk

)

.

(22)

This time the manipulations between (20) and (21) are not necessary, but we must expand further
to get a nonvanishing imaginary part. We will use the approximation ln(1 + t) ∼ t. To bound the
remainder, we write

ln
∣

∣1 + hα ln(h−α) + 2πikhα
∣

∣ = 1
2 ln(1 + 2hα ln(h−α) + h2α ln2(h−α) + 4π2k2h2α),

and use the estimate 0 ≤ − ln(1 + t) + t ≤ t2/2, with

t = 2hα ln(h−α) + h2α ln2(h−α) + 4π2k2h2α, (23)

to write, using π2k2 ≤ 4ε−2h−2,

−h2α ln2(h−α) ≤ − ln(1 + 2hα ln(h−α) + h2α ln2(h−α) + 4π2k2h2α) + 2hα ln(h−α) + 4π2k2h2α

≤
t2

2
− h2α ln2(h−α)

=
1

2
(2hα ln(h−α) + h2α ln2(h−α) + 4π2k2h2α)2 − h2α ln2(h−α)

≤ 130ε−4h4α−4 + 2h2α ln2(h−α),

which implies
∣

∣

∣
− ln

∣

∣1 + hα ln(h−α) + 2πikhα
∣

∣+ hα ln(h−α) + 2π2k2h2α
∣

∣

∣
≤ 65ε−4h4α−4 + h2α ln2(h−α). (24)

where the first term on the right is dominant when α < 2 and the second term is dominant when
α ≥ 2.
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Inserted into (22), that gives

| Im zk + π2k2h2α+1| =
h

2

∣

∣− ln
∣

∣1 + hα ln(h−α) + 2πikhα
∣

∣+ReRk + 2π2k2h2α
∣

∣

≤
h

2

(

|ReRk − hα ln(h−α)|+ 65ε−4h4α−4 + h2α ln2(h−α)
)

,

(25)

where for the inequality we added and subtracted hα ln(h−α), and used (24).
To deal with Rk term, using ln(y) = h−α + ln(h−α) and |2πik| ≤ 4ε−1h−1, we have

∣

∣

∣

∣

ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

=

√

ln2 | ln(h−α) + h−α + 2πik|+ (arg(ln(h−α) + h−α + 2πik))2

(ln(h−α) + h−α)2 + (2πk)2

≤
ln(h−α)

h−α

| ln | ln(y) + 2πik|+ iπ/2|/ ln(h−α)

|1 + hα ln(h−α) + hα2πik|
≤ 2hα ln(h−α),

(26)

for h sufficiently small, so, by (10),
∣

∣

∣

∣

Rk −
ln(ln(y) + 2πik)

ln(y) + 2πik

∣

∣

∣

∣

≤ 8h2α ln2(h−α). (27)

Next,

Re
ln(ln(y) + 2πik)

ln(y) + 2πik
− hα lnh−α = (hα lnh−α)

(

s− t

1 + t

)

,

where t is as in (23) and

s = hα lnh−α +
1

2

ln(1 + t)

ln(h−α)
+

1

2
hα ln(1 + t) +

2πkhα arg(ln y + 2πik)

ln | ln y + 2πik|

(

1 +
ln(1 + t)

2 ln(h−α)

)

≤
t

2
+

t

2 ln(h−α)
+

1

2
hαt+

2t

ln(h−α)
≤ t,

for h small enough. That implies

−thα lnh−α ≤ Re
ln(ln(y) + 2πik)

ln(y) + 2πik
− hα lnh−α ≤ 0,

which implies
∣

∣

∣

∣

Re
ln(ln(y) + 2πik)

ln(y) + 2πik
− hα lnh−α

∣

∣

∣

∣

≤ 2h2α ln2(h−α) + h3α ln3(h−α) + 4π2k2h3α lnh−α. (28)

Substituting (27) and (28) into (25) gives

| Im zk + π2k2h2α+1| ≤
h

2
(11h2α ln2(h−α) + h3α ln3(h−α) + 16ε−2h3α−2 ln(h−α) + 65ε−4h4α−4)

≤ 6h2α+1 ln2(h−α) + 33ε−4h4α−3.

Returning to the real part, from (22), and using again (26) and (27), we have

|Re zk + πkh| =
h

2
| arg

(

1 + hα ln(h−α) + 2πikhα
)

− ImRk|

≤ πkhα+1 + 4h2α+1 ln2 h−α + hα+1 lnh−α ≤ 3ε−1hα,

which implies, after factoring and using also (4),

|π2k2h2α+1 − (Re zk)
2h2α−1| ≤ 3ε−1h2α|πkhα − Re zkh

α−1| ≤ 9ε−2h3α−1,

and hence
| Im zk + (Re zk)

2h2α−1| ≤ 7h2α+1 ln2(h−α) + 34ε−4h4α−3.
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�

Concluding remarks. At the beginning of the proof of Theorem 1, we used (18) to say that
|2πik| always dominates ln(y) when α ∈ (0, 1) whenever ε < |z| < 1/ε. At the beginning of the
proof of Theorem 2, we similarly saw that ln(y) always dominates |2πik| when α > 1 for this range
of z. But when α = 1, neither of these terms dominates the other for all z in this range. It would
be necessary to distinguish large and small z using a finer analysis in this case.

References

[AGHKH05] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden. Solvable Models in Quantum Mechanics.
Second Edition, with an appendix by Pavel Exner. AMS Chelsea Publishing. 2005.

[BZH10] Matthew C. Barr, Michael P. Zaletel, and Eric J. Heller. Quantum Corral Resonance Widths: Lossy Scat-

tering as Acoustics. Nano Lett. 10 (2010), pp. 3253–3260.
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