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WAVE ASYMPTOTICS FOR WAVEGUIDES AND MANIFOLDS WITH
INFINITE CYLINDRICAL ENDS

T.J. CHRISTIANSEN AND K. DATCHEV

ABSTRACT. We describe wave decay rates associated to embedded resonances and spectral thresh-
olds for waveguides and manifolds with infinite cylindrical ends. We show that if the cut-off resol-
vent is polynomially bounded at high energies, as is the case in certain favorable geometries, then
there is an associated asymptotic expansion, up to a O(tik") remainder, of solutions of the wave
equation on compact sets as t — oo. In the most general such case we have ko = 1, and under
an additional assumption on the infinite ends we have ko = co. If we localize the solutions to the
wave equation in frequency as well as in space, then our results hold for quite general waveguides
and manifolds with infinite cylindrical ends.

To treat problems with and without boundary in a unified way, we introduce a black box
framework analogous to the Euclidean one of Sjostrand and Zworski. We study the resolvent,
generalized eigenfunctions, spectral measure, and spectral thresholds in this framework, providing
a new approach to some mostly well-known results in the scattering theory of manifolds with
cylindrical ends.

1. INTRODUCTION

Wave decay rates on a manifold of infinite volume can be related to the geometry of the manifold

via the behavior of the resolvent (—A — z)~!

in the vicinity of the spectrum. A particularly
important and long-studied class of problems is that of compactly supported perturbations of
Fuclidean space, an example of which is the classical obstacle scattering problem. In that case
the dominant contributions to wave decay rates come from the resolvent behavior near the only
threshold in the spectrum, z = 0, and as Rez — +00. We think of the former as being related
to the geometric infinity—here the spatial dimension is especially important. The latter typically
reflects the dynamics of the compact, and possibly empty, set of trapped geodesics. In particular,
in this setting we can separate the contributions of the geometric infinity and the trapped set.
Similar results hold in many situations where infinity is “large” in a suitable sense, such as on
asymptotically Euclidean, conic, and hyperbolic manifolds.

In this paper we consider manifolds which are isometric to a cylinder (0,00) x Y (with YV
compact) outside of a compact set. Thus we cannot separate the geometric infinity and the
trapped geodesics, since the latter occur outside of arbitrarily large compact sets. Also in contrast
with the case of obstacle scattering is the relatively complicated nature of the spectrum of the
Laplacian. The continuous spectrum has infinitely many thresholds, given by the eigenvalues of
the Laplacian on Y, where the multiplicity increases. In addition, there may be up to infinitely
many embedded resonances and eigenvalues.
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A motivation for the study of such manifolds comes from waveguides and quantum dots con-
nected to leads. These appear in certain models of electron motion in semiconductors and of
propagation of electromagnetic and sound waves. We give just a few pointers to the physics and
applied math literature here [LCM99, Rai00,RBBH12, EK15, BGW17].

Our main results concern manifolds with infinite cylindrical ends for which the resolvent is
well-behaved at high energies, which is the case in some favorable geometric situations discussed
below. In this case we can compute asymptotics of the wave equation in terms of the features
of the spectrum discussed above. Roughly speaking, a resonance at zero or any eigenvalues con-
tribute non-decaying terms; any other embedded resonances, which can occur only at thresholds,
contribute terms decaying like t~1/2% with k € Np; and non-resonant thresholds contribute terms

decaying like t—3/27F,

More specifically, in this paper we study asymptotic expansions as ¢ — oo of solutions to the
wave equation
(07 = A)u(t) =0, w(0) = f1, Bu(0)= fa, (1.1)
where A < 0 is the Laplacian on a suitable Riemannian manifold (X, g) with infinite cylindrical
ends, and fi; and fo are suitable initial conditions.

Our main results allow us to replace —A with a more general self-adjoint operator H but
require an assumption on the high energy behavior of the cut-off resolvent of —A or H. The
companion paper [CDa] gives a technique of constructing manifolds with infinite cylindrical ends
so that such estimates hold for the resolvent of the Laplacian, or in fact for the resolvent of many
Schrodinger operators; see Sections 1.2.1 and 1.2.2 of this paper for examples. The paper [CDb]
studies the Dirichlet Laplacian on domains in R? which are “star-shaped” in a certain sense, and
shows that such estimates hold for the high-energy resolvent; see Section 1.2.3 for examples of
domains satisfying these conditions. However, if we apply a spectral cut-off to our solution u of
(1.1), the hypothesis on the high energy resolvent is unnecessary—see Proposition 4.2.

Our starting point is the following elementary result for the wave equation on a Riemannian
product. We will see below that many aspects of this result carry over to a range of more
complicated geometries.

1.1. The wave equation on a half cylinder. Let (X,g) = ((0,00),xYy, dr?+gy), where (Y, gy)
is a compact Riemannian manifold without boundary. Let Ay < 0 be the Laplacian on (Y, gy)
and let {qﬁj °o be a complete orthonormal set of eigenfunctions of Ay, with —Ay¢; = o7 (25],
0=09< 01 S

Let f1, fo € C°(X). We shall consider solutions up and uy, satisfying Dirichlet and Neumann
boundary conditions respectively, to (1.1) on X. Then we can solve (1.1) by separating variables,
writing

fo=fo(ry) = Zfz,g up(t) =up(t,ry) = Z%B“W%) (1.2)

where ¢ € {1, 2} and B denotes the boundary condition “D” or “N.” We can perhaps most easily
solve these initial value problems by extending fi, f2 to be odd (Dirichlet) or even (Neumann)
functions on R x Y, and solving the wave equation on the full cylinder. In doing so, we see that
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we get different expressions for the terms with o; = 0 and those with o; # 0. Suppose fi(r,y) =0
ifr>Ry,l=1,2 Thenifo; =0

ujn(t,r) = / faj(r")dr', ujp(t)=0ifo; =0, for0<r<Randt>R+R; (1.3)
0

by d’Alembert’s formula. On the other hand, if o; > 0 for any nonnegative integer ko we have for
t sufficiently large

ko
w;g(t,r) = Z (D), (r) cos(ojt + 5) + qjk,5(r)sin(o;t + )] 3 40 (t_ko_%> , ifo; >0,

k=0
(1.4)

by the method of stationary phase (see also [Hor87| for asymptotics as r — oo). Here for each j
Pjk,B and g; k. p are polynomials in 7 of degree at most 2k, and the remainders are uniform in j
and as r varies in a compact set. Moreover, for the Neumann boundary condition

2,/”j/°°f ()’ 2 /Oof o (1.5)
i = — H(r))dr', ; = — H(r))dr'. .
Pjo.N o Jy 1,5 4;5,0,N 270, Jo 2,j

With the Dirichlet boundary condition, pjo p = 0 = g;0,p, and

sy 00 o %)
pj1,p(r) = 2714/ 2—] / T/fg,j(T‘/)d’l“/, ¢j1,0(r) = 2074/ L / T‘/ij(T/)dT/. (1.6)
™ Jo 27 0

To interpret the above result in terms of the spectrum, we can similarly write the resolvent of
—Ap in terms of shifted resolvents of —(92)p. If f(r,y) = >0 fi(r)#;(y), then

(~ap =2 =3 ((~@)p+02—2) " f;) 65 zE€C\[0,00).
§=0

From this we see that the spectrum of —Ap is [0,00), is purely absolutely continuous, and has
thresholds (points at which multiplicity jumps) at the eigenvalues of —Ay. For the Neumann
Laplacian on the half cylinder, at each threshold the spectrum contains an embedded resonance
of multiplicity equal to the multiplicity of the corresponding eigenvalue of —Ay (and there are no
other resonances embedded in the spectrum). The Dirichlet Laplacian on the half-cylinder has
no embedded resonances.

We now see that the coefficient of the constant term in the expansion (1.3), given by u; g(r) with
o;j =0 as in (1.5), is determined by the resonant states at zero and a (distributional) pairing with
the initial data. The number of states is equal to the number of connected components of Y. The
terms of order t=1/2 in (1.4) have coefficients given in (1.5) in terms of resonant states at nonzero
eigenvalues of —Ay and (distributional) pairings of these with the initial data. These terms are
zero in the absence of threshold resonances, as is the case for the Dirichlet half-cylinder. From
the example of the Dirichlet half-cylinder, we see that in the absence of eigenvalues or resonances
embedded in the continuous spectrum we may have a wave decay like O(t_3/ 2), but we cannot in
general expect faster decay.

In the remainder of the paper we adapt the asymptotics above, in a somewhat weaker form,
to Schrodinger operators on more general manifolds with cylindrical ends. One difficulty is that
such operators can have much nastier behavior of the resolvent near the continuous spectrum,
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including the possible presence of infinitely many embedded eigenvalues, accumulating at infinity,
[CZ95, Par95]. In additional to the possible existence of resonances embedded in the continuous
spectrum, there may be additional “complex” resonances, resonances which lie on the Riemann
surface Z to which the resolvent continues; see Section 2.2. In general settings we cannot rule
out the possibility that at high energy these rapidly approach the continuous spectrum. Below
we mostly restrict our attention to some particular cases in which the resolvent is better behaved.
In these cases, the non-real resonances do not approach the continuous spectrum too rapidly, and
they do not appear in the expansions.

1.2. Two term asymptotics for mildly trapping manifolds or waveguides with cylindri-
cal ends. Our first extension of the results of Section 1.1 is to manifolds with infinite cylindrical
ends for which we have polynomial bounds on the cut-off resolvent. Rather than state the theorem
in full generality here, for now we let (X, g) be one of the examples in Sections 1.2.1 and 1.2.2.
Alternatively, we allow the waveguides X C R? to be one of the domains in Section 1.2.3, in which
case we consider the case of Dirichlet boundary conditions. In each case, Y is the cross section of
the infinite cylindrical ends, Ay < 0 is the Laplacian on Y (with Dirichlet boundary conditions
for the domains of Section 1.2.3), and 0 < ag < a% < --- are the eigenvalues of —Ay, repeated
with multiplicity.

By the results of [CDa, Theorem 1.1] for the examples of Sections 1.2.1 and 1.2.2 and [CDb]
for the examples of Section 1.2.3, —A has a finite, possibly empty, set of eigenvalues which we
denote { £y} (repeated with multiplicity), with corresponding orthonormal L? eigenfunctions {n;}:
—Ang = Eymy. The generalized eigenfunctions {®;} are defined in (2.17); each ®; depends on a
parameter A and a variable € X, so that ®;(\) = ®;(\,z). The ®;(\) are (certain) elements
of the null space of —A — A? which are not in L?(X). If ®;(c;) # 0 then o; corresponds to a
threshold resonance and ®;(o;) is a resonant state; ®;(o;) € C°°(X). See Section 2.3 for a more
detailed discussion of the generalized eigenfunctions.

Our first result is a two term expansion, an example of which is the following theorem. In the
statement of the theorem, for f; € C°(X) and v € C=(X), (fj,v) = [y f;7.

Theorem 1.1. Let (X,g) be as in the examples in Sections 1.2.1 or 1.2.2, or let X C R? be a
domain as in Section 1.2.3. Let fi, fa € CX(X) be given and u(t) solve (1.1), and in addition
satisfy Dirichlet boundary conditions if X is as in Section 1.2.3. Then we can write

u(t) = ue(t) + wenr (t) + ur(t), (1.7)

where

ue(t) = ue(t, z) = Z(A) () <COS((E4)1/ 2t)<f1,ne>+W<f2,m>> (1.8)
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and

uthr(t) —uthr t :E 4 Z (I) O Jj f27 ( )>

;=0
L\ coslogt + w003, s, 20
;>0

fz sin(oyt + m/4)D;(0, 2) fo, @5 (7)) (1.9)

where x € X. Moreover, for any x € C°(X), there is a constant C' so that the remainder, u,(t),
satisfies

Ixur () 22x) < Ot L for t sufficiently large. (1.10)

For the manifolds and domains considered here, as a consequence of [CDa, Theorem 1.1] and
[CDb, Theorem 3], each of these sums in (1.8) and (1.9) is in fact a finite sum. Since we have
assumed the initial data f1, fo € C°(X), we could replace the bound (1.10) by [|xur ()| gm(x) <
Ct~! for any m € N, with a new constant C' depending on m.

We compare the expansion of u in Theorem 1.1 with that of the solution to the wave equation on
the Neumann half cylinder given by (1.2-1.5). From the expression for u,, in (1.9), if o; = 0, then
(®;(0), f2) corresponds to 2 [~ f2,;(r)dr from (1.3) and (1.2). If o; > 0, then ®;(c;)(f1, ®;(0;))
corresponds to 2, /Z_—’j’pmo, N(r)¢; from (1.4). In contrast, for the Dirichlet half-cylinder there are

no embedded resonances. Hence, for the Dirichlet half-cylinder ®;(o;) = 0 for each j.

Theorem 3.2 is a more general version of Theorem 1.1. In Theorem 3.2 we can allow any
manifold with infinite cylindrical ends for which we have a polynomial bound on the cut-off
resolvent of the Laplacian at high energies. That this condition holds for the manifolds in Sections
1.2.1 and 1.2.2 is shown in [CDal, where such estimates are shown for the resolvent of —A 4V,
for a large class of potentials V. Theorems 1 and 2 of [CDb] give the needed resolvent estimates
for the Dirichlet Laplacian for the domains of Section 1.2.3.

In fact, our wave expansion, Theorem 3.2, holds for more general compactly supported per-
turbations of the Laplacian on a manifold or domain with infinite cylindrical ends, as long as
appropriate high-energy resolvent bounds hold. In Section 2 we adapt the Euclidean black box
formalism of [SZ91] to the cylindrical end setting. This allows us to treat in a unified way prob-
lems with and without a boundary extending to infinity. This formalism also allows us to handle
the Klein-Gordon equation in addition to the wave equation. In Section 2 we give a self-contained
presentation of some properties of the resolvent, generalized eigenfunctions, and spectral mea-
sure in this very general setting. This extends some results known for manifolds with infinite
cylindrical ends.

1.2.1. Ezamples with minimal trapping. Let r be the radial coordinate in R¢ for some d > 2, and
let

X =R%, go = dr?® + F(r)dS,
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where dS is the usual metric on the (d — 1)-dimensional unit sphere, F(r) = r?

F’ is compactly supported on some interval [0, R] and positive on (0, R); see Figure 1.

near r = 0, and

FIGURE 1. A cigar-shaped warped product.

Then all gg-geodesics obey, for r(t) # 0,

2
() == (1) = 2P P (r(§) F(r(1) > 2

where 7(t) is the r coordinate of the geodesic at time ¢ and 7 is the angular momentum, constant
on each geodesic. Consequently, the only trapped geodesics (that is, the only maximally extended
geodesics with sup,cpr(t) < 400) are the ones with 7(t) = F'(r(t)) = 0, that is the ones in
the cylindrical end that have no radial momentum. This is the smallest amount of trapping a
manifold with a cylindrical end can have.

Let g be any metric on X such that g — go is supported in {(r,y) | » < R}, and such that g
and gg have the same trapped geodesics. For example we may take g = go + cg1, where g; is
any symmetric two-tensor with support in {(r,y) | 7 < R}, and ¢ € R is chosen sufficiently small
depending on g;. Alternatively, we may take g = dr? + gs(r), where gg(r) is a smooth family of
metrics on the sphere such that gg(r) = r2dS near r = 0 and gs(r) = F(r)dS near r > R, and
such that 9,gg(r) > 0 on (0, R). This way we can construct examples where g — go is not small.

For this set of examples, it is a consequence of the results of [CDal] that there are at most
finitely many eigenvalues of the Laplacian on X, and at most finitely many threshold resonances.

1.2.2. Ezamples based on convex cocompact manifolds. Let (X, gg) be a convex cocompact hyper-
bolic surface, such as the symmetric hyperbolic ‘pair of pants’ surface with three funnels depicted
in Figure 2.

In particular, there is a compact set N C X (the convex core of X) such that
X\ N =(0,00), x Yy, gH|x\N = dr? + cosh?r dy?,
where Y is a disjoint union of k£ > 1 geodesic circles, not necessarily all of the same length.

We construct a metric on X which gives it the structure of a manifold with infinite cylindrical
ends by modifying the metric on the funnel ends. Take g such that

gln = guln, glx\wv = dr? + F(r)dy?, (1.11)

where F(r) = cosh?r near r = 0, and F’ is compactly supported and positive on the interior of
the convex hull of its support.

It is also possible to construct examples with dimension d > 3 — see [CDa, Section 2.2].
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=

FIGURE 2. A hyperbolic surface (X, gy) with three funnels, and a modification of
the metric which changes the funnel ends to cylindrical ends.

Again, for this set of examples, it is a consequence of the results of [CDa] that there are at most
finitely many eigenvalues of the Laplacian on X, and at most finitely many threshold resonances.

1.2.3. Star-shaped planar waveguides, with the Dirichlet Laplacian. We next turn to examples of
domains X C R? for which Theorem 1.1 holds for solutions u of the wave equation which in
addition satisfy Dirichlet boundary conditions on 0X. Though here we restrict ourselves to d = 2
for simplicity, the paper [CDb] has conditions on domains in R? with d > 3 which ensure the
theorem holds, as well as alternative sufficient conditions for planar domains.

X ~—~ X X

I N

FIGURE 3. A domain with one end, and two domains with two isometric ends.

Let (s,7y) be Cartesian coordinates on R? and X C R? be a domain. Three examples of domains
we allow are shown in Figure 3. They are defined as follows:

(1) Let X be the union of the open disk of radius 1 centered at (1,0) with the strip (1,00) x
(—1,1).

(2) Let X be the set of (s,y) such that fi(s) — 1 <y < 1 — fa(s), where f; and fo are
nontrivial compactly supported functions in C'*!(R), which take values in [0, 1), and which
are monotonic away from s = 0.

(3) Let X = (Rx (—1,1))\ K, where K is a compact, convex subset of R x (—1,1) which has
CY! boundary and is symmetric about the y axis.

To state more general assumptions, let v = (v, 1) be the outward pointing unit normal to
0X. We assume svg < 0 on 90X, and call such domains “star-shaped” with respect to s = +oc.
Given an open interval I and positive constant C;, define I'p = T'p(I,C7) C 0X N (I x R) via

I'r = {(s,y) €co0Xn (I X R) | SUs < —C[}. (112)
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Now we assume that there is an open interval I and a positive constant C so that the intersection
of X with I x R consists of bounded open sets X7, ..., Xx with mutually disjoint closures such
that for each k =1,..., K,

(0X NoXp)\Trp C I x {ay},

for some real ay.

Moreover, we assume X is a domain with infinite cylindrical ends. Specializing to the case
here, by this we mean that there is Ry > 0 such that X N ([—Rp, Ro] X R) is bounded and

XN ((—OO, _RO} X R) = (—OO, _RO] xY_, Xn ([R()’OO) X R) = [R07OO) x Yy, (113)
where Y_ and Y, are (not necessarily connected) bounded open sets in R. We allow the possibility
that one, but not both, of Y. is the empty set. Then Y =Y, LUY_.

Finally we assume that each point p € 90X has a neighborhood U, so that either U, N X is
convex or U, N X is CHL. Figures 3 and 4 include examples of domains satisfying all of these
conditions.

X X

.
D

FIGURE 4. Some domains with multiple nonisometric ends.

Resolvent estimates for domains of this type are studied in [CDb]. Results of that paper
ensure that for the class of domains in R? described here, there are no embedded eigenvalues or
resonances. Hence the sums in (1.8) and (1.9) are actually 0, and ||xu(t)| = O(t™1).

1.3. Complete expansions under an additional spacing condition on the thresholds.
In this subsection we suppose that (X, g) is as in Section 1.2 but with an additional assumption
on the eigenvalues of —Ay. This assumption holds for all the examples in Section 1.2.1, but only
for some of the other examples.

To state it, let {17}7°, be the sequence of square roots of distinct positive eigenvalues of —Ay in
increasing order, so that 0 < v; < v5 < ---. The assumption is that there are positive constants
cy and Ny, such that

Vgl — v > CnyNY, (1.14)

for all [ € N with v; > 1. Note that this assumption allows the eigenvalues of —Ay to have
high multiplicities, but forbids distinct eigenvalues from clustering too closely together. Since for
the examples in Section 1.2.1 v = \/I(l +d — 2), it is easy to see (1.14) holds. On the other
hand, consider the examples illustrated using Figure 2 in Section 1.2.2—these have d = 2 and
three connected ends. In this case, Y consists of the disjoint union of three circles. Noting
that the function F'(r) of (1.11) is the same for each end, if the radii of these three circles are
rational multiples of each other, then (1.14) holds. In fact, if the radii are algebraic multiples
of each other, this holds by Liouville’s Theorem on approximation of algebraic numbers, e.g.
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[DKS10, Proposition 7.5.15]. If, however, for some pair of the circles the radius of one circle is a
transcendental multiple of the other, then this condition may not hold. In general, this condition
holds for some of the examples of Section 1.2.2, but not for all. Turning to the domains in R?
pictured in Section 1.2.3, we can see that (1.14) holds for all the examples in Figure 3, where each
domain either has a single connected end, or two isometric connected ends. For the examples in
Figure 4, whether or not (1.14) holds is again subtle, depending on the ratios of the lengths of
the cross-sections of the ends.

With the assumption (1.14) and a bound on the cut-off resolvent at high energy we can bound
derivatives of the cut-off resolvent at high energy, see Lemmas 4.3 and 4.4. This allows us to
refine our expansions.

Theorem 1.2. Let (X,g) be as in the examples in Sections 1.2.1 or 1.2.2. Alternatively, let
X c R? be a domain as in section 1.2.3, and consider the Dirichlet boundary conditions. In
either case, assume (1.14) holds. Let fi, fo € C(X) be given, and let u(t) solve (1.1) and
satisfy Dirichlet boundary conditions in the case of a domain X C R%. Then for each ky € N we
can write

u(t) = te(t) + Uthr ko (t) + ko (1),
where ue s still given by (1.8) and

ko—1 00

1 o . y
uthro(£) = 7 D ®5(0)(f2, ®5(0)) + D ¢ VEES (b e g )

;=0 k=0 =1
for some by 4 € (r)V/2F2R+L2(X). For any x € C°(X) there is a constant C so that

o0
> lxbuktllzze < C, k=0,1,2, ...k — 1
I=1
and
XU ko ()| L2 (x) < Ct% fort sufficiently large.
Moreover, the by 1, + are determined by the value vy, the initial data f1, f2, and suitable derivatives
of elements of the set {®;1(A)}o<o, <y, evaluated at £u.

For further details about how the b;; 4+ are determined, see Theorem 4.1 and Lemma 4.7 and
its proof. We note, however, that for general initial data and k > 0 we do not expect the sums
> 121 bik,+ to be finite sums; compare, for example the Dirichlet half-cylinder case (1.4) and (1.6).
Comparing Theorem 1.1 gives, for [ € N

\/\/ZITT Zlcbj(aj) <€ii”/4<f1,q’j(0j)> + Z.lljlei”/4<f27‘pj(ffj)>> :

5=V

bro+ =
bt 4
As in Theorem 1.1, because of the smoothness of the initial data we can instead bound
XU ko (E) || e (x) < Ct~* with the constant depending on m as well as x and the initial data,
and the series Y12 [|xbyk,+ ]| g (x) converges for each value of m.

Theorems 1.1 and 1.2, and their more general versions, Theorems 3.2 and 4.1, require high
energy bounds on the norm of the cut-off resolvent. The bounds are generally proved under
some conditions on the trapping, as we have discussed earlier in the introduction. However, for
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a general manifold with infinite cylindrical ends, without a bound on the high energy behavior
of the resolvent or any restrictions on the trapping, we can find an asymptotic expansion of
Xsp(—A)u(t), provided that ¢, € C(R), see Proposition 4.2. Here, as before, u(t) is the
solution of (1.1), and we must assume the initial data have support in a fixed compact set.

The literature of the study of local energy decay under the assumptions of no trapping or mild
trapping is quite large, and we mention only a few papers. The study of local energy decay
for nontrapping perturbations of the Laplacian on Euclidean space was initiated by Morawetz
in [Mor61] and continued in, for example, [LMP62, MRS77, Vai89]. The question of wave expan-
sions or wave decay on noncompact manifolds with various kinds of ends and different trapping
assumptions is a very active area of research; see [Zwol7] and references therein for some more
recent results. The most closely related results of which we are aware are for solutions to the
wave equation on a planar waveguide without forcing [Lyf76] and with forcing [HWO06], where the
expansion is found to order o(1). For energy decay of solutions to a dissipative wave equation on
a waveguide, see [MR18].

Our results build on studies of the spectral theory of manifolds with cylindrical ends, in
particular we mention [Gol73, Lyf76, Gui89, Mel93, Chr95, Par95]. More recent papers include
[Chr02, IKL10, MS10, RTdA13] and references therein. We give more precise references as they
are used.

1.4. Notation. In this section we collect, for reference, some notation introduced in Section 2.1:

e H is an operator (generalizing the Laplacian on a manifold with cylindrical ends) on a
Hilbert space H.

e Hy is a nonnegative operator (generalizing the Laplacian on the cross sections of the
cylindrical ends) on a Hilbert space Hy .

° {0]2.}]-20 are the eigenvalues of Hy, repeated with multiplicity, with 0 < g < 01 < g9 <
-+, This set may be finite or infinite.

e {¢;} are a complete orthonormal set of eigenfunctions of Hy with Hy ¢; = aquﬁj.

° {Vf}lzl are the distinct, positive eigenvalues of Hy with 0 < v <wvp < ---.

And here is some notation introduced elsewhere in the paper:

e fi, fo are initial data; see (1.1) and (3.1).

e 7;(N)=(\— 0]2)1/2, with Im 7; > 0 when Im A > 0; see (2.4).

e The resolvent R(\) = (H — A\?)"': H — H is originally defined when Im A > 0, but the
cutoff resolvent yR(\)y continues meromorphically to the Riemann surface Z, which is a
cover of C with covering map p; see Section 2.2.

e P is the orthogonal projection onto the span of the eigenfunctions of H, if any; see
Section 2.2.

e ®;()\) are generalized eigenfunctions (also sometimes called scattering solutions, or dis-
torted plane waves) of H: they obey H®;(\) = A2®;()) and also satisfy further conditions;
see (2.17).

e {1y} are orthonormal eigenfunctions of H with eigenvalue E;: Hny, = Eny; see Section 3.1.

Throughout the paper, C' denotes a positive constant whose value may change from line to line.
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2. BLACK BOX SCATTERING ON CYLINDERS

The results we shall prove about local wave expansions are valid for a large class of “black box”
perturbations of the Laplacian on a manifold with infinite cylindrical ends, with or without bound-
ary, provided that there are appropriate high-energy bounds on the cut-off resolvent. In fact, the
natural setting for our work is more general still, requiring only that ‘infinity is one-dimensional’
in a sense we make precise below. This more abstract setting also allows low regularity (as in
some of the examples from [CDb]) and other settings, like quantum graphs.

We adapt the idea of [SZ91] (see also [DZ19, Chapter 4]) of a compactly supported black box
perturbation of the Laplacian on Euclidean space to give a definition of a compactly supported
black box perturbation of the Laplacian on a manifold with infinite cylindrical ends, or more
generally of an operator on L?(R,;Hy), where Hy is any Hilbert space. We collect a number
of results related to the resolvent, spectrum, generalized eigenfunctions and spectral measure of
such operators. We give a mostly self-contained presentation of these results, though many can
be found in [Gui89, Mel93, Par95, Chr95] in less general settings.

2.1. Black box operators. In this section we give the main definitions and assumptions we will
use throughout the paper, and illustrate them with examples, focusing first on the simpler case
of complete manifolds without boundary, and then on the more complicated one where there is a
boundary. We conclude with some further examples.

2.1.1. Manifolds without boundary. Our basic example of a black box operator is the Laplacian on
a manifold with infinite cylindrical ends and no boundary, as in Sections 1.2.1 and 1.2.2. Namely,
let (X, g) be a complete Riemannian manifold without boundary, having an open subset X, (the
infinite cylindrical ends) with the following properties: X \ X is bounded, and

(Xoos glxo) = ((0,00) X Y, dr? + gy),
where (Y, gy) is a compact manifold without boundary. Then let
H=1L*X), Ho=L*X\Xs), Hy=L*Y),
H = —A be the Laplacian on X, D = H*(X), (2.1)
Hy = —Ay be the Laplacian on Y, Dy = HQ(Y).

In what follows we will use the notation on the left hand sides of (2.1) in a more general way, but
the reader should keep in mind this more concrete setting.

2.1.2. Definitions, notation, and assumptions. Let H be a complex Hilbert space with orthogonal
decomposition

H=Ho® L*(Ry; Hy),
where Hy and Hy are separable Hilbert spaces. We use r as the coordinate for R = (0, 00). Let

H be a self-adjoint operator on ‘H with dense domain D. Let Hy be a self-adjoint operator on
Hy with dense domain Dy .

Let 1y and 1, denote the orthogonal projections Ny : H — Ho and T : H — L?(Ry; Hy).
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If g € C(]0,00)) and f € H, then by gf we mean

xf = g(0)lof + gl f. (2.2)

Hence f € gH means f = gh for some h € H. We will most often use this for g = x € C2°(]0, 00))
and g(r) = (r)P = (1 4 r2)P/2.

Assume that H is lower semi-bounded and that lo(H +4)~! is compact. Assume that Hy > 0
and that Hy has no essential spectrum.

Let {¢o, ¢1,...} be an orthonormal basis of eigenfunctions of Hy, such that Hy¢; = ajngj,
with 0 < 09 < 07 < ---. Beginning in §3, we will also use 0 < v; < vy < --- to denote the
positive, distinct elements in the sequence 0 < o9 < g1 < ---. Thus, the ¢’s are the square roots
of all the eigenvalues of Hy with multiplicity, and the v’s are the square roots of the positive
eigenvalues of Hy without multiplicity.

If dim Hy < oo, then these sequences terminate. This occurs if and only if the operator Hy is
bounded.

We identify elements u € L*(R;Hy) with sequences (uj) € ¢*(No; L*(R4)) using the above
basis:

u(r) =Y u;(r)g;,
j=0
where, if dim Hy < oo, then once again the sequences must terminate. Let
Doo = {(uy) € 2(No; L*(Ry)) | (—u] + oFuy) € £2(No; L*(Ry)) } - (2.3)

Assume that 1D C Dy, and NooH = —9? + Hy in the sense that if f € D, then I Hf =
(=02 + Hy )1 f. Assume that if f € Dy, and flr<e= 0 for some € > 0, then f € D.

2.1.3. Ezamples with boundary. We can modify the basic examples of Section 2.1.1 to allow X
and Y to be open manifolds, if we impose appropriate boundary conditions.

The simplest such example is the half cylinder of Section 1.1. In addition to the Dirichlet
and Neumann boundary conditions considered there, we could just as well take more general
self-adjoint boundary conditions.

We now turn to our primary example with Y # (), where X is isometric to a waveguide. Here
by a waveguide we mean a domain  C R? which has a subset Qs C Q so that the closure of
0\ Qo is compact and Q4 is a “cylindrical end.” That is, Qo = Ulel Q, and, forl=1,...,L,
; can, under a rigid motion of R?, be identified with (0,00) x U;, with U; ¢ R4"! a bounded
domain. In our earlier notation, Y = I_IlelUl. The metrics on 2 and Y come from restriction of
the usual Euclidean metric. Then put H = L2(2), Ho = L*(2\ Qu), and Hy = L3(Y).

To consider the Dirichlet Laplacian on Q, we set H = —A, where A is the Euclidean Laplacian
here, and D = {f € H}(Q) : Af € L*(Q)}; see e.g. [Tayll, Section 8.2]. Similarly Hy = —Ay
and Dy = {g € H}(Y) : Ayg € L*(Y)}. Then

Doo = {f € H' (20) | Af € L? (Q0) and fl(g,00)x00,= 0},
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and the desired inclusions involving D and Dy, follow. That Ty, (H +14)~! is compact follows from
e.g. [Bor20, Theorem 6.9], and the desired properties of Hy can be obtained by e.g. taking an open
cube @ with Y C @ and using domain monotonicity of eigenvalues as in e.g. [Bor20, Theorem 6.20].

Notice that for the treatment of Dirichlet boundary conditions on €2 we did not require any
regularity on the boundary 9€). With appropriate regularity assumptions, the Laplacian on a
domain or manifold with Neumann (or certain more general) boundary conditions can also be put
into the above black box framework; see e.g. [Tayl1, Section 8.2] and [Bor20, Section 6.4].

2.1.4. Other examples. We have already mentioned our primary examples of black box operators
motivated by the Laplacian on a manifold with infinite cylindrical ends, but we briefly outline
some further examples.

We begin with an example in which the space Hy is finite-dimensional. Consider the operator
—0? +V on L?(R), where V is a “steplike” potential, as studied in, for example [CK85, Chr06,
DS12], and others. For us, this means V' € L*°(R;R), and there is an R > 0 and constants Vi
so that V(r) = V4 when £r > R. Here Hy = C? = Dy with the usual inner product, and if
f=(fs,f-) € Hy, then Hy f = (V4 f+,V_f_). Thus we must make the assumption that V3 > 0
in order that the condition that Hy > 0 be satisfied. The hypotheses we make on V' are more
restrictive than those of [CK85]. In a similar fashion, matrix-valued Schrdédinger operators on
R with steplike potentials can be put in this framework, provided the matrix-valued potential
satisfies analogous conditions.

Another example with Hy finite-dimensional is provided by a Schrodinger operator on a quan-
tum graph X which is the union of a finite part and a finite number of half-lines. Let £ be
the set of edges, and let £ = Ex U E, where each edge e € £k has finite length [(e), and
each edge in & can be identified with (0,00). We assume each set £x and E is finite. Then

H=DB.ce, L2(0,£(e)) Dece.. L%(0, 00).

If we impose Neumann—Kirchoff boundary conditions at the vertices, then D is the set of
functions f € H whose restrictions to all edges are in H?, which are continuous across vertices,
and which satisfy, at each vertex v, 3 e, %(v) = 0. Here &£(v) is the set of edges meeting at
vertex v, 1. is the coordinate on edge e, and the derivatives are taken in directions away from
the vertex. Now let V' € L*°(X;R) have compactly supported (distributional) derivative, and
suppose V' > 0 outside of a compact set. Then H is given by —(336 + V(re) on each edge. See
e.g. [Bor20, Chapter 8] and [EK15, Chapter 8] for more on quantum graphs. In this example,
Hy = CV, where N is the number of edges in £ and the operator Hy is determined in a manner
similar to the step-like Schrodinger case described above, by the values of V' “near infinity.”

A possibility with Hy infinite-dimensional is to let Y be a finite quantum graph. Then using
notation as in the previous example, & = EX and Hy = @, L*(0,(e)). We can let Hy be the
operator —65 on each edge, with domain Dy obtained by imposing Neumann-Kirchoff boundary
conditions as described above. Then let X = Ry x Y, H = L*(X), V € L¥(X;R,), and
H = —0? + Hy + V, with D = Dy N {(u;) € (*(No; H}(R4)}, giving the Dirichlet boundary
condition at r = 0.
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Note that if the operator H with domain D C H satisfies the general conditions listed in Section
2.1.2, so does the operator H + m? for any m € R, by replacing Hy by Hy + m? (and hence
replacing 032 by 032. + m?). This implies that Theorems 3.2 and 4.1 apply to the Klein-Gordon
equation as well as the wave equation.

2.2. The resolvent. Now let H be an operator as described above, and for Im A > 0, Re A # 0,
define the resolvent
RN =(H-X)"1H-H

We recall and extend some results (proved in [Gui89], [Mel93, sections 6.7-6.10], [Chr95, Section
2], and [Par95] for manifolds with cylindrical ends) on the behavior of R(A) and of its meromorphic
continuation, focusing on the region near the real axis and on the consequences for the spectral
measure.

We use the following model resolvent. For Im A > 0, let Ry()\) be the resolvent for —9? + Hy

with Dirichlet boundary condition at r = 0, that is to say
(=02 + Hy — \)u = f <= u= Ry(\)/,
for f € L?(R.;Hy) and u € Dy such that u],—o= 0, where Dy, is defined in (2.3). Explicitly,
for Im A > 0, 0]2- € spec(Hy), let
() = (X = o})2, (2.4)

where we take the square root to have positive imaginary part. Then for any (f;) € £2(No; L*(Ry))
(recalling sequences terminate if dim H < c0),

RoN) S £y =3 — /OOO (W=l WY [, (2.5)

>0 =0 2m(Y)

From this formula we see that the spectrum of —92 + Hy, with Dirichlet boundary condition at
r = 0, is absoultely continuous and given by [¢3, o). However, the multiplicity of the spectrum
changes at the points O'J2~ ¢ spec(Hy ), because, for any A\?> > 0, the number of summands in (2.5)
which are not bounded L*(R,) — L?(R.) equals the number values of j such that 032‘ < A2
We call the points {0]2} thresholds. When using A2 as a spectral parameter, we shall abuse
terminology a bit and refer to the points {0} as thresholds as well.

In the remainder of Section 2.2 we will derive, among other things, the following description
of the spectrum of H. The essential spectrum of H is given by the same continuous spectrum
[0(2), o0), with the same thresholds and multiplicities. The discrete spectrum of H is countable
(possibly empty) with infinity being the only possible accumulation point.

We begin with the upper half plane, where H may have only discrete spectrum.

Lemma 2.1. The resolvent R(\) is meromorphic for Im A > 0.

This is fairly clear from our assumptions on H. However, we give a detailed proof based on
(2.9), an identity due to Vodev [Vod14], which will also be useful in our analysis later. In [Vod14]
the identity is stated only for Schrodinger operators on R?. However, it in fact holds in far greater
generality for operators which are, in an appropriate sense, compactly supported perturbations
of each other. The identity (2.9) is a version adapted to our setting.
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Proof. Let x1 = x1(r) € C2°(]0,00)) be 1 near r = 0. Let A and Ao have positive imaginary parts
and nonzero real parts. To relate R(\) and Ry(\) we start with

RN —x1): L*(Ry; Hy) — H,
which we write as

RO)(1 —x1) = RO)(L = x1) (=07 + Hy — A*)Ro(N).

But since (=92 + Hy )(1 — x1) = H(1 — x1), we may write
RO)(1 = x1) = RO{(H = M) (1 = x1) + [x1, 9]} Ro(V)
= {(1 = x1) = RO, x1]} Ro(N).- (2.6)
Likewise
(1= x1)R(Xo) = Ro(Mo){(L — x1) + [07, x1] R(Ao) }- (2.7)

On the other hand, by the resolvent identity we have
R(A) = R(Ao) = (\* = ) R(N)R(Xo)
= (X% = 23) (RO)x1(2 = x1)R(Mo) + R (1 = x1)*R(N)) - (2.8)
Inserting (2.6) and (2.7) into (2.8) gives
R(N) = R(X) =A% = 33) (RO (2 = x1)R(X)

+{(1 = x1) = RN07, xal}Ro(N) Ro(Mo){(1 — x1) + [@gaxﬂR(Ao)})-
Bringing the R(\) terms to the left, the remaining terms to the right, and factoring, gives
RN (I + K (X X)) = F(X\ No),

for any A and A\g with positive imaginary parts and nonzero real parts, where

KO 0) = (48 = 2) (x1(2 = x1)R (o) — 182, xa RoN) Ro o) {1 = xa) + (07, xa ] RO0)) ).
and
F(X X0) = R(Xo) + (A% = A5)(1 — x1)Ro(A) Ro(Ao){(1 — x1) + [87, x1] R() }.
For )\g fixed and X sufficiently close to Ag, we can invert I + K(\, \g) using a Neumann series.
Observe that K (), \g) is compact, because of our assumption that lo(H +i)~! is compact; see

e.g. [DZ19, Lemma 4.2]. Moreover A — K (A, \g) continues analytically to the upper half plane.
Consequently, by the analytic Fredholm theorem (see e.g. [DZ19, Theorem C.8)),

A= RO = F(\ X)L+ KX\ X)L, (2.10)

continues meromorphically to the upper half plane, for any fixed A\g with positive imaginary part
and nonzero real part. O

The statement of Lemma 2.1 is equivalent to the statement that the essential spectrum of H
is contained in [0, 00). Its proof can be easily adapted to show that the essential spectrum of H
equals [0, 00). More specifically, if o9 > 0, then use the fact that Ry(\) continues analytically to
C\{X € R ||\ > g9} to show that the essential spectrum of H is contained in [0, 0). To show
the reverse containment, reverse the roles of R(A) and Ry(A) in the proof.
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To study the essential spectrum in more detail, we use the minimal complete Riemann surface
to which the functions 7; (defined by (2.4)) continue analytically for each 012- € spec(Hy). We
denote this Riemann surface by Z. We use the term physical space to refer to a certain copy of
the upper half plane {Im A > 0} in Z, defined as follows: if o9 = 0, then the physical space is the
unique copy of the upper half plane on which Im 7;(A) > 0 for each O'JZ- € spec(Hy), and if oy > 0,
then there are two such copies, and we let the physical space be one of them (it doesn’t matter
which one). Throughout this paper we will identify the upper half plane in C with the physical
space in Z, and R in C with the boundary of the physical space in Z.

We define a projection p : Z — C as follows: When X lies in the physical space, we put
p(A) = X, and for general A € Z, extend p(\) by analytic continuation. Then p is an countably-
sheeted covering map which is regular over C \ {#o;: j € Ny, o; > 0}, and which has points of
ramification of order two over each distinct £o; with o; > 0. If o9 = 0, then p = 79. Regardless
of the value of og, the physical space is the unique preimage of the upper half plane in C under

2

p on which Im7;(A) > 0 for each o7 € spec(Hy). The global structure of Z is complicated,

but we shall only need to work with A € Z in a neighborhood of R. For more about 7, see
e.g. [Mel93, Section 6.7]

From the explicit formula (2.5), we see that, for any x = x(r) € C°([0,00)), the cut-off
resolvent y Ry(\)x continues analytically to Z. The physical space is that preimage of the upper
half plane in C under p on which Rg(\) is bounded X — #H. We now prove meromorphic
continuation of yR(A)y to the same Riemann surface.

Lemma 2.2. For any x = x(r) € C([0,00)) the cut-off resolvent xR(\)x continues meromor-
phically to Z.

Proof. The proof is straightforward because the preliminary work has been done in the proof of
Lemma 2.1.

Without loss of generality we may assume that y is 1 near r = 0. Fix x1 = x1(r) € C2°(]0, 1)),
also 1 near r = 0, so that xyx1 = x1. Then, multiplying (2.10) on the left and right by x, we
obtain

XR(A)x = xEFX Ao) (I + K (A X)) x = XxF A, do)x( + KA Xo)x) ™ (2.11)

for Ay fixed with positive imaginary part and nonzero real part, and for X\ sufficiently close to Ag,
where for the second equality we used the Neumann series for (I + K)~! and YK = K. From the
fact that yRo(\)x continues analytically to Z, and the resolvent identity (A2 — A2)Ro(\)Ro(Xo) =
Ro(X) — Ro(Xo), we see that A — xF'(A\, Ag)x and A — K (A, A\g)x both continue analytically to
Z. Hence, by the analytic Fredholm theorem, yR(\)x continues meromorphically to Z. O

We now refine Lemma 2.2 when Im A = 0, that is to say on the boundary of the physical space.
Our arguments here mostly follow [Mel93, Propositions 6.27 and 6.28]. We denote by Py,: H — H
the orthogonal projection onto the eigenspace of H at A3, with the convention that if A2 is not
an eigenvalue of H, then Py, = 0.

Lemma 2.3. Let A\p € R and ¢ > 0.
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e If \g is not a threshold, then there exists B(\): (r)~'/2=H — (112U continuous with
respect to A\, such that
_ PAO
A2 — N2
when Im A > 0 and A is sufficiently close to Ag.
2

e If Ao is a threshold, that is to say Ao = o; for some o] € spec(Hy ), then there exist

Ag, BON): (r)™V2H — (V27U with Ay independent of X\ and B continuous with
respect to \, such that

R(\) =

+ B()), (2.12)

Py, A
(A2 ()

when Im A > 0 and A is sufficiently close to Ag.

R(\) = + BV, (2.13)

Before giving the proof, we clarify what we mean by H f if f lies in a weighted space, rather
than H. Let g(r) = (r)? or g(r) = e for some p € R. Suppose f € gD, with Iof = > fi¢;.
Then (f;), (=f + O'JQ-fj) € 2(No;gL*(Ry)). If x = x(r) € C*(R,) is 1 in a neighborhood of
r =0, then H(1 — x)f € gH is given by H(1 — x)f = > (-0% + sz)((l — x)fj)¢;. Moreover,
Hf=Hxf+H(1-Xx)[.

Proof. We use a more elaborate version of (2.11). Fix xo, x1 € C°([0,1)), both 1 near r = 0,
such that xox1 = x1. Then, abbreviating K (A, \g) to K and using yoK = K, we have

(I-KQl-x)I+EK)=I+Kxo = ([+K)"=(I+Kxo) '(I-K(~x0)),

so that
R(A) = F(\Xo0)(I + KA Xo)x0) " (I = K (X, X0)(1 = x0)), (2.14)

for A and Ag in the upper half plane, away from any poles of R. By the explicit formula
(2.5), we see that A — Ro(\): (r)"/2=H — (r)}/?*} extends continuously from the physi-
cal space to its boundary. Hence A — (I — K (X Xo)(1 — x0)): (r)"V/27H — (r)~1/27¢H and
A= F(O\Ao): () ~1V2=¢H — (r)1/24¢} also extend continuously. By the analytic Fredholm
theorem, X — (I + K (X Xo)xo) ™ ': (r)~Y27¢H — (r)~1/27¢} also extends continuously, except
possibly on a discrete set where is has poles.

To describe these poles, we use the fact that if Im A > 0, then ||[R(\)||~! equals the distance
from A2 to the spectrum of H, where || - || denotes the operator norm H — H. In particular,

0<ImA<|Re) = |[RO\)| < 1/(2Im \| Re A)). (2.15)

Hence, if Ao € R is not a threshold, then there exist A: H — H and B(\): (r)~V/2=H — (r)1/2+ey

such that
A
R(A) = 5—3 + B,
A2 — 22
when Im A > 0 and ) is sufficiently close to \g. Composing on the left with H — A2, and matching
powers of A2 — A3 as A\ — ), gives

(H-X)A=0, I=-A+(H-X\)B(), (2.16)
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which implies A = —P,,. Indeed, the first of (2.16) implies that the image of A is contained in the
image of Py,, so that Py, A = A. Then apply P), to the second of (2.16) and use Py,(H — %) =0
to see that Py, = =Py, A.

If Ao = 0j, then near Ay we must use the coordinate 7;(\) to describe the possible pole there, and
it follows from (2.15) that there are operators A: H — H and Ag, B(\): (r)~1/2=¢H — (r)1/2+eqy

such that
A Ag
—— + —— + B(}\),
(N ()
when Im A > 0 and ) is sufficiently close to \g. Composing on the left with H — A2, and matching
powers of 7j(\) as A = o, gives (2.16) and hence A = —P,,. O

R(N) =

Let P denote the orthogonal projection onto the span of the eigenfunctions of H, if any. Then
R(\)P continues meromorphically from the physical space to Z (or even just to C), and for any
X = x(r) € C°([0,00)), xR(N)(I —P)x is continuous for A on the boundary of the physical space,
except, perhaps, at the thresholds {+o; | 0]2- € spec(Hy)}. We will further describe the possible
singularities at the thresholds in Section 2.5.

2.3. The generalized eigenfunctions. To describe R()\) in more detail, we define a family of
generalized eigenfunctions ®; of H depending on the parameter \ € Z , though we shall be most
interested in them for A € R, that is, A on the boundary of the physical space. Recall that
{¢0, ¢1,...} C Dy is a complete orthonormal set of eigenfunctions of Hy, with Hy¢; = O'qubj.
Let x = x(r) € C2°(]0,00)) be 1 for r < 1, and set

2R\ = eI, € O (B Hy).

Now, for A in the physical space and away from poles of the resolvent we define a function
(I)j — (I)j()\) c <7~>1/2+561m7'j(/\)7"’D;

®;(N) = (1= x)2°(N) — R(N)[0F, X]®5°(A), for Tm A > 0. (2.17)
Then (in the sense of the comment after the statement of Lemma 2.3)
(H - X)d;()\) = 0. (2.18)

It is easy to see that when Im A > 0 and A? is not an eigenvalue of H then ®;()) is independent
of the choice of x € C2°([0,00)) which is 1 for r < 1: If ®;, ®; are defined as in (2.17) with two
different such functions y, x, then ®; — <i>j € H is in the null space of H — A2, and hence is 0
by necessity. The functions ®; have a meromorphic continuation to Z (with the weighted space
to which they belong depending not only on the index j but also on the point in the Riemann
surface Z ), which we continue to denote in the same way. Moreover, we shall show below that
®;(A) is a continuous function of A when X is on the boundary of the physical space and || > o;.
When ) is in the boundary of the physical space and o > ||, ®;(\) € ()2t} for any € > 0.

From (2.17), away from poles of the resolvent we have

L@V (1) = Vg4 3T Sy (W™ Vg, (2.19)

o2, Espec(Hy)
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for some functions S,;(A\) which determine the scattering matrix. For each A away from poles
of the resolvent the series in (2.19) converges absolutely, uniformly for r varying in a compact
set, as do its derivatives with respect to r and its ‘derivatives’ with respect to Hy. For A € R
(ie., on the boundary of the physical space) with |A\| > o, and away from the thresholds and the
poles of the resolvent, one can equivalently define ®;(\) to be the element of (r)1/2+€3{ which
satisfies (H — A?)®; = 0 and which has an expansion of the form (2.19) for some S,,;. Note that
in the expansion (2.19), the terms with o, > |\| are exponentially decaying; these correspond to
evanescent modes. Those with o, < |A| correspond to outgoing propagating modes.

Both the generalized eigenfunctions ®; and the functions S,,; are meromorphic functions on
Z , as can be seen from (2.17). In particular, near a threshold corresponding to o, both ®; and
Sm;j are locally meromorphic functions of 74(\).

We give a self-contained proof of the following lemma, which is known (at least in specific cases)
but perhaps not explicitly in the literature.

Lemma 2.4. If \g € R and |\o| > 0j > 0, then ®;(\) and Sp;(N\) are continuous at o.
We comment that there is no restriction on the size of o, compared to |Ag].

Proof. We give the proof for Ao > o}, as the proof for \g < —o; is similar.
From [Par95, (3.4)], or [Chr95, Lemma 1.2],
> TN Smi(N)Smr(N) = 75 (\dje, if 0 < 0, 0% < A (2.20)
0<am <A
In particular, this implies

D T MISmMP = 75(V), i 0 < 0y < A,

0<om <A
Thus Sy (A) (i (N)/7:(A))*/? is bounded for A > o, 0. Since S, is meromorphic on Z, Smj(A)
is actually continuous in this region. Thus far we have proved S,,;(A) has no poles if 0 <
max(0j,om) < A

Now suppose there is a A\g > 0; > 0 so that ®; has a pole at A\g. Let o4, be any minimizer of
{lox, — Xo| : | 0} € spec(Hy)}, and use the coordinate 74, (\) near \g. Suppose that, with respect
to this coordinate ®;(\), has a pole of order py > 0 at Ag. In particular this implies

FA) = @A) (7o (M) (2.21)

is analytic with respect to the coordinate 7, (A) near Ao, and f(\o) is nontrivial. Since we have
already shown Sp,;(\) is regular at Ao if 0 < max(oj,0m,) < Ao, this ensures by (2.19) that
f(Xo) € H. Using (2.18), we have that (H — A\2)f(Xo) = 0, so that f(\o) is an eigenfunction of H
with eigenvalue \3.

Let Py, : H — H denote orthogonal projection onto the span of the eigenfunctions of H with
eigenvalue )\%. Note that if n € H is an eigenfunction of H with eigenvalue E and 012 < E, then

(1om, P1) 24y (1) = 0. (2.22)
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Hence Py, [02, x|®3°(A\) = 0 for any A. This in turn means

T

No) = i A= i A))Po N)[02, X] P2 (N) =
FO0) = Jim )= i ()P, ROY[Z BN = 0
since R(A) commutes with Py, when A is in the physical space. But this contradicts that f(A)
is nontrivial. Hence ®;(\) does not have a pole at A\g. The expansion (2.19) then shows that all
the Sp;(A) are regular at Ag. Hence ®; and S,,,; are continuous at Ag. O

This lemma implies that if o), > o; and d9 > 0 is sufficiently small, then ®;()) is a smooth
function of 7, (\) on (+oy, — dg, oy + o).

2.4. The spectral measure. The spectral measure for (I —P)H can be written in terms of the
generalized eigenfunctions {®;}. When H is the Laplacian on a manifold with infinite cylindrical
ends (or in fact on a more general b-manifold), Lemma 2.5 below follows from the results of [Mel93,
Section 6.9] and [Chr95, Section 2]. (See particularly [Chr95, (2.2)] and the end of the proof of
Lemma 2.5. See also [Lyf75, Section 5].)

Below we use the notation

(g@h)f=g(f,h)n.

We remark that if f € (r)™PH and h € (r)PH then we can make sense of (f,h)y by writing
(f,hyy = ((rPf,(r)"Ph)y. Recall that when A € R, R(\) = R(X + i0), where X\ + i0 is a
(particular) point on the boundary of the physical space.

The next lemma will be used to give an expression for the part of the spectral measure cor-
responding to the continuous spectrum of H. In order to prove it, we use another version of
Vodev’s identity. Let x1 = xi1(r) € CX(Ry) be 1 in a neighborhood of the origin, and let
x = x(r) € C°(Ry), with xx1 = x1. Then for A in the physical space, starting with (2.9), using
A2 =23 = p2(\) — p*(No) and (A2 — A3)Ro(A)Ro(Mo) = Ro(\) — Ro(M\o) and multiplying on both
the left and right by x gives

XR(A\)x = xR(Mo)x = (P*(A) — p*(A0))xB(A)xxa (2 — x1)xR(Xo)x

(2.23)
+ (1= x1 = xR, x1]) (xBo(\)x — xRo(Ao)x) (1 = x1 + (87, xa]xR(A0)x)-
The identity holds on all of Z by meromorphic continuation.
Lemma 2.5. Let x = x(r) € C(]0,00)). Then for A € R, X\ # toy, k € Ng, we have
1 1 1
;X[R(A) — R(=N]I -P)x = B Z WXq)j()‘) ® ©;(A)x. (2.24)

0<02<N? 7i
Note that by Lemma 2.3,
X[R(A) — R(=N)](I = P)x = x[R(A) = R(=A)]x.

We include the (I — P) here to emphasize that this combination does not have poles arising from
the embedded eigenvalues of H.
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Proof. Without loss of generality we may assume that x is real valued, and that x(r) = 1 for
r < 2. Choose x1 € C2([0,00)), also real valued, so that x1x = x1 and x1 = 1 for r < 1. We
shall use (2.23). We identify points on the open upper half plane (with A as the parameter) with
the physical space of Z. Thus A > 0 corresponds to approaching the spectral parameter \? from
the upper half plane, and A < 0 corresponds to approaching the spectral parameter A\? from the
lower half plane.

Recall that in (2.5) we defined Ry()\) to be the resolvent for —92 + Hy with Dirichlet boundary

conditions at » = 0. By explicit computation,

?

Ro(A\) — Ro(—=X) = B

0<0,; <A 7i(A) (I)?()\) @ CI)?()\) (2.25)

where
I(N) = @I\, r) = (7N — T, (2.26)
We remark here that if |A\| > o}, then q)?(—A) = —@?()\), while for [A| < oy, @?(—A) = @2(/\),
and @?(aj) = 0. From (2.23) and (2.25), if A? is not an eigenvalue of H,
XR(A)x = XR(=A)x
= (1 —x1 = xBOX[87, xa]) (xRo(A)x — xRo(=A)x)(L = x1 + [07, xa]xR(=A)x)

_ %'(1 —x1i = xR a) [ S

7N @ O | (1= 1 +10F a R
0<o; <A

Now we claim that
O;(N) = (1= x1)®J(A) — ROV)[Z, x1]DF (). (2:27)

That (2.27) holds can be checked by using the comment following (2.19). Alternately, one may
use that for A in the physical space, the functions defined in (2.17) and by the right hand side of
(2.27) both are in the null space of H — A2, and differ by an element of 7, and hence must agree
if A2 not an eigenvalue of H. The identity then holds for all A by analytic continuation.

This finishes the proof if A2 is not an eigenvalue of H. If A? is an eigenvalue, the result follows
from the fact that both sides of (2.24) are continuous functions of A away from the thresholds. [

We note that a related proof of an analogous result for the Schrédinger operator on R can be
found in, for example, [RS79, Appendix to XI.6].

2.5. Threshold behavior. We now discuss in more detail the behavior of the resolvent at thresh-
olds. Even after projecting away from the eigenfunctions, the resolvent near the threshold cor-
responding to ¢; may have a singularity which is like 1/7;, and it is this singularity we wish to
better understand. Lemma 2.5 can be combined with a result of [Mel93] to obtain the following
corollary. We note that we are giving a somewhat different formulation, and a rather different
proof, of part of [Mel93, Proposition 6.28] in this more general setting.
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Lemma 2.6. For A sufficiently near o,

1

BT -P) - s S o) o)
J l:o1=0;
is bounded if x = x(r) € C(]0,00)). Moreover,
®j(0j) = ®j(=0;). (2.28)

Proof. By the Laurent expansion (2.13), there is an operator Ay so that

«(ROT-P) - ﬁ;) X

is bounded near A = ;. Likewise, there is a By so that

(R -7y f&) X

is bounded near A = —o;.
If o0; = 0, then trivially Ag = By. So suppose temporarily o; > 0. If A € R with 0 < A < o},
then 7;(—A) = 7;(A). Thus we find

lim 75 (A)X(ROY) = RN = P)x = x(4o = Box.

However, since by Lemma 2.4 ®()) is continuous at A = o if o4, < 0, we find from (2.24) that

;1% Ti(AX(R(A) = R(=A)(I = P)x = 0.

Thus A[) = BO.
Now let o; > 0. If A € R, A > 0, then 7;(—\) = —7;()), so that

lim 7 (A)X(R(A) = R(=A))(I = P)x = x(Ao + Bo)x = 2xAox

Comparing (2.24) this means
1
Ao = PR ACHEXACHE

l:oy=0;

Now we turn to proving (2.28). Let x,x1 € C2°([0,00)) be 1 for » < 1, and let P, denote
projection onto the eigenfunctions of H with eigenvalue 032-, if any. By (2.13),

Ay Ps,
x| BN - T ) X
( (A (5 (A)?
is bounded for A near +o;. By (2.22) we have Py, [83,)(1](1)?()\) = 0, where QJ?()\) is given by
(2.26). Now use this and (2.27) to find

®Y(N)
X®j(+0;) = — lim xR(N)[0Z, x1]®}(A) = —xAo[07, xa] lim —2

— 9/ 2 4
A—=to; A—to; Tj()\) = 2’LXAO [ar ; Xl]'f’qu .
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Given 0]20 € spec(Hy ), consider the set
Gio = 1{®j(05) | o5 = 0o} (2.29)

If Gj, contains at least one nonzero element, we say £o, is a threshold resonance, and the nonzero
elements of this set are resonant states associated with £o;. It follows from (2.20) that they have
an expansion on the ends as in (2.19). The set Gj, contains a nonzero element if and only if
R(X\)(I —P) has a pole at oj, on the boundary of the physical space. Indeed, we can see from
Lemma 2.6 that if the set G, contains only 0, then R(\)(I —7P) is continuous at A = o;j,. If a]zo isa
simple eigenvalue of Hy, then the other direction is immediate. Otherwise, if 0]2-0 is an eigenvalue
of Hy of multiplicity at least two, see [Mel93, Proposition 6.28] to see that the singularity at o,
of R(\)(I — P) is nontrivial.

The threshold resonant states are analogous to the familiar half-bound states of Euclidean
scattering theory, see e.g. [New02].

3. TWO TERM WAVE EXPANSIONS

Let H be an operator as in Section 2 and let u(t) be the solution to the wave equation
(07 + H)u =0, u(0) = f1, u(0) = fo; (3.1)

that is, u(t) = cos(tvVH)fi + %fg. Here fi, fo € H, though later we shall impose more
stringent conditions on fy, fa.

We begin by recalling the contribution of the eigenvalues to . In Section 3.2 we state the main
theorem, the two term asymptotics result. In the remainder of Section 3 we give the proof of
Theorem 3.2.

3.1. Projection onto the eigenfunctions. We begin by recalling the contribution of the eigen-
values to the behavior of u. This requires only that H is self-adjoint.

Let {Ey} denote the eigenvalues of H, repeated with multiplicity, with corresponding orthonor-
mal eigenfunctions {n;}: Hny, = Eynp. For a general black box operator H the set {E,} could
be empty, nonempty but finite, or infinite, and examples are known of each. However, the as-
sumptions on H which we make in Theorem 3.2 imply that H does not have infinitely many
eigenvalues. On the other hand, [CDa] contains examples of Schrodinger operators on a manifold
with infinite cylindrical ends which have finitely many embedded eigenvalues but which still have
the type of high-energy resolvent estimate which we need for Theorem 3.2.

The following lemma, however, does not require high energy estimates on the cut-off resolvent,
and holds whether the set of eigenvalues is finite or infinite.
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Lemma 3.1. Let u(t) be the solution of (3.1). Then, with u.(t) = Pu(t),

sin((Ey)'/%t
= X <cos<<Ef>1/2t><f1, mw+ nm)
E¢#£0

+ Y me({fumem +tfame)n) - (3:2)

Ey€spec,(H)
E=0

Proof. For the initial data fi, fo we can write f; = Pf; + (I —P)f;. Then, since P commutes
with H, Pu(t) = u(t), where u, satisfies
(0F + H)ue(t) =0
ue(0) = Pfi,
(Opue)(0) = P fo.

Then a straightforward computation shows that the explicit expression in (3.2) solves this initial
value problem. O

3.2. Statement of Theorem 3.2. Let

Catit == C \ <U H{zm —is, s> 0}) =C\ | U WEoj—is, s>0}].  (33)

>0 + j:0'j>0 +

et 2] —U1 Vi V2

FicUrE 5. The set Cgj; is the complex plane with downward half-lines removed
at the square roots of the nonzero eigenvalues of Hy .

The operator xR(\)x continues meromorphically from {\ € C : Im A > 0} to Cgy. In fact,
we can identify Cg;; with a subset of the Riemann surface 7. We use the same notation for the
continuation of R(\) to Cgyj, so that when A € R, R(\) = R(A +i0). We note that Cgj; does not
require a cut at 0, because if o; = 0, then 7;(\) = 79(\) = A is already analytic on C. This does
not mean, however, that R(\) must be analytic at the origin, as it may still have a pole there.
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In the following theorem, u. encodes the contribution of the eigenvalues of H as in Lemma 3.1
and wup, is the leading order contribution from the threshold resonances (if any). The expansion
for ue(t) is given in Lemma 3.1. Recall that we have assumed that H is lower semibounded. Here
we choose M € (0,00) so that H + My > 0.

Theorem 3.2. Let H be a black box operator as defined in Section 2.1, and suppose that for some
Ni, Ny € [0,00), Ao > 1, and any x € C([0,00)) there are Cy, Cy so that xR(\)Xx is analytic
on the set
{N € Cgit | ReA > g — 1 and Im A > —Cp(Re \) 1} (3.4)
in Z, and that in this region
IRRO)XI < CL(1+ AN (3.5)

Fizry > 0. For k=1, 2, suppose f, € (H + My)""™H with my, € N, my, > (N2 +4 —k)/2 and
my > (N1 4+ 3 —k)/2 . If the set {v;} is infinite, assume in addition there are positive constants
N3, Cy and Lo so that

1MNs JCy <y, for 1> Lo (3.6)

and my, > (N2 + N3+ 3 — k)/2 for k = 1,2. Suppose 1 fr vanishes for r > ry > 0. Let u(t) be
the solution of (3.1). Then

w(t) = ue(t) + ugnr (t) + ur(t),

where ue(t) = Pu(t) has an expansion as given in Lemma 3.1, and

i (¢ Zcb (for @ e 3\ [2 oot + /4,0 s, o)

0’>0

N%ﬁ

sin(o;t + /4)®;(0;)(f2, ®j(0j))n- (3.7)

Moreover, if x € C([0,00)), then

2

IX(H + Mo)'Pur () |3 + X (@rur) (8)ll3¢ < CE Y I(H + Mo)™ (I = P) filla
k=1

if t is sufficiently large.

Remark 3.1. Note that it is possible that there are no o; which are zero, in which case the first
sum in (3.7) is 0.

Remark 3.2. We note that our assumptions on H in this theorem ensure that there are no
threshold resonances larger than A\g — 1, or eigenvalues larger than (Ao — 1)2. Hence the sums in
te and ugp,, see (3.2) and (3.7), are finite.

Remark 3.3. The identity R(—\) = R()\)*, which is a consequence of the self-adjointness of H,
and the consequent symmetry of the resonances mean that yR(\)y is analytic in the region {\ €
Cait | ReAd < —(A\g — 1) and Im A > —Co(—ReA\)™ ™}, and satisfies |[YR(A\)x|| < C1(1 + |A])N2
there.
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Remark 3.4. The assumption that there is a resonance-free region of the form (3.4) follows from
the seemingly weaker assumption that the bound (3.5) on the cut-off resolvent holds for A € R,
|A| > Ao — 1. By [CDa, Theorem 5.6] this implies the existence of a resonance-free region of the
form (3.4) with N7 = N3 + 1, with a corresponding estimate on the cut-off resolvent there. Note
that by [CDa, Theorem 3.1] and [CDa, Sections 3.2, 3.3] this bound on the resolvent for —Ax (or
—Ax +V, for a large class of V € C2°(X;R)) holds for the examples of manifolds X in Sections
1.2.1 and 1.2.2. Moreover, [CDa, Theorem 3.1] gives a more general method of constructing
manifolds and Schrédinger operators for which such an estimate holds. The paper [CDb] includes
classes of domains Q C R? for which the Dirichlet Laplacian satisfies the conditions of the theorem.
These include the planar waveguides described in Section 1.2.3. Thus Theorem 1.1 follows from
Theorem 3.2.

Remark 3.5. The assumption (3.6) is a weak substitute for a Weyl law for the eigenvalues of
Hy . For example, if (Y, gy) is a smooth compact manifold of dimension d — 1 and Hy = —Ay,
then the Weyl law implies (3.6) holds with N3 = d — 1. But if the eigenvalues of Hy have high
multiplicity, then (3.6) may also hold for a smaller value of N3. For example, let § > 0 be a fixed
real number, pp € N, and let (Y, gy) = I_Iﬁozl(Sd_l,ﬁng—l) where S~ is the d — 1-dimensional
unit sphere, and gga—1 is the usual metric on it. Then v, = /I(d + 1 —2)/ and (3.6) holds with
N3 =1, regardless of the value of the dimension d.

Note that without loss of generality we may assume that x(r) = 1 for » < r1, where x is as
in the statement of the theorem. We do so in the remainder of this section. In particular, this
implies that xfr = fx, k=1, 2.

3.3. Reduction to Propositions 3.5 and 3.6. In this section we prove Theorem 3.2 modulo
the proofs of two propositions. We have already found the contribution of the discrete spectrum
to u(t) in Lemma 3.1. We use the spectral theorem to write (I — P)u(t) as an integral. This,
in turn, we write as the sum of three integrals depending on the size of the spectral parameter.
Fach of these three will be evaluated or bounded using a different technique.

Lemma 3.3. Let u(t) be the solution of (3.1). Then
( 6&{ 1_—72“152) ) =PV % _Z AN (RN) = R(=A)(I — P)dA < 2 )

where

and PV is the principal value.

Proof. We have

u(t) = cos(tVH) f1 + sin(t\/%ﬁ)f}



WAVE ASYMPTOTICS 27

By the functional calculus and Stone’s formula,

cos(tVH)(I = P) = % /OOO cos(ty/T)[(H — 7 — i0)" — (H — 7 +i0) (I — P)dr
- QLM /Om[eiu + RO — R(-A)(T — P)AdA
N 2% /_ Z ¢ [R(A) = R(=A)(I = P)AdA. (3.9)

As in the statement of Lemma 2.5, the factor I — P can be omitted in the last two instances,
but it is needed in the first two. We continue to often include it even when it is unnecessary, both
to emphasize that there are no poles due to eigenvalues, and because some later manipulations
will require I — P.

Similarly

sin(tv/H) _ L i i i _
=) = g [ = e IRO) — REAT - P)id
1

=PV [T RO - RN - P

27 J_o

Here we do need the principal value if H has 0 as a threshold resonance, since in that case
(R(\) — R(—=X))(I — P) has a pole of order 1 at 0. O

We use the integral representation from Lemma 3.3 to write (I — P)u(t) as the sum of three

terms:
1=P) (gt ) = @+ 1ot + 1) (1) (3.10)
where
L(t) =PV % R A AN (R(N) — R(=A)(I — P)dX
In(t) = —— AN (RO — R(—\)(I — P)dA
211 Ao<|A|<te
(t) = QLM . AN (RN — R(-\)(I — P)d.

Here € > 0 is a constant to be determined later and Ay > 1 is as in the statement of Theorem 3.2.
We shall later add an additional assumption on Ag for convenience. The subscripts s, m, [ stand
for small, medium, and large, and refer to the size of |\|. We shall bound each of these in turn,
beginning with the easiest. Note that for I,,,, I; we may omit the I — P as H has no eigenvalues
which are greater than or equal to A2.

Recall My € (0,00) was chosen so that H + My > 0.
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Lemma 3.4. If min(2m; — 1,2my) > 0, then

(75 (7 )

HOH—-HOH
— O(tfe(min(2m171,2m2))) (311)

Proof. We note that for m € N,
X(R(A) = R(=A))x = X(R(X) — R(=\))(H + Mo)™™(H + Mo)™x
X(R(A) = R(=A) (A% + Mo) ™™ (H + Mo)™x. (3.12)

By the spectral theorem, using that for A > 0, A(R(\) —R(—A\))dA is, up to a constant multiple,
the spectral measure for H, we find for m, j, k € Z

(H + Moy)'/? / EPNFTLR(N) — R(=\))dN(H + My)™™

[A|>te

H—H

/ PN (N2 4 Mo) TN (R(N) — R(=\))dA
[A|>t€

H—H
=47 sup |\F(My + A2)"mH/2 = O(¢(=2mHhti)e)
[A|>te
if K+ j —2m < 0. Here we use that a nontrivial spectral projector has norm 1.

The lemma follows from this and the expression for I;(¢). O

Evaluating and bounding the contributions of I and I, requires more effort and each will be
studied separately. We state the results here.

Proposition 3.5. Let f1, fa,X, Ao and w, be as in Theorem 3.2. In addition, suppose Ao # 0
for any j. Then there is a constant C' (depending on x) so that
(%)
f2

(T ) G0 (8)- o))
0 I s f2 8tuth7« (t)
The term wuy,, corresponds to possible resonances in [0, Ag) and if it is nontrivial decays at fastest

when t is sufficiently large.

at a rate proportional to t71/2. We remark that the error O(t™1) in the estimate of Proposition
3.5 is sharp and is due to the discontinuous nature of the cut-off at A = +)g in the definition of
I4(t). The error could be improved by instead using a smooth cut-off function in the A variable
to define I4(t) and I,,,(¢); we do something similar in Section 4. However, since our methods for
estimating the contribution of I,,(¢) result in an error of size O(t~!) even with this change, we
would not gain by taking this alternate approach here.

<Ot !
HPH

(3.13)

HOH

For I,,,(t), the corresponding result is

Proposition 3.6. Assume (3.4), (3.5), and (3.6). Let 0 < € < 1/Ny and let Ay be as in the
statement of Theorem 3.2. If Hy is bounded so that the set {v;} is finite, by increasing Ao if
necessary, choose A3 > ||Hy|. Choose my € N so that my > (N2 +4 —k)/2 for k = 1,2, and,
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if the set {v;} is infinite, assume in addition my > (No + N3 + 3 — k)/2. Then for t sufficiently
large

’%(GHA%WQO)MﬁWXH+M@mI 0 >4

<Ot
0 I 0 (H + Mp)~™= = ¢t

HOH—HOH

(3.14)

It is only in the proof of Proposition 3.6 that we use the assumptions (3.4), (3.5) and (3.6). We
prove Proposition 3.5 in Section 3.4 and Proposition 3.6 in Section 3.5.

Assuming these two propositions, we may now prove Theorem 3.2.

Proof of Theorem 3.2. Writing u(t) = Pu(t)+ (I —P)u(t), Lemma 3.1 gives an explicit expression
for ue(t) = Pu(t).

Recall that 1 f1, 1o fo vanish for r sufficiently large, and without loss of generality we have
chosen y so that xfx = fx; in particular, (H + My)"*xfr = (H + My)"™* fr. = x(H + My)™* f.
From (3.10) we see that to understand (I — P)u(t) it suffices to understand the contributions of
Is(t), I (t), and I;(t). Here we choose € = 1/(Ny + 1). If Hy is bounded, we choose Ay both
satisfying the conditions of the theorem and so that A3 > ||Hy|. If Hy is unbounded, choose \g
satisfying the conditions of the theorem, and so that A\g # o; for any j.

Then, with my, > (N1 +3—k)/2, k = 1,2, the bound of Ct=¢™n2m1=1.2m2) o [)(¢) from (3.11)
is less than or equal to Ct~!. The results of Propositions 3.5 and 3.6 complete the proof. g

3.4. The contribution of I,(¢). The goal of this section is to prove Proposition 3.5. We remark
that to prove this proposition, we do not need to assume bounds on the resolvent of H at high
energy. Moreover, note that the bound is given in terms of || f1||3, || f2||, so that we do not need
the Sobolev-type norms ||(H + My)™* fi |3 in this section.

In order to prove the proposition, we shall write the integral defining I, as the sum of three
types of terms: an integral over a small neighborhood of 0, an integral over a small neighborhood
of v or —y for each v, € (0, \g), and an integral of a function with support disjoint from all +o;
with 0 < 0; < Ag. Recall that the integrand is continuous near g, since we have assumed that
no embedded resonances exceed Mg — 1.

Let ¢ € C2°(R) be a function which is 1 in a neighborhood of 0, and set

Io(t) = PV QLM / DOV AN (RN — R(—A)(I — P)dA.

Note that if og > 0, then Iy(¢) = 0 if the support of 1 is chosen sufficiently small.

We emphasize that the following lemma does not require high energy resolvent estimates for H,
and is valid for any f1, fo € H which have 1 f1, 1o fo both supported for r in a fixed compact
subset of [0, c0).

Lemma 3.7. Let H be any operator satisfying the hypotheses of Section 2, and let fi, fo € H
have I f1, N fo both supported in v < ri. Then with the support of 1 chosen sufficiently small,
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for any q € Ny, k € N there is a constant C' depending on q, k and the support of f1, fo so that

/2 g
X(H + Mo) "I, (t) < ﬁ > : < X2 o,=0 My OJ( )(f2, ®;(0)) )

HEH
< CER(Ifulla+ 11 2ll)

when t is sufficiently large.

Proof. Recall that x(R(A) — R(—\))(I — P)x has a singularity at worst like 1/X at A = 0. Thus,
if p € N, then (A2 + M)%/2p(A\)x(R(A) — R(—=\))(1 — P)x is a smooth function of X € R if the
support of 9 is chosen sufficiently small that it contains no +0; with o; # 0. Hence for p € N, by

integrating by parts k times, we find for ¢t > 0
H/ itk)\p()\2 + MO) /2¢(A)X(R()\) — R(—)\))(I - P)Xd)‘H
H—H
< t—k (WO2 + M) 2RO = R-A)(I = P)x) | dA=0(t™*), peN
d)\k H—H
(3.15)

for any k € N.

Using (3.15) and considering the expression (3.8) for A, this means we need only consider more
carefully the entry corresponding to the upper right-hand corner of A. We also will use, see
Lemma 2.5,

(RA) = R(=N)I =P) = ¢ Z D5 )+ B

where xB(\)x is analytic in a neighborhood of A = 0. Hence, using another integration by parts
argument,

Py / T 4 Mo ()X (R(N) — R(-A)(I — P)xdA =

Z]\4‘1/2

zt W) —
Uz_:oxq) ) @ x®;(0 PV/ A T dA+ Ot kY (3.16)

when the support of 9 is sufficiently small.
Now we use

PV/ elt’\XdA:iﬂ,t>O

and the fact that 1 is 1 in a small neighborhood of the origin to find that

PV [~ 08 4 1)U (RO) — R-X) (T — Py

—rMI?
= 0 3 ®(0) @ x@;(0) + Ot )

0;=0

for ¢ sufficiently large. l
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The next lemma follows directly from the more general Lemma A.1.

Lemma 3.8. Let X be a Banach space, o; > 0, and set By = {z € C | |2| < min(o;,1)/2}.
F € C°(Bo; X) then there is a C > 0 so that

A ) gy (o50) 2o R ()| < et k>0
0 7i(A) X
Moreover,
’/ e“tF(Tj(A))d)\H <ot t>0.
0 7j(A) X

Proof of Proposition 3.5. Let ¥ € C°(R;[0,1]) be equal to 1 in a small neighborhood of the
origin. Set L = max{l | v, < Ao}, and, for [ = 1,..., L, set ¢;(\) = ¥(]A? — 1?|). Note that ¢y is
smooth since 1 is 1 in a neighborhood of the origin. Choose the support of ¢ sufficiently small
that

0<Il,I' <L, 1#1 = suppy; Nsupp Yy = ) and supp ) N supp ¢, = 0.

Then set ¥s(\) = ¥(\) + ZZL:1 (). By shrinking the support of 1 if necessary, we can assume
that v, is 0 in a neighborhood of £Xg. Note that (R(\) — R(—=\))(I — P)(1 — 1s(\)) is smooth
on [—\g, Ag] by our choice of 1) and since )\% is not an eigenvalue of Hy.

To simplify notation, for ¢ € Ny, set
Ag(N) = (X2 4+ Mp)?2A(N).

Hence, integrating by parts,

Ao
H/_AO e A (M) (L = s ()X (R(A) — R(—A))(I—P)di’

HOH—HDH

= H _Ti[eit/\oAq()\o) +e 0 A (= 20) X (R(XNo) — R(=Xo))(I — P)x

i [ d
+y /_AO e Aa (Ag(N) (1 = s (A)x(RA) = R(=A)(I = P)x) dA' oo

=0t (3.17)

since

€ Ll([—)\g, )\0])
HOEH—HOH

|5 (s = B DR = RN =P

We will now focus on neighborhoods of +v;. Consider f>‘§\ e A, (N (N (RN — R(=M\) (I —
P)d\ with 0 < | < L. Let j = j(l) € N be such that v; = o¢;. By our choice of the
support properties of ¢, 7;(A)(A)R(A)(I — P) is a smooth function of 7;(A\) for A € R, but

Ti(N) Y (A)R(=A)(I — P) is not. The reason for this second is that for A € R, 7;(=\)/7;(\) = 1 if
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0 < |A| <oy, and 75(=A)/7j(A) = —1 for |A| > 0. Hence we do a change of variable:

Ao
[ P A0 nONEN) - R - Phax

~Xo

= /0 (€ Ag(A) — e A (X)) (N R(A)(I — P)dX
~Xo

Ao
+ /0 (e A (\) — e A (=D)L (M R (I — P)dA.  (3.18)

By shrinking the support of ¢ if necessary, we may apply Lemma 3.8 to the second integral on
the right-hand side, with F(7) = x7A4,((7% + 07 D 2h (|72 RN (7)) (I — P)x, where \(7) is the
locally well-defined inverse of Z 3 \ — Ti(A) € C. Thus, using the meromorphic continuation of
xRx to Z and Lemma 2.6, F'is a smooth function supported in a complex neighborhood of the
origin.

From Lemma 3.8, for ¢t > 0
Ao . Ao .
/O e A A (=N (WX RN (I — P)xd) = /0 e A (NP (N P)XRANI = P)xdA

= V2re TN Ay (o) YRV = P)x7j(M]iazo, (05t) "%+ Bia(t) (3.19)

where || By1(t) | nenu—nan = O(t™!). By a result parallel to Lemma 3.8, for ¢ > 0,

0 0
/_ . e A (=N YA XRA) (I = P)xdA = / e "M Ag (=N (| (N P) xRN (I = P)xdA

—Xo
= —V2re DA (0 YR (L — P)xTj (NI, (05t)"Y2 + Bia(t)  (3.20)

where || By o(t)|| = O(t™1). From Lemma 3.8 (and the analogous result for the integral over A < 0)
H / AN (VRN (T — P)xd)\‘ =0@t™), t = oo (3.21)
Ao HOH—HDOH
It follows from Lemma 2.6 that
1
(T QXRA = P)x) =0, = Yo x@j(0)) @ x®y(oy). (3.22)

. —_— . —
Jjloj=05=uy

Hence from (3.19-3.22), we have

Ao
/ e AL ()X (RO — R(-\)(T = P)xd

Ao
SRR S [ o) — O 4 (03)| xy(05) © xs(0;) + Bu

Jioj=v

(3.23)

where || By ]| = ().
Using (3.17), (3.23) and Lemma 3.7 proves Proposition 3.5. O
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3.5. The contribution of I,,,(¢). The main result of this section is Proposition 3.6, which pro-
vides the needed bound on I,,,(¢). This is the portion of the proof of Theorem 3.2 for which we
use the resonance-free region and the high energy resolvent estimate, and we assume these hold
for all results in this section. We have some freedom in our choice of A\g — we can always choose
a larger value. The choice of A\g in Proposition 3.6 is made to simplify the proof a bit.

In order to prove the bound, we shall perform a contour deformation into Cg;;. We recall that
1 A
In(t) = — A AN R(N) — R(=M)]dA. (3.24)
2mi o< |\|<te
There is no need to compose on the right with (I —7P) here, since A3 exceeds the largest eigenvalue
of H.

In order to simplify notation, set

2 1/2 2 —my
o= (NI DA (T e ) 8

and
Rx()‘) = XR()‘)X'
Then
H+ My)Y2 0 H + My)™™ 0
Hx < ( 0) I (t) ( o) —ms | X
0 I 0 (H + Mo) HOHHDH

1

_ eit>\ _ _
27 /AKW@ GN)[Ry(X) — Ry (=N)]dA

(3.26)

HOH—HOH

We treat the contributions from the terms R, (\) and R, (—\) separately; the second is sub-
stantially more difficult than the first.

To bound the term in (3.24) with e?*R, (\) we shall use the following lemma.

Lemma 3.9. Let \g > 0 be as in the statement of Theorem 3.2. Then, if €, t > 0 then there is a
<ct! (3.27)

constant C so that
/ e G(N) Ry (N)dA
Ao<|A|<te HeH—HEH

if No +max(2 —2my,1 —2msg) <0 and t is sufficiently large.

We postpone the proof of this lemma to Section 3.6.

The proof of Lemma 3.9 uses a contour deformation argument, deforming the contour into the

upper half-plane where e®* decays in t. To bound an integral of the form
—Xo , te ,
G Ry (=Ndhor [ GN)e™ Ry (—\)dA (3.28)
—t€ Ao

in a similar way, we run into the problem that R, (—\) must be evaluated at a point with Im(—\) <

0. Since the continuation of R, is to Cyj;, we see that this is complicated. Each distinct value of

oj > 0 gives ramification points at +1; in Z; this corresponds to the omitted rays in the lower half

plane in Cg;;, and we must stay away from these omitted rays. Instead, a contour deformation



34 T.J. CHRISTIANSEN AND K. DATCHEV

argument gives us the following proposition, which we prove in Section 3.6. The values of a and
b are chosen so that we can avoid the omitted rays in Cg;.

Proposition 3.10. Let 0 < € < 1/N; and set
p = Ny +max(2 — 2mq,1 — 2my)

where N1, No are as in the statement of Theorem 3.2. Then there are constants T, C' > 0 so that
ift > T then

b
<ct! (ap +bP +/ spds) (3.29)

/ EMGN) Ry (—N)dA
a<|\<b

HOH—HOH

whenever a and b satisfy max(Ag,v;) < a < b < min(yj41,t¢) for some l € Nyg. Moreover, if Hy
is bounded so that {v;} is finite, then (3.29) holds whenever max(\o, ||Hy||) < a <b < t°.

Note that, by assumption, A\g > 1 and p < —1.

For the proofs of both Propositions 3.10 and 3.11, we focus on the integrals over negative values
of A, as these are notationally slightly easier to handle after a change of variable as in (3.35). The
integrals over positive values of A can be handled in almost the same way. Alternatively, one can
use that for A € R, R, (\) = R, (—\)* for real-valued x. We postpone the proof of Proposition
3.10 to Section 3.6, and instead turn to the consequences of the proposition.

Proposition 3.11. Let Ay be as in the statement of of Proposition 3.6, and assume my > (Na +
4—Fk)/2 for k= 1,2. If the set {1} is infinite, assume in addition that my > (No+ N3+3—k)/2
for k=1,2. Then, if 0 < e < 1/Ny and t is sufficiently large, there is a constant C so that

Proof. If Hy is bounded, so that the set {1} is finite, then this proposition follows almost directly
from Proposition 3.10, using the choice of A3 > ||Hy||. We write

<Cct (3.30)
HEH—HEH

/ eMAG(N) Ry (—\)dA
Ao<|A|<te

/ M G(A) Ry (—N)dA = lim MAG(N) Ry (—N)dA,
<A<t 00 Jag+s<|A|<te—5

apply the estimate of Proposition 3.10, and use the fact that floo sPds converges since p < —1.

Now suppose the set {1} is infinite. We give the proof for the integral over (—t¢, —X¢), as the
proof for the integral over (Ao,t¢) is essentially identical. Choose Iy € N so that vy, > Ao but
Vip—1 < Ao, and let L(t) € N be such that vy <t but vy )41 >t Then we write

/ _Aoe“*G()\)RX(—/\)d)\:lim Z / T GO Ry(—A)d

—te€ 6\L0 Vl+1 +5

—vrw—0 —Ao=0
+ / "GN Ry (~N)dA + / G Ry(=A)dX | . (3.31)
_te4s —I/10+5
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Using (3.31) and Proposition 3.10 we find that
L(t)-1 s
H/ MG Ry (— )\)d)\H <Cctt Z (v + i) +/ sPds + Ny + 17 | . (3.32)
1=l Ao

Using the lower bound (3.6): v > 1/N3 /Cy,

L(t)—1 L(t)
> () <23 () (3.33)
l=l0 l:lO
This sum is bounded independently of ¢ because p/N3 < —1, or my > (N2 + N3 + 3 — k)/2 for
k =1,2. The integral in (3.32) is bounded independently of ¢ because p < —1. O

Proposition 3.6 follows directly from (3.26), Proposition 3.11, and Lemma 3.9.

3.6. Proofs of Proposition 3.10 and Lemma 3.9. It remains to prove Proposition 3.10 and
Lemma 3.9. The proofs are similar, involving contour deformations off the real axis to take
advantage of the exponential decay of et in the appropriate half-plane. That this and the
resulting estimates are possible are due to the assumptions of a resonance-free region in which
we have an estimate on the cut-off resolvent, our assumptions (3.4) and (3.5). As the proof of
Proposition 3.10 is more complicated, we focus on it. In particular, we prove (3.29) for the integral
over [—b, —a| carefully, as the proof for the integral over [a,b] is completely analogous. A first
step in our proof of Proposition 3.10 is

Lemma 3.12. Let ¢ < 1/N;. Suppose max(A,v;) < a < b < min(yyy1,t) for some I € Ny.
Alternatively, if Hy is bounded, we allow the possibility that max(Xo, ||Hy|) < a < b < t¢. For
each t > 1, let Ry be the closed rectangle in Cg; with vertices

a, b, b—i(logt)/t, anda —i(logt)/t.
Let 7y, 7=, and 4 be the left, bottom, and right sides of Ry, oriented counterclockwise.
Then there is a T > 1, independent of a, b, and [, such that for t > T

/ MG\ Ry (—N)dA =1, + I, + I,
—b

where

I = / e MG(= N Ry (M)A, (3.34)
Yo

with e denoting one of |, —, or 1.

Proof. By a change of variable,

—a b
/ EMGN R (—N)d\ = / e MG(=N) Ry (N)dA. (3.35)
—b a

Note that G(—A) is analytic in A in a neighborhood of Ry, for any ¢ > 1. Moreover, there is a
T > 1, independent of a, b and [ satisfying conditions of the lemma, such that R, (\) is analytic
in a neighborhood of :; when t > T" . It is here that we use e < 1/N; and the fact that R, ())
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a b

V

Y N7

—ilogt/t >
Y—
FIGURE 6. The contour used in Lemma 3.12.

has an analytic continuation to {\ € Cgi; | ReX > Xg and Im A > —Cp(Re \)~"1}. Hence by
Cauchy’s theorem

/ e MG (=N Ry (N)d\ = 0.
— 0N

The integral over the top side of the rectangle is the integral in (3.35), hence the lemma follows
directly. O

The next lemma bounds the integrals over the vertical sides of the rectangle.

Lemma 3.13. Set p = Ny + max(2 — 2mq,1 — 2mg). With the notation and assumptions as in
Lemma 3.12, there is a constant C > 0 independent of a, b and | so that fort > T

I [len—sman < Ct"a?,
and

| 4| em—smon < Ct1HP.

Here Ns is as in the statement of Theorem 3.2.

Proof. The proofs of the two inequalities are essentially the same, so we prove only the first one.
We use that |e™™| = e!'™m* Hence

N |l HeoH—Hon =

/ eTMG(=A) Ry (N)dA
7L

HOH—-HOH
0
<[ Gt i)y i) nenonends.
—(logt)/t
Recall from the definition of G in (3.25) that for A > 1,

_)\2—2m1 _7:)\1—2m2
G(_A) ~ < iAQ—le _)\1—2m2 >

Moreover, for A lying on the image of v, |A| is quite close to a, so that on v}, ||G(=A)| <
Camax(2=2m11=2m2) and || Ry (A)|ln—n < Cal¥? by our assumptions on R, in the statement of the
theorem. The constants here are independent of a and [. Thus

0
|‘Ii||H@H—>H®H < C/ eLSaN2+max(272m1,172m2)d8 < Ca? t—l'
—(logt)/t



WAVE ASYMPTOTICS 37

Next we bound the integral over the bottom side of the rectangle.

Lemma 3.14. With the notation and assumptions of Lemma 3.12, there is a constant C' > 0
independent of a, b, and | so that for t > T

b
1= lnen—nan < C'tl/ ghVztmax(2=2ma,1=2m2) g ¢

a

with Ny as in the statement of Theorem 3.2.

Proof. Arguing as in the proof of the previous lemma,

b
/ e~ s=i08 D/ G (5 4 i(logt) /t) Ry (s — i(logt) /t)ds

a

|5 | HeH—HoH = ‘
HeH—HOH

b
< C/ 6—logtSN2+max(2—2m1,1—2m2)ds
a

which proves the lemma. O

Proof of Proposition 3.10. The proof of the estimate on the the integral over [—b, —a] in (3.29)
follows by combining the results of Lemmas 3.12, 3.13, and 3.14. The proof of the estimate
for the integral over [a,b] follows in a completely analogous way, using the consequences of the
self-adjointness of H for the (continued) resolvent R(\). O

Proof of Lemma 3.9. We can use Cauchy’s theorem to write the integral
/ NG VROV xdA (3.36)
Ao <ALt

as the sum of integrals over the three line segments \g + i[0, 3t~ logt], [No,t] + i3t~ logt, and
t€+4[0, 3t~ ! log t], where we reverse the orientation on the last interval. We are deforming into the
upper half plane, the physical region, where R()) is a bounded operator on H when A? is not an
eigenvalue of H-hence the assumption \g > 1. Note that |¢?*| = e7*'m* Now we can bound the
integrals over the vertical segments as in Lemma 3.13 and the integral over the top as in Lemma
3.14. To bound the integral over the sides, it suffices to have Ny + max(2 — 2mq,1 — 2mg) < 0.
To bound the integral over the top, where we can use ||[R(\)||3—n < 1/|Im A2|, it would suffice

to take m1 = mqg = 1.

The bound for the portion of the integral over —t¢ < A < —\¢ is proved in a similar way. [

4. A WAVE EXPANSION UNDER A HYPOTHESIS ON THE DISTINCT EIGENVALUES OF Hy

Under an assumption on the distinct eigenvalues of Hy, we can find an asymptotic expansion of
u(t) to order t =% for any ko € N. This expansion involves an infinite sum, see (4.4). If multiplied
by the cut-off function x, the sum over [ converges absolutely, see (4.18). The main result of this
section is Theorem 4.1.

In order to state the theorem, we introduce the notion of a distance on Z. For two points
A, N € Z we define d (X, ') = sup; |75(A) — 7;(\')|. That this is well-defined is shown in [CDa,
Lemma 5.1]. In the statement of Theorem 4.1 below, by A’ € R we mean that )\ lies on the
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boundary of the physical space. We also recall that Vl2 denote the distinct positive eigenvalues of
Hy, with 0 < v < ws...

Theorem 4.1. Let H be a black box operator as in Section 2.1, and suppose that for some
Ni, Ny € [0,00), Ao > 1, and any x € C°([0,00)) with x(r) =1 for r < 1 there are Cy, Ci so
that XR(N)X is analytic on the set

(NeZ:dy(\N) < Co(L+N)™™ for some X € R, N > \g — 1} (4.1)
and that in this region
IRRN)RI < Cr(1+ AN (4.2)
In addition, suppose that there are cy > 0, Ny > 0 so that
Ny

when vy > 1. (4.3)

Let ko € N be given, and x € C°([0,00)) be one for r < 1. Let u(t) be the solution of (3.1), with
f1, fa € (H + My)™™H for any m € Ny and 1 f1, oo fo supported in r < r; < co. Then there
are by, + € (r)/2T254eH depending on f1, fo so that if we set

V41 — V] > CyY,

ko—1
Uthr o (T Z ®;(0)(f2,P;(0))n + Z 12k Z(e”” bik,+ + et bik,—) (4.4)
k=0 1>0

then there are m € N, C > 0 so that
I (w(t) = ue(t) = twanr oo ()l < CER ([(H + Mo)™ fullze + |(H + Mo)™ fa3)
if t is sufficiently large. Moreover, for k=0, 1,...,kg — 1

> Ui ellze + xbre,~ ) < C (1CH + Mo)™ full s + [|(H + Mo)™ fall3) - (4.5)
>0

The value of m needed depends polynomially on kg, and also depends on N1, No, and Ny. The
bk + are determined by the value of vy, the initial data fi, f2, and the derivatives with respect to
7; of order at most 2k of elements of the set {(I)j/}OSUj/SVz evaluated at £v;, where oj = v;. Recall
Ue is given in (3.2).

As in Remark 3.4, the assumption that (4.2) holds in a region of the form (4.1) follows from the
seemingly weaker assumption that the bound (4.2) on the cut-off resolvent holds for all sufficiently
large A € R. This follows from [CDa, Theorem 5.6]. Thus, the primary difference in the hypotheses
of Theorems 3.2 and Theorem 4.1 is the assumption that (4.3) holds. If Hy is bounded, then
(4.3) always holds.

The paper [CDa] includes examples of manifolds X and large classes of potentials V € C°(X; R)
so that the hypotheses of this theorem hold for H = —A + V on X; see [CDa, Theorems 3.1 and
5.6, and Section 3.2]. These manifolds include the manifolds in Section 1.2.1 and any of the
manifolds in Section 1.2.2 which satisfy (4.3). The question of spacing of distinct eigenvalues of
the Laplacian on a compact manifold is complicated, even for manifolds of dimension 1 which are
not connected; see the discussion after (1.14). For general manifolds in higher dimensions this
is, as far as we know, an open problem. However, examples of compact manifolds satisfying the
condition (4.3) include spheres and flat tori.
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The paper [CDb] includes classes of open subsets of R? with cylindrical ends for which the
resolvent of the Dirichlet Laplacian satisfies the needed estimate, and these include the examples
of Section 1.2.3. The Dirichlet eigenvalues on the cross section satisfy (4.3) for all of the examples
of Figure 3 but only sometimes for the examples of Figure 4.

The sums over [ > 0 in (4.4) and (4.5) are sums over all values of [ € N so that 12 € spec(Hy)
{0}. Hence the sums in [ are finite sums if Hy is bounded, and otherwise are sums over [ € N.
We use this convention throughout this section.

Our Theorems 3.2 and 4.1 require a polynomial bound on the cut-off resolvent at high energies
in order to handle the large energy contribution to solutions of the wave equation. If instead
we consider only the solution localized in a finite energy range, neither the bound on the cut-off
resolvent nor the assumption made in Theorem 4.1 on the distinct eigenvalues of Hy is necessary.
We prove the following Proposition naturally in the course of the proof of Theorem 4.1.

Proposition 4.2. Let H be any operator satisfying all the conditions on the black box operator
outlined in Section 2.1. Let g, € CE(R;R), r1 > 0, fi1, fo € H satisfy o fi, Lo fo vanish
for v > ri. Let ¢sp1 € CP(R;R) satisfy Ysp1vsp = Ysp. Then if kg € N, for each v with
V) € supp sp1 there are byg+ = byg+(f1, f2,¥sp) € r2FFV2HH k= 0,..., ko — 1, s0 that

Xsp(H)u(t) = xthsp(H)ue(t) + wsz) ZXCI) ){f2,®;(0))n

ko—1
) Ve (1) > X (b €™ + by —e TP ETR 4w 4, () (4.6)
1>0 k=0

With || XU o, (8|20 < CER for sufficiently large t. Here uc(t) is as given in (3.2).

Note that the assumption that 1,1 has compact support means that the sum in (4.6) is finite.
Related results for spectrally cut-off solutions of the wave equation (though with quite different
geometry) can be found in [GHS13,VW13]. Again, we note that we need neither the assumption
of high-energy bounds on the (cut-off) resolvent nor an assumption on the spacing of the distinct
eigenvalues Ul2 in the hypotheses of Proposition 4.2.

4.1. Bounds on the derivatives of the cut-off resolvent. Our proof of Theorem 4.1 will
require bounds of the derivatives of the cut-off resolvent along the real axis. It is here that we will
use our assumption on the spacing of the distinct eigenvalues of Hy. Our first lemma, however,
does not need these hypotheses as we bound the derivatives away from the thresholds.

Lemma 4.3. Suppose the hypotheses of Theorem 4.1 hold. Let N > Ni be fixed and let B >
max(1,2/Co). If N € R, |[N| > Ao and inf; 4 [N £v| > |N|7N/8, then there is a C > 0 so that
81:
——XR(\)Xren < CKI(1 4 |N|NHENgE | e N, (4.7)
2% H—H

Proof. There is a ball in Cgj; centered at A of radius |N|™V/8 on which yR(\)x is analytic,
with norm bounded by C|A|2. Hence the estimate (4.7) follows immediately from the Cauchy
estimates. ]
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Away from the thresholds we can use A as a coordinate, as we did in Lemma 4.3. Near a
threshold we need to introduce a different local coordinate. In particular, near the threshold o;
(and —o;) we shall use 7; as a local coordinate.

For the setting of the next lemma, we think of {1} as denoting not just the square roots of
the distinct eigenvalues of Hy, but also corresponding to a point on the boundary of the physical
space in Z. Given v, choose € = ¢(I) > 0 so that [} —v?,,| > € and let j = j(I) € N be such that
v = 0;. Then we may, in a natural way, identify B(0;¢) = {z € C : |2] < €} with a (particular)
neighborhood U, (¢€) of v, € Z by using

Uy (€) 2 A= 1j(N) € B(0;¢€); (4.8)

Uy, (€) is defined to be the connected component of ijl(B (0;€)) containing v, a point on the
boundary of the physical space. If € is small enough, as we have chosen here, then U, is a double
cover of a neighborhood of v; in Cgy. A completely analogous identification can be done near
—uy, also using 7, where j = j(I).

The assumption on the spacing of the distinct eigenvalues of Hy allows us to bound the deriva-
tives of xRy in a neighborhood of each threshold.

Lemma 4.4. Suppose the hypotheses of Theorem /4.1 hold, and continue to use the notation
Jj =), Uy (e) introduced above. Set Npy = max((Ny —1)/2,Ny). There are « > 0, C € R so
that if vy = 05 > Ao + 1, then

ak
<E)T;“XR()\)X> PESY

for all N € Ui,,l(onfNM) cZ.

< CRl|y| N2tV g=k ke N (4.9)
H—H

Proof. For simplicity, we give the proof only for U,,l(owl_N MY,

The assumptions on the spacing of the distinct eigenvalues of Hy ensure that there is a > 0
so that ]Vf — Vfﬂl > Vll —Ny /B for all | > 1. Moreover, increasing 5 > 0 if necessary, our definition
of Ny and the hypotheses of Theorem 4.1 ensure that using the coordinate 7;;), xR(\)x is
analytic on Uyl(l/(ﬂVlNM)), again for all [ with v; > A\g + 1. Here we use the hypothesis (4.1).
Moreover, |[xYR(A)x| < C(1 + 14)™? in this set, with constant C independent of I. Identify
Ul,l(l/(/BleM)) with B(0; 1/(,81/1NM)). Each point z in B(0; 1/(25VZNM)) has the property that the
ball with center z and radius 1/ (2ﬁVlN M) lies in B(0;1/ (BUIN MY)). Hence, we may prove the lemma
by taking o = 1/(28) and by applying the Cauchy estimates on such a ball, recalling that the
coordinate is 7;. 0

4.2. The proof of Theorem 4.1. We turn more directly to the proof of Theorem 4.1. As in
the proof of Theorem 3.2, we shall write (I — P)u(t) as the sum of several integrals. In order to
define these, let ¢» € C°(R; [0, 1]) have its support in a small neighborhood of the origin, and be
one in a smaller neighborhood of the origin. For convenience later, choose ¥ to be even. Set

N = max(Ny — 1,2N;)



WAVE ASYMPTOTICS 41

and
b = (B2 =) (4.10)

To prove Proposition 4.2 (rather than Theorem 4.1), the choice of of N does not matter much—we
can take N = (0. We choose the support of ¢ to be small enough that

supp ¥ Nsupp ¢y = 0, for v? € spec(Hy) \ {0}.
To prove Theorem 4.1, by shrinking the support of ¢ if necessary, we choose v to satisfy
supp v Nsupp Yy = 0, if I £ 1. (4.11)

The assumption on the spacing of the distinct eigenvalues of Hy and our choice of N >Ny —1
ensure that (4.11) is possible. To prove Proposition 4.2 instead we replace (4.11) by

YN (N (\) = 0if L £ 1 (4.12)
Similarly to (3.10), using the integral representation of Lemma 3.3 we can write
u(t) \ fi
=2 () = o) + 1)+ e (1) (4.13

where

Iy(t) =PV 1 / PPN AN (R(N) — R(=N)(I — P)dA

211

I (®) = 55 [ € S HOVARN)(RO) ~ RE-X)T - Phax

>0

1 it
=5 [ ¢ (1 =Y wm)) AR ~ RE-X)(T — P)ax,
>0
Here A()) is as in (3.8).
We recall that we have already studied Ip(t) in Lemma 3.7. Lemma 4.5 shows that I,(t)
does not contribute to the asymptotic expansion of (I — P)u(t). In Lemma 4.7 we evaluate the
contribution from any nonzero threshold. Finally we combine these to prove the theorem.

Lemma 4.5. Under the hypotheses of Theorem 4.1, if the support of 1 is chosen sufficiently
small, then for any k € N, there is an m € N depending polynomially on k so that fort >0

()

< Ot (|(H + Mo)™ fillae + ||(H + Mo)™ f2||n)-
HOH

Proof. Set
Yiot(N) = (N + D> (V). (4.14)

Note that by our assumptions on %, 1 — 4, vanishes in a neighborhood of A = 0 and in a
neighborhood of A = £0; for each o;. Hence

(1 = hiot (A) (XRA) (I = P)x = xR(=A)(I = P)x)
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is a smooth function of A\. Using Lemma 4.3, by choosing m € N sufficiently large we can ensure
that

d*

N <CA+ N2 (4.15)

H—H

(A 4+ Mo) ™™ (1 — 1ot (A\))x (R(A) — R(=N)(I = P)x)

for all ¥’ € Ny, ¥’ < k. The choice of exponent —2 on the right-hand side is somewhat arbitrary,
but is made to ensure that the function is integrable. We could replace —2 by —p, some other
p > 1, and such a change may change the value of m which is needed on the left hand side. Now
we use (3.12) and integrate by parts k times to prove the lemma. O

By way of comparison, we include following lemma.

Lemma 4.6. Under the hypotheses of Proposition 4.2, if the support of ¥ is chosen sufficiently
small, then for any k € N, there is a C' > 0 so that

< Ot (|l fillae + I fallne) for t > 0.
HoH

wasp(H)Ir(t) ( i >‘

Proof. We use 94, from (4.14). Using the compact support of 15, there is a C' > 0 so that

dk’ _
2 WA = G OXRO) ~ RET =P <C+ )2
H—H
for all k¥’ € Ng, k¥’ < k. Then integrating by parts k times proves the lemma. O

Lemma 4.7. Let H, f1, and fo satisfy the hypotheses of Theorem 4.1. Let 1 be as defined in
(4.10) for v} € spec(Hy) \ {0} and let ko € N. Then with the support of the function v in (4.10)

chosen sufficiently small, there are by, +, bl(/,l L € (r)1/242k+eq K =0,1,...,kg — 1 so that

/ T B ANX(R() — R(-A\)(I —P) ( fi ) “

_ = ity —1ity
E R X0, + €™ + xby e
N £y N N + xBik,(t). (4.16
k=0 Xbl( ;1 +t‘/’mjl + Xbl(l)c et XBuko (1) ( )

There is an m € N depending polynomially on ko as well as on Ny, No, Ny and a constant C
independent of | so that fort >0

X Bk (O)llan < CU2 (|| (H + Mo)™ filla + I|(H + Mo)™ folln) (4.17)
and

[+ X 0Nl < CU2(N(CH + Mo)™ fullae + | (H + Mo)™ fallae), k=0, ... ko — 1. (4.18)

b1 ke 2

The by j; +, bl(,lli are determined by the initial data f1, fo, the value of v, and the derivatives
with respect to T; of order at most 2k of elements of the set {Qj/}ogaj,gyl evaluated at tv;, where
o5 = 1.
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Before proving the lemma, we note that as in (4.15) the choice of exponent —2 for [ in (4.17)
and (4.18) is somewhat arbitrary. We choose it to ensure the sum over [ converges. As in (4.15),
172 may be replaced by [P, p > 1, if m is chosen sufficiently large, depending on p.

Proof. Let j € N be such that v, = 0. We apply Lemma A.1.

By our choice of 1, the support of 1; contains no thresholds other than +v;. Then with
o;j = v, Ti(A)XR(A)(I —P)x is a smooth function of 7;(\) on the support of ¢;(A), A € R, but
X7 (A)R(—=A)(L — P)x is not in general. Hence we shall rewrite the integral to avoid the use of
R(—\). At the same time, for m € Ny we write f; = (H + My)~™(H + My)™ f1, and similarly for
fo. Thus we rewrite

/_OO e (A AN X(R(N) = R(=N)(I = P)(A* + Mo) ™™ (H + My)™ < ﬁ ) i

_ /_ T A — e AN (WXRO) (T — PYOE + Mo)~" (H + Mp)™ < 2 ) A\ (4.19)

This integral has an asymptotic expansion, with contributions arising from the neighborhoods of

A =o0; =y and A = —0; = —u;; each will contribute both to the 0's and to By ,.
Now we recall from the proof of Lemma 4.4 that there are neighborhoods of v, = o; and
—vy; = —0; in Z on which we may use 7; as a coordinate and on which x7;(A\)R(A)(I —P)x is a

smooth function of 7;. Under the hypotheses of Theorem 4.1, the radii of the balls about £, can be

taken proportional to min(aj(l_NY)ﬂ, Uj_Nl) = min(yl(l_NY)/2, Vl_Nl) in the 7; coordinate. Hence

by our choice of N we can choose our original function 1, with t;(\) = w(VlN (A2—=17)), so that we
can extend 1;(A)A(EN)x7;(A)R(X)(I — P)x to be a smooth, compactly supported function of 7;
in this complex ball. In fact, with ) chosen to be even, 1/)(VZN|/\2 — ) A(EN) X1 (A RA) (I —P)x
provides such an extension (where we understand A to be the locally well-defined function of 7;).
With the support of ¥ chosen sufficiently small, this will hold for all [ € N.

Thus we may apply Lemma A.1 in order to find an expansion for the portion of the integral in
(4.19) over (0,00). From the second part of Lemma A.1 we obtain immediately that

[ A0 = AR ONRONE - P)OE + 3 e+ 21y () o

- / e A= NP (VxRN (I —P)(N% + Mo)™™(H + Mo)™ ( ;1 > d\ + O(t7*0). (4.20)

0 2
Now by applying the first part of Lemma A.1 and (A.1), we have an expansion of (4.20) of the
form in (4.16) with exponential e, and the coefficients in the expansion; that is, the b; 5 — and

bl(,z, _; are determined by o; = vy and derivatives with respect to 7; of

H + My)™
BN AT (NXRNT = PY(X? + M) ™ < E " 1 Mg;mg ) (4.21)
of order at most 2k evaluated at A = 0; = 1.

Next we turn to the question of uniformity in /, as in (4.17) and (4.18). This is immediate if Hy
is bounded, so we consider only the case of unbounded Hy. Note that in this case our assumption
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(4.3) ensures that v, > (Cyl)"/™+1) 1 O(1). By Lemma 4.4 the derivatives of fixed order of
XR(A) (I — P)x with respect to 7; near +o0; grow at worst polynomially in o; = v, as do the
derivatives of ¢;(\) by definition. Thus by taking m sufficiently large, depending polynomially
on kg, we can guarantee that the analog of (4.18) holds. Similarly, using the remainder estimate
of Lemma A.1, we find that the analog of (4.17) holds.

The integral in (4.19) over (—o0,0) can be handled in an analogous manner, and gives us the
b+ and by ) .

Thus far we have proved that the coefficients b, — (and bl(lll _) are determined by the value of
v = o; and the derivatives with respect to 7; of (4.21) evaluated at A\ = v} = 0;. We can say
a bit more. Here we concentrate on describing the origin of the b, _ and do not worry about
bounding them uniformly in [/, as we have already done so. Rather than using (4.20) we return

to the original expression

| MO ARN) — RN - P) ( S ) dA

f2
0
. /oo eit)‘wl()\)A(A)X(R(/\) — R(-N)(I - 7))(/\2 + Mo)™™(H + My)™ < ;1 ) dM.
; 2

We concentrate on the integral over (—oo,0), which gives us the b;;, — and bl( ,)c _ (the integral over

(0,00) leads to the by 4 ). Using Lemma 2.5,

f2

(N + Mo)™™(H + Mp)™ ( h ) dX

/_0 " AN YA X[R(A) — R(=N)](I — P)(A* + M) "™ (H + Mo)™ ( h ) d\

P5(N) @ Py (N)
7/ (A)

=T emacmon

2 Jo
0§0j1<crj

— i/ooeit)\A(_A)wl()\)X Z (PJI(A) ®(I)]'()‘) ()\2 _’_Mo)fm(H_’_Mo)m ( fl )d)\

j 0<0,1<o; 7 (M)

(4.22)

We can apply Lemma A.2 to each of these two integrals. We know from our previous discussion

t=k=1/2 but we learn some more

specific information about the coefficients this way. This shows us that the b;; — and bl( ,)C _ are

actually determined by the value v; = ¢, the initial conditions f; and fs, and elements of the set

that the sum will have an asymptotic expansion in powers of

{(a’:;q>j,)rA:Uj| 0<oy <o, 0<K < Qk} .

This also provides a natural way to see that by, € (r)1/2F2k+<3 since 8&; Difa=0; € (r)1/2Hk +eqy
if o5 < oy O
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The next lemma is almost parallel to Lemma 4.7. Tt differs in that it assumes only the hy-
potheses of Proposition 4.2, and only achieves uniformity in [ because of the multiplication by the
compactly supported function wsp()\2). We omit the proof because it is so similar.

Lemma 4.8. Let H, f1, and f2 satisfy the hypotheses of Proposition 4.2. Let i be as defined
in (4.10) and let kg € N. Then with the support of the function ¢ in (4.10) chosen sufficiently

small, for 1 € N there are by j, +, bl(/,)Ci € (r)1/242ktey | =0,1,....,ko — 1 so that

| OB ANRO) - R - P) ( f ) ix

P
—itVl

ko1 ity
—k— Xbi k€™ + xbrg,—€
=D LT A ) X Bk () (4.23
kzo Xbl(,ll,{»eltyl + Xbl(’li’fe_ltyl X l,ko( ) ( )
with
B8l < Cont (il + 11 el

The by i+, bl(lli o, are determined by the initial data f1, fa, the value of vi, and the derivatives with
respect to T; of order at most 2k of elements of the set {®;(\), wsp()\Q)@j/()\)}ogaj,gyl evaluated
at v, where o = v.

Of course, the b, +, bl(/lz , in Lemma 4.8 are 0 if &1, are not in the support of ¢sp()\2).

Proof of Theorem 4.1. We write u(t) = Pu(t) + (I — P)u(t). The expansion of u.(t) = Pu(t)
is given in Lemma 3.1. From equation (4.13) we see that (I — P)u(t) is given by a sum of
contributions from Iy, Iy, and I,.. By Lemma 4.5, the contribution of I, is of order t=F for any
k. Note that using Lemma 4.7 and summing over [ € N evaluates the contribution of I;;,; the
estimates (4.17) and (4.18) ensure the convergence of the sums over [ to bound the remainder and
the absolute convergence of the sum over [ in (4.4), respectively. Lemma 3.7 gives the contribution
of Ip. Summing the contributions of the terms from Iy and Iy, gives uipy k- O

Proof of Proposition 4.2. We use (4.13), multiplying on the left hand side by xve,(H) =
Xsp(H)bsp 1 (H). By Lemma 4.6, |[xtsp(H)I(t)X|lnaon—non < Ct™* for any k. Then by
Lemma 3.7 and Lemma 4.8, summing over the finite number of [ with 1/12 € supp Ysp, we see
that the sum of the contributions of xts,(H)Io(t) and xtsp(H)Iipr(t) gives an expansion as
claimed. g

APPENDIX A. ASYMPTOTIC EXPANSIONS OF SOME INTEGRALS

In this section we prove two lemmas which are used in evaluating the contribution of the
thresholds to the asymptotics of the solutions of the wave equation. The proofs of these lemmas
use a change of variables and stationary phase to find asymptotic expansions of two types of
integrals.

Lemma A.1. Fiz ¢y € (0,1) and set By = {z € C | |2| < ¢o/2}. Let X be a Banach space.
For each ky € N there is a C > 0 so that if 05 > co and F € CX(By; X) then there are
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b, = bk(F,O'j) € X so that fort >0

< F(m(\) g ] B
At J . + 1/2 —iojt to:
/0 © 7;(A) dA — (ot) e ™/ g bi(to;) N

< C | (ojt) ko Z supHafF(k)(T)
k<2ko+1 7

LR D swlIFO@)] - (A1)
k<2ko+1

Here by = e~ ""/*F(0)/27, and the coefficients by are determined by the derivatives with respect
to T of F(o;7)/vV12+1 of order at most 2k, evaluated at T = 0. Moreover, under the same
assumptions, fort > 0

<C (o)™ ) sup ‘F(k)(ﬂ”x

k<2ko+1 7

)UfF(k)(T)HX + 7R (1 4 oj)o Z sup
k<2ko+1 T

Proof. In order to simplify notation, we give the proof for X = C, with the notation |a| =
llo]lc. The proof for a general Banach space X is essentially identical, though notationally more

complicated.
We may write F/(7;()\)) = Fe(m5(\)) + Fo(75(X)), where
F(r(N) = 3 (F0) + F(-;0))

Fy(mi(N) = 5 (F(500) = F(=,()).

Now F,(1j(\))/7;(A) is in fact a smooth function of 7' = X2 - o], and hence a smooth function

of A. Then, integrating by parts,

[N | o 22 FO)
0 7i(N) dXko (N
<Ct™(1+o)M Y sup|DEF(r)].
k<2ko+1 T
To evaluate the integral [~ e*¥A FET(](()))dA we make a change of variables. For A € [0}, 00),

7;(A) € [0,00) and we use the variable 7" = 7;; for A € [0,05], 7;(\) € ¢[0,00) and we use the
variable 7/ = —i7;. Hence

/OO 6:tit>\Fe(Tj()\))d>\
0 7i(A)
—/ SV T dT —Z/J Fityei=? _LUT) g (A3)
0 1/ 0]2 — (7'/)2
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For the first integral on the right-hand side of (A.3) we perform a change of variable in order to
be able to track dependence on ;. Using 7" = 0,7, we have

/OO e:l:z't (T’)2+U]2»L7J)d7_/ _ /OO e:l:itaj\/T2+1 Fe(UjT) d
o? 0

-
()2 + 241
=5 [ e ilon) T 4y (A.4)
—00 T+

where for the second equality we have used that the integrand is even in 7. For this integral,
we may use the method of stationary phase. Note that the only stationary point is at 7 = 0.
By [H6r90, Theorem 7.7.5], we have that there are constants byi, depending on F, and oj, so
that

F( ) ko—1

o VT2 o

/ izt j +1 > 2\ g — (0’ t) 1/2 iz jt Z bk:l: O'] ) k
0 T4+ 1 P

< Clojt) ™ Y- sup’D? <F((’ﬂ))‘ (A.5)

2
lal<2ko T 7441

Moreover, the by are determined by derivatives with respect to 7 of F.(0;7)/v/72 + 1 of order
less than or equal to 2k, evaluated at 7 = 0. The coefficient bor = F(0)+/7/2e*™/4. By allowing
the constant to depend on kg, we may bound

e(0;
Z sup‘D?( < Ck, Z sup)a )‘
la|<2ko vT k<2ko
A similar computation gives a similar expansion for the second integral on the right-hand side of
(A.3) since the support of F(i7’) is small enough that 1/, /0]2- — (7")2 is smooth on the support of
F.. We note that k£ = 0 coefficient for the expansion of the second term on the right-hand side of
(A.3) (including the factor of —i in front) is —iy/7/2F(0)e¥*™/4. This finishes the proof of (A.1),
and shows that the integral on the left in (A.2) has a similar expansion.

To complete the proof of (A.2) it suffices to show that the coefficients in the expansion are 0.
We shall give two proofs of this. For the first, we return to (A.3), but with the “+” sign, writing

* i Flr ()
/o SR

-y
/ R —Z/ i _ET) g
( ) —i—o

032. —(7)?

1 2to?  Fe(r) F.( ity/o?—(1")2 Fe(it") /
-2 / it\ /(') ()+U T_Z/_UJ ) 05—(7')2617 . (A.6)

As previously for the second equality we have used that the integrands are even in 7/. Setting
g(t") = ((T/)2+0]2-))1/2 —(oj+(7")?/2)) we find from using the explicit expression for the stationary
phase coefficients (see, for example, [H6r90, Theorem 7.7.5]) and summing the contributions from
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the two integrals that the coefficients in the asymptotic expansion of (A.6) are linear combinations
of

) Ty / ) Wit :
€”r/4D72_/V 9 (T )FG(T) _ie—mr/4(_1)yD72_1,/ 9 (7’7— )FG(ZT) (A?)

)2+ 02 it)2 + o?
( ) i o ( ) J I7/=0

for v, € Np. Since if h is a smooth function in a complex neighborhood of the origin, then
D2 h(it") [ o= (i)* D*h(7') | ;/—0, We see that the quantity in (A.7) is 0, and the sum of the
terms coming from the stationary phase expansions in (A.6) is 0.

‘ N

g4t V2

Y

FI1cURE 7. The contours of integration ~v; and ~s.

Now we outline an alternate, perhaps more intuitive, proof that the sum of the stationary phase
coefficients in arising from the right-hand side of (A.6) is 0. The middle expression in (A.6) may

be written
/ ,/z2—|—a
1" \ /22 + 0’

where 1 is as in Figure A: the path that goes down the positive imaginary axis to the origin,

(A.8)

and then to infinity along the positive real axis. We understand the square root to be analytic in
the closed first quadrant away from io; and to be positive on the positive real axis; this ensures

Im /2% + ajz- > 0 in the open first quadrant. If F, were analytic in a neighborhood of the origin,

then by Cauchy’s Theorem we could write

/ R ) ——dz = / ¢ el 7Fe(z) dz
7 1/,z2+a Y2 ,/zQ—i—aJ?

where o is smooth, differs from = only in a suitably small neighborhood of the origin, and is

contained in the closure of the first quadrant; see Figure A. Since for ¢t > 0, \ei\’ o t\ <1on
v2 and (with suitably parameterized 72) the phase has no stationary points on 72, by repeated
integration by parts we can see that the integral in (A.6) is O(t~%), any k € N, as t — oc.

If F, is only smooth, not complex analytic, in a neighborhood of the origin, write F, = Ty +
(F, — 1[1T2k) where Ty is the 2kth Taylor polynomial of F, at 0 and ¢ € C*(C)is1in a
neighborhood of the origin. Then the argument outlined above may be applied to the integral
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with Ty, if o differs from 77 only on the set where ¢ is 1. Since (F. — ”L;Tgk) vanishes to order
2k + 1 at the origin, we may integrate by parts k times to see that

/ Jit/74ed Fe(2) —(2) Tor(2) o).

\/224-0]2-

The second argument for (A.2) also gives an intuitive reason for the difference between (A.1) and

2
(A.2). In place of (A.8) we have instead for (A.1) the integral fw e VET F.(2)(2? +0]2»)_1/2dz.
If F, is analytic near the origin, we can, as in the argument above, use a contour deformation

u
—it

argument to deform the contour of integration to 2. But for z in the open first quadrant,

— 2 2
e VI g exponentially increasing as ¢t — oco. If we instead deform ~; to avoid the origin and
the first quadrant, the deformed path must have portions in each of quadrants 2, 3, and 4. But

— 2 2
e TVET i exponentially increasing as t — oo if z is in the open third quadrant.

We state another lemma, with results similar to those of Lemma A.1. Note that this differs
from Lemma A.1 in the domain of integration, the assumptions on where F' and G are smooth,

and the less explicit bound on the error. We remark that the powers t~%/2, rather than t=* of

2

Lemma A.l are a consequence of the fact that after changing variable 7 = , /A2 — 5 T=01s

both a stationary point of the phase and an endpoint of integration.

Lemma A.2. Let X be a Banach space and let o; > 0. Let F' € C*([0,0;/2); X) and G €
C(1[0,0;/2); X). Then given kg € N there are ag s, fr+r € X, k € 0,1,...,2kg — 2, C =
C(F,G,0j,ko) > 0 so that

© o F(m ) o, N
/ €il/\t]7d)\ . t*l/ZeiltUj Z O‘k‘,:l:tik/Q < Ct*’m’ t>0 (Ag)
o, 75(A) k=0 X
and k
(o} . . 2 072
0 75 (A) k=0 X

Here the oy, 1 (respectively By +) are determined by o; and the derivatives of F (respectively G)
of order at most k, evaluated at 0.

Proof. We prove only (A.9), as the proof of (A.10) is almost identical. By introducing 7 = 7;(\)
as the variable of integration,

/ :I:zz\t >‘ d)\ / :I:zt1/72+a (All)

j ) 72 + 0
Then an application of [Erd56, Section 2.9] proves (A.9), with coefficients oy, 1+ determined by o

and derivatives of I, evaluated at 0, of order at most k. O
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