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SEMICLASSICAL RESOLVENT BOUNDS FOR COMPACTLY SUPPORTED
RADIAL POTENTIALS

KIRIL DATCHEV, JEFFREY GALKOWSKI, AND JACOB SHAPIRO

ABSTRACT. We employ separation of variables to prove weighted resolvent estimates for the semi-
classical Schrodinger operator —h*A + V(|z|) — E in dimension n > 2, where h, E > 0, and
V :[0,00) = R is L* and compactly supported. The weighted resolvent norm grows no faster than
exp(Ch™1), while an exterior weighted norm grows ~ h™'. We introduce a new method based on
the Mellin transform to handle the two-dimensional case.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A := E?:l 8%_ be the Laplacian on R™, n > 2. We consider the semiclassical Schrédinger
operator on L?(R™) given by
Pu = P(h)u:= —h?Au+ V(|z|)u,
where V': [0,00) — R is L* and compactly supported, and h > 0 is a semiclassical parameter.
Then P: H?(R™) — L%(R") is self-adjoint, and the resolvent (P — z)~! is bounded on L?(R") for
all z € C\ R. Throughout the article, we let r := ||, and (z) == (1 + |z|?)'/2.
Our first result is an exponential upper bound on the limiting absorption resolvent.
Theorem 1. Let n > 2. Fiz [Eyin, Emax] C (0,00) and 1/2 < s < 1. There exist C, hy > 0, such
that
[(z) (P — E —ie) " @) ~*|l 2@y 12@m) < e/, (1.1)
for alle >0, h € (0,hg], and E € [Epin, Fmax]-
In addition, we prove a ‘non-trapping’ type estimate for the resolvent in the exterior of a large
ball. Let
Ry = Ro(V') :=sup{r € [0,00) : r € esssupp V' },
and define

1.2
inf{m > 0| V(r) +mr 2 — E >0, for almost all 7 in a neighborhood of (0, Ro(V)]}. (12)

For example, if V is the characteristic function of the interval (0, Ry, then My = ER3. If V is
continuous at Ry, Mo = esssup gy r?(E — V). Note that always My > ER2 because we require

Mor—2 — E > 0 for some r > Ry. Finally, put

Ry = Ry(V, E) = /Mo(V, E)/E. (13)

Theorem 2. Letn > 2. Fiz [Eyin, Emax] € (0,00), 1/2 < s <1 and R > supgep Ri(V,E).
There exist C, hg > 0, such that

min 7Emax}

(@) 15r(P — E —ie) " 1sr(2)°| 2@ 2@n) < (1.4)

C
Ev
for all e > 0, h € (0,hy], and E € [Emin, Emax), where 1sg is the characteristic function of
{z € R": |z| > R}.
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Theorem 2 is optimal in the sense that [DaJi20, Theorem 3] shows that (1.4) is false in general
when R < /My/E. For example, if V € C§°([0,1)), E < max(—r2V), and R < \/My/E, then (by
[DaJi20, (2.9) and (4.10)]) the left hand side of (1.4) is bounded below by e/¢* for h tending to
zero along a sequence of positive values.

The novelty of Theorems 1 and 2 is that they bound the weighted resolvent for an arbitrary
compactly supported, radial L> potential. The h-dependencies on the right sides of (1.4) and (1.1)
are sharp in general, see [DDZ15] and [DaJi20] for exponential lower bounds, and recall that the

free resolvent (V = 0) has a Ch~! lower bound (to see this, consider u = eiﬁhilxlx(x) for some
0 # x € Cg°(R™)).

Vodev’s work [Vo21] shows, for dimension n > 3, a bound like (1.1) still holds for radial potentials
decaying like (r)=%, § > 2, except with the right side replaced by eCh? (bounds with additional
losses hold for V' decaying more slowly). For V' € L (R™;R) not necessarily radial, n > 2, with
V = O0((r)™°), § > 2, the best known weighted resolvent upper bound is eCh™*/log(h™") [GaSh20].
In dimension n > 2, it is an open problem to determine the optimal A-dependence of the resolvent
for V € L. In contrast, when n = 1, an e“" " bound holds even if V € L'(R;R) [DaSh20]. As
far as the authors are aware, Theorem 2 is the first exterior estimate for any class of L potentials
in dimension higher than one.

Proofs of semiclassical resolvent estimates have a long history and are an active research topic.
Burq [Bu98| was the first to show an ¢“"™" bound for smooth perturbations of the Laplacian on R”.
Several extensions followed [Vo00, Bu02, Sj02, CaVo02]. The exterior bound (1.4) was first proved
by Cardoso and Vodev [CaVo02], refining a preliminary estimate of Burq [Bu02]. More recent
works on resolvent estimates in lower regularity include [Dal4, Vol4, RoTal5, KIVo19, Sh19, Vol9,
GaSh20, GaSh21, Sh20, Vo20a, Vo20b, Vo20c, Vo21].

Stronger bounds on the resolvent are known when V' € C§°(R™; R) and conditions are imposed on
the classical flow ®(t) = exp t(2£0, — 0,V (x)0¢) (note that ®(¢) may be undefined in our case). The
key dynamical object is the trapped set K(E) at energy E > 0, defined as the set of (z,&) € T*R"
such that |¢]? + V(z) = E and |®(t)(z,¢)| is bounded as [t| — oco. If K(E) = 0, that is, if E is
nontrapping, Robert and Tamura [RoTa87] showed the weighted resolvent is bounded by Ch~1.
We may thus think of (1.4) as a low regularity analog; it says that applying cutoffs supported
sufficiently far from zero removes the losses from (1.1) due to trapping.

Theorem 1 allows one to obtain, at high frequency, bounds on and resonance free regions for,
the meromorphic continuation of the cutoff resolvent of the operator —c?(|x|)A on L?(R", ¢ 2dx).
Here ¢ € L*([0,00); (0,00)) is called the wavespeed and satisfies

supp(1l — ¢) is compact,

cp < ¢(r) < ¢1 for some cp,c; > 0 and for all r € [0, 00).

More precisely, one obtains,

Theorem 3. Let n > 2, and suppose ¢ € L*([0,00);(0,00)) obeys (1.5) and (1.6). For each
x € C§°(R™), there exist constants Cy,C2, M > 0 such that the cutoff resolvent

YR\ x = x(—c2A — X2)~"1x continues analytically from Im X > 0 into the set

(A€ C:|Re)| > M, Im\ > —e2IReAN “yhere it satisfies the bound

HXR()‘)XHLZ(R”, c=2dz)—L2(R", c—2dz) = eCrIReAl (1.7)

The proof of Theorem 3 is the same as the proof of [Sh18, Proposition 5.1], and is seen by
identifying V' =1—c¢~2, h = |Re A|"! and applying (1.1).
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Theorem 3 implies logarithmic local energy decay for the wave equation

(02 — 2(x)A)u(x,t) =0, (z,t) € R" x (0,00), n > 2,
u(z,0) = up(z) € H?(R™), (1.8)
Opu(r,0) = uy(z) € HY(R"),

where the initial data are compactly supported. Such a decay rate was first proved by Burq [Bu98]
for ¢ smooth, and allowing for a smooth Dirichlet obstacle.

The assumption that ¢ = 1 outside of a compact set is necessary not only to establish (1.7), but
also to study the low-frequency behavior of the cutoff resolvent. Under this assumption, one can
see that this behavior is exactly the same as the case ¢ = 1 [Sh18, Proposition 4.1], which in turn is
well-known (see, e.g., [Vo01, Section 1.1]). With both the low and high frequency behavior of the
XR(\)x illuminated, a logarithmic local energy decay rate for the solution of (1.8) follows exactly
as in [Sh18, Sections 6 and 7).

1.1. Ideas from the proofs. When V' : R” — R has limited regularity, proofs of resolvent
estimates typically proceed by a modified positive commutator strategy, see e.g., [GaSh20, Section
2]. The potential is treated as a perturbation because it cannot be differentiated in some or all
directions. The issue one needs to overcome is that, in the positive commutator scheme, the
potential appears in a term without an apparent sign (even though V is real-valued), which in
turn is difficult to control as h — 07. Controlling this term results in an estimate from above by
oCh™4/3log(h™1)

Due to the work of Meshkov [Me92] on the Landis conjecture, one knows that the exponent h—4/3
is optimal for compactly supported complex valued potentials (see Appendix C for an explanation).
Therefore, any improvement upon the exponent =%/ in the resolvent estimate for an L> compactly
supported potential must involve additional assumptions on the potential V' (e.g. reality /radiality).

The radial symmetry of the potential is used in two ways. First, it allows us to study the high
angular momenta separately from the low angular momenta. In particular, we use a spherical energy
type estimate to obtain resolvent estimates for low frequencies. Second, decomposition by angular
momentum enables us to take advantage of reality of V using ODE techniques. In particular, for
large enough angular momenta m;, reality of V yields useful monotonicity properties of certain
solutions ug and uy to (—h?9% +V +mjr=2 — E)u = 0 (see their construction in Section 2). Control
of ug and u; gives a bound on the integral kernel of (—h202+V +mr~2 — E —i0)~!, which together
with WKB and Bessel function asymptotics, yields the sharp semiclassical resolvent estimates.

We remark that, in the setting of Theorem 1, our ODE methods do not yield estimates on ug
and up for small m;. However, we are able to prove good enough resolvent estimates for these
frequencies. In doing so, we prove the following proposition.

Proposition 1.1. Fiz [Eyin, Emax] € (0,00) and 1/2 < s < 1. There exist C, hg > 0 such that for
0<e<1,he(0,hy], m>—h?/4, and E € [Enin, Emax],

s - . N—1/\—8 m|V/
1) 5 (—=h202 + V +mr=2 — B —ie) "Hr) || 2 (0.00) 5 12(0.00) < €T (1.9)

Proposition 1.1 is motivated by [Vo21, Proposition 3.1] where a similar estimate is proved for
m > 0. However, in order to handle the case of n = 2, we need to extend these resolvent estimates
to m > —h%/4. The proof of Proposition 1.1 utilizes methods inspired by the b-calculus from
microlocal analysis to estimate u by (—h?9? +V +mr~2 — E)u near 0, and then employs a spherical
energy method to handle the region away from zero.

We expect Theorems 1 and 2 still hold for potentials V' which are radial, real and non-compactly
supported, with sufficient decay toward infinity. A difficulty with treating this case is finding
a suitable replacement for the WKB and Bessel function asymptotics we use in Section 3. A
development in this direction is that, since we posted this article as a preprint, Vodev [Vo22]
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designed a new Carleman estimate for n > 3, large angular momenta, and radial V = O({r))~°,
d > 4; it yields improved resolvent bounds compared to [Vo21], and an alternative proof of (1.1).

The organization of the paper is as follows. In Section 2 we give an overview of the plan to
prove Theorems 1 and 2 via separation of variables. In Section 3 we use WKB and Bessel function
asymptotics to prove Theorem 2. In Section 4 we use the Mellin transform and energy estimates
to prove an exponential estimate which is optimal for low angular momenta but not for high ones.
In Section 5 we use ODE analysis to remove the losses for high angular momenta and complete the
proof of Theorem 1.
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2. REDUCTION TO A FAMILY OF ONE DIMENSIONAL RESOVLENT ESTIMATES

In this section, we use separation of variables to reduce the proofs of Theorems 1 and 2 to a
family of one dimensional resolvent estimates. We begin by recalling the conjugation
Agn— n—1)(n—3

s (=Dn=3)

n—1)/2 —(n—1)/2 2
R N e e

We then put
my = W0+ 47 (n = 1)(n - 3)),

where 0 = 0g < 01 = 09 < 03 < --- are the eigenvalues of the nonnegative Laplace-Beltrami oper-
ator on the unit sphere S*~! C R”, repeated according to multiplicity. (Recall that the eigenvalues
of the unit sphere are k2 +(n—2)k, k =0, 1, ....) Denote by Yg, Y71,... a corresponding sequence
of orthonormal real eigenfunctions. Also define

Py = —h22 +V(r)+mr 2  m> -

The operator Py, acting on L*(Ry), Ry := (0,00), with domain C§°(Ry), is symmetric. As P,
commutes with complex conjugation, by von Neumann’s theorem it has equal defect indices, and
thus has self adjoint extensions. Elements in the domain D(P},) are precisely those functions
u € L*(Ry) having u and 8,u absolutely continuous along with P,u € L?(R). Moreover, since
Ir el r2ry) < 201000l 2w,y for any ¢ € C§°(Ry), Py, is a semibounded operator, thus a partic-
ular self-adjoint extension of (P, C§°(R4)) is its Friedrichs extension (see [ReSi, Theorem X.23]),
which we denote by (P, Dy,); this is the self-adjoint extension of (P, C§°(Ry)) that we work with
throughout the paper.

We start by studying the resolvent kernel for P,,. To do this, we construct two convenient
linearly independent solutions, ug and w;, which are not in D,,, to

Ppuj = (E + ie)u;, j€{0,1}. (2.1)
To define these solutions, let
0s(r) =r'27,(\r), oy (r) = r'/2Y, (Ar),
h? VE +ie

h2
m2_17 V:h_l(m+z)l/2207 )‘:Ta E € [EminyEmax]y 5207
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where J,(-) and Y, (-) are the Bessel functions of the first and second kind, respectively [DLMF,
Section 10.2]. Note that

(—hzar + mr_2 —F— i€)gDJ/y =0.
Next, define ¢y = ¢ and, inductively,

enir(r) = g3 [ (ev(es) = sy IV )l 0,
Finally, put
uo(r) = Z on(r). (2.2)
n=0

In Appendix B, we prove

Lemma 2.1. The series (2.2) and its first derivative converge uniformly for (r, E, &) in compact
subsets of Ry X [Emin, Emax] X [0,00). In addition, ug(r) > 0 near r = 0,

wlr) = eulr) + 57 [ (ov (hoalr) = ps0)ew (DY (ol (2.3
(=h22 +V(r) +mr 2 — E —ie)ug = 0, (2.4)
Tim (o (r) — up(r))r "2 =0, (2.5)

and for all v* > 0,v > 0, there is C, .+ such that
lup(r)| < C,,vr*r’”r%, r € (0,77, (2.6)
Next, put

ui(r) = @ (r) +ipy(r), r > Ry, (2.7)

and extend wu; by requiring that it solve (2.1). By (2.7) and [Ol, Theorem 2.1 in Section 5.2.1],
u1 depends continuously on (r, E,¢) varying in Ry X [Epin, Fmax] X [0,00). Also, from [DLMF,
10.17.5], for all r* > 1, v > 0, there is Cy«,, > 0 such that

ur (r)] < Cre ye™ ™M >0, (2.8)
Lemma 2.2. The functions ug in (2.2) and uy in (2.7) are linearly independent for all € > 0.

Proof. First consider € > 0 and suppose u; and ug are linearly dependent. Then, since

up € L?((0,1]) by (2.6) and uy € L?([1,00)) by (2.8), we would have u; € L?([0,00)). In particular,
uy would be an L2-solution of (P, — E — ic)u = 0 and thus must vanish identically. Next, when
e = 0, then by the Bessel function equation (A.1), ug(r) = Aps(Ar) + Bpy (Ar) when r > Ry and
for some real constants A and B. Comparing with (2.7) and using the linear independence of J,(z)
and Y, (2), z > 0, we conclude that ug and u; are linearly independent when ¢ = 0, too.

We can now define the resolvent kernel for P,,,

/
K(r,r") = K(r,";m,E, e, h) = —7%(;2?;/(7” ),
h2
r < Tl, m > _Za E e [EminyEmax]y €> 07

and for v’ < r, K(r,r") = K(r',r), where W = upu} — ufu; is the Wronskian of ug and u;.
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Lemma 2.3. For E,e >0, u € L>(R") and v € L*(Ry),

(P — E —ie) v = /000 K(r,r';m, E, e, h)v(r")dr'.
" o (2.10)
= —h_QW_l(ul(r)/O uo(r v (r')dr! +uo(r)/ wy (r)o(r)dr'),

(P—FE— i) u—ZY/ / D2 (1 o B e, h) ()"0 20 )Y (6)d6dr.
j= -0 Sn— 1

(2.11)

Proof. To prove (2.10), it suffices to work with v € C§°(R;.). We check that the right side of (2.10)
belongs to D,, and, that applying P,,, — F — i€ yields v. The latter is a direct computation, while
the former follows from (2.6), (2.8), and the fact that a characterization of D,, is

S _p2
D _ {{f € L(Ry): Pf € L(Ry), 1" 2f € [®nearr =0} SF<m< 3, ) )

{feLXRy): Puf € L*(Ry)} m > 32

See [NiZe92, Section 6, Example I].
We need only verify (2.11) for v = Y; v with v € C§°(R4.), as such functions have dense linear
span in L2(R™). In this case, the right side of (2.11) reduces to

Y, / (n—1) /2K (r,r'smj, E e, h)(r )("_1)/2U(T')d7’/. (2.13)

To show (2.13) and (P — E —ie)~1Y v coincide, we check that applying P — E —ie, respectively A,
to (2.13) in the sense of distributions, results in Y v, respectively some function in L?(R"). Both
computations are handled by integrating by parts in polar coordinates, on domains of the form
{x € R" : |z| > 0 > 0}, and sending 6 — 0. All boundary terms that appear in the calculation
vanish as § — 0, thanks to (2.5) and (2.6). We leave the remaining details to the reader.

O

We next consider the limit as ¢ — 07. Recall that [Ag75, Theorem 4.2] for any s > 1/2, and
E € [Enin, Fmax| , the limit
(2)75(P — E —i0)"Yz)™* = lim (z)°(P — F —ie) " Yz)™* (2.14)
e—0t
exists in the uniform topology L*(R") — L?(R™). By (2.11), (2.10), and because K (r,r';m;, E, &, h)
depends continuously on (r,7’, F, €) varying in compact subsets of Ry X Ry X [Fumin, Fmax] X [0, 00),
for each j and u,v € C§°(R),

(Y ju, (2)~(P — E — 10) " () ~*Y;0) 2
— lim <T(n—1)/2u7 <T>_S/ K(T, 7‘,; mj,E,a, h)<7‘,>_S(7‘,)(n_l)/2’l)(7’/)d7’/>L2(R+)
0

= lim ("2, (7)) (P, — E — i) ) T () T 2007) Loy

e—=0t
= <T(n_1)/2uv <r>_8 /0 K(Tv T/; g, E,0, h) <r,>_S(r,)(n_l)/zv(rl)dT/>L2 (Ry)-

Thus, as functions {Y;v : j € Ny, v € C§°(Ry)} have dense linear span in L*(R™), to bound the
norm of (2.14) on L%(R"), it suffices to bound, uniformly in j, the kernel K (r,r';m;, E,0,h), or
alternatively, |[(r)™*(Pn, — E — i) (r) || 12, )= 12(r, ) for € > 0 small.

If the bounds (1.1) and (1.4) are established for € = 0, it is well-known that one can use resolvent
identities to show they hold for € > 0 as well. We omit the proof of this but refer the reader to the
relevant results, see [BrPe00, Proposition 3] and [Vol4, Theorem 1.5].



SEMICLASSICAL RESOLVENT BOUNDS FOR COMPACTLY SUPPORTED RADIAL POTENTIALS 7

3. EXTERIOR ESTIMATES

Theorem 2 follows from the stronger statement that, for any R > supge(p Ry (V,E) (see

(1.3)), we have

minyEmax}

K ()] = | ' B,0,1)] < (3.1)

uniformly for 7 and ' in [R,00) obeying ©» < v/, m > —h?/4, h small, and E € [Eyax, Emin]. We
prove (3.1) in this section, over the course of two lemmas. The first lemma establishes (3.1) for
m < M, where

E(R? — R%)‘

My = M (E) = Mo+ 5

(3.2)
In the second lemma, we prove (3.1) for m > M.

Lemma 3.1. There are C and hy such that (3.1) holds for all v and r' in [R,0) obeying r < r’,
h € (0,hol, E € [Emin, Fmax] and for all m € [—h?/4, M].

Proof. The proof is essentially the same as the one in [DaJi20, Lemma 1]. It is based on WKB
or Liouville-Green asymptotics for solutions to an ODE with real coefficients in a region with no
turning point. First, observe that if r > R and m < My, then
—2 2My + E(R? — R?) < 2ER? + E(R? — R?) g E(R? - R?)

- 2r2 - 2R? 2R? )
Thus E — mr~2 is bounded below by a positive constant uniformly in E, r and m.

By [Ol, Section 6.2.4], there are real numbers A = A(h) and B = B(h) such that, for » > R we

have
up(r) = f/ﬁ(g(fl +iB) exp / VE— ms‘2ds> (I+ex(r ))

where €4 and e_ satisfy

mr

h
lex ()] + hlel (r)] <
y [Ol, Section 6.2.4], there is a constant D = D(h) so that for r > R,

uy(r) = \/E,%exp / VE - ms_st) (14+¢e4(r)),

where we rule out the presence of an exp ( — % i) }2 vE— ms—2ds) term by using large-argument
Bessel function asymptotics [DLMF, 10.17.5 and 10.17.11] to show that

VE
Oruq — zTul — 0, as r — 0o.

Next we compute the Wronskian
D -\ 20 _ 2D(B +iA)
_ _ i _ -2 3)) —
W = = (A zB) . vVE—mr (1 + O(hr )) A ,

where we dropped the remainder because W is independent of r. Plugging these formulas for uy,
u1, and W into the formula (2.9) for K gives the conclusion.
O

Lemma 3.2. There are C' and hy such that (3.1) holds for all v and v’ in [Ry,00) obeying r <1/,
h € (0, ho], E € [Ewmin, Pmax), and for all m > M, .



8 KIRIL DATCHEV, JEFFREY GALKOWSKI, AND JACOB SHAPIRO

Proof. By the Bessel function differential equation (A.1), there are real numbers A and B such
that, for r > Ry,

ug(r) = r'’2(AJ, (vz) + BY, (vz)),
where
v="h"tm+ %h2)1/2, z=(m+ %hz)_lmEl/zr.
(Note that the constants A and B here are analogous to but different from the ones from Lemma
3.1.) Recall from (2.7) that
uy (r) = r'2(J, (v2) + i, (v2)).
By the Bessel function Wronskian formula (A.2),
W =2r"1(iA - B).

To bound B in terms of A we use the fact that ug(Ry), uj(Ro) > 0 which follows from
V +mr=2 — E >0 on (0, Ry]; see Lemma B.1. By the Bessel function bounds (A.7), for h small
enough, we have

Ju(vzo)
-Y, (vzp)

A< ey _B< Ju(vzo) + 2Ry J),(v20)

B <
- ~ Y. (vz0) +2RoY . (vz0)

ASe 04

where

1
G= [ M- = (s 1) RER,

20

Note that zy < 1 because
. My R*- R\’ R* - R\ '*
< M YPEV2R, = [ =2 0 < (14— .
=M "T\Er T w2 =\ T TR

Then, when Ry < r <1/, letting 2’ = (m + 1h?)"V/2EY2)" and inserting |B| < e"2%0 4 and the
Bessel function bound (A.10) into (2.9) gives

K (r, )] S B2 ()2 (T (v2) + 7201V, (v2)]) |y (v2) + 1Y, (v2)]
S_, h_2V_1(7’7’/)1/2<Z>_1/2<Z/>_1/2 5 h_l,

(3.3)

as desired.

4. ONE DIMENSIONAL RESOLVENT ESTIMATES FOR FIXED ANGULAR MOMENTUM

We now study the equation

(P — E —ig)u = (—h*? +V(r)+ mr 2 — E —ic)u = f, m > -

on L? = L*(Ry) := L?(0,00). Recall that the self-adjoint extension of (P,,, C§°(R;)) we employ is
its Friedrichs extension (P, Dy,). Put Deomp,m = {u € Dy, : suppu is compact in [0, 00)}.

Lemma 4.1. Let [Fyin, Fmax] € (0,00) and 1/2 < s < 1. Then there is C, hg > 0 such that for
all E € [Emin, Bmax], b € (0,hg], m > —h?/4, 0 < e <1, and u € Deomp,m,

—Ss m / S .
107 S ull 2,y < €T (0Y3 (P, — B — ie)ul| 2w, )-

To prove Lemma 4.1, we start by studying the operator

Qum = —02 +mh™2r 72, m>——
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on functions compactly supported in [0, 00). We recall the Mellin transform and its inverse:

M(u)(o) == /000 riau(r)ﬁ, M) (r) = % /RT_Z'JU(O')CZT, o=T+1it,

r

where the definitions hold initially, e.g., for u € C§°(Ry) and v((-) +it) € LL(R) N LZ(R), and then

extend by density to bounded operators M : L2(0, 00; 72~ 1dr) — L2(R),

M L2(R) — L2(0, 00; 72 1dr). Moreover, since M (u)(r + it) = 20 F 1 (e u(e®))(7), 2 € R,

and M; 1 (v)(r) = r*F(v)(logr)/2m, where F denotes Fourier transform,
M) +it) 2@y = 2m)"21r ™ Pl 2 ey ), (4.1)

I~ P M ) ()| 2 ey = @)l 2 my-

Let

1+ 1+ 4mh2
2 ;

Lemma 4.2. There is C > 0 such that for m > —h%/4, N € R, tqg € R\ {ty(m),t_(m)}, and

uer NLZ ,[0,00) with Qnu € r0=3L2 we have

ty =ti(m) = A(t,m) = [t2 —t —h2m|™Y,  t#ts.

u = T4y (rPQmu) + Eyy (r*Qmu), (4.2)
where
=172 Byyvl| 2 < CA(to,m)[r~" 0]l g, ), (4.3)
and
0 to < t_,
r2 log rM(v)(4) — raM(logro)(3) - < to, m = —B2,
v = % o <to<ty,m>-L
o Mitn) M) ty <to,m>—h

Remark: Applying (r0,)’, j = 1, 2, to the expression for E; v, see (4.6) below, yields a strength-
ening of (4.3), namely

—pg—1 ; o1 .
[r=72(rd, ) Eyyvl| 2 < Aj(to,m)|r—" 20| L2(ry ) i=0,1,2,
However, we omit the proof since in the sequel we do not need the estimates for j = 1, 2.

Proof. Without loss of generality, we take N positive and large enough so that —N < to, t4, t_.
Since u € r~NL2_ and r?Qnu € plots 2 M(u)(o) is holomorphic in Imo < —N —1/2,

comp comp?
while M (72Q,u)(c), is holomorphic in Im o < t; and extends continuously (as an L? function) to

Im o = ty. In addition,

1
M2 Qmu)(0) = (0? —ioc + mh > )M(u)(0), Imo < —N — 5 (4.4)
In particular, (4.4) implies Mu(c) € LL(R) N L2(R) for Imo < —N —1/2, so by Fourier inversion,
1 O M(r?2Qumu) (o)
= . 4.
u(r) 27 /Imo:_N_l 02 —ioc + mh=2 do (45)

We now deform the contour to Imo =ty — € and the send € — 0. From (4.5),

1 r= O M(r2Qmu) (o)

= i
u(r) 27 Rl—?;o 0% —jo +mh2

do, YRt ={7+it : T € [-R,R]}.

YR,—N—1
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Next, observe that since, in Imo < tg, M (r?Quu)(0)|| [ r) is independent of Re o,
—i0 2
‘ / T M(r Qmu)(a)da < Ce
Y+,R,—N,e

0% o+ mh-2 _ﬁ—>0, as R — oo.

where

Y+,R,—N,e ‘= {:l:R 4+t te [—N —1,t9 — 6]}
In particular, using tg # t+(m) and that M(r2Q,,u)(r +it) varies continuously in L2(R) for t < tg,
we send € — 0 to obtain

= — - R < —i0 :

u(r) 27 0% —io +mh=2 . Z ~ S\ ot mh?

crz—zlo—l-mfz 20 (46)
mo<tg

1 = M(r2Qumu)(o) . M(r*Qmu)(o)
/Im o do +1 )

=: Fy, (Tszu) + 114, (7’2Qmu).

The formula for II;, follows from calculating residues at ¢4 (m), while the bound on Ey, follows
from minimizing the modulus

(7 +it)? — i(T +ito) + mh ™22 = (—t3 + to + mh™2 + 72)2 + 72(2t — 1)?,

with respect to 7.

Lemma 4.3. Suppose m >0 and u € D,,. Then r~'u € L*(R,).
Proof. Observe that there exists C' > 0 so that,
mlrul e,y < Cllulfem,y + {Pnu, w2l u € CFE(Ry).

As (Py,, Dyy) is the Friedrichs extension of (P, C§°(0,00)), by [ReSi, Theorem X.23], any u € Dy,
has a sequence {1} C C$°(R.) such that v, — u in L?(R) and Pk, Yr) 2 — (P, w) 2w, )-
We also get pointwise almost everywhere convergence by extracting a subsequence of the v, which
we again just call ¥;. Sending k£ — oo and using Fatou’s lemma gives
m||7‘_1u\|%2(R+) < C’||u||%2(R+) + [[Pnull 2y lullp2m, ) < oo for general u € Dy, as desired.

O

Lemma 4.2 will allow us to control the behavior of solutions, u to (P,, — E —ic)u = f near 0.

Proof of Lemma 4.1. To shorten notation, we set P, g. = P, — FE —ic. Since 4 € Deomp,m and
u € L?, for any compact K C (0,00), there exists Cf 5 > 0 so that
102ull 2(x) < Crenllull L2 (x) + 1Pmull L2 (s¢))-
In particular, u € H2 (0, 00).
Next, set
§ = 8(m) == Soh(h2m)!/2, 51 = §1(m) == max(6(m), 1), (4.7)

for some 0 < ¢y < 1 independent of h, m and E € [Enin, Emax], to be chosen. Let x € C§°[0,2)
with x = 1 near [0,1]. Set x5, = x(6; 'r). Then

Qumxs,u=h"*Pnpexsu —h 3V — E —ie)xsu

— h—2 P h_2 P N -2 . . (48)
= X6 Fmu + [Py Xo,Ju — h™“x5,(V — E — ie)u.

In particular, since u € leoc(O,oo), P,u € L?, and X5, 1s constant near zero, T2me(51u € r2L2.
Setting

1 h*
to = to(m) = { 12 .
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observe that

A(to,m) = [t —to — h2m|™! < c(h™2m)~! (4.9)
for some ¢ > 0 independent of h and m. Note also that with this definition of to(m), to(m) < t_(m)
for —h?/4 < m < h%/4, and t_(m) < to(m) < ty(m) for h?/4 < m. Therefore, by Lemma 4.2,
since u € L2, r2Qu,xs,u € L%, and to(m) < 3/2,

X51u - Eto (T2QmX51U) + Hto (ermX51u)7

where . . o 2
iy, (P Qmxsu) = 4 o . S
0 mao tf_t+M(r2me51u)(zt_) % <m,
and

1072 Biyollz < CA(to,m)r="0 0l 2.
Next, by Lemma 4.3, for m > 0, r—'u € L?. Thus, both M(xs,u)(c) and M(r2Q,,xs,u)(0) are
holomorphic in Imo < 1/2. As t_ < 1/2 when m > 0, by (4.4),

M(r*Quxsu)(it-) = ((it-)* —i(it-) — h™*m)M(xs,u)(it-) = 0.
In particular, for any m and u € Deomp m, iy (r?QmXs, 1) = 0. Thus, by (4.8) and &; > 1/2,
I 2 ull o) < "2 X5, ull 20,y < CACto,m) 2~ Quxayull

< CA{to,m) (W25~ Py et 20,28, (4.10)

+ B3R | 26, 60) + h_QHT%_tOUHLz(o,z&l))
We now estimate part of the last term on the right side of (4.10), using (4.7) and (4.9):

CA(to, m)h™2|r2u|| 20,5 < CA(to, m)h =26 ||lr =" 2wl 120 )
< Cebollr ™" 7ull 20,

Choosing dp small enough, this term may be absorbed into the left side of (4.10), so we find

o1 ~2p=2,) 1 (|2
[P 3wl 20,0y < CRT2(h™%m) 1(”” “Ppul o2+ (4.11)
3_ 3 ‘
hllr2 =0 he || L5, 25 + 172 tOUHLZ(é,%l))’

We now employ the energy method to study the region [6(m),c0). Let s > 1/2, n = min{1, E'}/2,
and ¢; € C§°([0,1);[0,1]), 7 =0,1,2, with ¢9 =1 on [0,1/2] and ¢; = 1 on supp ¢;_1. Let
F(r) = | (r)? + Blu(r)]?,  w(r) = /T(l = 1(r'/8))ga (' [8)dr' VT,
with ’
= / )|+ 20m|(1 = go(r'/8))(r')72) + (') Fdr" <7 H|V|aayy + C(L 417 m['/2).

Here, we have used
m / )2’ = | ((33m)) ™ — 1) £ |

Then,
(wF) (r) = —2Rew(Pp, peu, ') + 2cw Im{u, ') + w'(|h'|* + Elul?) 4+ 2w Re((V + mr~)u, u'),
where (z, 2z1) := 271, 2,21 € C. Since ¢o(r/d) > 0 implies w(r) = 0, we have
Y Y’
/

w' = 2w+ (1= ¢1(r/0))da(r/8))e?" =

- Sw > h gV )7 g T (412)
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So,
(wF) (r) > —2Rew (P g u,u') + 2ew Im{u, u') + o' (| |* + Elul?) + 2w| Re((V + mr~?)u, u')|
> —h~hy )2 w| B peul® — B hpo(r) 72 b
— (V] + e+ [mlr ) w(ul® + |hd[?) + min{1, E}w' (b [* + |ul?)
min{1l, E£'}
2

We integrate from 0 to oo, and use the facts that w(r) = 0 near zero and u € HZ_((0,00)) is
compactly supported in [0, 00):

()2 () 20,00y + 11w") 2 ull 20 00y

<o / (P> w(r)| P cu(r) [Pdr + bt / w(lu(r)l® + b (r))dr.
(4.13)

> —h i) w| Py, g eul? — eh T w((ul? 4 [ ) + w'(|hd|? + Elul?).

Next, observe that
Re/me,E,guﬂdr = /w|hu'|2dr —I—Re/hw'hu'ﬂdr + /w(V — E 4+ mr~2)|ul?dr.
So, using (4.12)
h hy~!
()Rl g2 < T2 ') 2R I + ==l ) 2l 72 + Cll(w)2ul 3,

_ 1 1 _
+ Cllw! 2im "2 ulFs + S w2 () P, cull 2 + Sllw! 2 () ul 2

~vh

< T Y20t |32 + O+l (') 202

1
+ 5w () P cull 2 + Cll(w) a2

Plugging this into the right side of (4.13), taking - small enough, subtracting the corresponding
term to the left-hand side, and using,
cd(m)(r)™2 /h < w'(r), r > d(m),
()], [/ (r)] < OO >,
suppw C (%5(771),00),
and € < 1, we have

1)~ ()| 225,00y + 1) ™ ull 22(5,00)

< eC’(l+\m\1/2)/h||<,r,>sP

(4.14)
m7E7€u||L2 (0,00)

2 | o 15 -

Next, observe that —1/2 < tg(m) < 3/2 implies

3_ to=3
172 7]| 20,261 < Cs) “lvllz2(0,261)

10 _g—1
[vllz2(0,6) < CO2 =072 0] 120 5,

3 t —§+s _
2= v] 25y 260) < €812 1) "0l p2(y 061

Combining this with (4.11) and (4.14), and that §; < C(m)'/?, we have

+ El/2eC(I+\m‘1/2)/hHUHLZ(l(S

m|t/2 s
SeC(HI | )/hH<7‘> 15 00)"

€)™ % ull 2 (0,00 B £2(0,00)
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Finally, observe that, since u € D,,, for any v > 0,
ellullze = Tm( P, gew, u)| < |[(r)° P peull g2 [[(r) "ull 12 < 55 1) P,peull72 + F11r)~*ul1Z2,
and hence

< eC’(l+\m\1/2)/h|’<r>sP

€)™ ull 2 (0,00) B £2(0,00)-

This completes the proof of Lemma 4.1.

Proof of Proposition 1.1. Let 1/2 < s < 1, and Wy € C* with Wy = 1 near 0 and
e(r)s < We(r) < C(r)®, and Wy = C(r)® on r > 2.
First, recall that for any x € C§°[0,00) with x =1 near 0,

[ullpy, ~ lIxullp,, + (1 = x)ullg2-

Thus, since [Wy, P,,](Ws)™! : H> — H! is supported away from zero, for any v € D,, such that
Wsv € Dy,

W (P —E—ie)v|l 2 < [We, Pu)(We) ™ W] 2 + || (P — E—ie)Wev| 2 < Cepl|Wev|ip,, . (4.15)
Next, we claim that for ¢ > 0 and f € L?(R,),
We(Py, — E —ie)  (r) ™5 f € D,,.
Put
v:=(Pp— E—ie) " r)™°f € Dp,.
We shall show Wyv € D,,, by demonstrating that
Wev = (Py, — E —ie) " Hr) S (W(r) "5 f + g) (4.16)

for suitable g € L%(R).
Let x € C§°([0,00); [0, 1]) with x = 1, and put xx = x(k~'r), k € N. Almost everywhere on R,

(Pm o iE)XkWsU = XkWs<r>_8f + [Pm7 XkWS]U'
So in particular P, x;Wsv € L*(R.), hence xxWsv € D(P;},). This implies that, for each k,
Xkst = (Pm o Z‘E)_l(Xl<cvvs<7j>_sf + [Pm7XkW8]v)' (417)

We complete the proof of (4.16) by sending k& — oo in (4.17) and noting that the [P, xxWs],
[Py, W] are zero on a fixed neighborhood of » = 0 (independent of k) and that they are uniformly
bounded H?(R,) — L?(R) because s < 1.

Now, let v, = X(k;_lr)WSU € Deomp,m» k € N, and note that v, — Wyv in D,,. Observe that

16r) > (W) "o = 0)ll 22 < [[(ok = Wiv) |2 — 0, (4.18)
and by (4.15),
[(r)*(P = E —ie)(Ws) " vog = 0)|l 12 < C|Wi(Poy — E —ie)(Ws) ™ oy, — )|l 2 (4.19)
< Ca,hHUk - WSUHDm — 0.
Finally, applying Lemma 4.1,
1) =5 (W) L2 < CeCOHmITIN| )3 (P, — B — i) (W) Loy 2.
Sending k — oo and using (4.18), (4.19), and the definition of v, this implies
()7 (P = E — i)™ ()7 12 < CCHMN ] 1,
completing the proof of the proposition.
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5. EXPONENTIAL ESTIMATES FOR THE RESOLVENT

In this section we prove Theorem 1. As before, we use separation of variables to reduce estimating
the resolvent of P to estimating the resolvent of each P,,. By Proposition 1.1, for every m > —h?/4
and 0<e<1

105 (P — B = i) 1) 12, 2y < OO/,

Thus it is enough to prove the following lemma.

Lemma 5.1. There are C' and hg such that

|K (r,r")| = |K(r,r',m,E,0,h)| < hg

holds whenever 0 <r <7r', m > My, and 0 < h < hyg.

Proof. We use the fact that up(0) = 0 and ug(r) > 0 when r < Ry, and consider separately three
cases.
(1) Suppose that Ry < r < 7. Then the result follows from the stronger estimate proved in

Lemma 3.2.
(2) Suppose that r < Ry <r’. Then

up (! uy (! _
| = ) S = Ko S0

where we used ug > 0 on (0, Ry) and then (3.3).
(3) Suppose that » <7’ < Ry. Dividing the definition of the Wronskian, ugu} — uju; = W, by
u% and integrating both sides gives

ui(r) = uo(r)<u1(R0) + /T Lais),

up(Ro)  JR, uo(s)?

K (r,r")] = uo(r)

thus, using again u(, > 0, on (0, Ry)
|uo(r)ur ()] < uo(Ro)|u1(Ro)| + (Ro —1')[W].
Plugging into (2.9), using (3.3) on the first term, and estimating the second term directly

gives the result.
O

APPENDIX A. BESSEL FUNCTIONS

In this paper we use the Bessel functions J,(z) and Y, (z) [DLMF, Section 10.2], where v > 0
and z > 0, and below we review some standard facts about them. By [DLMF, Equation 10.13.1],
the differential equation

Rw+ (N —r 2@ - H)w=0, (A1)
is solved by w; = r'/2.J, (M) and wy = 7/2Y, (\r), for any A > 0. By [DLMF, Equation 10.5.2], we
have the Wronskian formula

w10,wy — wodpwy = 27~ L. (A.2)
We use upper and lower bounds for J and Y derived from Olver’s uniform asymptotics for large

values of v. To state them, we use the notation @ < b to mean a < b and b < a. We define a
decreasing bijection (0,00) 3 z +— ((2) € R by

(et — )12 2 <,
_ A3
¢ {—g(fl = 1/2dt)2/3, 2> 1, (4.3)
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and use the Airy functions

Ai(z) = l/ cos (§ + :mf) dt,
0

™

1 g . (A.4)
Bi(z) = %/0 (e 37 4+ sin <§ + :mf)) dt.
Then, by [DLMF, Section 10.20] and [AbSt, Sections 9.3.35-46], we have
I, (v2) = ¢ 1/4 (V_1/3Ai(V2/3C) + 3By (O) AT (v23¢) )
v 1—22
/ 122\ —2/3 A/ (1,2/3 —4/3 2/3
—zJ,(vz) < AV (v27°¢) + v~ Ch(O) Ai(v?/°¢
(A.5)

(- )
Y, (v2) = ( >1/4( “13Bi(12/3¢) + v=5/3 By(¢) 2/3C>
1—22
(-

1/4
1_—
) = (2 ) 2B (2130) + v CH(OBI(C) )
uniformly for v > 1 and z > 0, where By and Cj are positive smooth functions of ¢ obeying

¢T3, (=1, _ o (=1,
C_27 C S _17 CO(C) A {_C_lu C S _1

These bounds become simpler when z is small. More specifically, by [DLMF, Section 9.7], we
have

By(¢) < {

Ai(z) = x4 exp(— g 3/2) —Ai'(z) = zl/4 exp(— g 3/2), (A.6)
Bi(z) =< a2 Y%exp(22%/?), Bi'(z) =< azl/*exp(223/2), ’
for x > 1. Hence, for any zy € (0,1), we have
J,(vz) = v Y2e¥E, J(vz) < 271, (v2), (A7)
~Y,(vz) = v /28, Yi(vz) < —271Y,(vz2), ’

uniformly for z € (0, zp] and v > 1, where

€= / (1 — )2t (A.8)

The bounds also become simpler when z is large. More specifically, by by [DLMF, Section 9.7],
we have

Ai(—z) <z~ V/* <COS(§ 3/2 _ )+ %:17_3/2 sm(2 3/2 _ %)) ,
LAV (—1) = /4 (s1n(2 3/2 Ly 4_7895 3/2 cos(2 3/2 %)> 7
(A.9)
Bi(—z) < z /4 < sm(g 3/2 _ )+ %x_?’/z cos(2 3/2 _ %)) ,
—Bi'(—7) < /4 (cos(g 3/2 _ )+ 4—78m_3/2 sm(?,} 3/2 _ %)) )

for > 1. In particular, combining (A.6) and (A.9) gives
3/2 3/2\ 1o _
exp(32 )| Ai()| + exp(~322*)IBi@)] < (2) /4,

exp(22%/)| A ()] + exp(—22%)[Bi'(z)] < ()4,
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uniformly for € R, where x4 = max(z,0). Hence

1/4

|, (v2)| < ‘1 _C22 e v+ <y—1/2<g>—1/4 + ,,—3/2<<>—1/4) < V2012
1/4 (A.10)
Y, (v2)| S ‘1 S| e (u—1/2(g>—1/4 +,/—3/2<<>—1/4> < U212
—Z

uniformly for v > 1 and z > 0, where £, = & as given by (A.8) when z < 1, and &4 = 0 when
z > 1.

APPENDIX B. PROPERTIES OF ug

In this Appendix, we prove Lemma 2.1, following [YalO, Chapter 4, Section 1.1]. Recall our
notation from Section 2,

pr(r) =PI,  ev(r) =Y, (),

h? h? VE +i
V:h_l(m+z)1/2, m> -, A:#, E € [Emin, Bnax], €>0.
Then put ¢y = ¢y and define inductively
T T
eunn) = 513 [ (eresl) = esO)er OV )enlr)ir (B.1)

We shall prove suitable estimates on the ¢, to be able to put
o
uo(r) =D ¢alr), (B.2)
n=0
with the series and its first derivative converging uniformly as (r, E,e) vary in compact subsets of
Ry X [Emin, Fmax] X [0, 00).

Proof of Lemma 2.1. To prove the lemma, we recall several estimates on ¢y and ;. Given r* > 0,
by [DLMF, Sections, 10.6 (ii), 10.7(i)] there is Cy depending continuously on r* > 0, v >0, 6 > 0,
and A # 0 such that

s (Ml 72 + ey (M2 < Co
[l 2 4 G (T < Co e (0,7) (B:3)
2 4 [ () e < Gy
Next,
1 _1 _3 X
lpo(r)| < Cor”F2,  ep(r)| < Cor™2,  fig(r)] < Cor”™2, e (0,r7]. (B.4)
To see that the series (B.2) converges uniformly on compact sets, we claim that
lon(r)| < Cp--- Cour?tE=0F3 (0,77, (B.5)

where

204+ (2n—1)(2—0) + 2
2022 = 0)n2v+ (n—1)(2-9)+2)°
Once we have (B.5), since lim C,, = 0, the Weierstrass and ratio tests shows that the convergence
of (B.2) is uniform as (r, E,¢) vary in compact subsets of Ry X [Enin, FPmax] X [0,00). Moreover,

C, = Cérsup|V| (B.6)

. 1
since g ~ r’T2 as r — 0, ug > 0 near zero.
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To obtain (B.5), we start with n =1,
2h?

Whﬁl(r”

r r

< 7,,—1/—5—4—%/ (T/)y+%(rl)y+%drl+ry+%/ (T‘/)_V_(H_%(T‘/)V—l—%d?"/
0 0

2v + 4 — 5 1/+g—5

o -1 v+2-5 -1 v+3-§ _
=Qu+2) 2T+ (2—-0) r"2 —(2y+2)(2_5)7‘ ,

re (0,77,
or .
|‘101 (T)| < COCer—i_E_(S’ re (O,T’*],
where C1 = C2sup |V|(2v + 4 — §)/(2nh?(2v + 2)(2 — §)).
Now, suppose the claim (B.5) holds with n = k for some k > 1, with Cj given by (B.6). Then,
el i (1)
CoC1Cs ... CrCemsup|V| Pht1

el A B L N M e e e A
0 0

= (20 + k(2 — 6) + 2) " 2D HS (k4 1)(2 - 6) D= e (0,0,
or
ops1(r)| < CoCy ... Crypqr? TEEDE=045 e (0 ¥,

where
2w+ (2k+1)(2-06)+2

2122 —0)(k + 1)(2v + k(2 —8) 1+ 2)°

Cr1 = Cimsup|V|

In particular, (B.5) holds by induction.
To see that the first derivative of (B.2) converges uniformly on compact sets, observe that for
n >0,

‘90%4-1(74)‘ o i "oy / / ' ' N
et — | [ G 0)et) = e OV e ar
< (27Th2)_100 N Cn002 <,r,—u—é—6/ (T‘,)2V+n(2_6)+1)d’r’/ —I—T‘V_;/ (,r,/)n(2—6)+1—6d,r,/)
0 0
1 1
< @2rh®)"'Cy ... C,C2 v4n(2—8)+3 -6
< (@A77 Co . Culir ’ <2y—|—n(2—5)+2+(n+1)(2—6))
< Cp- - Cppr? D05, r € (0,7%].

(B.7)

Now (2.3) and (2.4) follow from (B.5) and (B.7) by summing (B.1) from n = 0 to n = N and
sending N — oo.
Next, to see that (2.5) holds, observe that for any ¢ > 0,

oo . () 3
Z (:Dn(r) < CV,5TV+§_57 Z SD;L(T) < CV,5T§_5'
n=1 n=1
Therefore,

Tim (25 kug(r) — ug(r))r ™2 = Tim (2L (r) — o (r))r =

= lim (”TQJV(AT)T—U? _ )\J,/,()\T‘)Tl/z)r_y+1/2

AV (n—2_)
»Tw+1)" 2 )
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Since v > 0, (2.5) holds.
O

Now that we have Lemma 2.1, we show that ug has useful monotonicity properties when m is
large enough. Recall the defining property (1.2) of My and consider m > Mj.

Lemma B.1. Let My as in (1.2) and Ry as in (1.3). Then for m > My, uy(r),uy(r) > 0 for
re (O,Ro].

Proof. First, by Lemma 2.1, we have
ufy = —h™2(E =V — mr—%)ug.

Using m > My and the definition (1.2), E —V —mr=2 < 0 on (0, Ry]. Hence uo(r)ufj(r) > 0 on
(0, Rp]. Since also up(0) = 0 and ug(r) > 0 for » > 0 small enough, the proof is completed by the

following lemma.
O

Lemma B.2. Suppose [, f' € ACioc(a,b), f € C([a,B;R), f(a) =0, f" € C(a,b], and f(t)f(t) >
0, for almost every in t € (a,b) in the sense of Lebesgue measure. Then f has a fixed sign in |a, b
and f(b), f'(b) have the same sign.

Proof. If f is identically 0 on [a,b], then the claim is trivially true. Therefore, we will assume f is
not identically 0. Assume f attains its extremum L # 0 at an interior point of (a,b). Replacing f
by — f if necessary, we may assume L > 0. Set

z* =inf{x € (a,b) : f(z) = L}.

Then f > 0 near z*, hence f” > 0 almost everywhere, in a neighborhood of z*. Also f’(z*) = 0.
Now, for z sufficiently close to but less than x*,

—f(z) = / Fs)ds >0 = f'(z) <0.
But then, by the mean value theorem, for a < z < 2* and some T € (z, z*),

0< f(a") = f(z) = f@)(" —2) <0,

a contradiction.

So the extrema of f must occur at the endpoints: f(b) is the maximum or minimum of f on
[a,b], and f(a) =0 is the minimum or maximum, respectively. So f has a fixed sign, hence also f”
has this sign almost everywhere.

Using the mean value theorem again,

[0~ f(a) _ J(0)
b—a b—a

= (@), some T € (a,b).
So f(b) and f'(T) have the same sign, so
b
f'o) = f'@) + / £ (s)ds

has the same sign as f(b) as well.
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APPENDIX C. CONSEQUENCES OF MESHKOV’S EXAMPLE FOR RESOLVENT ESTIMATES

Recall from Fredholm theory [DyZw19, Theorems 3.8 and equation 6.0.2] that, for V' € Lg5,,,(R"; C),
the cutoff resolvent x(—h?A+V —2)"1y, x € C§°(R™), is meromorphic in (Emin/2, 2Emax) +1(0, 00)
and continues meromorphically to (Emwin/2, 2Fmax) + iR.

To see that the optimal power in a resolvent estimate for L, compactly supported, complex
valued potentials is h=%/3, recall that [Me92] constructs a complez-valued potential V € L*(R?)
and a function u such that

(-A+V)u=0, inR? lu(z)] < Cexp(—Clz|?), ull L2@ny = 1.

Changing variables, y = hz, and putting w(y) = u(h™'y), Vi(y) = V(h~1y), we have
”VhHLOO <C < oo,

(—h*A+Vi)w=0,  |w(y)| < Cexp(~Clylh~*/3).

Let x € C§°(B(0,3)) with x = 1 near B(0,2) and x € C§°(B(0,3)) with x = 1 on supp x. Then,
for E € [Fwin, Prmax)s

IR(—=h*A+ (Vi + E) — E)(xw) |l z2ny = [II=1*A, X]wl| 22 @n)
< Chllwll i (B0,3)\B(0.2))

< Ch(|| — B*Aw| 250,40 B0,1)) + 1wl 250,40\ B0,1)))

_ —4/3
< Ch(|IVawll2s0,a0B0,1)) + 1wl 280,40 B0,1))) < Che™ "

)

For h small enough,
[xwl|lr2 > h — hllull2®2\BO,n-1) = b

Therefore, if the cutoff resolvent y(—h2A + x(V}, + E) — E —i0)~'{ exists, it must have
IX(=h*A+ X (Vi = E) = E = i0) "X 2@ ) 2wy > Cexp(Ch™?).
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