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Abstract

Understanding heterogeneous treatment effects (HTE) plays a key role in many
contemporary causal inference applications arising from different areas. Most of the
existing works have focused on the estimation of HTE. Yet the statistical inference
aspect of the problem remains relatively undeveloped. In this paper we investigate
the inference of HTE in a nonparametric setting for randomized experiments. We
formulate the problem as two separate nonparametric mean regressions, one for con-
trol group and the other for treatment group. For each mean regression, we extend
the tool of k-nearest neighbors to the framework of distributional nearest neighbors
(DNN). We show that the DNN estimator has two equivalent representations of L-
statistic and U-statistic, where the former endorses easy and fast implementation,
and the latter enables us to obtain higher-order asymptotic expansion of bias and es-
tablish the asymptotic normality. To reduce the finite sample bias of DNN, we further
suggest a new method of two-scale distributional nearest neighbors (TDNN). Under
some regularity conditions, we show through delicate higher-order asymptotic ex-
pansions that the TDNN heterogeneous treatment effect estimator is asymptotically
normal. We further establish the consistency of the variance estimates of the TDNN
estimator with both jackknife and bootstrap, enabling user-friendly inference tools for
heterogeneous treatment effects. The theoretical results and appealing finite-sample
performance of the suggested TDNN method are illustrated with several simulation
examples and a children’s birth weight application.
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1 Introduction

The problems of treatment effect estimation and inference in causal inference have broad
applications in a wide variety of scientific areas, ranging from economics to medical studies.
Examples include evaluating whether food stamps increases adult obesity, deciding whether
to launch a job training program, and finding out whether a vaccine is truly effective. Under
the potential outcomes framework (Rubin, 1974; Imbens and Rubin, 2015), the treatment
effect usually refers to the average causal effect of a binary treatment indicator variable on
some outcome of interests. Beyond regressions, the potential outcomes framework perceives
outcomes as in parallel universes, one with the event of treatment happened and the other
without. The interest is often the average of the difference between the two conceptual
potential outcomes, the average treatment effect (ATE). It is seen that for each unit,
only one potential outcome can be observed. Indeed, a common challenge in many causal
inference problems is caused by the missingness of potential outcomes. There is a long
line of literature on ATE estimation. See, for example, Belloni et al. (2014); Chernozhukov
et al. (2015); Belloni et al. (2017); Athey et al. (2017); Mullainathan and Spiess (2017);
Fan et al. (2016), among many others.

Different from ATE, heterogeneous treatment effect (HTE) focuses on the unit level
effect by considering the treatment effect conditional on pre-treatment covariates. The
estimation and inference of HTE have received increasing attention in recent years because
of their ability to provide information that ATE cannot provide. For example, it is often
possible that a drug is less/more effective for certain subgroups of patients than the general,

average population. In addition, if HTE can be well estimated for each individual unit, then



ATE can be easily estimated by aggregating over all individuals in the whole population.
See Crump et al. (2008) for additional examples for the importance of HTE. In fact, the
unit level effect measured by HTE can be invaluable information in a wide range of modern
big data applications including economics, business, and healthcare. However, despite its
importance, related research about HTE is still relatively limited.

There has been some recent efforts to use machine learning methods to estimate and
infer HTE. Crump et al. (2008) proposed two nonparametric tests, one aiming at testing
whether the treatment has zero effect for all subpopulations identified by covariates and
the second one aiming at testing the existence of heterogeneity in treatment effects by
covairates. Their tests were constructed by using two separate sieve estimates of nonpara-
metric regression functions for control group and treatment group, respectively. Lee (2009)
proposed a smoothed nonparametric test for assessing heterogeneity of treatment effect
when covariates are continuous and the outcome variable is randomly censored.

Besides testing, there are also recent works on HTE estimation. Wager and Athey
(2018) proposed causal forests whose estimate is shown to be pointwise consistent for the
true treatment effect and asymptotically Gaussian. It was further proposed in the same
paper to construct the asymptotic confidence intervals using the derived asymptotic distri-
bution with variance estimated by the infinitesimal jackknife (Wager et al., 2014). Shalit
et al. (2017) proposed to estimate HTE jointly using a neural network-based algorithm
with loss function motivated from a generalization error bound established in the paper.
Another popular line of work is to formulate HTE estimation as nonparametric regressions.
Under the unconfoundedness and overlap assumptions, the problem of HTE estimation can
be formulated as two separate nonparametric mean regression problems, one for the control
group, and the other for the treatment group. Then the treatment effect is estimated as
the difference of these two estimated mean functions. Examples along this line include

Bayesian causal forests (Hahn et al. (2020)), causal boosting and causal MARS (Powers



et al. (2017)), Gaussian process mixtures (Zaidi and Mukherjee (2018)), and causal KNN
(Hitsch and Misra (2018)). Among them, causal KNN is most closely related to our ap-
proach. This method estimates the treatment effect function by taking the difference of
two separate k-nearest neighbor (KNN) regression functions for the treatment group and
control group. The tuning parameter of neighborhood size k& was chosen by minimizing
the squared difference between the estimated treatment effect function and the propensity
score weighted response. However, the work does not provide theoretical justification for
the causal KNN estimator

In this paper, we propose a new method for HTE estimation in completely randomized
experiments and provide formal statistical estimation and inference guarantees. We adopt
the previously discussed approach of fitting two separate nonparametric mean regressions
and then combine to form an HTE estimate. For each mean regression, we revisit and en-
hance the classical tool of KNN regression with a simple yet powerful algorithm, extending
it to the distributional setting. Specifically, we estimate the mean regression function as
the average of all 1-NN estimators constructed from subsampling the data of size s without
replacement. Here, it is important for s to diverge with total sample size n. We show that
this subsampling and aggregating approach is equivalent to assigning monotonic weights
to the nearest neighbors in a distributional fashion, motivating the name of distributional
nearest neighbors (DNN). We show that DNN estimator has a representation of L-statistic
with weights depending only on the rank of the observations. Although the L-statistic
representation endorses easy and fast implementation of DNN, it does not help with es-
tablishing the sampling properties. For theoretical analysis, we further demonstrate that
DNN estimator has an equivalent representation of U-statistic with a kernel function of
diverging dimension equal to the subsampling scale s. Despite the nice U-statistic repre-
sentation, classical theory does not apply to DNN for deriving its asymptotic properties,

because of the diverging dimensionality of the kernel function. To overcome this technical



challenge, we exploit Hoeffding’s canonical decomposition introduced in Hoeffding (1948),
and carefully collect and analyze the higher-order terms in our decomposition. We provide
higher-order asymptotic expansion for the bias of DNN in estimating the mean regression
function, and show that DNN is asymptotically normal as s and n diverge to infinity. Here,
d is the dimension of the pre-treatment covariate in constructing DNN estimator and is
considered to be fixed.

A nice feature of DNN estimator is that its first-order bias can be eliminated by com-
bining two DNN estimators with different subsampling scales, resulting in two-scale DNN.
Utilizing the U-statistic representation of two-scale DNN with a new and carefully con-
structed diverging dimensional kernel, we further establish the asymptotic normality of the
two-scale DNN estimator. These results naturally lead to the asymptotic normality of the
resulting HTE estimator.

To further provide statistical inferential guarantees such as valid confidence intervals, we
need to estimate the asymptotic variance of the two-scale DNN estimator, which does not
admit simple analytic form that is practically useful. We explore two methods, jackknife
and bootstrap, for such a purpose. We formally demonstrate that both methods yield
consistent estimates of the variance. Our proofs are more intricate than the standard
technique in the literature because of the diverging subsampling scales. The key is to write
the jackknife estimator as a weighted summation of a sequence of U-statistics and carefully
analyze the higher-order terms. Our proof for the bootstrap estimator was built on the
results we derived for jackknife estimator. Although both methods yield consistent variance
estimates, the bootstrap estimator is much more computationally efficient.

We then demonstrate the superior performance of our method using Monte Carlo sim-
ulations and a real data analysis on the impact of smoking on children’s birth weights.
The two scale DNN estimator has two parameters to tune — the subsampling scales. We

propose to prefix the ratio of the two subsampling scales at some level that is adaptive to



dimension d so that the variance of two-scale DNN can be better controlled. An additional
advantage of such strategy is that it leaves us only one subsampling scale s to tune. Our
simulation results show that as s increases, the mean squared estimation error (MSE) of
two-scale DNN estimator follows a smooth U-shaped curve. This suggests a simple tuning
strategy for two scale DNN which starts with some small value of s, and increases its value
until the MSE starts increasing. This simple tuning yields attractive performance in our
numerical studies.

An important contribution of our work is that we provide an easy-to-implement method
with simple tuning for HTE estimation and inference with theoretical guarantee. As dis-
cussed above, most existing works focus only on the estimation and are not able to provide
confidence intervals. A noticeable exception is the causal forests in Wager and Athey
(2018). Compared to the causal forests, the confidence intervals provided by our method
transit more smoothly as the value of pre-treatment covariates changes, as demonstrated
in our numerical study. Consequently, the confidence intervals provided by our method
are easier to interpret. In addition, we observe in our simulation studies that the variance
estimate in causal forest can be crude in some applications, resulting in low coverage of
confidence intervals.

Our paper makes a standalone contribution to the nonparametric statistics literature,
going beyond applications to HTE estimation. Two-scale DNN belongs to the class of
weighted nearest neighbors methods. Some weights in two-scale DNN take negative val-
ues. The advantage of using negative weights in weighted nearest neighbors classifiers was
formally investigated in Samworth (2012). For classical and other recent results on nearest
neighbors related methods and theory, see, for example, Mack (1980); Gyorfi et al. (2002);
Biau and Devroye (2015); Berrett et al. (2019). Despite the similarity, two-scale DNN has
at least two advantages compared to these existing literature. First, we provide an explicit

and easy-to-implement way to choose weights. Although sufficient conditions on weights for



ensuring the asymptotic normality for general weighted nearest neighbors estimator have
been developed (Biau and Devroye, 2015), it is usually unclear how to practically choose
such weights. Second, even if weights can be successfully constructed, it is still unclear how
to estimate such estimator’s variance for confidence interval construction.

The rest of the paper is organized as follows. Section 2 introduces the model setting for
heterogeneous treatment effect estimation and reviews the approach of weighted nearest
neighbors for nonparametric regression. We present the two-scale distributional nearest
neighbors (TDNN) procedure and its sampling properties in Section 3. Section 4 inves-
tigates the variance estimation for the TDNN estimator. We provide several simulation
examples and a children’s birth weight application justifying our theoretical results and
illustrating the finite-sample performance of the suggested TDNN method in Sections 5
and 6, respectively. Section 7 discusses some implications and extensions of our work. All

the proofs and technical details are provided in the Supplementary Material.

2 Heterogeneous treatment effect estimation

2.1 Model setting

Consider the example of new drug and vaccine developments. The clinical trials for these
studies involve carefully designed randomized experiments, in which each individual will
be assigned randomly to either the treatment group denoted as T = 1 or the control
group denoted as 7" = 0. Using the potential outcomes framework (Rubin, 1974), let
Yr—1 € R and Y7r—g € R represent the potential outcomes for the treatment and control
groups, respectively. Then the observed scalar response can be written as Y = TYpr—; +
(1 — T)Y7r—y. Let X € R? be the random feature vector for an individual with d some

fixed positive integer representing the feature dimension. We consider the randomized



experiment setting which amounts to the choice of constant treatment propensity P(T" =
X, Yr—1,Yr—9) = 1/2. Here, 1/2 can be replaced with any other constant in (0,1). The
evaluation of the effectiveness for a newly developed drug or vaccine often boils down to
the average treatment effect (ATE) of treatment T on response Y defined as 7 = E [Yy—; —
Yr—o]. Given the scale of the costs associated with the medical developments, a practically
important question even with the presence of a less significant treatment effect 7 on the
entire population characterized by the distribution of X is whether the treatment effect
could be significant on certain individuals in the population.

The above illustrative example demonstrates that characterizing the treatment effects
at the individual level with precision can have important real applications. Given a fixed
feature vector x € R?, the heterogeneous treatment effect (HTE) of treatment 7" on response
Y is defined as

7(x) = E[Yro1 — Yro| X = x], (1)

where the expectation is taken with respect to the randomness associated with the subgroup
of all individuals with specific feature vector x. Such a subgroup can be viewed as a group
of identical twins who differ only by which treatment they received. We see that the
fundamental challenge of causal inference applications is the missing data problem, that
is, the latency of the above ideal subgroup. It can be infeasible or even unethical to
assign certain individuals to the treatment or control group, not to mention that having
an identical twin can become a luxury in practice.

Since the setting of randomized experiments entails the unconfoundedness given by
(Yr—o,Yr—1) 1L T | X, (2)

our goal of heterogeneous treatment effect estimation and inference for (1) reduces to

the problem of nonparametric regression applied separately to the treatment and control



groups, giving rise to
7(x) =E[Yr—1|[ X =x] —E[Yr—o|X =x| =E[Y|X=x,T =1 - EY|X=x,T =0]. (3)

Specifically, let us consider the following nonparametric regression model for the treat-
ment group Yr—; = u(X) + €, where pu(X) = E[Y7r—1|X] denotes the true mean regression
function and the model error € with zero mean and finite variance is independent of the
d-dimensional random feature vector X. Similarly, we can introduce the corresponding
nonparametric regression model for the control group; see Section 3.3 for more detailed
technical descriptions.

To simplify the technical presentation, hereafter, unless otherwise specified, we will
slightly abuse the notation by using Y to denote the generic response variable and focus
our attention on the following nonparametric regression model when introducing our main

ideas and major theoretical developments
Y = u(X) + e (4)

We assume that there are independent and identically distributed (i.i.d.) observations
(X;,Y;),i=1,--- ,n observed from model (4). Our method and theory will be separately
applied to the control and treatment groups and then combined together by using (3) to

estimate the heterogeneous treatment effect.

2.2 Weighted nearest neighbors

Among the nonparametric regression methods, the k-nearest neighbors (KNN) procedure
and its generalizations have received great popularity by many researchers and practitioners
due to its simplicity of implementation and nice theoretical properties. For an overview
of nearest neighbors methods, see, e.g., Biau and Devroye (2015). Given a fixed vector

x € R? we can calculate the Euclidean distance from each observed feature vector X, in
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the sample to the target x and then reorder the sample with such distances. This results

in a reordered sample {(Xn), Y1), -+, (X(n), Y(n))} with
X =x[l < [ X =x[| < - < 1 Xy —x], ()

where || -|| denotes the Euclidean norm of a given vector and the ties are broken by assigning
smallest rank to the observation with smallest nature index. Then the weighted nearest

neighbors (WNN) estimate (Mack, 1980) is defined as

n
,ZZWNN(X) = Z wm‘Y(i), (6)
i=1
where (wp1, Wpa, -+, Wyy,) is some deterministic weight vector with all the components

summing up to one. In practice, one can also use the non-Euclidean distances given by
certain manifold structures.

The theoretical properties of the WNN estimator (6) have been studied extensively
in Biau and Devroye (2015). In particular, it has been proved therein that, with an ap-
propriately selected weight vector (w1, -+ , Wy, ), the weighted nearest neighbors estimate
Iiwxn (X) can be consistent with the rate of convergence op(n=2/(4*%) and can have asymp-
totic normality. The existing results in the literature provide only some general sufficient
conditions on the weight vector (w1, - - , Wy, ) in order to deliver the theoretical properties.
However, identifying a practical weight vector with provably appealing properties can be
highly nontrivial. Furthermore, the asymptotic variance of the general weighted nearest
neighbors estimator fiwnn(X) can admit a rather complicated form and depend upon some
unknown population quantities that are very difficult to estimate in practice. To address
these difficulties, we will introduce a new framework of the two-scale distributional nearest

neighbors estimate for heterogeneous treatment effect estimation and inference.
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3 Two-scale distributional nearest neighbors

3.1 Distributional nearest neighbors

The classical KNN method for nonparametric regression assigns equal weights 1/k to the
k nearest neighbors of a fixed vector x € R? and zero weights to all remaining observations

in the sample, resulting in the following specific form of estimator in (6)

k
- 1
kNN (X) = z ; Y. (7)

In particular, the choice of k = 1 in (7) gives rise to the 1-nearest neighbor (1NN) estimator
Y(1), which relies on the single closest observation for nonparametric estimation.

Our distributional nearest neighbors (DNN) procedure builds upon the ideas of both
subsampling and 1NN. Denote by s with 1 < s < n the subsampling scale. Let {1, - ,is}
with 41 < iy < .-+ < ig be a random subset of the full sample {1,--- ,n}. Hereafter, we use
Z; as a shorthand notation for (X;,Y;) with 1 <1 < n. Let us define ®(x;Z;,,Z;,, - ,Z;.)
as the INN estimator

(I)<X; ZimZin ce aZis) = }/(1)(Zi17zi27 T 7Zis) (8)

for estimating the true value p(x) of the underlying mean function at the fixed point x based
on the given subsample {Z;,,- - ,Z; }. Then the single-scale DNN estimator D, (s)(x) with

subsampling scale s for estimating p(x) is formally defined as a U-statistic
o\ L
D= (") X ez ), )
1<i1<ig < <is<n

where the kernel function ®(x;-) is given in (8).
The above U-statistic representation averages over all 1NN estimators given by all

possible subsamples of size s. For the case of s = 1, the DNN estimator reduces to the
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simple sample average n~*Y "  Y;, which admits reduced variance but inflated bias. In
contrast, for the case of s = n, the DNN estimator reduces to the simple 1NN estimator
Y(1) based on the full sample of size n, which admits lowest bias but inflated variance.
See, e.g., Hoeffding (1948); Hajek (1968); Korolyuk and Borovskich (1994) for the classical
asymptotic theory of the U-statistics. Since the computation of general U-statistics becomes
more challenging when sample size n grows, we show in the lemma below that a different

representation of the DNN estimator can be exploited for easy computation.

Lemma 1. In addition to the U-statistic representation given in (9), the single-scale DNN

estimator D, (s)(x) also admits an equivalent L-statistic (Serfling, 1980) representation as

Dy(s)(x) = (”) > (2))ve (10)

i=1

where Y;)’s are given by the full sample of size n.

The above L-statistic representation relieves the computational burden greatly from the
U-statistic representation. Let us gain some insights into the distributional weights unveiled
in (10). It is easy to see that there are a total of () subsamples of size s from the full sample
of size n. Out of the (Z) options, (X(1y,Y{1)) will appear in (Zj) of them, and Y{;) will
become the INN estimator from this particular subsample whenever (X(y), Y{1)) is included,
giving rise to the specific weight of (Z:ll) /(%) for Y(1). We can obtain similar intuitions on
the remaining weights. Since the weights in (10) are assigned in a distributional fashion
on the entire sample, we name the new procedure introduced in (9) as the distributional
nearest neighbors.

Such a distributional view differs from the conventional idea of seeking weights for the
nearest neighbors with a relatively small neighborhood size. One interesting feature is

that the distribution of weights used in the single-scale DNN is characterized by only two

parameters of the full sample size n and the subsampling scale s. As shown later in Section
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3.3, our new higher-order asymptotic expansion for bias reveals that the distributional view
yields explicit constant for the leading bias term that is free of the subsampling scale s,

which opens the door for removing the first-order asymptotic bias of DNN.

3.2 Two-scale DNN

We are now ready to suggest a natural extension of the single-scale DNN procedure in-
troduced in Section 3.1. The major motivation for this extension comes from the pre-
cise higher-order asymptotic bias expansion for the single-scale DNN estimator D,,(s)(x)
unveiled in Theorem 1 to be presented in Section 3.3. In particular, we see that the
explicit constant for the leading order term in the asymptotic expansion for the bias
B(s) = ED,(s)(x) — u(x) is independent of the subsampling scale s. Such an appeal-
ing property gives us an effective way to remove completely the first-order asymptotic bias

in the order of s~2/4

, making only the second-order asymptotic bias dominating at the
finite-sample level.

To achieve the aforementioned goal, let us consider a pair of single-scale DNN estimators
D, (s1)(x) and D, (s2)(x) with different subsampling scales 1 < s, 89 < n as constructed

in (9). Without loss of generality, we assume that s; < sy. Then Theorem 1 ensures that

E D, (s1)(x) = u(x) + cs7 7 + R(sy), (11)

E Dy (s2)(x) = pu(x) + 557" + R(s3), (12)

where ¢ is some positive constant depending on the underlying distributions, but not on
the subsampling scale parameter s; or s, and the higher-order remainder R(s) = O(s73)
for d = 1 and R(s) = O(s™%%) for d > 2 .

Although the specific constant ¢ in the asymptotic expansions (11) and (12) is unknown

to us, we can proceed with solving the following system of linear equations with respect to
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wy and wy

wy + we = 1, W1$;2/d+w28;2/d20,
whose solutions are given by the specific weights
wi = wi(s1,82) = 1/(1 = (51/52) 7%/ (13)
and wy = wj(s1,85) = —(s1/52) /(1 = (s1/82) 7%/, (14)

Then our two-scale distributional nearest neighbors (TDNN) estimator D, (s1, s9)(X) is

formally defined as
Dy (s1,82)(x) = wi Dp(s1)(x) + w3 Dn(s2) (). (15)

We will impose the restriction that s;/ss is bounded away from both 0 and 1 by some
positive constant. This can avoid the undesirable cases of weights being too close to 0 or
having diverging magnitudes as s diverges. In the implementation, we can also choose s1/s2
adaptively to dimensionality d so that the weights w} and wj are free from the impact of
dimensionality.

Since the specific weights w} and wj depend only on subsampling scales s; and sq, we

see from the asymptotic expansions (11) and (12) that
E Dy, (s1,52)(x) = pu(x) + B (s1), (16)

where R*(sy) = O(s; %) for d > 2 and R*(s;) = O(s7?) for d = 1, and we assume that s
and sy are of the same order for simplicity. The removal of the first-order asymptotic bias
as shown in (16) makes the TDNN estimator enjoy appealing finite-sample performance
with reduced bias and controlled variance, as demonstrated with the extensive simulation
examples in Section 5.

It is worth mentioning that in view of (13) and (14), weight w7 is negative given s; < ss.

This implies that the two-scale DNN can assign negative weights to some distant nearest
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neighbors. In fact, the advantage of using negative weights in the KNN classifier for the
classification setting was discovered earlier in Samworth (2012). See also the discussions in

Biau and Devroye (2015) for similar advantages in the regression setting.

3.3 Asymptotic distributions of two-scale DNN

We now turn to deriving the higher-order asymptotic expansions of the DNN and TDNN
estimators and their precise asymptotic distributions. To this end, we need to impose some
necessary assumptions to facilitate our technical analysis.

Assume that the distribution of X has a density function f(-) with respect to the

Lebesgue measure A on the Euclidean space R%. Let x € supp(X) be a fixed feature vector.

Condition 1. There exists some constant o > 0 such that P(|X — x|| > R) < e * for

each R > 0.

Condition 2. The density f(-) is bounded away from 0 and oo, f(-) and u(-) are four-times
continuously differentiable with bounded second-order, third-order, and fourth-order partial
derivatives in a neighborhood of x, and EY? < oo. Moreover, the model error e has zero

mean and finite variance o2 > 0.

Condition 3. We have an i.i.d. sample {(X1,Y1),(Xo,Y2), -+, (X, Y,)} of size n from
model (4).

Conditions 1-3 are some basic assumptions that have been employed commonly for
nonparametric regression. We begin with presenting an asymptotic expansion of the bias

of single-scale DNN estimator in the theorem below.

Theorem 1. Assume that Conditions 1-3 hold and s — oo. Then for any fized x €
supp(X) C R?, we have
E Dy(s)(x) = pu(x) + B(s) (17)
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with

f(x) tr(p"(x)) + 24/ (x)" f'(x)

B(s)=T(2/d+1 “24 4 R(s), 18
(s) =T(2/ ) 2 dVIT ey s (s) (18)
A <d7 f?X)S_3+O(S_3)7 d=1,
Ris)={ " (19)
A2<d> f7 X)874/d + 0(574/d)7 d Z 27
where Vy = F(%/;/z)? ['(+) is the gamma function, f'(-) and p'(-) denote the first-order

gradients of f() and u(-), respectively, f"(-) and p"(-) represent the d x d Hessian matrices
of f(+) and u(-), respectively, tr(-) stands for the trace of a given matriz, and A;(d, f,x)
and Ay(d, f,x) are some positive bounded quantities that depend only on d, the underlying

density function f(-) of X, and the regression function pu(-).

Theorem 1 above shows that the first-order asymptotic bias of the single-scale DNN
estimator D, (s)(x) is of order s7/¢, and the second-order asymptotic bias is of order s~4/4
for d > 2 (s73 for d = 1). The rate of convergence for the bias term becomes slower as the
feature dimensionality d grows, which is common for nonparametric estimators. It would
be beneficial to remove the first-order asymptotic bias completely to improve the finite-
sample performance. Such a goal can be achieved thanks to the interesting feature revealed
in Theorem 1 that the explicit constants for the first two leading terms in the higher-order
asymptotic expansion do not depend on the subsampling scale parameter s. The technical
analysis of Theorem 1 exploits the idea of projecting the mean function p(X) = E(Y|X)
onto the positive half line R, = [0, 00) given by || X — x||. In particular, the assumption of
s — oo plays an important role in establishing the higher-order asymptotic expansion. We

further characterize the asymptotic distribution of the single-scale DNN estimator in the

following theorem.

Theorem 2. Assume that Conditions 1-3 hold, s — 0o, and s = o(n). Then for any fized
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x € supp(X) C R?, it holds that for some positive sequence o, of order (s/n)/?,

Dn(s)(x) = p(x) = B(s) =, N(0,1) (20)

On

as n — 0o, where B(s) is given in (18).

Theorem 2 establishes the asymptotic normality of the single-scale DNN estimator
D, (s)(x) with subsampling scale s. In particular, it requires the assumptions of s — oo
and s = o(n), where the former leads to reduced bias and the latter leads to controlled
variance asymptotically. The technical analysis of Theorem 2 exploits Hoeffding’s canonical
decomposition (Hoeffding, 1948) which is an extension of the projection idea. Despite the U-
statistic representation of D, (s)(x) given in (9), the classical U-statistic asymptotic theory
(e.g., Serfling (1980); Korolyuk and Borovskich (1994)) is not readily applicable because
of the typical assumption of fixzed subsampling scale s. In contrast, our new asymptotic
analysis requires the opposite assumption of diverging subsampling scale s. As a result, we
have to conduct a more delicate and challenging technical analysis to derive the asymptotic
normality. It is worth mentioning that when the subsampling scale s is chosen in the order

_d_ . . .
of n@+  the optimal rate of convergence in terms of the mean-squared error can be obtained.

2

= can take a complicated form that depends

The exact form of the asymptotic variance o
upon the underlying distributions and fixed vector x, and is left for future study.
We proceed with characterizing the asymptotic distribution for the two-scale DNN

estimator introduced in (15).

Theorem 3. Assume that Conditions 1-3 hold, s — 00, s3 = o(n), and there exist some
constants 0 < ¢ < ¢y < 1 such that ¢y < s1/s9 < ¢o. Then for any fired x € supp(X) C RY,

it holds that for some positive sequence o, of oder (sy/n)"/?,

Dy(s1s2)(x) = pu(x) =& o

N(0,1) (21)
as n — oo, where A = 0(31_4/d + 82_4/d) ford>2 and A = O(s;? + 53%) ford=1.
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We note that the positive sequence o,, in Theorem 3 is different from the o, in Theorem
2, with the former representing the asymptotic standard deviation of TDNN estimator and
the latter representing the asymptotic standard deviation of single-scale DNN estimator.
We used the same generic notation for the convenience of presentation. Since the explicit
form of the asymptotic standard deviation will not be used, this should not cause any
confusion. Theorem 3 above establishes the asymptotic normality for the two-scale DNN
estimator D, (s1, s2)(x) with a pair of subsampling scales s; and s,. Similarly, it requires
that both subsampling scales s; and s, are diverging and of a smaller order of the full sample
size n asymptotically in order to balance between the bias and variance. In particular,
the asymptotic bias of the two-scale DNN estimator is reduced to the second-order term
0(31_4/d + 32_4/d) for d > 2 and O(s;® + s5°) for d = 1. The optimal choice of s, in terms of
achieving the best bias and variance tradeoff is s, = O(n¥®+9) for d > 2 and s, = O(n'/7)
for d = 1, yielding the corresponding consistency rate of n=*®+4 for d > 2 and n=%/7 for
d = 1. Note that this rate is faster than the optimal convergence rate n~2/(¢+% established
in Theorem 14.4 of Biau and Devroye (2015) for weighted nearest neighbors estimate with
nonnegative weights in regression setting. The main reason for improved convergence rate
is that TDNN allows for negative weights.

We would also like to point out that the conclusion in Theorem 3 is not a simple conse-
quence of that in Theorem 2, since the marginal asymptotic normalities do not necessarily
entail the joint asymptotic normality. To deal with such a technical difficulty, we have to
analyze the two single-scale DNN estimators involved in the definition of TDNN estimator
in a joint fashion. A key ingredient of our technical analysis of Theorem 3 is to show
that the two-scale DNN estimator also admits a U-statistic representation, which enables
us to exploit Hoeffding’s decomposition and calculate the variances of the kernel and the
associated first-order Hajek projection.

Now we are ready to apply two-scale DNN to hetergeneous treatment effect estimation
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discussed in Section 2.1. We will first introduce some necessary notation. Denote by ny and
ng the sizes of the i.i.d. samples from the treatment and control groups, respectively. The
assumption of completely randomized experiment entails that ng/n4 %51 asn — oo and
the two samples for the treatment and control groups are independent of each other. Let
x € supp(Xj) Nsupp(Xy) be a fixed vector, where supp(X;) and supp(Xy) represent the
supports of the corresponding feature vector distributions for the treatment and control
groups, respectively. Similarly, denote by pu(-) and po(-) the mean regression functions
corresponding to responses Yr—; and Yp_g, respectively, and €; and ¢, the model errors,
with the subscript indicating the treatment and control groups, respectively. Then we can
construct two individual two-scale DNN estimators Dﬁlﬁ)(sﬁ”, sgl))(x) and Dg)o)(sgo), séo))(x)
separately based on the treatment and control samples with pairs of subsampling scales
(sgl), sgl)) and (sgo), sgo)), respectively.

In view of (3), the population version of the heterogeneous treatment effect at the fixed

vector x is given by
7(x) = p1(X) = pro(x). (22)

We estimate 7(x) using the following TDNN heterogeneous treatment effect estimator

~ 1 1 0 0
7(x) = DY (1Y s37)(x) — DO (s, s3) (x). (23)

0

The theorem below characterizes the asymptotic distribution of 7(x).

Theorem 4. Assume that Conditions 1-3 with the subscripts attached hold for both treat-

) o0, sgi) = o(n), and there exist

ment and control groups. Further assume that sg
some constants 0 < ¢; < ¢ < 1 such that ¢; < sgi)/sg) < ¢y fori = 0,1. Then for any

fized x € supp(X;) Nsupp(Xy) C RY, it holds that for some positive sequence o, of order
{(s57 +s57) /)2,

.0 D _ O 0 (0 _ —A g
[Dry (517,53 )(x) = Do (517,83 )X)] = 7(x) = A 2, N(0,1) (24)

On
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as n — oo, where A = O{(s\))y~#d 4 (s{)=4/d 1 ($\N)=4/d o (N=4/4Y for 4 > 2 and
A= O{(s) 7 4 (s§”) 7+ (1) + (s) ) for d = 1.

The same as explained before, o, in Theorem 4 is a generic notation representing the
asymptotic standard deviation of the TDNN heterogeneous treatment effect estimator. We
see that the subsampling scales need to satisfy that sg) — o0 and séi) = o(n) for i =0, 1.
The asymptotic bias of estimator 7(x) is only of the second order O{(s{”)=4/4 + (s{V)=4/d 4
(sgo))*4/d+(sgo))*4/d} for d > 2 and O{(sgl))*?’%—(sgl))*?’—f—(3(10))*3—1—(3&0))*3} ford = 1. The
asymptotic variance identified in Theorems 3 and 4 generally depends on the underlying

distributions and the fixed vector x, whose complicated form calls for a need to develop

practical approaches to the estimation of the asymptotic variance for the TDNN estimator.

4 Variance estimate for two-scale DNN estimator

4.1 Jackknife estimator

Let us gain some insights into the problem of variance estimation for the TDNN estimator
before presenting the major theoretical results. We have shown in Lemma 8 in Section
B.8 of Supplementary Material that the two-scale DNN estimator D,,(s1, s2)(x) is in fact
a U-statistic. It is well known that the jackknife and bootstrap approaches are employed
commonly to estimate the variance of a U-statistic. By the independence assumption of the
treatment and control samples in the randomized experiment setting, the variance of the
TDNN heterogeneous treatment effect estimator is naturally the sum of their individual
variances. Thus, we only need to estimate the variance of the TDNN estimator constructed
based on an individual i.i.d. sample {Z,--- ,Z,} corresponding to either control group or
treatment group.

As mentioned before, the two-scale DNN estimator D,,(s1, $2)(x) admits the U-statistic
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representation revealed in Lemma 8
—1
n *
D1, 52)(x) =( ) Y S(xZZe T (25)
52 1<) <ig<-<isy <n

where the new kernel function is given by

O*(x:Z1, 2, , L)) = WOV (x: 2y, 2o, - -+, D) + WiD(x; 21, Ly, - - -, D)

S1

3 52\ 1 . .
with q)(l)(x; Zl? ZQ’ B ZS2) - ( ) Z1Si1<i2<-~~<is1 <s2 (I)(X’ Zil’ Zi?’ o Ziﬂ)’ CI)(X’ ) the
original kernel function involved in the single-scale DNN estimator introduced in (9), and

wi and wj the weights defined in equations (13) and (14). We denote by
0% = Var(D,(s1, 52)(x)) (26)

the variance of the two-scale DNN estimator D,,(s1, $2)(x), where we drop the subscript n
in this population variance for notational simplicity.

For each 1 < i < n, let us define the two-scale DNN estimator obtained after deleting
the ith observation as in (25)

% n—1 - *
v, = ( ) 3 O (%251, Zy, -, Zy,,)- (27)

S92 S )
1<71 <2<+ <Jsy <n
J1:325 sJsg 1

Then the jackknife estimator (Quenouille, 1949, 1956) for o2 in (26) is given by

n

ST(UY) ~ Dalsi, 52)(x))”. (28)

i=1

n—1

7 =
n

We will formally establish the ratio consistency of the jackknife estimator 5% introduced in

(28) in the theorem below.

Theorem 5. Assume that Conditions 2-3 hold, E[Y*] < oo, E[e!] < oo, 81 — o0, and
Sg — 00 with some constants 0 < ¢; < co < 1 such that ¢; < s1/sy < ¢a. Then for any

fized x € supp(X) C R?, when sy = o(n'/?) it holds that 62/0* 5 1 as n — cc.
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The proof of Theorem 5 still builds on the U-statistic framework. Similar to the dis-
cussions after Theorem 2, the conventional technical arguments in Arvesen (1969) for the
consistency of the jackknife estimator for the U-statistic are not applicable because of the
diverging s; and sp. As seen in Section B.5 of Supplementary Material, our technical
analysis involves rather delicate calculations of the remainders. We acknowledge that the
assumption of sy = o(n'/?) is not necessarily optimal. Moreover, the assumption on the
finite fourth moments can be relaxed to finite (2 + 2)th moments with some 0 < 0 < 1.
Consequently, the bound on the order of s, will depend on parameter ¢ accordingly.

We would like to point out that although the U-statistic representation plays a crucial
role in obtaining our theoretical results, the computational cost of the jackknife estimator
utilizing such representation can become excessively prohibitive in practice. Instead, we
should take advantage of the L-statistic representation revealed in Lemma 1 to efficiently
compute the U-statistics {Uéi_)l}lgign and the two-scale DNN estimator D,,(s1, s2)(x) in-
volved in the jackknife estimator 6% in (28). When the sample size n becomes large, one

can speed up the implementation of jackknife using approximation with subsampling.

4.2 Bootstrap estimator

The bootstrap method (Efron, 1979) has been used widely in many applications for esti-
mating the parameters and the distributions of statistics of interest, empowering statisti-
cal inference. We now consider the nonparametric bootstrap for estimating the variance
of the two-scale DNN estimator. Given n observations {Zq,Zs, - ,Z,}, we denote by
{Z3,Z%,--- ,Z:} a bootstrap sample selected independently and uniformly from the orig-
inal n observations with replacement. As in (25), let us construct the two-scale DNN
estimator

-1
D7 (51, 82)(x) = (") 3 O (x; 2. 2Ly L) (29)

52 1<ii<i )
<1 <ig<-<is, <n
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based on the bootstrap sample {Z7,Z3,--- ,Z}.

We choose the number of bootstrap samples as B > 1. For each 1 < b < B, we select in-
dependently a boostrap sample {Z;"l, POTRERI Z;;n} and calculate the corresponding boost-
rap version of the two-scale DNN estimator D (s1,52)(x) asin (29). Observe that given the
orginal observations (Zi,Zs,- - ,Zy), the bootstrap samples {(Z} |, Z},, -, Z},,) hi<b<B
are independently and identically distributed as (Z3,Z3,--- ,Z). Then the bootstrap es-
timator for o2 in (26) is given by
.

7 2 (DV(s1,52)(x) = D), (30)

b=1

~2 o
JB,n -

where Dp, = & S D,(Lb)(sl, $2)(x). The ratio consistency of the bootstrap estimator

0%, introduced in (30) is shown formally in the following theorem.

Theorem 6. Assume that Conditions 2-3 hold, E[Y?] < oo, E[e!] < oo, 81 — o0, and
8o — 00 with some constants 0 < ¢; < ca < 1 such that ¢c; < s1/sy < co. Then for any fized

x € supp(X) C RY, when sy = o(n'/?) and B — oo, it holds that 5%, /0% 5 1 as n — oco.

Let us gain some insights into the technical analysis for the consistency of the bootstrap
estimator established in Theorem 6. First, we observe that conditional on (Z1, Zs, - - - , Z,),
the bootstrap versions of the TDNN estimator Ds})(sl, S9)(x) are i.i.d. random variables
and thus the law of large numbers entails that 3,29771 is asymptotically close to the conditional
variance Var(D} (s1, s2)(X)|Z1, Zs, - - - , Z,) as B — co. Second, since the bootstrap samples
are drawn independently from the empirical distribution based on (Z1, Zs, - - - , Z,) and the
empirical distribution converges to the underlying distribution of Z asymptotically, the
bootstrap version Var(D(s1, s2)(x)|Z1,Zs, - ,Z,) for the variance will converge to the
population quantity o2 as n — oo. It is worth mentioning that for the second part of our
technical analysis, we resort to the consistency result of the jackknife estimator established

in Theorem 5. In particular, we see that the jackknife and the bootstrap are asymptotically
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equivalent in the variance estimation for the TDNN estimator. Indeed, Efron (1979) showed
that the jackknife can be viewed as a linear approximation method for the bootstrap. It
was also pointed out in Efron (1979) that the jackknife can fail for certain nonsmooth
functionals, while the bootstrap can still work.

Let us elaborate more on the practical implementation of the two-scale procedure of
TDNN for heterogeneous treatment effect inference. As mentioned in Section 4.1, the U-
statistic representation of the TDNN estimator is key to our theoretical developments, but a
different representation can be used for computation. Since the single-scale DNN estimator
is in fact an L-statistic as shown in Lemma 1, the two-scale DNN estimator, which is a
linear combination of a pair of single-scale DNN estimators, is still an L-statistic. The
L-statistic representation of the TDNN estimator enables simple yet fast computation. For
the randomized experiment setting considered in our paper, we can construct a pair of two-
scale DNN estimators separately based on the treatment and control subsamples and then
take a difference. As suggested by Theorem 6, we can further bootstrap such difference
by resampling within each group to provide tight heterogeneous treatment effect inference.
Thus, the two-scale procedure of TDNN coupled with bootstrap enjoys both theoretical

justifications and computational scalability.

5 Simulation studies

In this section, we investigate the finite-sample performance of TDNN for heterogeneous
treatment effect estimation and inference in comparison to the DNN, KNN, and causal
forests (CF) in Wager and Athey (2018) which is a natural extension of random forests
(Breiman, 2001, 2002; Chi et al., 2020) to the causal inference setting.

We construct weights for two-scale DNN estimator by resorting to equations (13) and

(14). Since nonparametric methods including TDNN generally suffer from the curse of
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dimensionality, we propose to first conduct dimension reduction if the ambient dimension-
ality p is large before applying TDNN. Let d be the reduced dimensionality. It is seen
that although negative weight (as given in (13)) can ensure faster consistency rate, it may
also induce inflated variance (at constant level) if wi and w} are not chosen appropriately.
To control the variance, we propose to choose w} and w; adaptively to dimensionality d.
Specifically, we suggest to fix wi = ¢/(¢ — 1) and w} = —1/(¢ — 1) with ¢ € (0,1) some

425, . In our numerical studies, we fix ¢ = 0.8. We

constant, and then solve for sy = ¢~
acknowledge that this choice may not be optimal and leave the optimal choice of ¢ for
future study.

With the above choice of weights, we have one tuning parameter which is the subsam-
pling scale s. In implementation, we compute the TDNN estimator D, (s, ¢ %?s)(x) with
s starting from 1. We continue this process until the difference in the absolute differences
of consecutive MSEs changes the sign. Intuitively, it is the point when the curvature of
the MSE of two-scale DNN estimator as a function of s changes, as demonstrated in the

curve structure in Figure 1 from the simulation example in Section 5.1. Such a simple

data-driven tuning strategy works fast and well in our numerical studies.

5.1 Comparisons with DNN and KNN

To illustrate the effectiveness of the two-scale framework compared to the single-scale DNN
and the classical KNN, we simulate n = 1000 data points from the model Y = 7(x) + ¢,
where 7(x) = (z; — 1)? + (22 + 1)® — 33 with x = (21,29, 23)7 and (x7,€)T ~ N(0, I).
Our goal is to estimate the true value of the mean response 7(x) at some test point chosen
to be (0.5,—0.5,0.5)". For the implementation of the single-scale DNN, we estimate the
regression function at this test point while varying the subsampling scale s from 1 to 250.
Since the dimension here is low we skip the step of dimension reduction and apply TDNN

directly. As discussed at the beginning of this section, TDNN is implemented with the
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choice of subsampling scales s; = s and s, = ¢~ %%s; with d = 3.

Figure 1 presents the simulation results for DNN and TDNN in terms of both the
bias and the mean-squared error (MSE). A first observation is that as the subsampling
scale s increases, the bias of the DNN estimator shrinks toward zero, which is intuitive
from the geometrical point of view since larger subsampling scale s leads to the use of
the information in the sample concentrated more toward the fixed test point. From the
MSE plot for DNN, we observe the classical U-shaped pattern of the bias-variance tradeoft.
Thanks to the higher-order expansions, the two-scale procedure of TDNN is free completely
of the first-order asymptotic bias. The substantial difference between the dominating first-
order asymptotic bias in DNN and the second-order asymptotic bias in TDNN at the
finite-sample level is evident in the left panel of Figure 1.

From the MSE plot for TDNN, we also see a similar bias-variance tradeoff. An inter-
esting phenomenon by comparing the two smooth U-shaped curves in the right panel of
Figure 1 is that the minimum of the MSE for TDNN is attained at a much smaller subsam-
pling scale s than that for DNN. Such a feature makes the tuning of the subsampling scale
s relatively simple as discussed at the beginning of this section. Furthermore, we observe
that in addition to the reduced finite-sample bias, TDNN admits substantially improved
minimum MSE with over 50% reduction in comparison to the single-scale DNN. Indeed,
the minimum values of the MSE attained by the single-scale DNN and TDNN are 0.1157
and 0.0488, respectively. To save space, the comparison results with KNN are summarized

in the supplementary file.

5.2 Comparisons with causal forests

We further compare TDNN with causal forests (CF) over four simulation examples on
heterogeneous treatment effect estimation and inference. For each simulation setting, we

consider a sample size of n = 1000. The first three examples are about estimation accuracy
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Figure 1: The bias and MSE results for DNN and TDNN in Section 5.1. The top right

panel also shows a zoomed-in plot where the U-shaped pattern is more apparent.

and the last one is on confidence interval coverage. Because of the space constraint, we
present the simulation results for the first three examples in supplementary file, and only
include the fourth example in the current section. We adapt the second simulation setting in
Wager and Athey (2018), which was introduced to demonstrate the ability of CF in adapting
to the heterogeneity in the treatment effect function 7(x) in a randomized experiment
setting. We hold the treatment propensity e(x) = 0.5 and the main effect m(x) = 0 for the
control group fixed, but increase the support of the heterogeneous treatment effect function
as 7(x) = ¢(z1)s(22)s(23) with ¢(z) =1+ {1 + exp(—20(z — 5))}~". We set the ambient
dimension p = 20 and simulate x ~ Uniform(|[0, 1]?) and model error ¢ ~ N(0,1). We will
examine the finite-sample coverage of the true value of the heterogeneous treatment effect

T(x) at some fixed test point with a target coverage probability of 0.95. The fixed test
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point is chosen as 1 = 0.2, 22 = 0.4, 3 = 0.6, and x; = 0.5 for 57 > 3.

As discussed at the beginning of this section, since the theoretical properties of TDNN
established in this paper rely on the assumption of fixed dimensionality, it is natural to
expect that the performance of TDNN can deteriorate as the dimensionality grows. To
alleviate such difficulty, we exploit the feature screening idea (Fan and Lv, 2008; Fan
and Fan, 2008; Fan and Lv, 2018) to accompany the implementation of TDNN. For the
screening step, we test the null hypothesis of independence between the response and each
feature using the nonparametric tool of distance correlation statistic (Székely et al., 2007;
Gao et al., 2020) and calculate the corresponding p-value. Then we select features with
p-values less than «/p with some significance level a € (0,1). We estimate the variance
of the TDNN estimator using bootstrap method that has been theoretically justified in
Section 4.2. The CF is implemented with the R package grf (Tibshirani et al., 2019),
which is a generalization of the algorithm introduced in Wager and Athey (2018).

Method True Mean Est. Mean (SE)  Bias MSE  Est. Variance Coverage CI Length

TDNN  3.80639 3.81184 (0.00892) 0.00545 0.07947 0.07180 0.93600  1.04211
CF 3.80639  0.18305 (0.00024) -3.62334 13.12864 0.00008 0.00000  0.03299

Table 1: Comparison of the performance of TDNN and CF in the fourth simulation setting

in Section 5.2.

From Table 1 we observe that due to the bias of the CF estimate, its confidence interval
estimates fail to cover the true value of the heterogeneous treatment effect. In sharp
contrast, TDNN with pre-screening successfully achieves a coverage probability that is
very close to the target coverage probability of 0.95, which is in line with the theoretical
justifications for TDNN heterogeneous treatment effect inference with bootstrap established

formally in Sections 3 and 4. In particular, we see that although the variance estimates
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corresponding to TDNN is larger than the one corresponding to CF in our simulation
settings, they actually provide more accurate confidence interval coverage. Indeed, TDNN
coupled with bootstrap provides a computationally simple yet theoretically justified tool for

tight heterogeneous treatment effect inference with appealing finite-sample performance.

6 Real data application

In this section, we demonstrate the performance of TDNN for heterogeneous treatment
effect inference on a children’s birth weight application. The major goal of this real data
application is to characterize the heterogeneity of a treatment effect across subpopulations
defined by the values of some continuous covariate. In particular, we aim to study the
effect of smoking on a child’s birth weight across mothers’ ages. We utilize the data set
studied originally in Abrevaya et al. (2015) with a kernel-based estimator*.

For our analysis, the feature vector x includes mother’s age, mother’s education, father’s
education, gestation length in weeks, and the number of prenatal visits. We use this subset
of covariates because each of these covariates has been shown to have some association with
low birth weight (Silvestrin et al., 2013). The response Y is the child’s birth weight. The
binary treatment indicator 7" is whether or not the mother smoked during pregnancy. In
particular, the data set consists of 591,547 observations in total, 85,976 of whom smoked
during pregnancy. We estimate the heterogeneous treatment effects with all the features
fixed at the average levels of the corresponding treatment group, except for mother’s age
which we vary from 16 to 35. This allows us to see how the effect of smoking changes with
age, while controlling for all other observed confounders. Similarly as in the simulation

examples in Section 5, we also conduct the same analysis using the causal forests (CF) as

*The data set used in our analysis can be found on the research web page of Robert P. Lieli,

https://sites.google.com/site/robertplieli/research.
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Figure 2: The effect of mother’s smoking on a child’s birth weight as a function of mother’s

age. The error bars correspond to 95% confidence intervals.

a popular benchmark for nonparametric heterogeneous treatment effect inference.

Figure 2 presents the heterogeneous treatment effect estimates for both TDNN and CF
along with 95% confidence intervals. The confidence intervals for TDNN are generated by
bootstrapping the difference between the treatment and control groups, while the confidence
intervals for CF are generated using the variance estimation method in the R package grf.
The results from both procedures suggest that as age increases, the decrease in a newborn’s
weight associated with a mother’s smoking behavior becomes larger. In particular, we see
from Figure 2 that the TDNN estimates exhibit a monotone decreasing relationship between
mother’s age and the heterogeneous treatment effect of smoking with tight confidence
intervals. In contrast, the CF estimates show a much more irregular relationship with wide

confidence intervals.
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7 Discussions

In this paper, we have investigated the problem of heterogeneous treatment effect inference
in the setting of randomized experiments. Our suggested method of TDNN alleviates the
finite-sample bias issue of the classical k-nearest neighbors and admits easy implementation
with simple tuning. The new TDNN tool can enable tight heterogeneous treatment effect
inference that is important to identify individualized treatment effects.

Due to the complexities of our new theoretical developments, we have contented our-
selves with the setting of randomized experiments and fixed feature dimensionality. It
would be interesting to extend the idea of TDNN to the settings of observational studies
exploiting the treatment propensity information and of diverging or high feature dimen-
sionality. It would also be interesting to consider the non-i.i.d. data settings such as time
series, panel, and survival data. Since the distance function plays a natural role in iden-
tifying the nearest neighbors, it would be interesting to investigate the choice of distances
that are beyond the Euclidean one and pertinent to specific manifold structures intrinsic
to data. It would also be interesting to explore the idea of k-scale DNN with &k > 3 for
further bias reduction. These problems are beyond the scope of the current paper and will

be interesting topics for future research.
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Supplementary Material to “Nonparametric Inference
of Heterogeneous Treatment Effects with Two-Scale
Distributional Nearest Neighbors”

Emre Demirkaya, Yingying Fan, Lan Gao, Jinchi Lv,
Patrick Vossler and Jingbo Wang

This Supplementary Material contains additional simulation examples and the proofs of all

main results and key lemmas, and some additional technical details.

A Additional Simulation Examples

A.1 Comparison with KNN

We repeat the same simulation study as in Section 5.1 of the main text using the KNN
estimator whose performance is depicted in Figure 3. From Figure 3, we see that the finite-
sample bias of KNN tends to increase with the neighborhood size k, which is sensible since
moving further away from the fixed test point incurs naturally inflated bias. The MSE plot
in Figure 3 shows a similar U-shaped pattern of the bias-variance tradeoff. In contrast, the
minimum value of the MSE attained by KNN is 0.1250, which is outperformed by both
the single-scale DNN and TDNN. It is largely unclear to us whether and how the two-scale

idea can be implemented for the KNN estimator, so we opt not to explore it in the current

paper.

A.2 Comparison with Causal Forest Estimation

We present three simulation examples which complement the study in Section 5.2 of the

main text for heterogeneous treatment effect estimation. While the number of truly im-
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Figure 3: The bias and MSE results for KNN in Section 5.1.

portant predictors is always chosen to be 3, we explore higher ambient dimensionality p
for the predictors. We use the same screening method as discussed in the main text for
dimension reduction when implementing TDNN. The sample size is fixed at n = 1000.

The first simulation setting uses ambient dimensionality p = 10. The main effect m(x)
for the control group is defined as m(x) = 2% + x5, and the treatment effect function is
7(x) = (r1 — 1)* + (22 + 1)® — 323, where x = (21,22, -+ ,x,)" and (x7,€)T ~ N(0, I,11).
We evaluate the performance of both TDNN and CF in terms of the bias and MSE at a
fixed test point (z1,---,x,)" chosen as 1 = 0.5, 22 = —0.5, z3 = 0.5, and z; = 0 for
7> 3.

For the second simulation setting, we investigate the performance of TDNN and CF as
we increase the ambient dimensionality. Specifically, for ambient dimensionality p = 10,
20, 30, 40, and 50, the data generating process is 7(x) = ‘log [Z?:l(x? — 227 4 ij)} 2' +€
with (x7,€)” ~ N(0,I,.1), and we set the main effect m(x) = 0 for the control group. In

addition to the fixed test point as chosen in example 1, we also evaluate the performance

of both methods at a random test point chosen as x; = 0 for j > 3, and z; ~; ;4 N(0,1)



for y =1, 2 and 3.

The third simulation setting is a modification of the first simulation setting in Wager and
Athey (2018). This simulation setting is designed to test the capability of TDNN and CF
in resisting the bias due to an interaction between the treatment propensity e(x) = i(l +
B2.4(x3)) and the main effect m(x) = 2§ + x9 + 23 for the control group, where 5 4 denotes
the beta distribution with shape parameters 2 and 4. We choose x ~ Uniform([0, 1]*) and
e ~ N(0,1). As a departure from the original simulation setting, we set the population
version of the heterogeneous treatment effect 7(x) = x5 and ambient dimensionality p = 20.
We fix x; = 0.5 for j > 3, choose x; = 0.2, 9 = 0.4 and 3 = 0.6 for the fixed test point,
and draw the first three components independently from the uniform distribution on the
interval [0, 1] for the random test point.

The first part in Table 2 presents the comparison results from our first simulation
setting, where TDNN produces a considerably more accurate estimate of the heterogeneous
treatment effect than CF. The second part in Table 2 summarizes the comparison results
as the ambient dimensionality p increases from 10 to 50 in the second simulation setting.
It is seen that the extra screening step ensures the robustness of TDNN with respect
to the increased number of noise predictors — it is still able to accurately estimate the
heterogeneous treatment effect. CF gives a consistently biased estimate, regardless of
the ambient dimension. The third part in Table 2 summarizes the results for the third
simulation setting and highlights the better robustness of TDNN to the bias caused by an
interaction between the treatment propensity and the main effect for the control group in

comparison to CF.



B Proofs of main results

B.1 Proof of Theorem 1

Let us investigate the higher-order asymptotic expansion for the bias term of the single-scale
distributional nearest neighbors (DNN) estimator D, (s)(x) introduced in (9) under the
asymptotic setting when the subsampling scale s — oo as the sample size n increases. Recall
that the target point x is a given vector inside the domain supp(X) C R? of the covariate
distribution, where the feature dimensionality d is assumed to be fixed for simplifying the
technical presentation of our work. The main idea of the proof is to first consider the
specific case of s = n in Lemma 5 in Section B.5, and then analyze the general case of
s — oo by exploiting the projection of the mean function p(X) = E(Y|X) onto the positive
half line R, = [0, 00) given by ||X — x|| in Lemma 6 in Section B.6.

Since {i1,---,is} is a random subsample of {1,--- n} with subsampling scale s, in

view of (8) and (9) we have

ED,(s)(x) =E®(x;Z - Zy,)

i1y Higy 7

:E[}/(l)(z’bﬂ igy " 7Zis)]

= E[m(r(l))(ziuziw'” ;Zis)], (B1>

where the kernel ®(x; ) in the U-statistic representation of the DNN estimator is simply the
I-nearest neighbor (INN) estimator Y(;)(-) given by the response for the closest neighbor

Xi,, of x in the random subsample {X; ,---,X; } with Z;, denoting (X;,,Y;,), m(r) =

i)
E(Y |||X — x|| = r) is the projection of the mean function p(X) onto the positive half

line introduced in (C.97) in Lemma 6, and 71y = || X x||. The representation in (B.1)

UCON
provides a useful starting point for our technical analysis.
From (B.1) above, we see that it is necessary to first study the asymptotic behavior of

the term r(;y. Without loss of generality, for this step we can simply replace parameter

4



s with parameter n since both subsample size s and full sample size n are assumed to

diverge simultaneously. With such a notational simplification, the INN X; = of x in the

i)
subsample becomes the INN Xy of x in the full sample and thus rq) = || Xy — x||. We
see from Lemma 5 that Er%l) = E||X(1) — x||? admits a higher-order asymptotic expansion
with explicit constants provided for the first two leading orders, which are respectively
n~2/4 and n=*4 for d > 2 as shown in (C.83) and (C.84), and respectively n~2? and n~ for
d = 1 as shown in (C.84). To apply such an asymptotic expansion in Lemma 5 to the term

ray = ||X5,, — x| in (B.1), we now need to replace parameter n back with parameter s,

i)
which also diverges by assumption.
A natural next step is to consider the expectation on the right-hand side of (B.1) by

conditioning on r(;y = || X x||. Indeed, this motivates us to investigate the higher-order

ZON
asymptotic expansion of the projected mean function m(r) = E(Y | || X—x|| = r) in Lemma
6, where r — 0 and some constants are given for the first two leading orders 72 and r* in
(C.99). Observe that the asymptotic regime of r — 0 is reasonable since it has been shown

by Lemma 2.2 in Biau and Devroye (2015) that ) = || X;,,, — x|| — 0 almost surely as

i)
5 — 00.

Based on the expansion of E||X ;) —x||* under different regimes of d provided in (C.82)—
(C.84) in Lemma 5, we can see that there are two cases for the expansion of E||X ) — x||?.
Specifically, the first two leading orders are n=2 and n=2 for d = 1, while the first two
leading orders are n~2/? and n~%? for d > 2. Thus, we calculate E D,,(s)(x) for d > 2 and
d = 1, separately.

First, for the case of d = 1, combining the arguments above using (C.82) and Lemma



6, from (B.1) we can deduce that

fE)tr(p" (%) + 24/ (x)" f'(x)
2d f(x)
— u(x) + f (X)tf(#’/(z)g }r(i)u'(x)Tf '(x)
(o () )
%M/d 4 os~(2/)
— u(x) +T(2/d+ 1) (Xm;z %32 ;(i)/i /(;)1 I

E D, (s)(x) = pu(x) + ]ET(Ql) + O4ETE"1)

+ Oy

5721 1 R(s), (B.2)

where R(s) = A;(d, f,x)s™® + o(s™3) with A;(d, f,x) a bounded quantity that depends
only on d, the underlying density function f(-), and regression function u(-). In addition,
['(-) denotes the gamma function, V; = F(%/d%), f(x) and p/(x) represent the first-order
gradients of f(x) and pu(x) at x, respectively, p”(x) denotes the Hessian matrix of u(-) at
x, Oy is some constant given in Lemma 6, and tr(-) stands for the trace operator.

We proceed to prove for the case of d > 2. In the same fashion of deriving (B.2),

applying (C.83)—(C.84) and Lemma 6, from (B.1) we can obtain that

fE)tr(p"(x)) + 24 (x)" f'(x)

2d f(x)
_ i) o (X)) + 21/ (%) f' (%) L2/d+1) 54 )54/
= plx) + 24 f(x) g (<f<x>vd>2/d cl ) )
I'(4/d+1) M L (g4
O
— il FE (" (%) + 200" F'(X) —apa g
= pu(x) +I'(2/d +1) 2 d V2 f ()2l + R(s), (B.3)

where R(s) = As(d, f,x)s™4+o(s9) with C(d, f,x) and Ay(d, f,x) two bounded quan-
tities that depend only on d, the underlying density function f(-), and regression function

u(-)-



Therefore, combining the above results, we obtain the desired higher-order asymptotic
expansion for the bias term of the single-scale DNN estimator B(s) = E D,,(s)(x) — u(x).
This completes the proof of Theorem 1.

B.2 Proof of Theorem 2

We now proceed to prove the asymptotic normality of the single-scale DNN estimator
D, (s)(x). Recall that in Theorem 1, the higher-order asymptotic expansion for the bias
term B(s) of D, (s)(x) requires the assumption that the subsampling scale s — oo as sample
size n increases. As shown in the proof of Theorem 1 in Section B.1, the single-scale DNN
estimator D, (s)(x) reduces to the 1NN estimator when we choose s = n, since in such a
case, there is a single subsample with size s = n, i.e., the full sample. We immediately
realize that although the choice of s = n satisfies the need on the bias side, it does not
make the variance shrink asymptotically. Intuitively, we would need to form the empirical
average over a diverging number of such individual estimates in order to establish the
desired asymptotic normality. This naturally calls for the assumption of s = o(n), which
entails that the total number of these individual estimates (TSL) diverges as sample size n
increases. Thus we will work with the asymptotic regime of subsampling scale with s — oo
and s = o(n).

In view of the U-statistic representation of D,(s)(x) given in (9), a natural idea of
the proof for the asymptotic normality of the single-scale DNN estimator is to exploit the
asymptotic theory of the U-statistic framework. However, the classical U-statistic asymp-
totic theory is not readily applicable due to the common assumption of fixed subsampling
scale s. In contrast, as discussed above, our asymptotic analysis needs the opposite assump-
tion of diverging subsampling scale s, i.e., s — co. Such a discrepancy causes additional
technical challenges when we derive the asymptotic normality.

Let us first exploit Hoeffding’s canonical decomposition introduced in (Hoeffding, 1948),

7



which is an extension of the projection idea. For each 1 < ¢ < s, we define the centered

conditional expectation

(I)z‘(X;Zh"‘ 7Zi> :]E[(I)(X;Zla"'  Ziy Ly, >Zs) ’ZI;"' 7Zi]

—EO(x;Zy, -, Zy), (B.4)

where ®(x; ) is the kernel defined in (8) for the U-statistic representation of the single-scale
DNN estimator. Then in light of (B.4), for each 1 < i < s we can successively define the

canonical term

i—1

gl(xa Zy, 7Zi) = &)i(x;zlf" x4 Z Z g‘(X;Zal,"' 7Zaj)7 (B5)
=1

1< << <i

where gy (x;21) = ®1(x;2;) by definition. Combining (8), (B.4), and (B.5), we see that the
kernel ®(x;-) can be rewritten as a sum of the canonical terms
O(x;Zn, - L) —EO(x; Zy, - Z) =D Y gi(%Za. Zay).  (B6)
j=1 1<a1<<a;<s

Moreover, it holds that

S

Var(®(x; Zy, -+, Zy)) = Z (j) Var(g;(x; Z1, -+, Z;)). (B.7)

The above Hoeffding’s canonical decomposition in (B.6) plays an important role in estab-
lishing the asymptotic normality.
In view of (9), (B.4), and (B.6), we can deduce that
—1
n
Dy(s) —ED,(s) = <S) > D, (x;Zi,, Ziy, -+ Zs))

1< <9< <is<n

SN (RN [ e

i1=1 1<i1<i2<n

" <Z: 2) Y G ZiZi ,zis)}. (B.8)

1<i1<ig < <is<n



From the above Hoeffding’s canonical decomposition in (B.8) for the single-scale DNN
estimator, we see that the Hajek projection introduced in (Héjek, 1968) of the centered

DNN estimator D,,(s) —ED,(s) is given by

D= (1) (")) > o2, (B.9)

which is the first-order part of the decomposition in (B.8).
A useful observation is that the Hajek projection given in (B.9) involves the sum of

some independent and identically distributed (i.i.d.) terms. Denote by o2 the variance of

the Hajek projection. Then it follows from ¢;(x;z1) = ®1(x;2;) and (B.4) that

2 ~

o2 = Var(ﬁn(s)) = %Var(@l(x; Zy))

2 52

s
= — Var(®,(x;21)) = — B.10
- ar(®y(x;Zy)) I (B.10)
where the non-centered conditional expectation ®(x;Z;) is defined later in (C.114) and
7y is defined as the variance of ®;(x;Z;). From (B.4), we see that each term ¢, (x;Z;) =

®,(x;Z;) of the i.i.d. sum in (B.9) has zero mean. Thus by (B.10), an application of the

Lindeberg-Lévy central limit theorem in (Borovkov, 2013) leads to

Du(s) 74 N(0,1), (B.11)

On
which establishes the asymptotic normality of the Hajek projection ZA?n(s)

Finally, we aim to show that similar asymptotic normality as above holds when the
Héjek projection lA)n(s) in the numerator on the left-hand side of (B.11) is replaced with
the centered single-scale DNN estimator D,,(s)(x) —E D,(s)(x) = D,(s)(x) — u(x) — B(s),
where B(s) is the bias term identified in Theorem 1. With the aid of the Slutsky’s lemma,

we see that it suffices to show that

= op(1). (B.12)



In view of (B.7) and Hoeffding’s canonical decomposition in (B.8), we can deuce that

0.9~ B0us) - Buo = (1) {(172) (3Bt 2z

S s—2

" (Z:j)Q(DE(gs(X; Zi, Z,) )
{0 (7)) (Dreez 27

s(s—1) <= (s
< ) E(QT(X7Z1> 7Zr))2
n(n—1) < \r
2
s
< 3 Var(®(x;Zq,- -+ ,Zy)). (B.13)
It remains to bound the variance term Var(®(x;Zy,--- ,Zs)) above.

By Lemma 7 in Section B.7, we have an important result that
Var(®(x;Zy, -+ ,Zs)) = o(nn). (B.14)

Combining (B.10), (B.13), and (B.14), it holds that

~

- [Du() ~ED,(5) - Dn<s>>r —of &}
_ {52%1;—2(%)} = o(1). (B.15)

Therefore, we are ready to see that (B.15) entails the desired claim (B.12). Finally, by
(B.10) and (C.119) obtained in the proof of Lemma 7 in Section B.7, we see that o, is of

order (s/n)%/2, which concludes the proof of Theorem 2.

B.3 Proof of Theorem 3

We further prove the asymptotic normality of the two-scale DNN estimator D,,(s1, s2)(X)

introduced in (15). It is worth mentioning that Theorem 3 is not a simple consequence

10



of Theorem 2 since the marginal asymptotic normalities do not necessarily lead to the
joint asymptotic normality. This means that we need to analyze the two single-scale DNN
estimators involved in the definition of the two-scale DNN estimator in a joint fashion. To
this end, we will exploit the ideas in the proof of Theorem 2 in Section B.2. To facilitate
the technical analysis, some key technical tools are provided in Lemmas 8-10 in Sections
B.8-B.10, respectively.

Without loss of generality, let us assume that s; < sy for the two subsampling scales.
In particular, we make the assumptions that s;, s — 00, 51,82 = 0(n), and ¢; < s1/s9 < €9
for some constants 0 < ¢; < ¢ < 1. From Lemma 8 in Section B.8, we see that the
two-scale DNN estimator D,,(s1, s2)(x) is also a U-statistic of order sy with a new kernel
O*(x;Z1,Zs, - - - ,Zs,) introduced later in (C.121). Thus Hoeffding’s canonical decompo-
sition for U-statistics can be applied to derive the asymptotic normality of the two-scale

DNN estimator. For each 1 <7 < s9, let us define

®§(X;Z17"' 7Zi> :E[‘I)*(X;Zl,"' yZiy Ly, 7ZsQ)|Zl,"' 7Zi]7 (B-16)

9 (X320, ,2i) = O} (X521, ,2) — BOF (%2, -+, Zy)

i—1
> D> G(X%ay, e Zay), (B.17)

J=1 1< << <t

where ¢f(x;21) = ®j(x;2;) — E®}(x;Z;) by definition. We further define
Var & = Var(®*(x;Z1, 2o, - -+ ,Zs,)) and 7y = Var(®](x;Z,)). (B.18)

In view of (15), (B.16), and (B.17), an application of similar U-statistic and Hoeffding’s
canonical decomposition arguments to those in the proof of Theorem 2 in Section B.2
entails that

(=t s3my) "2 (Da(s1, 52)(x) — E[Dy(s1, 52)(x)]) (B.19)

11



can be approximated by the first-order part of Hoeffding’s canonical decomposition that
converges to a normal distribution with the remainders asymptotically negligible, where 7}

is given in (B.18). More specifically, denote by
~ S n
D, (s1, 82) = f > gi(x;Zs), (B.20)
i=1

where ¢f(x; Z;) is defined in (B.17). It follows from (B.18), (B.20), and the classical central
limit theorem for i.i.d. random variables that
D, (s1, 52)
VT siny
since it holds that Var(g;(x;Z1)) = Var(®i(x;Z;)) = n;.
Similar to (B.13), by (B.17), (B.18), and (B.20) we can deduce that
E[D,(s1, $2)(x) — ED, (51, 82)(X) — Dy(s1,5)]”

75 N(0,1), (B.21)

s
—2.2 * *

< VS Var ¢ _ Var ¢ ' (B.22)
n=tsin i

Moreover, it follows from the upper bound on Var ®* obtained in Lemma 9 in Section B.9

and the asymptotic order of 1] established in Lemma 10 in Section B.10 that
Var ®* /(nn}) — 0 (B.23)

since so/n — 0 by assumption. Therefore, combining (B.21)-(B.23), an application of the

Slutsky’s lemma yields the desired claim in (B.19), that is,
D, (s1,52)(x) — ED,,(s1, s2) (%)

On

25 N(0, 1), (B.24)

where we define 02 = n~'s2n*. Finally, we see from Lemma 10 that o, = (n~'s2nt)'/?
n 2™ 2™

1/2

is of order (sg/n)'# and from the higher-order asymptotic expansion of the bias term in

Theorem 1 that

O(s; "+ 53", d>2
A =ED,(s1,52)(x) — pu(x) =
O(s7® + 55°), d=1.

12



This together with (B.24) completes the proof of Theorem 3.

B.4 Proof of Theorem 4

We now aim to prove the asymptotic normality of the HTE estimator 7(x) = D,(lll) (351), 3;1)) (x)
— Dg%)(sgo),séo))(x) introduced in (23), where D,(}l)(sgl),sgl))(x) and D,(L%)(sgo),sgo))(x) de-
note the two-scale DNN estimators constructed using the treatment sample of size n; and
the control sample of size ng, respectively. Denote by n = ng + n; the total sample size.
By the assumption P(T" = 1|X, Yr—o, Yr—1) = 1/2, it is easy to see that ng/n, L5 1 as
n — oco. For each of the treatment and control groups in the randomized experiment, by
the assumptions a separate application of Theorem 3 shows that there exist some positive
numbers o,,, of order (s$ /n1)/2 and o, of order (s3) /ng)!/? such that

DY (stV, s (x) — E[DS (51"

Ony

.55) (%) 74 N(0,1) (B.25)

and 0),.(0) _(0) 0),.0) _(0)
Dno (Sl ) S9 )(X)_E[Dno (Sl ) S92

Ong

0N 2, ngo, 1), (B.26)

In view of the randomized experiment assumption, the treatment sample and control
sample are independent of each other, which entails that the two separate two-scale DNN
estimators Dgll)(sgl), sgl))(x) and Dg%)(sgo), séo))(x) are independent. Thus it follows from
(B.25) and (B.26) that

D3 (1, 55”)(x) = Dig (1", 55”)(x) = BID (51", 85”) (%) = Dig (1 83”) (%))
On

5 N(0,1), (B.27)

1/2

where we define 0,, = (02 +07 )'/?. Moreover, from the higher-order asymptotic expansion

of the bias term in Theorem 1 applied to the potential treatment and control responses,

13



respectively, and the definition of the heterogeneous treatment effect (HTE) 7(x) introduced
in (22), we see that

E[DY(s{, s8)(x)] = E[DQ(s1”, s3)(x)] = 7(x) + A, (B.28)

where A = O (s{)=4/4 4 (s{)=4/d 4 () =4/d 4 ({N)=4/4} for 4 > 2 and A = O{(s{V) 3+
(sS4 ()3 4 (s\)3Y for d = 1. Therefore, combining (B.27) and (B.28) yields
the desired asymptotic normality of the HTE estimator 7(x) based on the two-scale DNN

estimators. This concludes the proof of Theorem 4.

B.5 Proof of Theorem 5

In view of the arguments in the proof of Theorem 4 in Section B.4, the variance of the
HTE estimator 7(x) = Dﬁ,,ll)(sgl),sg))(x) - Dé%)(sgo),séo))(x) is naturally the sum of the
variances of the pair of two-scale DNN estimators. Thus the variance estimate for the HTE
estimator reduces to that for the two-scale DNN estimator D,,(s1, s2)(x), whose asymptotic
normality has been shown in Theorem 3. Now we aim to establish the consistency of the
jackknife estimator 0% introduced in (28) for the variance o2 of the two-scale DNN estimator
D, (s1,52)(x) as defined in (26). We will build on the technique in Arvesen (1969) that
expands and reorganizes the jackknife estimator 5%. However, a major theoretical challenge
is that instead of an application of the classical asymptotic theory for the case of fixed order,
a more delicate technical analysis of the remainders is essential to proving the consistency
under our current assumption of diverging order s, — co.

More specifically, we will show that the jackknife estimator o3 can be written as a
weighted sum of a sequence of U-statistics {U.}o<c<s, to be introduced in (B.34) later,

where Uy and U; are the dominating terms and the remaining ones are asymptotically

negligible under the assumption of s, = o(n!/3). Since U-statistics are symmetric with

14



respect to the input arguments, it follows from (25) and (27) that

> (") = e s (1) Dt s,

i=1 2
which entails that
n"' YUY = Das1, 52)(x). (B.29)

Thus, in light of the definition of the jackknife estimator % in (28) and (B.29), we can
deduce that

n

3= - D] 3 (02" - (s on 00

=1
n—1\ 2 . .
=1 1

—2
n . )
_n(32> Z(I) (X3 Ziays s Loy, )P (X; Zigy s -+ 7ng2)}, (B.30)

where we use the shorthand notation ) for

> (B.31)

1§o¢§<a§<~~-<o¢§2 <n
1<B} <Bs<--<Bi,<n
a0l A4 BB, Bhy #

and ) for

> (B.32)

1§o¢1<0¢2<~~-<o¢52 <n
1<B1<B2<+<Psy <N

to simplify the technical presentation.

For each 0 < ¢ < s9, by calculating the number of terms with ¢ overlapping components

15



in @(x; Zay, 5 Lia,, )P (X3 Zg,, - -+, Zg,, ), We can obtain from (B.30)-(B.32) that

_1 —2 s2
n53=(n—1){(n ) > (n=25+0)> (X Zar, Loy Lpy o Ls,, )

S
2 c=0

'(I)*(X§ Loy, Loy Ly az%rc)

—92 s
_n<;Z> ZZ(I)*(X;Z&U'“ 7Zac’Zﬁl’”. ’Z’BSQ_C)

c=0

. Q*(X’ ZQI? st ,Zac; Z’yl7 e 7Z'}’52—C>}

(L) Bemal ) (U)o

where we introduce a sequence of U-statistics {U. }o<c<s, defined as

Gl

: Z (p*<x7 ZOZI? o 7ZCYC7 ZBI? e 7Z/832—c)®*(x; ZOll? U 7Z0¢c7 Z'Yl’ U 7Z'YSQ—C)'
(B.34)

Here, with slight abuse of notation, > is short for denoting the summation over all possible
combinations of distinct aq, -+, e, b1, ¢, Bsg—es V15 +  Vso—e Satisfying that 1 < oy <
< <n, 1< B << Bgyee Snyand 1<y < <y S0

Observe that by symmetrization, U, defined in (B.34) is indeed a U-statistic that can

be represented as

289 — ¢

~1
Ue = < ) ) Z K(C)(X’ ZO&17"' ,Zac,251,"' ’ZBSQ*C’Z'VUH' ’Z'YSQ*C)’ (B35>

025276
where Y represents the summation taken over all combinations of 1 < oy < -+ < . <

C2527c

B <o < Pogee <Y< ot < Yoyee <, and the symmetrized kernel function K@ is given

16



K(C)(X; Zan"' aZac’ZﬁN"' vzﬁsrwzvn"' 72%2%)

_ 232_C 252_2C -1 Z (b*(XZ . Z Z Z )
c 52 —c ) 1 Y (2% Te410 Y 1sg

H252 —c

’ (I)*(XJ Z’i17 ) Zic7 Zi32+17 Tty Zisz,C) <B36>

with )" standing for the summation over all the (2526_‘3) (22 20) possible permutations
Hng—c

of (a1, , e, B1,7* , Bsg—es V1, » Vsa—c) that are not permuted within sets (g, -, ),
(Bh e 7ﬂ82—c)7 and (717 e 7’782—0)-

From (B.33)—(B.36) above, we can further deduce that as long as sy = o(y/n), it holds
that

52

77/03—Z(Cn—s%)<n_82_1)(n_82_2)'”<n_282+c+1>

— (n—2)(n—3)---(n— sg)c!
[s2(89 = 1) -+ (89 — ¢+ 1)]*UL
§2 32 = .52
:—sg[l—FO(ﬁ)]Uo—i—sQ[l—kO U1+ZO =) 2y,

4 S2 9 9
:S%(U1 U0)+O(_2)<UO+U1>+ZO(<‘;2)C 182U

|
c=2 ¢
which leads to

n s2 o2 1 U,
—33=U1 Uo+0(§)(Uo+U1)+;o(n) - (B.37)

By (B.34), for the mean we have

EUC :E[(I)*(X, Za17"' 7Zacazﬁ17"' 7Zﬁg2_c)q)*<x; Zap"’ 7Zoz67Z’y1>"' 7Z'yq2_c)]

where ®*(x;Z1,- -+ ,Z.) = E[®*(x;Z1,- -+ ,Zs,)| 21, ,Z.].

17



As for the variance, it follows from Lemmas 2 and 3 in Sections B.2 and B.3, respectively,

that for each 0 < ¢ < s, and fixed x, we have
Var(U,) = O(sa/n). (B.39)
Moreover, in view of (B.38) and Jensen’s inequality, it holds that for each 2 < ¢ < s9,
EU, < E[(®*)?]. (B.40)

Consequently, it follows from (B.37)—(B.40) that

5(lg7 z)])

{ ar(Uy) + Var(Uyp) + —%[(E¢*)4+(E[Q)T(X;Zl)]z)z]
ZZ ()7 Var(u) + (RG] [Var(u) + (B(@P]), (B

where C' is some positive constant. Recall the facts that E[®*] = O(1) and E[(®*)?] = O(1),
which have been shown previously in the proof of Theorem 3 in Section B.3. Combining

(B.41) with these facts yields

E( [%aﬁ — Var(®* (x; zl))] )2 < C(% + 3—3) (B.42)

n2

Furthermore, it has been shown in the proof of Theorem 3 in Section B.3 that
Var(®%(x;Z,)) > Csy* (B.43)

with C' some positive constant. Thus, when s, = o(n'/?), we can obtain from (B.42) and
(B.43) that

~2
— 7 51, (B.44)
2 Var (95 (x; Z1))

18



In addition, it follows from (B.22) and the decomposition for the variance of the U-statistic
that as long as sy = o(n), we have

0.2

= Var(®%(x; Z1))

— 1. (B.45)

Therefore, combining (B.44) and (B.45) results in 6%/0® -2+ 1, which establishes the

desired consistency of the jackknife estimator 3%. This completes the proof of Theorem 5.

B.6 Proof of Theorem 6

We now proceed with establishing the consistency of the bootstrap estimator 8129771 intro-
duced in (30) for the variance o of the two-scale DNN estimator D,,(s1, s2)(x) as defined

2

in (26). Let us define the bootstrap version of the quantity ¢* conditional on the given

sample {Zy, -+ ,Z,} as
6-\’2 - Var(DZ(sl, 52)(X)|Zlv ) Zn)7 (B46>

where D (s1,s2) defined in (29) denotes the two-scale DNN estimator constructed as in
(25) using the bootstrap sample {Z7,--- ,Z’}. In fact, the quantity introduced in (B.46)
above provides a crucial bridge. The main ingredients of the proof consist of two parts.
First, we will show that the bootstrap estimator 8129,71 is asymptotically close to 72 given
in (B.46) as the number of bootstrap samples B — oco. Second, we will prove that the

2

bootstrap version 52 is further asymptotically close to the population quantity o under

the assumption of s = o(n'/?). It is worth mentioning that the technical analysis for the
second part relies on the consistency of the jackknife estimator 5% established in Theorem
5.

For each 1 < b < B, denote by D,(Lb)(sl, S2)(x) the two-scale DNN estimator D (sq, s2)

constructed using the bth bootstrap sample. It is easy to see from (B.46) that for each

19



1<b< B,
Var(DY) (s1, 82)(X)| 21, -+, Z) = 52 (B.47)

n

Since the sample variance defined in (30) is an unbiased estimator for the population

variance, by (B.47) it holds that

E[a-\%,nlzlvz27“' aZn] :82- (B48)

n

Thus, in view of (30) and (B.48), we can obtain
E[(G}, —0*)’] = El(65, — 6)°] + El(@, — *)’]. (B.49)

Without loss of generality, let us assume that E[D,(s1,s2)(x)] = 0 to ease our technical
presentation; otherwise we can subtract the mean first.
We begin with considering the first term E[(6%, — 07)?] on the right-hand side of

(B.49). Since {D;b)(sl,SQ)(X)}lgbgB are i.i.d. random variables conditional on the given

20



sample {Zy,--- ,Z,}, we can deduce that
E[(EB,n - 8721)2|Zla e >Zn]

- E[ﬁ(z (Y51, )00 = 2) — (BDY,, ) |20, 2]

ﬁ{ﬂ(i (DY o150 =33)) [0, 2]

IN

+% Z E[(DS)(SM32)(X))2(D£f)(31,52)(x))2}Z1,---,Zn}}

1<i#j<B

[(IDY (51, 52) (X)) = 52)°| 20, -+, Z]
(DO 1, 5200 21, 20])

[[DM (51, 82) (x)]*| 2, -+, B (B.50)

IN
5 5o

IA
wla T mAa

where the last inequality follows from the conditional Jensen’s inequality.

Let k = [n/sq] be the integer part of the number n/ss. We define

h(Zly' o azn) = k_l(cb*(x;zla' o azsz) +¢*(Xa Z82+17' o 7Z252)

o O Ly o1 Liksy) - (B.51)

Note that it has been shown in (2.1.15) in Korolyuk and Borovskich (1994) that
E[[DM (51, 82)(x)|Y| 21, -+, Zo) < EWNZT, - Z3)| 20, ] (B.52)
with the functional A(-) given in (B.51). Moreover, with an application of Rosenthal’s
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inequality for independent random variables, we can obtain that

E[h4(z>{’ e 7Z:L>|Z1’ T 7Zn}
< CEk'RE([O*(x; 23, -+ ZE))Y 21, -+, Zn), (B.53)

where C'is some positive constant. Then in light of (B.53), it remains to bound the quantity
E([®*(x;Z3, - ,Z,)]"), which has been dealt with in Lemma 4 in Section B.4. Thus, it
follows from (B.50), (B.52)—(B.53), and Lemma 4 that

~ C -
E[(O—%n _0-7%>2 3222 22 Z X; 217"' 7Zi52)]4)
11=1 152—1

(B.54)

where M is some positive constant given in Lemma 4.
We next proceed with analyzing the second term E[(G2 — 02)?] on the right-hand side
of (B.49). Recall the definition of the bootstrap version 2 for the population quantity o2

n

introduced in (B.46). Let us define
my = E[®*(x; 27, -+, Z})|Zy, - -+, 2] (B.55)

and

hi(z) = E[®*(x;Z7,--- ,Z},) — my|Z] = z]. (B.56)

Then applying similar arguments as for (B.13) in the proof of Theorem 2 in Section B.2,
we can deduce that

2
67 = ZEW(Z)|Z1, -+, Bl + Ay, (B.57)

where 0 < Ay < Z—% Var(®*(x; Z7,- -+, Z},)|Zy, - - - ,Zy) and function h(-) is given in (B.56)
and (B.55). Similarly, it holds that

2
0? = ZE[gH(Z1)] + A, (B.58)
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where g1(Zy) = E[®*(x;Z1,- -+ ,Z,)|Z1] and 0 < Ay < Z—%Var(@*(x; Zy,---,Zg)). Hence,
by (B.57) and (B.58) we can obtain that
E[(G, — 0%)’]

4

< CE(Z2[BI(Z)|Z0, -, 2] — Blgi(Z)]]" + AT+ A3), (B.59)

52
n2
where C' is some positive constant.

Observe that

2 53
Ay =0(7) (B.60)
and
4

S * k * 2
< SgE @* . Z* Z* 4
>~ ﬁ ([ (X7 15 ) 52)] )

Msj
< vaE (B.61)

where the last inequality follows from Lemma 4 with M some positive constant. In addition,
it holds that
1 n
EW(ZZy, - Zy) = — h3(Z; B.62
(D2 2] = 1 DI (5.62)

and

n

h(Zi) =0y " N (x5 Z, Ly L)

i9=1 i32:1
Y S W (L L), (B.63)
11=1 i52:1

Let us further define

n—1 ! *
Si = <S2 — 1) Z ® (X; Zi’ Zjl’ T ,st2,1)- <B64>

1<) <ja < <joy 1<
Jisg2, 7j52717£i
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From the equality (”;)U(i)1 + (DS = (" )Dn(sl,sz)(x) in view of (B.64), it is easy to

n so—1
see that the jackknife estimator 0% introduced in (28) satisfies that

n

72 (5= Dalsrs2)(x))’ (B.65)

=1

=2
noy  n—1

s2 (n— sy
Then the main idea of the remaining proof is to show that under the assumption of sy =
o(n'/3), hy(Z;) is asymptotically close to S; — Dy, (s1, s2)(x) and thus E[h2(Z})|Zy, - - -, Zy)
is asymptotically close to “%2. Observe that

S9 —

—1
n—52+1(n 1) (82_ 1)! — 1+O(3%/n)
and
—s n 2
n=* so! =1+ O(s3/n),
52
which entail that

(" - (” - 1) (s2 = D1)n=" = O(s3/m)

82—1

(n82 - (Z)SQ!)n—SQ = O(s2/n).

Thus, it follows from (B.63) and these facts that

and

hi(Z) = (14 O(s3/n)) [S; = Dals1, 52)(x)] + 021 0% (%24, Ziy, -+, Zi,)

I
n" Y 0N (x; Ziy s iy i) (B.66)
where 21 = {(ia, - - ,is,) : there is at least one pair that are equal or there is a component
that is equal toi} and P, = {(i1,- - ,is,) : there is at least one pair of components that are

equal}.
With an application of similar arguments as in the proof of Lemma 4 in Section B.4,

we can obtain that

E([®*(x; Ziy, Ziy, -+, Zi,,))|Y) < M (B.67)
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with M some positive constant, regardless of how many components of (i1,7s, - ,is,) are
equal. As a consequence, by (B.67) it holds that

1n 2\ 2
(23 (e Y 0 2 -1 2) )]
n
i=1 I

1=

Ly —s2+1 “( 4 CMs$
< ;;E[( 2+ Z(I) X: ZhZzg,“' ZiSQ)) i| < 1 <B68>

1

and similarly,

AN 2 COMs}
= [<_ Z (n_$2 Z CI) X Zzu Zz27 o Z132)>> i| < 482 ) (B69)
n n
i=1 D

where C' represents some positive constant whose value may change from line to line. Hence,
combining (B.62), (B.66), and (B.68)—(B.69), we can deduce that as long as sy = o(n'/?),
it holds that

E([E[hf(zmzl, v ] — E[gf(Zl)]f)

< CE[(% zn:u +O(53/n))2[S; — Da(s1, 52)(x)]* — Var (@ (x; Zl>>>2]

n C'Msgiz1
< CE[(%Q + 0(s§/n)) 305~ Var(@i(x zﬁ))Q] + Cﬁsg

4

< C(1+ Ol /m)E([57 WM@@JMW+%%NMﬂ&JmV

CMsS
A

C 2 OMs§ CM+1

<Cu g, OMd Oty B
noon n n

where the second to the last inequality comes from (B.42) and (C.132) in the proof of
Lemma 10 in Section B.10.

Substituting the above bounds in (B.60)—(B. 61) d (B.70) into (B.59) leads to
!
E[(32 — 0%)?] = ( +2). (B.71)
n*
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Thus, combining (B.54) and (B.71), we can obtain that

. s5 52
E((6%,, — 0%)? = o(n—g + B—;Q) (B.72)

Recall the fact that ¢ = O(22) under the assumption of s, = o(n). Consequently, such

fact along with (B.72) entails that

E[(af; - 1)2} _o4 (B.73)

Therefore, combining (B.73) and the assumptions of s, = o(n'/?) and B — oo yields

6% ,/0? = 1, which establishes the desired consistency of the bootstrap estimator G%,,.

This concludes the proof of Theorem 6.

C Some key lemmas and their proofs

B.1 Proof of Lemma 1

Observe that the set of possible values Y(1)(Z;,, Zs,, - - - , Z;,) can takeis {Y1), Yi2), - -+, Yin—st1) }-
If Yy (Zi,, Ziy, - -+, Z;,) = Y1), then the observation corresponding to Y{;) must be selected
and there are (Z:ll) options for the remaining s — 1 places in the subsample. In general, if
Yy(Ziy, Zsy, -+ 1 Zi,) =Y for some 1 < j < n—s+1, then the observation corresponding
to Y(;) must be selected and the observations corresponding to Y(y), Y(2), -+, Y(;_1) will not
be selected, which entails that there are (Z:{) options for the remaining s — 1 places in the
subsample. Applying these arguments, we can obtain the representation in (10) for the
single-scale DNN estimator D,,(s)(x).

It remains to show that for any given x, D, (s)(x) is in fact an L-statistic. Denote by
Yin, Youn, - -+, Yo the order statistics for n scalars Y7, Ys, - -+, Y,,. Note that for each given
X, Yy, Y2y, -+, Y(n—s—1) are fixed and there exists some set S(x) := {i; : 1 <j <n—s+1}
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that may depend upon x such that
(}/El)a Yv(Q); o aYV(nferl)) = (Y;1:n7 Y;g:na to 7Y;n_s+1:n)- (074)

Conversely, for each k € S(x), there exists some 1 < my < n— s+ 1 that may depend on x
such that Yj., = Y, ). Consequently, combining such fact, (C.74), and the representation

in (10) established above, we can obtain that

Di(s)(x) = (’Z) h kg:(x) (”8__”;’“> Yien,

which shows that for any given x, D, (s)(x) is an L-statistic. This completes the proof of

Lemma 1.

B.2 Lemma 2 and its proof

Lemma 2. Under the conditions of Theorem 5, we have that for each 0 < ¢ < s9 and fized

X,

259 — ¢

Var(U,) < Var(K©), (C.75)

n

where U, is the U-statistic defined in (B.34) and K'© is the symmetrized kernel function
given in (B.36).

Proof. For notational simplicity, we will drop the dependence of all the functionals on the

fixed vector x whenever there is no confusion. For each 1 < 7 < 2s5 — ¢, let us define
K (2, 2;) = E[KO|20, - 2]
j—1
93(‘0)(Z1a"' 7Zj) :KJ('C)_E[K(C)]_Z Z gz‘(C)(Zaw"' 7Zai)’

=1 1< < <a; <J
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and V; = Var(g](c)(zl, .-+, Z;)). Then it follows from Hoeffding’s decomposition that

—1 2s9—c

_ RIK© n n—1 ©(7 ...
U.=E[K ]+(232—c) ;(282_0_2,) > 42y, La,). (CT6)

1< <-<a;<n

Observe that Var(K(©) = $72%27¢ (*27°)V;. Thus, in view of (C.76), we can deduce that

2s2—c -2 . 2
n n—u1 n
Var(Ue) = Zz_: (232 — c) (232 —c— z) (z) Vi

=1

_ 22 (35(22;(;1! (Cn_—i;'?! (2822'_ c) y

i=1 ’

280—c
289 — ¢ 289 — ¢
< Vi
=== (M)
Vg —
= 227 O var(K©),

n

which establishes the desired upper bound in (C.75). This concludes the proof of Lemma
2.

B.3 Lemma 3 and its proof

Lemma 3. Under the conditions of Theorem 5, it holds that for each 0 < ¢ < sy and fized

Var(K) < Cl(w})" + ()] (5 (x) + 612(x)0, + 4p(x) +E[€]]), (c.77)

where K© is the symmetrized kernel function given in (B.36) and C is some positive

constant.
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Proof. By the Cauchy—Schwarz inequality, we can deduce that

Var(K'Y) < E[(
{(252 — c) (232 — 2c ]
527 € Masy—c HQSQ_C
B{®"(x; Ziy, -+ B T+ Bis ) O (% Zary 2 2o By Ly, )
X (X Zj,, - Ly Ly Ly )N (X5 2y LG Ly g, ) )
<E{[®%(x;Z1,Zs, -+, Zs,)] "}, (C.78)

where ) denotes the summation introduced in (B.36). In light of the definition of ®*
HQSQ—C
n (C.121), we have

B{[®%(x; Z1, Zo, -, Zs,)]'} < 8(w}) B[O (x;Zy,- -+, Zy,)]

+ 8(ws) B0 (x; Zy, - -+ , Z,)]. (C.79)

Let us make some useful observations. Note that

E[@4(X; Z, - ,7Z) [(Zyz@m) ]

= ZE[% gi,sl] = SIE[:U?CLSJ

i=1

and

E[yilCLsJ = ]E([M(Xl) + 61]451781)
= E[M4(X1)C1,81] + 6E[M2 (Xl)cl,sl]ag + 4E[:U’(X1)C1,sl] + E[E?L

where (; s represents the indicator function for the event that X, is the 1NN of x among

Xy, -+, X, Moreover, it follows from Lemma 13 in section C.3 that as s; — o0,

s1E[" (X1)Csy] = 1" (%)
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for k =1,2,4. Hence, it holds that

E[QY(x; Zy, -+ Za))] = 1E[Y1 o))

= 4" (%) + 62° (%) + 4pa(x) + E[e]]

as s; — oo.

Using similar arguments, we can show that as s, — 00,
R[04 Z, + Zo)] — (%) + 62(x)0 + 4p(x) + E[el].
Therefore, combining the asymptotic limits obtained above, (C.78), and (C.79) results in
Var(K©@) < Cf(wi)* + (w3)'] (1" (%) + 6p*(x)oc + 4pu(x) + E[eq]),

where C' is some positive constant. This completes the proof of Lemma 3.

B.4 Lemma 4 and its proof

Lemma 4. Under the conditions of Theorem 6, there exists some constant M > 0 depend-

ing upon wy, wy, X, and the distribution of € such that

E([®*(x; 25, ,Z2)]") < M. (C.80)
Proof. Since the observations in the bootstrap sample {Z3,--- ,Z*} are selected indepen-
dently and uniformly from the original sample {Zy,--- ,Z,}, we have

E([(I)*<X7 ZT? T >Z:2)]4) = E(E([(D*(Xu Zia e 7Z:2)]4|Zl7 e 7Zn)>
=n"" Z e Z E([q)*(x, Zi17 T >Zi52)]4)'
=1 dgy=1
Observe that for distinct iy, - - - ,is,, we have shown in the proof of Lemma 3 in Section B.3

that as so — 00,

E([®*(x;Z1, - ,Zs,)]") = A
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for some positive constant A that depends upon wj, w;, x, and the distribution of e.
Furthermore, note that if iy, = i3 = - -+ = i, and the remaining arguments are distinct,

then it holds that
CI)(X7 Zi17 R Zi32) = CD(X, Zi17 Zic+17 R ZiSQ)‘

Therefore, there exists some positive constant M depending upon wj, wj, x, and the

distribution of € such that
E([(I)*(X, Zila e 7Zi52>]4) <M

forany 1 <14, <n,---,1 <14, <n. This concludes the proof of Lemma 4.

B.5 Lemma 5 and its proof

In Lemma 5 below, we will provide the asymptotic expansion of E || X (1) — x||* with k& > 1

and its higher-order asymptotic expansion for the case of k = 2 as the sample size n — oc.

Lemma 5. Assume that Conditions 1-3 hold and x € supp(X) C R? is fized. Then the
1-nearest neighbor (1INN) X1y of x in the i.i.d. sample {Xy,---,X,} satisfies that for any

k> 1,
[(k/d+1)
(f (x) V) /e

as n — oo, where I'(+) is the gamma function and Vy = 1,(%;2/2).

E X —x|* = n k4 4 o(n k) (C.81)

In particular, when k = 2,

there are three cases. If d = 1, we have

E X —x|? = w—‘/z%nw - <%> n~ D 4 o(n= 2Dy (C.82)

If d = 2, we have

o TR+ Ly (_o(PEOTE/d+D) | TRA+2) N
E X ==l = ogupe™ (f<x><f<x>w>4/dd<d+2> d<f<x>vd>2/d) :

+o(n~"), (C.83)
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where f"(-) stands for the Hessian matriz of the density function f(-). If d > 3, we have

, TEMAY) Ly [ G EITEA ) Y
E X =" = Gogvpr” _(f(X)(f(X)%)4/dd(d+2)>n /

+ o(n~Y%). (C.84)

Proof. Denote by ¢ the probability measure on R? given by random vector X. We begin
with obtaining an approximation of ¢(B(x,r)), where B(x,r) represents a ball in the
Euclidean space R? with center x and radius » > 0. Recall that by Condition 2, the
density function f(-) of measure ¢ with respect to the Lebesgue measure A is four-times
continuously differentiable with bounded corresponding derivatives in a neighborhood of

x. Then using the Taylor expansion, we see that for any & € S ! and 0 < p < r,

FOx+ p) = )+ ()70 + 367 1 (0ER" + ol (C8)

where S%7! denotes the unit sphere in R?, and f’(-) and f”(-) stand for the gradient vector
and the Hessian matrix, respectively, of the density function f(-). With the aid of the

representation in (C.85), an application of the spherical integration leads to
cBox) = [ s et wlae)ap
5

/ /Sd 1 ( f'x)"€p+ € f(x )£p2+o(p2)> P ly(d€) dp

= [ [reavipt —<f"<2x>>‘%d+1+o< 1] dp

= f(x)Vgrd + —tr%(j:);)vd rit? 4 oo(r®t?), (C.86)

where v denotes a measure constructed on the unit sphere S9! as characterized in Lemma

11 in Section C.1 and d- stands for the differential of a given variable hereafter.
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We now turn our attention to the target quantity E || X ;) — x||¥ for any £ > 1. Tt holds
that

E | Xq) - x|* = / P (| Xq - x|[* > 1) dt
- / P (X0 — x|| > £4) dt
0
— [ - eBe ) a
0

ot (N e e

To evaluate the integration in (C.87), we need to analyze the term [1 — (B <X, :Lll—//z»] :

It follows from the asymptotic expansion of p(B(x,r)) in (C.86) that

o (o (i)

tr(f"(X) Vi 4(d+2) /k
f(x)Vat®* 2i2) ! —(1+2/d)N | "
_ [1_ = +o(n )] . (C.88)

From (C.88), we see that for each fixed ¢ > 0,

lim l1 — (B <x, :1—2)” n: exp(—f(x)Vgt?*).

n—oo

Moreover, by Condition 1, we have
tl/k’ n tl/k’ n
e (2 ()] = [ (o)
< exp (—atl/k) .

Thus, an application of the dominated convergence theorem yields

00 tl/k n 00 tl/k n
By g AT

= /00 exp(—f(x)Vat?*) dt

 T(k/d+1)

= TGV )
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which establishes the desired asymptotic expansion in (C.81) for any k£ > 1.

We further investigate higher-order expenasion for the case of k = 2. The leading term
of the asymptotic expansion for E || X ;) —x||* has been identified in (C.89) with the choice
of k = 2. But we now aim to conduct a higher-order asymptotic expansion. To do so, we
will resort to the higher-order asymptotic expansion given in (C.88). In view of (C.88), we

can deduce from Taylor expansion for log(1 — z) around 0 that

()

tr(f"(X)Va 1 (d+2)/2
V2 l
= exp {nlog [1 — f(x)nd I Coe) + o(n~(+2/d)y

ni+2/d

— exp {—f(X)thd/2}

tr(f”(X))th(d-i-Q)/Q 2 2.d
t
= exp {—f(X)thd/2 _2(d+2) » . / (’;)Vd i O(n(g/d))}
n n
— exp {—f(x)thd/Q} (C.90)

as n — oo. To determine the order of above remainders, there are three cases, that is,

d=1,d=2,and d > 3. First for d = 1, it follows from (C.90) that

(oo )] -on o

—exp { oVt - Feovee Fon) b~ exp Vit ")

= exp {—f(x)Vat"} (exp {—w + 0<n—1)} - 1)

2n

= exp (=02} (O 4 o) (1)

as n — oo. Furthermore, it holds that

) 2(x)V2td r2/d+2
/Oexp{ F(x td/}( f(; )dt:—m, (C.92)
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where we have used the fact that for any a > 0 and b > 0,

a

> 1
/ 2% Lexp(—baP) dz = ~b~/PT(-). (C.93)
0

p p

Therefore, combining (C.87), (C.89), (C.91), and (C.92) results in the desired higher-order
asymptotic expansion in (C.82) for the case of k =2 and d = 1.
When d = 2, noting that 2/d = 1, it follows from (C.90) that

{1 o (B (X’ ;11_//201))}” — exp {— f(x)Vat¥?}

tr(f”(X))Va 4 (d+2)/2 2 24d
. _ dj2 . 2(d+2) . f (X)‘/d t —(2/d)
= eXp { f(x)Vat n2/d on2/d +o(n )
— exp {—f(x)Vat"?}
Er(f7(X)Va 4 (d+2)/2 2 21d
1A fFx)V:t _
= exp {— f(x)Vt"/?} (exp {— ( +;2/d - <2n>2/g +o(n Wd))} - 1)
(" (X))Va 4 (d+2)/2 2 24d
(o fFx)V:t _
= oxp {— f(x)Vat"?) (‘ D — e + ol W) oo

as n — 0o. Applying equality (C.93) again yields
- o (Vi ainys
/O exp {—f(x)thd/ } (_Wt(d+ ) > At
_ tr(f”(x))I'(4/d + 1) ) Yy
B (d<d+ I Gov) " (C.95)

Hence, combining (C.87), (C.89), (C.92), (C.94), and (C.95) leads to the desired higher-

order asymptotic expansion in (C.83) for the case of k = 2 and d = 2.

Finally, it remains to investigate the case of d > 3. Noticing that n=! = o(n=2/?) for

35



d > 3, we obtain from (C.90) that

{1 I (B (X’ 211_2))]” —exp {—f(x)Vat"*}

%t(d—kmﬂ
+ -
= exp {—f(x)vdt“’/2 - +on W‘”)} —exp {—f(x)Vat""}

tr(g/;l(xz))vdt(d+2)/2
= exp {— f(x)Vt"?} (exp {— ( +;2/d + o(n_(2/d))} — 1)

e
T _
= exp {—f(x)Vat"?} <_ n2/d +o(n (Q/d))> : (C.96)

Consequently, combining (C.87), (C.89), (C.95), and (C.96) yields the desired higher-order
asymptotic expansion in (C.84) for the case of k = 2 and d > 3. This completes the proof

of Lemma 5.

B.6 Lemma 6 and its proof

As in Biau and Devroye (2015), we define the projection of the mean function p(X) =
E(Y|X) onto the positive half line R, = [0, 00) given by || X — x|| as

m(r) = lim E[u(X) | r < [X x| <7 +0 =BV | [X-x]|=r]  (CO7

for any r > 0. Clearly, the definition in (C.97) entails that
m(0) =E[Y | X =x] = u(x). (C.98)

We will show in Lemma 6 below that the projection m(-) admits an explicit higher-order
asymptotic expansion as the distance r — 0.

Lemma 6. For each fized x € supp(X) C R?, we have

fx) tr(p"(x)) + 24/ (x)" f'(x)
2d f(x)
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m(r) = m(0) + r? + Oyr (C.99)




as v — 0, where Oy is some bounded quantity depending only on d and the fourth-order
partial derivatives of the underlying density function f(-) and regression function u(-). Here
g'(+) and ¢"(-) stand for the gradient vector and the Hessian matriz, respectively, of a given

function g(-).

Proof. We will exploit the spherical coordinate integration in our proof. Let us first
introduce some necessary notation. Denote by B(0,r) the ball centered at 0 and with
radius 7 in the Euclidean space R?, S?~! the unit sphere in R?, v a measure constructed
on the unit sphere S as in (C.86), and € = (§;) € ST ! an arbitrary point on the unit
sphere. Let V; be the volume of the unit ball in R? as given in (C.81). The integration with

the spherical coordinates is equivalent to the standard integration through the identity

/ F(x) dx — / [ pug) v(dg) du. (C.100)
B(o,r) 0 §d-1

From Lemma 11 in Section C.1, we have the following integration formulas with the spher-

ical coordinates

/Sd1 v(dg) = dVa, (C.101)
vl =0, (C.102)
|, §AEVdg = u(A)V, (C.103)
/Sd_l&ﬁjéw(dé) = 0 forany 1<i,jk<d (C.104)

where A is any d x d symmetric matrices. We will make use of the identities in (C.101)-
(C.104) in our technical analysis.

Let us decompose m(r) into two terms that we will analyze separately

m(r) = lim B[u(X) |7 < X = x| <7+

L EROOL0 < [X x| < +0)
s Pr< X —x[[<r+48)

(C.105)
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where 1(-) stands for the indicator function. In view of (C.100), we can obtain the spherical

coordinate representations for the denominator and numerator in (C.105)
Pir<|X—x|<r+94) = /T+6 ut? - f(x+ug)r(d)du (C.106)
and
ElpX)1(r < X = x| <7 +9)]

— /T‘Jr ud1 /Sdl p(x+u€)f(x+u€)v(d)du. (C.107)

Note that in light of (C.105)—(C.107), an application of L’Hopital’s rule leads to
-0+ P(r<||X—x| <r+9)
 Jua nlx 1 €)f(x 4 7€) 1(de)
Joan fx+ 7€) v(d€) '

First let us expand the denominator. Using the spherical coordinate integration, we

(C.108)

can deduce that

[ I rg) viag
N /Sdl (f(x) * f/( ) &t E f” 1<§;<d axlax] §zf]§kr
O f(x + 0rg)
5 2 Wézijfkfzr4> v(dg), (C.109)

1<z I,k U<d

where 0 < 0 < 1. Note that the fourth-order partial derivatives of f are bounded in some

neiborghhood of x by Condition 2, and

L. 3 labac vite) - /. (Zm) (d)
/Sd1d2<252> v(dg)

= d2/ v(d€) = d®V. (C.110)
Sd-1

IN
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Thus, from (C.101)—(C.104) and (C.110) we can obtain

fx+réE v(dE) = f(x)dVy+ %tr(f”(x))vd r? + Ri(d, f,x)r", (C.111)

Sd—1

where the coefficient R;(d, f,x) in the remainder term is bounded and depends only on the
fourth-order partial derivatives of f and dimensionality d.

For the numerator, it holds that
[ x+renpxs ) vide)
:/ ) + o >Tsr+ S () €77

0'p(x + 617€)
Z axzaxj glg] gkr Z aXian aX;aXl €i§j£k€ZT4:|

1§LLkJ§d

x [f<x> +f()TEr+ —£Tf”(><) ert

0
ZaXﬁXﬁx St Z 8x13;—gx22§(>&£j§k&r4] v(dg),  (C112)

j.kl<d
where 0 < #; < 1 and 0 < 6 < 1. In the same manner as deriving (C.110), we can bound
the integrals associated with r* and the higher-orders r°, 7%, 77, and r® under Condition 2

that the fourth-order partial derivatives of f(-) and p(-) are bounded in a neighborhood of

x. Hence, we can deduce that
[ xeresix+re) viae
s [ vag)+ M [ e reog viag

Sd-1 2 §d-1

et [ e e viag) + L0

i1 2

[ g vag)
+ Ro(d, f,x)r* + o(r?)
= pu(x)f(x)dVg + % [f () tr(i" (%)) + p(x) tr(f" (x))]Var?

+ i () f (X)Var? + Ro(d, f,x)r" + o(r?), (C.113)
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where the coefficient Ry(d, f,x) in the remainder term is bounded and depends only on

the fourth-order partial derivatives of f and dimensionality d. The last equality in (C.113)

follows from (C.101)—(C.104). Therefore, substituting (C.111) and (C.113) into (C.108)

leads to

f)tr(p"(x)) + 24 (x)" f'(x)
2d f(x)

as 7 — 0, where Oy is a bounded quantity depending only on d and the fourth-order partial

m(r) = p(x) + r2 + Oyt

derivatives of f(-) and p(-). This concludes the proof of Lemma 6.

B.7 Lemma 7 and its proof

Lemma 7 below provides us with the order of the variance for the first-order Hajek projec-
tion. To simplify the technical presentation, we use Z; as a shorthand notation for (X;,Y;).
Given any fixed vector x, the projection of ®(x;Zy,Zo, - ,Zs) onto Z; is denoted as

®,(x;21) given by

@1(X; Zl) =E [‘I)(X; 2,,Zy,--- 7Zs)|Z1 = Zl]

= E[®(x: 21, Zo, - , Zy)]. (C.114)

Denote by E; and E;.; the expectations with respect to Z; and {Z;, Z;.1,- - - , Zs}, respec-
tively.

Lemma 7. For any fized x, the variance n, of ®1(x;2z1) defined in (C.114) satisfies that

when s — 0o and s = o(n),
Var(®)
lim

— 0. (C.115)

Proof. A main ingredient of the proof is to decompose Var(®) and 7; using the conditioning

arguments. Denote by (; , the indicator function for the event that X; is the INN of x
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among {X;,---,X,}. By symmetry, we can see that (;, are identically distributed with
mean

Egz',s — 8_1.

In addition, observe that ®(x;Zy,Zs, -+ ,Zs) = > ;_, ¥iGs- Then we can obtain an upper
bound of Var ® as

s

Var(®) < E[®*] = E [( i inl,s)2:| = ZE[QEQ,S]

i=1

- SE[y%CI,S]a

where we have used the fact that (; ;(; s = 0 with probability one when i # j.
Since E[e|X] = 0 by assumption, it holds that

SE[Y¢1s) = sE[p?(X1)1s) + 025E[C ]

= Ei[1*(X1)sEa:s[Cus]] + 02
A key observation is that Eqs[¢1s] = {1 — o(B(x, || X1 — x||))}*" and E;[sEa.s[¢1s]] = 1.
See Lemma 12 in Section C.2 for a list of properties for the indicator functions ¢; s. Thus,

sEo.s[C1,s] behaves like a a Dirac measure at x as s — 0o. Such observation leads to Lemma

13 in Section C.3, which entails that
Var(®) < p?(x) + o + o(1) (C.116)

as s — 00.
To derive a lower bound for 7, we exploit the idea in Theorem 3 of Peng et al. (2019).
Let B be the event that X is the nearest neighbor of x among {Xj, -, Xs}. Denote by
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X the nearest point to x and yj the corresponding response. Then we can deduce that

Q(x;Z1) =E[y115|Z1] + Ely; 15

Z]
=y E[lp|Z] + E[y; 15
= aE[1pXy] + u(X1)E[1p]X1] + E[u(X7) 1 s

Zl]

Xl]

= aE[1p|X4] + E[u(X7)[X].
Since € is an independent model error term with E[e|X] = 0 by assumption, it holds that

m = Var(®i(x; Z1)) = Var(e:E[15|X1]) + Var(E[u(X])[X1])
> Var(e,;E[15|X,]) = UEE [EQ[ILB‘Xlu

2
Ue

= A1
25— 1’ (C.117)

where we have used the fact that

E[E?[15X1]] = E[1p|Xi] = ﬁ

with B’ representing the event that X; is the nearest neighbor of x among the i.i.d. obser-
vations {X;, Xg, -+, X, X5, -+, XL}
We now turn to the upper bound for n;. From the variance decomposition for Var(®)

given in (B.7), we can obtain

which along with (C.116) entails that
sm < Var(®) < p?(x) + o2 + o(1). (C.118)
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Consequently, combining (C.117) and (C.118) leads to
me~ st (C.119)

where ~ denotes the asymptotic order. Finally, recall that it has been shown that Var(®) <
C' for some positive constant depending upon u(x) and o.. Therefore, we see that as long

as s = oo and s = o(n),
Var(®) s
nm n

which yields the desired conclusion in (C.115). This completes the proof of Lemma 7.

B.8 Lemma 8 and its proof

Assume that s; < s9 for the two subsampling scales. Let us define

-1
O (x;Zy, 29, ,Zy,) = (82) > O(x;Ziy, Ziy, -+, Zs,,)  (C.120)

S1 o )
1<iy <ig<-+<igg <s9

and

O (x:Z1, 2, Lyy) = WOV (x: 2y, 2o, - -+, Dy) + WiD(x; 21, Ly, - -+, Z,),  (C.121)

I S2
where w} and w} are determined by the system of linear equations (13)—(14).

Lemma 8. The two-scale DNN estimator D,(s1, $2)(x) admits a U-statistic representation

given by

D(s1, 82)(x) = (”>_ S 20T, L), (C.122)

S2 1< <i .
<iy <ig<-<igg<n

where the kernel function ®*(x;-) is defined in (C.121).
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Proof. From the definition of the two-scale DNN estimator D,,(s1, $2)(x) introduced in
(15), we have

Di(s1, 82)(x) = ! <”>_1 Yoo exZy L)

1§i1<i2<'“<i51§n
n\ !
+w;(82) . Z ' (I)(szllv 7Z’i52)'
1<ty <i2<++<lsq <n
Thus, to establish the U-statistic representation for the two-scale DNN estimator D,,(s1, s2)(x),
it suffices to show that

-1
n
g O(x; 2y, 2y
(31) (X’ 1 Sl)

1§i1<i2<"'<i51 <n

-1
n

= E oV (x:Zy. Zy., -+ . L,
<82) (Xv 1, &2, ) 2)

1Si1<i2<"’<i32§n
n\ s\
- <S ) (32) Z Z o(x; Z’Jl ZZ72 ' ’Zifsl)' (C.123)
2 L 1<ii<ip <o <igy <n 1<j1 <ja<-<jo, <52
Observe that for each given tuple 1 < uy < ug < --- < ug, < n, it will appear a total of
(: 51) times in the summation
2—8
Z Z (I)(X Zln Z’Jz Zi].51).
1< i<+ <isy <n 1K1 <Ja <+ <Jsy <2
Indeed, if (ij,,4,, - , 45, ) = (u1,ug, -+, us,) are fixed, then there exist (" 5811) options for
the remaining s, — s1 places in (iq, s, - - ,4s,). Consequently, it holds that

—1 —1
n 82
Z q) Zl Zz ‘ ; Zz
<32> <81) Z (X 317 jo ! Jsq )

1<y <ig <o <igy <n 171 <Ja <+ <Jsy <82

—1 —1
= (n) (82> (n Sl) Z (b(x;zilv"' ’Zi51)
S9 S1 S2 — 51 1<y <ig <o <ig, <n
N
— @ N Zz y Ty Zl Y
(31> Z (x;Z;, sl)

1§i1<i2<'“<i51 <n

which establishes the desired claim in (C.123). This concludes the proof of Lemma 8.
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B.9 Lemma 9 and its proof

We provide in Lemma 9 below the order of the variance of the kernel function ®* defined

in (C.121) for the two-scale DNN estimator D, (s, s2)(x), which states that the variance

of the kernel function is bounded from above by some positive constant depending upon

the underlying distributions. Denote by Var(®*) = Var[®*(x;Zy, - - - , Zs,)] for simplicity.

Lemma 9. Under the conditions of Theorem 3, there exists some positive constant C

depending upon c1 and cy such that
Var(®*) < C(p?(x) + o7 + o(1))
as 81 — 00 and Sy — 0.

Proof. Since Var(®*) < E[(®*)?], it suffices to bound E[(®*)?]. Tt follows that

E[(@7)%] < 2(wi)’E{[@V (x:Zy, -, Z,)]*}
+ 2(w3)*E[®*(x; Z1, -+, Zss,)]
< 2(wy)’E[®*(x; Z1, -+, Zs,)]

+ 2(w;)2E[@2(X7 Zl7 Ty ZSQ)L
where the last inequality holds since

E{[CD(”(X; Zy, -, Z )]2}

) S92

—2
= ($2> Z E{@(X, Zip"' 7Zis1)¢)(x; Zjl"“ ’stl)}

S1 1<i :
7’Ll<"'<lsl SSQ
1<g1 <+ <Jsy <2

1<y <-<igy <s2
1<j1<<jay <52

= E[0%(x; Zy, -, Zy,)]-

Y S1
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Since ®(x;Zy,- -+, Zs,) = > i1, ¥iGisy and (5, (5, = 0 with probability one when i # j,

we can deduce that

s1 S1

B0 Zi - Z0)) = E[(S06) ] = 303 0t
=1

i=1 j=1
s1

= Z yf@',sl = SlE[y%CLSl]
=1

= 51E[1*(X1)C1s,) + 07251 E[Crs, )

Note that s1E[C1s,] = D i, (isy- Furthermore, it follows from Lemma 13 in Section C.3
that

$1E[1*(X1) s ] — 4 (%)

as s; — o0o. Thus, we have that as s; — 00,

E[®*(x;Zy, -, Zs))] = p?(x) + 07 + o(1). (C.126)
Similarly, we can show that as s, — oo,

E[®*(x;Z1, -+, Zs,)] = p*(x) + 02 + o(1). (C.127)

Consequently, combining (C.125), (C.126), and (C.127) results in
E[(®*)°] < 2[(w))? + (w3)?] [11?(x) + 02 + o(1)]. (C.128)
Since ¢; < s1/s9 < ¢ by assumption, it holds that
(w})* < C and (w})®* <C

for some absolute positive constant C' depending upon ¢; and ¢y, which together with

(C.128) entails the desired upper bound in (C.124). This completes the proof of Lemma 9.
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B.10 Lemma 10 and its proof

Lemma 10 below establishes the order of the variance for the first-order Hajek projection of
the kernel function ®* defined in (C.121). Recall that in the proof of Theorem 3 in Section
B.3, we have defined that for each 1 <17 < s9,

q);k<x;z17”' JZi) :E[(I)*(X7Z17 7Ziazi+17"' 7Z$2>|Z17'” 7Zi]7

G (21, ,z) = P (x321, -, 2;) — BO*(x;Zy, -+, Zy)

i—1
_Z Z 95 (Zay, +*  Zay)s

J=1 1< << <i

and n; = Var(®j(x;Zy)).
Lemma 10. Under the conditions of Theorem 3, it holds that

n o~ syt (C.129)
where ~ denotes the asymptotic order.

Proof. We begin with the lower bound for 7. The proof follows the ideas used in the proof
of Lemma 7 in Section B.7. By definition, it holds that

-1
* « [ 52
DY(x;Zy) = w) (s ) > Ele(Zi, 2|2
! 1<y <<y <s2
+ UJ;E[(I)(X, Zil? Ty Zisz)lzl]
SS9 — S S
= ’LUT 2 IE[(I)(X; Zl7 e 7Z81)] + wik_l [(I)(X; Zla Tt ZSI)‘ZI]

59 S92

+ Wy B[®(x;Zy, - -+, Zs,)| 2]

Since the first term on the right-hand side of the above equality is a constant, we have
Var(®}(x; Z,)) = Var (w;ﬂE[cb(x; Zo, - Zs,)|Z4]
S92

+UBE[R( Za, - i) 2] )
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Denote by A; the event that X; is the nearest neighbor of x among {X;,--- , X, } and
A, the event that X, is the nearest neighbor of x among {Xy,---,X,,}. Let X} be the
nearest point to x among {Xy, -+, X, } and y] the corresponding value of the response.
Similarly, we define X, as the nearest point to x among {Xi,---,X,,} and ¢; as the
corresponding value of the response. Since ¢; 1l X; and E[¢;] = 0 by assumption, we can

write

E[CI)(X; Zh T 7ZSI)|Zl] - ]E[yl:H'Al |Z1] + E[yTlAf

Z1]
= aB[14,|Xy] + Efpu(X1)1a, [Xa] + E[p(X7)Lag [X4]

= alB[L4,[Xy] + E[pu(X7)[Xy].

Similarly, we can show that
El@(x; 21, , Zs,)|Z0] = e B[14,|Xa] + E[u(X1)[ Xy,
Thus, we can obtain

S
Var(®%(x; Z,)) = Var {61 (w{s—lE[ﬂAl IX,] + w;E[1A2|X1])
2

i EQOX)IX] + wiElp(X) X

which along with the assumption of ¢; 1L X; and Ele;] = 0 yields
s
Var(®; (x; 21)) = Var {1 (w} ZE[Ly, [ Xu] + wiE[Ly,[Xi]) |
2
«S1 * * v
+ Var {wi ZE[u(X)[X] + wiElp(X))1X1]}

S2

> Var {61 (w;z—;mm X, ] + w;‘E[]lA2|X1]) }
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Furthermore, we can deduce that
Var {61 (wf?E[]lAl 1X1] + wiE[La, yxg) }
2

= o?E{ (wi ZE[La, [X4) + wiE[Le, X4]) |
2

51\2 s
= o2{ (wiZ) E[E*[L4, 1Xu]] + 20w 2 E[E[ L, X1 E[Lyy X,
2 2

(w3 PE[E2 (14, X)) |

Let us make use of the following basic facts

1
E[E?[1,4,|X4]] =
|: [ Al‘ 1]:| 281_17
1
E|E[1 4 [X{]E[T 4, | Xq]| = —————
B[4, X [ X)) = ———.
1
E[E?[1 4 X ]] = .
|: [ AQ‘ 1]] 282_1
Then it follows that
Var(®7(x;Zy)) > 02{ <w*i>2 + Qw*w*i;
I HL) = Be 182 251 — 1 ! 2<'32$1_|—52_1
1
*\ 2
+ (w3) 252—1}'

By (C.130) and the assumption of ¢; < s1/s9 < ¢2, we can obtain

Var(®i(x;Z,)) > Co?sy !

€52
for some positive constant C' depending upon ¢; and cs.

We next proceed to show the upper bound for Var(®j(x;Z;)). Since

52
(% Z1, L) ~BO (X Z1, L) =Y Y G (L

j=1 1<a1 << <s2

we see that

Var(®*(x: Zy, -+, Zy,) = 3 (5]2) Var(g:(Zy, -+, Zj)).

(C.130)

(C.131)



Then it follows that
Var(®*(x; 2y, -+, Zs,)) 2 55 Var(®1(x; Zn)).
Recall that it has been shown in Lemma 9 in Section B.9 that
Var(®*(x;Zq,- -+ ,Zs,)) < C,

where C' is some positive constant depending upon ¢y, ¢y, and the underlying distributions.

Therefore, we can deduce that
Var(®%(x;Z,)) < Cs; !, (C.132)

which together with (C.131) entails the desired asymptotic order in (C.129). This concludes

the proof of Lemma 10.

D Additional technical details

C.1 Lemma 11 and its proof
We present in Lemma 11 below some useful spherical integration formulas.

Lemma 11. Let S be the unit sphere in R, v some measure constructed specifically on
the unit sphere S, and € = (&) € S¥ an arbitrary point on the unit sphere. Then for

any d x d symmetric matrices A, it holds that

/Sd_1 v(d§) = dVq (D.133)
SdilEV(dé) = 0, (D.134)
L § ALV = u()V (D.135)
Sdil&&-éw(dﬁ) = 0 foranyl<ijk<d, (D.136)
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where Vi = F(%;Q/Q) denotes the volume of the unit ball in RY.
Proof. 1t is easy to see that identities (D.134) and (D.136) hold. This is because for each
of them, the integrand is an odd function of variable €, which entails that the integral is

zero. Identity (D.133) can be derived using the iterated integral

e [ - ([ ¢ ([ )
- /S y(dé).

To prove (D.135), we first represent the integral in (D.135) as a sum of integrals by
expanding the quadratic expression in the integrand

A = S A, / 66 v(de). (D.137)

d—
§a-1 1<i,5<d

For ¢ # 7, we have by symmetry that
| &g v(dg) = /d —&i&; v(dg) = 0. (D.138)
i1 -1
Thus, it holds that
d
EAELIE) =Y Au [ & vlag)
i=1 -t

gd—1

= tr(A) & v(dg). (D.139)

gd-1
When d = 1, ST reduces to the trivial case of two points, 1 and —1. Then we can obtain

that for d =1,

ETAE v(dg) = 2tr(A) = tr(A)V, (D.140)
Sd—1

where the last equality comes from the fact that V; = 2 for d = 1. When d > 2, we now
use the spherical coordinates: & = cos(¢1), & = cos(¢x) HZ Usin(gy) for 1 <k <d—1,
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and &g = Hf;ll sin(¢;), where 0 < ¢g1 < 2m and 0 < ¢; < 7 for 1 <7 < d — 2. Then the

volume element becomes

(Hsmd (o ) IT d¢:.

It follows that

- & v(dg) = /27r /” e /W cos®(¢1) (ﬁ sind_l_i(qﬁi)) ﬁ de;

B f COS (§Z51)Slnd 2 §Z51 de; o d—1— 1

R L[] Hsm (49 Hd@
I cost (o) sint2(61) do

B Jy sin?(¢1) dg; /Sd 1 V(de)

B o cos 2(¢y) sin? (¢, deps
B Jo sin? % (1) do;

By applying the integration by parts twice to the numerator from the above expression,

v, (D.141)

we can obtain

™

/7r cos®(¢y) sin?=2(¢y) depy = sind(qb]) dey.
0

d—1

In addition, using the trigonometric integration formulas, we can show that

Jo sin(¢1) dey _d-1
Jo sin?%(¢1) den d ’

which along with (D.139) and (D.141) leads to

§MAE v(dE) = tr(A)Vy

Sgd—1
for the case of d = 2. Also, it is easy to see that the same formula holds for the case of

d =1 by (D.140). This completes the proof of Lemma 11.
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C.2 Lemma 12 and its proof

Let us define (; s as the indicator function for the event that X; is the 1NN of x among
{Xy, -+ ,Xs}. We provide in Lemma 12 below a list of properties for these indicator

functions ¢ .

Lemma 12. The indicator functions (; s satisfy that
1) For any i # j, we have (; sCjs = 0 with probability one;
2) Ef:1 Ci,s = 1;
3) ElGis) = s7";

4) Eos[Cis) = {1—p(B(x, || X1—x]))}* !, where ;.5 denotes the expectation with respect
to {Zza Zi+17 ce ,Zs}.

The proof of Lemma 12 involves some standard calculations and thus we omit it here
for simplicity. Let us make some remarks on Ey[(; 5] that can be regarded as a function
of X;. The last property in Lemma 12 above shows that Eo[(1 ] vanishes asymptotically

as s tends to infinity, unless X; is equal to x. Moreover, we see that

IEl [EQZS[CLSH = 3_1-

These two facts suggest that Eo.[¢; 5] tends to approximate the Dirac delta function at x,

which will be established formally in Lemma 13 in Section C.3.

C.3 Lemma 13 and its proof

Lemma 13. For any L' function f that is continuous at x, it holds that

lim El[f(Xl)SEQS[CLsH = f(X) (D142)

§—00
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Proof. We will show that the absolute difference |E;[f(X;)sEqo.[C1s]] — f(x)| converges to

zero as s — 00. By property 3) in Lemma 12 in Section C.2, we have
Ey[sEg.[C16]] = 1.

Thus, we can deduce that

B [f (X1)sBa:s[C1s]] = FOO)] = [Ea[(f(X1) = f(x)) sEa:s[Cs]]]
< B[ f(Xq) = f(x)|sBais[Crs])- (D.143)

Let € > 0 be arbitrarily given. By the continuity of function f at point x, there exists a

neighborhood B(x,0) of x with some § > 0 such that

f(X) = fx)] <€

for all X; € B(x,6). We will decompose the above expectation in (D.143) into two parts:

one inside and the other outside of B(x,d) as

Ei[lf(X1) = f(x)[sEa:[Cs]] = Ea[| f(X1) — f(%)]5E2:[C16] Lpx,5)(X1)]
+Ei [ f(X1) = f(x)[sExa.s [Cl,s]ﬂBC(X,é)(Xl)]y (D.144)

where the superscript ¢ stands for set complement in R,

The first term on the right-hand side of (D.144) is bounded by € since

Ei[|f(X1) = f(%)[sEa:s[Cr s Lpx.s) (X1)] < ErlesEas[Crs]1px.s)(X1)]
< Ey[esEas[Crs]] = €. (D.145)

To bound the second term on the right-hand side of (D.144), observe that
B(x,6) C B(x, || X1 —x]|)
when X; € B¢(x,0). Then an application of Lemma 12 gives
En.s[Crs) < (1 - @(B(x,0))"
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when X; € B¢(x,0). Thus, we can deduce that

Exflf(Xq) = f(3)[sEa:s[Cr,s] Lpe(x,6) (X1)]

< E[|f(X1) = f(x)]s(1 = @(B(x,0))) " Lpex.5) (X))

< s(1 = (B(x,0) " Eaf| f(X1) = f(x)]]

< s(1—(B(x0) " (Ifller + f(x)). (D.146)

Finally, we see that the right-hand side of the last equation in (D.146) tends to O as

s — o0o. Therefore, for large enough s,

Ei[|f(X1) = f(x)[sEa:s[C1 s L Be(x,0) (X))

can be bounded from above by 2¢. Since the choice of ¢ > 0 is arbitrary, combining such
upper bound, (D.143), (D.144), and (D.145) yields the desired limit in (D.142) as s — oc.

This concludes the proof of Lemma 13.
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p Method True Mean Est. Mean (SE)  Bias ~ MSE Est. Variance Bias (R) MSE (R)

Simulation setting 1
10 TDNN -1.12500  -1.63763 (0.01) -0.51263 0.36274  0.09192 - -
10  CF -1.12500 0.06665 (0.00078) 1.19165 1.42063  0.00078 - -

Simulation setting 2
10 TDNN  1.96166 1.44716 (0.00989) -0.51449 0.36240  0.09372 0.06597  0.29096
10 CF 1.96166  0.19061 (0.00024) -1.77105 3.13668  0.00007  -0.90673 1.05201
20 TDNN  1.96166 1.44355 (0.00977) -0.51811 0.36378  0.09270 0.04766 0.29497
20 CF 1.96166  0.18936 (2¢-04) -1.77230 3.14110  0.00006  -0.87784 1.00680
30 TDNN  1.96166 1.44243 (0.00955) -0.51923 0.36070  0.09403 0.00592 0.27087
30 CF 1.96166  0.18877 (2e-04) -1.77289 3.14316  0.00005  -0.89306 1.03192
40 TDNN  1.96166  1.4347 (0.00989) -0.52696 0.37550  0.09592  -0.01069 0.27223
40 CF 1.96166  0.18679 (0.00017) -1.77487 3.15021  0.00005  -0.90926 1.04946
50 TDNN  1.96166 1.41684 (0.00987) -0.54482 0.39408  0.09824 0.02465 0.28106
50 CF 1.96166  0.1856 (0.00017) -1.77606 3.15442  0.00005  -0.91459 1.05752

Simulation setting 3
20 TDNN  0.40000 0.47782 (0.00781) 0.07782 0.06706  0.06077  -1.08856 1.42839
20 CF 0.40000 0.09126 (0.00052) -0.30874 0.09559  0.00048  -1.47286 2.33523

Table 2:  Comparison of TDNN and CF in the three simulation settings in Section A.2.
The true mean corresponds to the data generating process evaluated at the fixed test
point. The standard error of the estimated mean is included in the parentheses, while the
estimated variance corresponds to the variance estimated from the fixed test point. The

columns with “(R)” correspond to the bias and MSE for the random test point.
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