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Abstract

Understanding heterogeneous treatment effects (HTE) plays a key role in many
contemporary causal inference applications arising from different areas. Most of the
existing works have focused on the estimation of HTE. Yet the statistical inference
aspect of the problem remains relatively undeveloped. In this paper we investigate
the inference of HTE in a nonparametric setting for randomized experiments. We
formulate the problem as two separate nonparametric mean regressions, one for con-
trol group and the other for treatment group. For each mean regression, we extend
the tool of k-nearest neighbors to the framework of distributional nearest neighbors
(DNN). We show that the DNN estimator has two equivalent representations of L-
statistic and U-statistic, where the former endorses easy and fast implementation,
and the latter enables us to obtain higher-order asymptotic expansion of bias and es-
tablish the asymptotic normality. To reduce the finite sample bias of DNN, we further
suggest a new method of two-scale distributional nearest neighbors (TDNN). Under
some regularity conditions, we show through delicate higher-order asymptotic ex-
pansions that the TDNN heterogeneous treatment effect estimator is asymptotically
normal. We further establish the consistency of the variance estimates of the TDNN
estimator with both jackknife and bootstrap, enabling user-friendly inference tools for
heterogeneous treatment effects. The theoretical results and appealing finite-sample
performance of the suggested TDNN method are illustrated with several simulation
examples and a children’s birth weight application.
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1 Introduction

The problems of treatment effect estimation and inference in causal inference have broad

applications in a wide variety of scientific areas, ranging from economics to medical studies.

Examples include evaluating whether food stamps increases adult obesity, deciding whether

to launch a job training program, and finding out whether a vaccine is truly effective. Under

the potential outcomes framework (Rubin, 1974; Imbens and Rubin, 2015), the treatment

effect usually refers to the average causal effect of a binary treatment indicator variable on

some outcome of interests. Beyond regressions, the potential outcomes framework perceives

outcomes as in parallel universes, one with the event of treatment happened and the other

without. The interest is often the average of the difference between the two conceptual

potential outcomes, the average treatment effect (ATE). It is seen that for each unit,

only one potential outcome can be observed. Indeed, a common challenge in many causal

inference problems is caused by the missingness of potential outcomes. There is a long

line of literature on ATE estimation. See, for example, Belloni et al. (2014); Chernozhukov

et al. (2015); Belloni et al. (2017); Athey et al. (2017); Mullainathan and Spiess (2017);

Fan et al. (2016), among many others.

Different from ATE, heterogeneous treatment effect (HTE) focuses on the unit level

effect by considering the treatment effect conditional on pre-treatment covariates. The

estimation and inference of HTE have received increasing attention in recent years because

of their ability to provide information that ATE cannot provide. For example, it is often

possible that a drug is less/more effective for certain subgroups of patients than the general,

average population. In addition, if HTE can be well estimated for each individual unit, then
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ATE can be easily estimated by aggregating over all individuals in the whole population.

See Crump et al. (2008) for additional examples for the importance of HTE. In fact, the

unit level effect measured by HTE can be invaluable information in a wide range of modern

big data applications including economics, business, and healthcare. However, despite its

importance, related research about HTE is still relatively limited.

There has been some recent efforts to use machine learning methods to estimate and

infer HTE. Crump et al. (2008) proposed two nonparametric tests, one aiming at testing

whether the treatment has zero effect for all subpopulations identified by covariates and

the second one aiming at testing the existence of heterogeneity in treatment effects by

covairates. Their tests were constructed by using two separate sieve estimates of nonpara-

metric regression functions for control group and treatment group, respectively. Lee (2009)

proposed a smoothed nonparametric test for assessing heterogeneity of treatment effect

when covariates are continuous and the outcome variable is randomly censored.

Besides testing, there are also recent works on HTE estimation. Wager and Athey

(2018) proposed causal forests whose estimate is shown to be pointwise consistent for the

true treatment effect and asymptotically Gaussian. It was further proposed in the same

paper to construct the asymptotic confidence intervals using the derived asymptotic distri-

bution with variance estimated by the infinitesimal jackknife (Wager et al., 2014). Shalit

et al. (2017) proposed to estimate HTE jointly using a neural network-based algorithm

with loss function motivated from a generalization error bound established in the paper.

Another popular line of work is to formulate HTE estimation as nonparametric regressions.

Under the unconfoundedness and overlap assumptions, the problem of HTE estimation can

be formulated as two separate nonparametric mean regression problems, one for the control

group, and the other for the treatment group. Then the treatment effect is estimated as

the difference of these two estimated mean functions. Examples along this line include

Bayesian causal forests (Hahn et al. (2020)), causal boosting and causal MARS (Powers
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et al. (2017)), Gaussian process mixtures (Zaidi and Mukherjee (2018)), and causal KNN

(Hitsch and Misra (2018)). Among them, causal KNN is most closely related to our ap-

proach. This method estimates the treatment effect function by taking the difference of

two separate k-nearest neighbor (KNN) regression functions for the treatment group and

control group. The tuning parameter of neighborhood size k was chosen by minimizing

the squared difference between the estimated treatment effect function and the propensity

score weighted response. However, the work does not provide theoretical justification for

the causal KNN estimator

In this paper, we propose a new method for HTE estimation in completely randomized

experiments and provide formal statistical estimation and inference guarantees. We adopt

the previously discussed approach of fitting two separate nonparametric mean regressions

and then combine to form an HTE estimate. For each mean regression, we revisit and en-

hance the classical tool of KNN regression with a simple yet powerful algorithm, extending

it to the distributional setting. Specifically, we estimate the mean regression function as

the average of all 1-NN estimators constructed from subsampling the data of size s without

replacement. Here, it is important for s to diverge with total sample size n. We show that

this subsampling and aggregating approach is equivalent to assigning monotonic weights

to the nearest neighbors in a distributional fashion, motivating the name of distributional

nearest neighbors (DNN). We show that DNN estimator has a representation of L-statistic

with weights depending only on the rank of the observations. Although the L-statistic

representation endorses easy and fast implementation of DNN, it does not help with es-

tablishing the sampling properties. For theoretical analysis, we further demonstrate that

DNN estimator has an equivalent representation of U-statistic with a kernel function of

diverging dimension equal to the subsampling scale s. Despite the nice U-statistic repre-

sentation, classical theory does not apply to DNN for deriving its asymptotic properties,

because of the diverging dimensionality of the kernel function. To overcome this technical
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challenge, we exploit Hoeffding’s canonical decomposition introduced in Hoeffding (1948),

and carefully collect and analyze the higher-order terms in our decomposition. We provide

higher-order asymptotic expansion for the bias of DNN in estimating the mean regression

function, and show that DNN is asymptotically normal as s and n diverge to infinity. Here,

d is the dimension of the pre-treatment covariate in constructing DNN estimator and is

considered to be fixed.

A nice feature of DNN estimator is that its first-order bias can be eliminated by com-

bining two DNN estimators with different subsampling scales, resulting in two-scale DNN.

Utilizing the U-statistic representation of two-scale DNN with a new and carefully con-

structed diverging dimensional kernel, we further establish the asymptotic normality of the

two-scale DNN estimator. These results naturally lead to the asymptotic normality of the

resulting HTE estimator.

To further provide statistical inferential guarantees such as valid confidence intervals, we

need to estimate the asymptotic variance of the two-scale DNN estimator, which does not

admit simple analytic form that is practically useful. We explore two methods, jackknife

and bootstrap, for such a purpose. We formally demonstrate that both methods yield

consistent estimates of the variance. Our proofs are more intricate than the standard

technique in the literature because of the diverging subsampling scales. The key is to write

the jackknife estimator as a weighted summation of a sequence of U-statistics and carefully

analyze the higher-order terms. Our proof for the bootstrap estimator was built on the

results we derived for jackknife estimator. Although both methods yield consistent variance

estimates, the bootstrap estimator is much more computationally efficient.

We then demonstrate the superior performance of our method using Monte Carlo sim-

ulations and a real data analysis on the impact of smoking on children’s birth weights.

The two scale DNN estimator has two parameters to tune – the subsampling scales. We

propose to prefix the ratio of the two subsampling scales at some level that is adaptive to
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dimension d so that the variance of two-scale DNN can be better controlled. An additional

advantage of such strategy is that it leaves us only one subsampling scale s to tune. Our

simulation results show that as s increases, the mean squared estimation error (MSE) of

two-scale DNN estimator follows a smooth U-shaped curve. This suggests a simple tuning

strategy for two scale DNN which starts with some small value of s, and increases its value

until the MSE starts increasing. This simple tuning yields attractive performance in our

numerical studies.

An important contribution of our work is that we provide an easy-to-implement method

with simple tuning for HTE estimation and inference with theoretical guarantee. As dis-

cussed above, most existing works focus only on the estimation and are not able to provide

confidence intervals. A noticeable exception is the causal forests in Wager and Athey

(2018). Compared to the causal forests, the confidence intervals provided by our method

transit more smoothly as the value of pre-treatment covariates changes, as demonstrated

in our numerical study. Consequently, the confidence intervals provided by our method

are easier to interpret. In addition, we observe in our simulation studies that the variance

estimate in causal forest can be crude in some applications, resulting in low coverage of

confidence intervals.

Our paper makes a standalone contribution to the nonparametric statistics literature,

going beyond applications to HTE estimation. Two-scale DNN belongs to the class of

weighted nearest neighbors methods. Some weights in two-scale DNN take negative val-

ues. The advantage of using negative weights in weighted nearest neighbors classifiers was

formally investigated in Samworth (2012). For classical and other recent results on nearest

neighbors related methods and theory, see, for example, Mack (1980); Györfi et al. (2002);

Biau and Devroye (2015); Berrett et al. (2019). Despite the similarity, two-scale DNN has

at least two advantages compared to these existing literature. First, we provide an explicit

and easy-to-implement way to choose weights. Although sufficient conditions on weights for
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ensuring the asymptotic normality for general weighted nearest neighbors estimator have

been developed (Biau and Devroye, 2015), it is usually unclear how to practically choose

such weights. Second, even if weights can be successfully constructed, it is still unclear how

to estimate such estimator’s variance for confidence interval construction.

The rest of the paper is organized as follows. Section 2 introduces the model setting for

heterogeneous treatment effect estimation and reviews the approach of weighted nearest

neighbors for nonparametric regression. We present the two-scale distributional nearest

neighbors (TDNN) procedure and its sampling properties in Section 3. Section 4 inves-

tigates the variance estimation for the TDNN estimator. We provide several simulation

examples and a children’s birth weight application justifying our theoretical results and

illustrating the finite-sample performance of the suggested TDNN method in Sections 5

and 6, respectively. Section 7 discusses some implications and extensions of our work. All

the proofs and technical details are provided in the Supplementary Material.

2 Heterogeneous treatment effect estimation

2.1 Model setting

Consider the example of new drug and vaccine developments. The clinical trials for these

studies involve carefully designed randomized experiments, in which each individual will

be assigned randomly to either the treatment group denoted as T = 1 or the control

group denoted as T = 0. Using the potential outcomes framework (Rubin, 1974), let

YT=1 ∈ R and YT=0 ∈ R represent the potential outcomes for the treatment and control

groups, respectively. Then the observed scalar response can be written as Y = TYT=1 +

(1 − T )YT=0. Let X ∈ Rd be the random feature vector for an individual with d some

fixed positive integer representing the feature dimension. We consider the randomized
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experiment setting which amounts to the choice of constant treatment propensity P(T =

1|X, YT=1, YT=0) = 1/2. Here, 1/2 can be replaced with any other constant in (0, 1). The

evaluation of the effectiveness for a newly developed drug or vaccine often boils down to

the average treatment effect (ATE) of treatment T on response Y defined as τ = E [YT=1−

YT=0]. Given the scale of the costs associated with the medical developments, a practically

important question even with the presence of a less significant treatment effect τ on the

entire population characterized by the distribution of X is whether the treatment effect

could be significant on certain individuals in the population.

The above illustrative example demonstrates that characterizing the treatment effects

at the individual level with precision can have important real applications. Given a fixed

feature vector x ∈ Rd, the heterogeneous treatment effect (HTE) of treatment T on response

Y is defined as

τ(x) = E [YT=1 − YT=0|X = x], (1)

where the expectation is taken with respect to the randomness associated with the subgroup

of all individuals with specific feature vector x. Such a subgroup can be viewed as a group

of identical twins who differ only by which treatment they received. We see that the

fundamental challenge of causal inference applications is the missing data problem, that

is, the latency of the above ideal subgroup. It can be infeasible or even unethical to

assign certain individuals to the treatment or control group, not to mention that having

an identical twin can become a luxury in practice.

Since the setting of randomized experiments entails the unconfoundedness given by

(YT=0, YT=1) ⊥⊥ T | X, (2)

our goal of heterogeneous treatment effect estimation and inference for (1) reduces to

the problem of nonparametric regression applied separately to the treatment and control
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groups, giving rise to

τ(x) = E[YT=1|X = x]− E[YT=0|X = x] = E[Y |X = x, T = 1]− E[Y |X = x, T = 0]. (3)

Specifically, let us consider the following nonparametric regression model for the treat-

ment group YT=1 = µ(X) + ε, where µ(X) = E[YT=1|X] denotes the true mean regression

function and the model error ε with zero mean and finite variance is independent of the

d-dimensional random feature vector X. Similarly, we can introduce the corresponding

nonparametric regression model for the control group; see Section 3.3 for more detailed

technical descriptions.

To simplify the technical presentation, hereafter, unless otherwise specified, we will

slightly abuse the notation by using Y to denote the generic response variable and focus

our attention on the following nonparametric regression model when introducing our main

ideas and major theoretical developments

Y = µ(X) + ε. (4)

We assume that there are independent and identically distributed (i.i.d.) observations

(Xi, Yi), i = 1, · · · , n observed from model (4). Our method and theory will be separately

applied to the control and treatment groups and then combined together by using (3) to

estimate the heterogeneous treatment effect.

2.2 Weighted nearest neighbors

Among the nonparametric regression methods, the k-nearest neighbors (KNN) procedure

and its generalizations have received great popularity by many researchers and practitioners

due to its simplicity of implementation and nice theoretical properties. For an overview

of nearest neighbors methods, see, e.g., Biau and Devroye (2015). Given a fixed vector

x ∈ Rd, we can calculate the Euclidean distance from each observed feature vector Xi in
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the sample to the target x and then reorder the sample with such distances. This results

in a reordered sample {(X(1), Y(1)), · · · , (X(n), Y(n))} with

‖X(1) − x‖ ≤ ‖X(2) − x‖ ≤ · · · ≤ ‖X(n) − x‖, (5)

where ‖·‖ denotes the Euclidean norm of a given vector and the ties are broken by assigning

smallest rank to the observation with smallest nature index. Then the weighted nearest

neighbors (WNN) estimate (Mack, 1980) is defined as

µ̂WNN(x) =
n∑
i=1

wniY(i), (6)

where (wn1, wn2, · · · , wnn) is some deterministic weight vector with all the components

summing up to one. In practice, one can also use the non-Euclidean distances given by

certain manifold structures.

The theoretical properties of the WNN estimator (6) have been studied extensively

in Biau and Devroye (2015). In particular, it has been proved therein that, with an ap-

propriately selected weight vector (wn1, · · · , wnn), the weighted nearest neighbors estimate

µ̂WNN(x) can be consistent with the rate of convergence oP (n−2/(d+4)) and can have asymp-

totic normality. The existing results in the literature provide only some general sufficient

conditions on the weight vector (wn1, · · · , wnn) in order to deliver the theoretical properties.

However, identifying a practical weight vector with provably appealing properties can be

highly nontrivial. Furthermore, the asymptotic variance of the general weighted nearest

neighbors estimator µ̂WNN(x) can admit a rather complicated form and depend upon some

unknown population quantities that are very difficult to estimate in practice. To address

these difficulties, we will introduce a new framework of the two-scale distributional nearest

neighbors estimate for heterogeneous treatment effect estimation and inference.
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3 Two-scale distributional nearest neighbors

3.1 Distributional nearest neighbors

The classical KNN method for nonparametric regression assigns equal weights 1/k to the

k nearest neighbors of a fixed vector x ∈ Rd and zero weights to all remaining observations

in the sample, resulting in the following specific form of estimator in (6)

µ̂KNN(x) =
1

k

k∑
i=1

Y(i). (7)

In particular, the choice of k = 1 in (7) gives rise to the 1-nearest neighbor (1NN) estimator

Y(1), which relies on the single closest observation for nonparametric estimation.

Our distributional nearest neighbors (DNN) procedure builds upon the ideas of both

subsampling and 1NN. Denote by s with 1 ≤ s ≤ n the subsampling scale. Let {i1, · · · , is}

with i1 < i2 < · · · < is be a random subset of the full sample {1, · · · , n}. Hereafter, we use

Zi as a shorthand notation for (Xi, Yi) with 1 ≤ i ≤ n. Let us define Φ(x; Zi1 ,Zi2 , · · · ,Zis)

as the 1NN estimator

Φ(x; Zi1 ,Zi2 , · · · ,Zis) = Y(1)(Zi1 ,Zi2 , · · · ,Zis) (8)

for estimating the true value µ(x) of the underlying mean function at the fixed point x based

on the given subsample {Zi1 , · · · ,Zis}. Then the single-scale DNN estimator Dn(s)(x) with

subsampling scale s for estimating µ(x) is formally defined as a U-statistic

Dn(s)(x) =

(
n

s

)−1 ∑
1≤i1<i2<···<is≤n

Φ(x; Zi1 ,Zi2 , · · · ,Zis), (9)

where the kernel function Φ(x; ·) is given in (8).

The above U-statistic representation averages over all 1NN estimators given by all

possible subsamples of size s. For the case of s = 1, the DNN estimator reduces to the
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simple sample average n−1
∑n

i=1 Yi, which admits reduced variance but inflated bias. In

contrast, for the case of s = n, the DNN estimator reduces to the simple 1NN estimator

Y(1) based on the full sample of size n, which admits lowest bias but inflated variance.

See, e.g., Hoeffding (1948); Hájek (1968); Korolyuk and Borovskich (1994) for the classical

asymptotic theory of the U-statistics. Since the computation of general U-statistics becomes

more challenging when sample size n grows, we show in the lemma below that a different

representation of the DNN estimator can be exploited for easy computation.

Lemma 1. In addition to the U-statistic representation given in (9), the single-scale DNN

estimator Dn(s)(x) also admits an equivalent L-statistic (Serfling, 1980) representation as

Dn(s)(x) =

(
n

s

)−1 n−s+1∑
i=1

(
n− i
s− 1

)
Y(i), (10)

where Y(i)’s are given by the full sample of size n.

The above L-statistic representation relieves the computational burden greatly from the

U-statistic representation. Let us gain some insights into the distributional weights unveiled

in (10). It is easy to see that there are a total of
(
n
s

)
subsamples of size s from the full sample

of size n. Out of the
(
n
s

)
options, (X(1), Y(1)) will appear in

(
n−1
s−1

)
of them, and Y(1) will

become the 1NN estimator from this particular subsample whenever (X(1), Y(1)) is included,

giving rise to the specific weight of
(
n−1
s−1

)
/
(
n
s

)
for Y(1). We can obtain similar intuitions on

the remaining weights. Since the weights in (10) are assigned in a distributional fashion

on the entire sample, we name the new procedure introduced in (9) as the distributional

nearest neighbors.

Such a distributional view differs from the conventional idea of seeking weights for the

nearest neighbors with a relatively small neighborhood size. One interesting feature is

that the distribution of weights used in the single-scale DNN is characterized by only two

parameters of the full sample size n and the subsampling scale s. As shown later in Section
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3.3, our new higher-order asymptotic expansion for bias reveals that the distributional view

yields explicit constant for the leading bias term that is free of the subsampling scale s,

which opens the door for removing the first-order asymptotic bias of DNN.

3.2 Two-scale DNN

We are now ready to suggest a natural extension of the single-scale DNN procedure in-

troduced in Section 3.1. The major motivation for this extension comes from the pre-

cise higher-order asymptotic bias expansion for the single-scale DNN estimator Dn(s)(x)

unveiled in Theorem 1 to be presented in Section 3.3. In particular, we see that the

explicit constant for the leading order term in the asymptotic expansion for the bias

B(s) = EDn(s)(x) − µ(x) is independent of the subsampling scale s. Such an appeal-

ing property gives us an effective way to remove completely the first-order asymptotic bias

in the order of s−2/d, making only the second-order asymptotic bias dominating at the

finite-sample level.

To achieve the aforementioned goal, let us consider a pair of single-scale DNN estimators

Dn(s1)(x) and Dn(s2)(x) with different subsampling scales 1 ≤ s1, s2 ≤ n as constructed

in (9). Without loss of generality, we assume that s1 < s2. Then Theorem 1 ensures that

EDn(s1)(x) = µ(x) + c s
−2/d
1 +R(s1), (11)

EDn(s2)(x) = µ(x) + c s
−2/d
2 +R(s2), (12)

where c is some positive constant depending on the underlying distributions, but not on

the subsampling scale parameter s1 or s2, and the higher-order remainder R(s) = O(s−3)

for d = 1 and R(s) = O(s−4/d) for d ≥ 2 .

Although the specific constant c in the asymptotic expansions (11) and (12) is unknown

to us, we can proceed with solving the following system of linear equations with respect to
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w1 and w2

w1 + w2 = 1, w1 s
−2/d
1 + w2 s

−2/d
2 = 0,

whose solutions are given by the specific weights

w∗1 = w∗1(s1, s2) = 1/(1− (s1/s2)−2/d) (13)

and w∗2 = w∗2(s1, s2) = −(s1/s2)−2/d/(1− (s1/s2)−2/d). (14)

Then our two-scale distributional nearest neighbors (TDNN) estimator Dn(s1, s2)(x) is

formally defined as

Dn(s1, s2)(x) = w∗1Dn(s1)(x) + w∗2Dn(s2)(x). (15)

We will impose the restriction that s1/s2 is bounded away from both 0 and 1 by some

positive constant. This can avoid the undesirable cases of weights being too close to 0 or

having diverging magnitudes as s diverges. In the implementation, we can also choose s1/s2

adaptively to dimensionality d so that the weights w∗1 and w∗2 are free from the impact of

dimensionality.

Since the specific weights w∗1 and w∗2 depend only on subsampling scales s1 and s2, we

see from the asymptotic expansions (11) and (12) that

EDn(s1, s2)(x) = µ(x) +R∗(s1), (16)

where R∗(s1) = O(s
−4/d
1 ) for d ≥ 2 and R∗(s1) = O(s−3

1 ) for d = 1, and we assume that s1

and s2 are of the same order for simplicity. The removal of the first-order asymptotic bias

as shown in (16) makes the TDNN estimator enjoy appealing finite-sample performance

with reduced bias and controlled variance, as demonstrated with the extensive simulation

examples in Section 5.

It is worth mentioning that in view of (13) and (14), weight w∗1 is negative given s1 < s2.

This implies that the two-scale DNN can assign negative weights to some distant nearest
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neighbors. In fact, the advantage of using negative weights in the KNN classifier for the

classification setting was discovered earlier in Samworth (2012). See also the discussions in

Biau and Devroye (2015) for similar advantages in the regression setting.

3.3 Asymptotic distributions of two-scale DNN

We now turn to deriving the higher-order asymptotic expansions of the DNN and TDNN

estimators and their precise asymptotic distributions. To this end, we need to impose some

necessary assumptions to facilitate our technical analysis.

Assume that the distribution of X has a density function f(·) with respect to the

Lebesgue measure λ on the Euclidean space Rd. Let x ∈ supp(X) be a fixed feature vector.

Condition 1. There exists some constant α > 0 such that P(‖X − x‖ ≥ R) ≤ e−αR for

each R > 0.

Condition 2. The density f(·) is bounded away from 0 and∞, f(·) and µ(·) are four-times

continuously differentiable with bounded second-order, third-order, and fourth-order partial

derivatives in a neighborhood of x, and EY 2 < ∞. Moreover, the model error ε has zero

mean and finite variance σ2
ε > 0.

Condition 3. We have an i.i.d. sample {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} of size n from

model (4).

Conditions 1–3 are some basic assumptions that have been employed commonly for

nonparametric regression. We begin with presenting an asymptotic expansion of the bias

of single-scale DNN estimator in the theorem below.

Theorem 1. Assume that Conditions 1–3 hold and s → ∞. Then for any fixed x ∈

supp(X) ⊂ Rd, we have

EDn(s)(x) = µ(x) +B(s) (17)
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with

B(s) = Γ(2/d+ 1)
f(x) tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d V
2/d
d f(x)1+2/d

s−2/d +R(s), (18)

R(s) =

A1(d, f,x)s−3 + o(s−3), d = 1,

A2(d, f,x)s−4/d + o(s−4/d), d ≥ 2,
(19)

where Vd = πd/2

Γ(1+d/2)
, Γ(·) is the gamma function, f ′(·) and µ′(·) denote the first-order

gradients of f(·) and µ(·), respectively, f ′′(·) and µ′′(·) represent the d×d Hessian matrices

of f(·) and µ(·), respectively, tr(·) stands for the trace of a given matrix, and A1(d, f,x)

and A2(d, f,x) are some positive bounded quantities that depend only on d, the underlying

density function f(·) of X, and the regression function µ(·).

Theorem 1 above shows that the first-order asymptotic bias of the single-scale DNN

estimator Dn(s)(x) is of order s−2/d, and the second-order asymptotic bias is of order s−4/d

for d ≥ 2 (s−3 for d = 1). The rate of convergence for the bias term becomes slower as the

feature dimensionality d grows, which is common for nonparametric estimators. It would

be beneficial to remove the first-order asymptotic bias completely to improve the finite-

sample performance. Such a goal can be achieved thanks to the interesting feature revealed

in Theorem 1 that the explicit constants for the first two leading terms in the higher-order

asymptotic expansion do not depend on the subsampling scale parameter s. The technical

analysis of Theorem 1 exploits the idea of projecting the mean function µ(X) = E(Y |X)

onto the positive half line R+ = [0,∞) given by ‖X− x‖. In particular, the assumption of

s→∞ plays an important role in establishing the higher-order asymptotic expansion. We

further characterize the asymptotic distribution of the single-scale DNN estimator in the

following theorem.

Theorem 2. Assume that Conditions 1–3 hold, s→∞, and s = o(n). Then for any fixed
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x ∈ supp(X) ⊂ Rd, it holds that for some positive sequence σn of order (s/n)1/2,

Dn(s)(x)− µ(x)−B(s)

σn

D−→ N(0, 1) (20)

as n→∞, where B(s) is given in (18).

Theorem 2 establishes the asymptotic normality of the single-scale DNN estimator

Dn(s)(x) with subsampling scale s. In particular, it requires the assumptions of s → ∞

and s = o(n), where the former leads to reduced bias and the latter leads to controlled

variance asymptotically. The technical analysis of Theorem 2 exploits Hoeffding’s canonical

decomposition (Hoeffding, 1948) which is an extension of the projection idea. Despite the U-

statistic representation of Dn(s)(x) given in (9), the classical U-statistic asymptotic theory

(e.g., Serfling (1980); Korolyuk and Borovskich (1994)) is not readily applicable because

of the typical assumption of fixed subsampling scale s. In contrast, our new asymptotic

analysis requires the opposite assumption of diverging subsampling scale s. As a result, we

have to conduct a more delicate and challenging technical analysis to derive the asymptotic

normality. It is worth mentioning that when the subsampling scale s is chosen in the order

of n
d

d+4 , the optimal rate of convergence in terms of the mean-squared error can be obtained.

The exact form of the asymptotic variance σ2
n can take a complicated form that depends

upon the underlying distributions and fixed vector x, and is left for future study.

We proceed with characterizing the asymptotic distribution for the two-scale DNN

estimator introduced in (15).

Theorem 3. Assume that Conditions 1–3 hold, s2 →∞, s2 = o(n), and there exist some

constants 0 < c1 < c2 < 1 such that c1 ≤ s1/s2 ≤ c2. Then for any fixed x ∈ supp(X) ⊂ Rd,

it holds that for some positive sequence σn of oder (s2/n)1/2,

Dn(s1, s2)(x)− µ(x)− Λ

σn

D−→ N(0, 1) (21)

as n→∞, where Λ = O(s
−4/d
1 + s

−4/d
2 ) for d ≥ 2 and Λ = O(s−3

1 + s−3
2 ) for d = 1.
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We note that the positive sequence σn in Theorem 3 is different from the σn in Theorem

2, with the former representing the asymptotic standard deviation of TDNN estimator and

the latter representing the asymptotic standard deviation of single-scale DNN estimator.

We used the same generic notation for the convenience of presentation. Since the explicit

form of the asymptotic standard deviation will not be used, this should not cause any

confusion. Theorem 3 above establishes the asymptotic normality for the two-scale DNN

estimator Dn(s1, s2)(x) with a pair of subsampling scales s1 and s2. Similarly, it requires

that both subsampling scales s1 and s2 are diverging and of a smaller order of the full sample

size n asymptotically in order to balance between the bias and variance. In particular,

the asymptotic bias of the two-scale DNN estimator is reduced to the second-order term

O(s
−4/d
1 + s

−4/d
2 ) for d ≥ 2 and O(s−3

1 + s−3
2 ) for d = 1. The optimal choice of s2 in terms of

achieving the best bias and variance tradeoff is s2 = O(nd/(8+d)) for d ≥ 2 and s2 = O(n1/7)

for d = 1, yielding the corresponding consistency rate of n−4/(8+d) for d ≥ 2 and n−3/7 for

d = 1. Note that this rate is faster than the optimal convergence rate n−2/(d+4) established

in Theorem 14.4 of Biau and Devroye (2015) for weighted nearest neighbors estimate with

nonnegative weights in regression setting. The main reason for improved convergence rate

is that TDNN allows for negative weights.

We would also like to point out that the conclusion in Theorem 3 is not a simple conse-

quence of that in Theorem 2, since the marginal asymptotic normalities do not necessarily

entail the joint asymptotic normality. To deal with such a technical difficulty, we have to

analyze the two single-scale DNN estimators involved in the definition of TDNN estimator

in a joint fashion. A key ingredient of our technical analysis of Theorem 3 is to show

that the two-scale DNN estimator also admits a U-statistic representation, which enables

us to exploit Hoeffding’s decomposition and calculate the variances of the kernel and the

associated first-order Hájek projection.

Now we are ready to apply two-scale DNN to hetergeneous treatment effect estimation
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discussed in Section 2.1. We will first introduce some necessary notation. Denote by n1 and

n0 the sizes of the i.i.d. samples from the treatment and control groups, respectively. The

assumption of completely randomized experiment entails that n0/n1
p−→ 1 as n→∞ and

the two samples for the treatment and control groups are independent of each other. Let

x ∈ supp(X1) ∩ supp(X0) be a fixed vector, where supp(X1) and supp(X0) represent the

supports of the corresponding feature vector distributions for the treatment and control

groups, respectively. Similarly, denote by µ1(·) and µ0(·) the mean regression functions

corresponding to responses YT=1 and YT=0, respectively, and ε1 and ε0 the model errors,

with the subscript indicating the treatment and control groups, respectively. Then we can

construct two individual two-scale DNN estimators D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x) and D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x)

separately based on the treatment and control samples with pairs of subsampling scales

(s
(1)
1 , s

(1)
2 ) and (s

(0)
1 , s

(0)
2 ), respectively.

In view of (3), the population version of the heterogeneous treatment effect at the fixed

vector x is given by

τ(x) = µ1(x)− µ0(x). (22)

We estimate τ(x) using the following TDNN heterogeneous treatment effect estimator

τ̂(x) = D(1)
n1

(s
(1)
1 , s

(1)
2 )(x)−D(0)

n0
(s

(0)
1 , s

(0)
2 )(x). (23)

The theorem below characterizes the asymptotic distribution of τ̂(x).

Theorem 4. Assume that Conditions 1–3 with the subscripts attached hold for both treat-

ment and control groups. Further assume that s
(i)
2 → ∞, s

(i)
2 = o(n), and there exist

some constants 0 < c1 < c2 < 1 such that c1 ≤ s
(i)
1 /s

(i)
2 ≤ c2 for i = 0, 1. Then for any

fixed x ∈ supp(X1) ∩ supp(X0) ⊂ Rd, it holds that for some positive sequence σn of order

{(s(1)
2 + s

(0)
2 )/n}1/2,

[D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)−D(0)

n0 (s
(0)
1 , s

(0)
2 )(x)]− τ(x)− Λ

σn

D−→ N(0, 1) (24)
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as n → ∞, where Λ = O{(s(1)
1 )−4/d + (s

(1)
2 )−4/d + (s

(0)
1 )−4/d + (s

(0)
2 )−4/d} for d ≥ 2 and

Λ = O{(s(1)
1 )−3 + (s

(1)
2 )−3 + (s

(0)
1 )−3 + (s

(0)
2 )−3} for d = 1.

The same as explained before, σn in Theorem 4 is a generic notation representing the

asymptotic standard deviation of the TDNN heterogeneous treatment effect estimator. We

see that the subsampling scales need to satisfy that s
(i)
2 → ∞ and s

(i)
2 = o(n) for i = 0, 1.

The asymptotic bias of estimator τ̂(x) is only of the second order O{(s(1)
1 )−4/d+(s

(1)
2 )−4/d+

(s
(0)
1 )−4/d+(s

(0)
2 )−4/d} for d ≥ 2 and O{(s(1)

1 )−3 +(s
(1)
2 )−3 +(s

(0)
1 )−3 +(s

(0)
2 )−3} for d = 1. The

asymptotic variance identified in Theorems 3 and 4 generally depends on the underlying

distributions and the fixed vector x, whose complicated form calls for a need to develop

practical approaches to the estimation of the asymptotic variance for the TDNN estimator.

4 Variance estimate for two-scale DNN estimator

4.1 Jackknife estimator

Let us gain some insights into the problem of variance estimation for the TDNN estimator

before presenting the major theoretical results. We have shown in Lemma 8 in Section

B.8 of Supplementary Material that the two-scale DNN estimator Dn(s1, s2)(x) is in fact

a U-statistic. It is well known that the jackknife and bootstrap approaches are employed

commonly to estimate the variance of a U-statistic. By the independence assumption of the

treatment and control samples in the randomized experiment setting, the variance of the

TDNN heterogeneous treatment effect estimator is naturally the sum of their individual

variances. Thus, we only need to estimate the variance of the TDNN estimator constructed

based on an individual i.i.d. sample {Z1, · · · ,Zn} corresponding to either control group or

treatment group.

As mentioned before, the two-scale DNN estimator Dn(s1, s2)(x) admits the U-statistic
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representation revealed in Lemma 8

Dn(s1, s2)(x) =

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ∗(x; Z1,Z2, · · · ,Zs2), (25)

where the new kernel function is given by

Φ∗(x; Z1,Z2, · · · ,Zs2) = w∗1Φ(1)(x; Z1,Z2, · · · ,Zs2) + w∗2Φ(x; Z1,Z2, · · · ,Zs2)

with Φ(1)(x; Z1,Z2, · · · ,Zs2) =
(
s2
s1

)−1∑
1≤i1<i2<···<is1≤s2

Φ(x; Zi1 ,Zi2 , · · · ,Zis1
), Φ(x; ·) the

original kernel function involved in the single-scale DNN estimator introduced in (9), and

w∗1 and w∗2 the weights defined in equations (13) and (14). We denote by

σ2 = Var(Dn(s1, s2)(x)) (26)

the variance of the two-scale DNN estimator Dn(s1, s2)(x), where we drop the subscript n

in this population variance for notational simplicity.

For each 1 ≤ i ≤ n, let us define the two-scale DNN estimator obtained after deleting

the ith observation as in (25)

U
(i)
n−1 =

(
n− 1

s2

)−1 ∑
1≤j1<j2<···<js2≤n

j1,j2,··· ,js2 6=i

Φ∗(x; Zj1 ,Zj2 , · · · ,Zjs2
). (27)

Then the jackknife estimator (Quenouille, 1949, 1956) for σ2 in (26) is given by

σ̂2
J =

n− 1

n

n∑
i=1

(
U

(i)
n−1 −Dn(s1, s2)(x)

)2
. (28)

We will formally establish the ratio consistency of the jackknife estimator σ̂2
J introduced in

(28) in the theorem below.

Theorem 5. Assume that Conditions 2–3 hold, E[Y 4] < ∞, E[ε4] < ∞, s1 → ∞, and

s2 → ∞ with some constants 0 < c1 < c2 < 1 such that c1 ≤ s1/s2 ≤ c2. Then for any

fixed x ∈ supp(X) ⊂ Rd, when s2 = o(n1/3) it holds that σ̂2
J/σ

2 p→ 1 as n→∞.
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The proof of Theorem 5 still builds on the U-statistic framework. Similar to the dis-

cussions after Theorem 2, the conventional technical arguments in Arvesen (1969) for the

consistency of the jackknife estimator for the U-statistic are not applicable because of the

diverging s1 and s2. As seen in Section B.5 of Supplementary Material, our technical

analysis involves rather delicate calculations of the remainders. We acknowledge that the

assumption of s2 = o(n1/3) is not necessarily optimal. Moreover, the assumption on the

finite fourth moments can be relaxed to finite (2 + 2δ)th moments with some 0 < δ < 1.

Consequently, the bound on the order of s2 will depend on parameter δ accordingly.

We would like to point out that although the U-statistic representation plays a crucial

role in obtaining our theoretical results, the computational cost of the jackknife estimator

utilizing such representation can become excessively prohibitive in practice. Instead, we

should take advantage of the L-statistic representation revealed in Lemma 1 to efficiently

compute the U-statistics {U (i)
n−1}1≤i≤n and the two-scale DNN estimator Dn(s1, s2)(x) in-

volved in the jackknife estimator σ̂2
J in (28). When the sample size n becomes large, one

can speed up the implementation of jackknife using approximation with subsampling.

4.2 Bootstrap estimator

The bootstrap method (Efron, 1979) has been used widely in many applications for esti-

mating the parameters and the distributions of statistics of interest, empowering statisti-

cal inference. We now consider the nonparametric bootstrap for estimating the variance

of the two-scale DNN estimator. Given n observations {Z1,Z2, · · · ,Zn}, we denote by

{Z∗1,Z∗2, · · · ,Z∗n} a bootstrap sample selected independently and uniformly from the orig-

inal n observations with replacement. As in (25), let us construct the two-scale DNN

estimator

D∗n(s1, s2)(x) =

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ∗(x; Z∗i1 ,Z
∗
i2
, · · · ,Z∗is2 ) (29)
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based on the bootstrap sample {Z∗1,Z∗2, · · · ,Z∗n}.

We choose the number of bootstrap samples as B ≥ 1. For each 1 ≤ b ≤ B, we select in-

dependently a boostrap sample {Z∗b,1,Z∗b,2, · · · ,Z∗b,n} and calculate the corresponding boost-

rap version of the two-scale DNN estimatorD
(b)
n (s1, s2)(x) as in (29). Observe that given the

orginal observations (Z1,Z2, · · · ,Zn), the bootstrap samples {(Z∗b,1,Z∗b,2, · · · ,Z∗b,n)}1≤b≤B

are independently and identically distributed as (Z∗1,Z
∗
2, · · · ,Z∗n). Then the bootstrap es-

timator for σ2 in (26) is given by

σ̂2
B,n =

1

B − 1

B∑
b=1

(
D(b)
n (s1, s2)(x)− D̄B,n

)2
, (30)

where D̄B,n = 1
B

∑B
b=1D

(b)
n (s1, s2)(x). The ratio consistency of the bootstrap estimator

σ̂2
B,n introduced in (30) is shown formally in the following theorem.

Theorem 6. Assume that Conditions 2–3 hold, E[Y 4] < ∞, E[ε4] < ∞, s1 → ∞, and

s2 →∞ with some constants 0 < c1 < c2 < 1 such that c1 ≤ s1/s2 ≤ c2. Then for any fixed

x ∈ supp(X) ⊂ Rd, when s2 = o(n1/3) and B →∞, it holds that σ̂2
B,n/σ

2 p→ 1 as n→∞.

Let us gain some insights into the technical analysis for the consistency of the bootstrap

estimator established in Theorem 6. First, we observe that conditional on (Z1,Z2, · · · ,Zn),

the bootstrap versions of the TDNN estimator D
(b)
n (s1, s2)(x) are i.i.d. random variables

and thus the law of large numbers entails that σ̂2
B,n is asymptotically close to the conditional

variance Var(D∗n(s1, s2)(x)|Z1,Z2, · · · ,Zn) as B →∞. Second, since the bootstrap samples

are drawn independently from the empirical distribution based on (Z1,Z2, · · · ,Zn) and the

empirical distribution converges to the underlying distribution of Z asymptotically, the

bootstrap version Var(D∗n(s1, s2)(x)|Z1,Z2, · · · ,Zn) for the variance will converge to the

population quantity σ2 as n →∞. It is worth mentioning that for the second part of our

technical analysis, we resort to the consistency result of the jackknife estimator established

in Theorem 5. In particular, we see that the jackknife and the bootstrap are asymptotically
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equivalent in the variance estimation for the TDNN estimator. Indeed, Efron (1979) showed

that the jackknife can be viewed as a linear approximation method for the bootstrap. It

was also pointed out in Efron (1979) that the jackknife can fail for certain nonsmooth

functionals, while the bootstrap can still work.

Let us elaborate more on the practical implementation of the two-scale procedure of

TDNN for heterogeneous treatment effect inference. As mentioned in Section 4.1, the U-

statistic representation of the TDNN estimator is key to our theoretical developments, but a

different representation can be used for computation. Since the single-scale DNN estimator

is in fact an L-statistic as shown in Lemma 1, the two-scale DNN estimator, which is a

linear combination of a pair of single-scale DNN estimators, is still an L-statistic. The

L-statistic representation of the TDNN estimator enables simple yet fast computation. For

the randomized experiment setting considered in our paper, we can construct a pair of two-

scale DNN estimators separately based on the treatment and control subsamples and then

take a difference. As suggested by Theorem 6, we can further bootstrap such difference

by resampling within each group to provide tight heterogeneous treatment effect inference.

Thus, the two-scale procedure of TDNN coupled with bootstrap enjoys both theoretical

justifications and computational scalability.

5 Simulation studies

In this section, we investigate the finite-sample performance of TDNN for heterogeneous

treatment effect estimation and inference in comparison to the DNN, KNN, and causal

forests (CF) in Wager and Athey (2018) which is a natural extension of random forests

(Breiman, 2001, 2002; Chi et al., 2020) to the causal inference setting.

We construct weights for two-scale DNN estimator by resorting to equations (13) and

(14). Since nonparametric methods including TDNN generally suffer from the curse of
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dimensionality, we propose to first conduct dimension reduction if the ambient dimension-

ality p is large before applying TDNN. Let d be the reduced dimensionality. It is seen

that although negative weight (as given in (13)) can ensure faster consistency rate, it may

also induce inflated variance (at constant level) if w∗1 and w∗2 are not chosen appropriately.

To control the variance, we propose to choose w∗1 and w∗2 adaptively to dimensionality d.

Specifically, we suggest to fix w∗1 = c/(c − 1) and w∗2 = −1/(c − 1) with c ∈ (0, 1) some

constant, and then solve for s2 = c−d/2s1. In our numerical studies, we fix c = 0.8. We

acknowledge that this choice may not be optimal and leave the optimal choice of c for

future study.

With the above choice of weights, we have one tuning parameter which is the subsam-

pling scale s. In implementation, we compute the TDNN estimator Dn(s, c−d/2s)(x) with

s starting from 1. We continue this process until the difference in the absolute differences

of consecutive MSEs changes the sign. Intuitively, it is the point when the curvature of

the MSE of two-scale DNN estimator as a function of s changes, as demonstrated in the

curve structure in Figure 1 from the simulation example in Section 5.1. Such a simple

data-driven tuning strategy works fast and well in our numerical studies.

5.1 Comparisons with DNN and KNN

To illustrate the effectiveness of the two-scale framework compared to the single-scale DNN

and the classical KNN, we simulate n = 1000 data points from the model Y = τ(x) + ε,

where τ(x) = (x1 − 1)2 + (x2 + 1)3 − 3x3 with x = (x1, x2, x3)T and (xT , ε)T ∼ N(0, I4).

Our goal is to estimate the true value of the mean response τ(x) at some test point chosen

to be (0.5,−0.5, 0.5)T . For the implementation of the single-scale DNN, we estimate the

regression function at this test point while varying the subsampling scale s from 1 to 250.

Since the dimension here is low we skip the step of dimension reduction and apply TDNN

directly. As discussed at the beginning of this section, TDNN is implemented with the
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choice of subsampling scales s1 = s and s2 = c−d/2s1 with d = 3.

Figure 1 presents the simulation results for DNN and TDNN in terms of both the

bias and the mean-squared error (MSE). A first observation is that as the subsampling

scale s increases, the bias of the DNN estimator shrinks toward zero, which is intuitive

from the geometrical point of view since larger subsampling scale s leads to the use of

the information in the sample concentrated more toward the fixed test point. From the

MSE plot for DNN, we observe the classical U-shaped pattern of the bias-variance tradeoff.

Thanks to the higher-order expansions, the two-scale procedure of TDNN is free completely

of the first-order asymptotic bias. The substantial difference between the dominating first-

order asymptotic bias in DNN and the second-order asymptotic bias in TDNN at the

finite-sample level is evident in the left panel of Figure 1.

From the MSE plot for TDNN, we also see a similar bias-variance tradeoff. An inter-

esting phenomenon by comparing the two smooth U-shaped curves in the right panel of

Figure 1 is that the minimum of the MSE for TDNN is attained at a much smaller subsam-

pling scale s than that for DNN. Such a feature makes the tuning of the subsampling scale

s relatively simple as discussed at the beginning of this section. Furthermore, we observe

that in addition to the reduced finite-sample bias, TDNN admits substantially improved

minimum MSE with over 50% reduction in comparison to the single-scale DNN. Indeed,

the minimum values of the MSE attained by the single-scale DNN and TDNN are 0.1157

and 0.0488, respectively. To save space, the comparison results with KNN are summarized

in the supplementary file.

5.2 Comparisons with causal forests

We further compare TDNN with causal forests (CF) over four simulation examples on

heterogeneous treatment effect estimation and inference. For each simulation setting, we

consider a sample size of n = 1000. The first three examples are about estimation accuracy
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Figure 1: The bias and MSE results for DNN and TDNN in Section 5.1. The top right

panel also shows a zoomed-in plot where the U -shaped pattern is more apparent.

and the last one is on confidence interval coverage. Because of the space constraint, we

present the simulation results for the first three examples in supplementary file, and only

include the fourth example in the current section. We adapt the second simulation setting in

Wager and Athey (2018), which was introduced to demonstrate the ability of CF in adapting

to the heterogeneity in the treatment effect function τ(x) in a randomized experiment

setting. We hold the treatment propensity e(x) = 0.5 and the main effect m(x) = 0 for the

control group fixed, but increase the support of the heterogeneous treatment effect function

as τ(x) = ς(x1)ς(x2)ς(x3) with ς(x) = 1 + {1 + exp(−20(x − 1
3
))}−1. We set the ambient

dimension p = 20 and simulate x ∼ Uniform([0, 1]p) and model error ε ∼ N(0, 1). We will

examine the finite-sample coverage of the true value of the heterogeneous treatment effect

τ(x) at some fixed test point with a target coverage probability of 0.95. The fixed test
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point is chosen as x1 = 0.2, x2 = 0.4, x3 = 0.6, and xj = 0.5 for j > 3.

As discussed at the beginning of this section, since the theoretical properties of TDNN

established in this paper rely on the assumption of fixed dimensionality, it is natural to

expect that the performance of TDNN can deteriorate as the dimensionality grows. To

alleviate such difficulty, we exploit the feature screening idea (Fan and Lv, 2008; Fan

and Fan, 2008; Fan and Lv, 2018) to accompany the implementation of TDNN. For the

screening step, we test the null hypothesis of independence between the response and each

feature using the nonparametric tool of distance correlation statistic (Székely et al., 2007;

Gao et al., 2020) and calculate the corresponding p-value. Then we select features with

p-values less than α/p with some significance level α ∈ (0, 1). We estimate the variance

of the TDNN estimator using bootstrap method that has been theoretically justified in

Section 4.2. The CF is implemented with the R package grf (Tibshirani et al., 2019),

which is a generalization of the algorithm introduced in Wager and Athey (2018).

Method True Mean Est. Mean (SE) Bias MSE Est. Variance Coverage CI Length

TDNN 3.80639 3.81184 (0.00892) 0.00545 0.07947 0.07180 0.93600 1.04211

CF 3.80639 0.18305 (0.00024) -3.62334 13.12864 0.00008 0.00000 0.03299

Table 1: Comparison of the performance of TDNN and CF in the fourth simulation setting

in Section 5.2.

From Table 1 we observe that due to the bias of the CF estimate, its confidence interval

estimates fail to cover the true value of the heterogeneous treatment effect. In sharp

contrast, TDNN with pre-screening successfully achieves a coverage probability that is

very close to the target coverage probability of 0.95, which is in line with the theoretical

justifications for TDNN heterogeneous treatment effect inference with bootstrap established

formally in Sections 3 and 4. In particular, we see that although the variance estimates
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corresponding to TDNN is larger than the one corresponding to CF in our simulation

settings, they actually provide more accurate confidence interval coverage. Indeed, TDNN

coupled with bootstrap provides a computationally simple yet theoretically justified tool for

tight heterogeneous treatment effect inference with appealing finite-sample performance.

6 Real data application

In this section, we demonstrate the performance of TDNN for heterogeneous treatment

effect inference on a children’s birth weight application. The major goal of this real data

application is to characterize the heterogeneity of a treatment effect across subpopulations

defined by the values of some continuous covariate. In particular, we aim to study the

effect of smoking on a child’s birth weight across mothers’ ages. We utilize the data set

studied originally in Abrevaya et al. (2015) with a kernel-based estimator∗.

For our analysis, the feature vector x includes mother’s age, mother’s education, father’s

education, gestation length in weeks, and the number of prenatal visits. We use this subset

of covariates because each of these covariates has been shown to have some association with

low birth weight (Silvestrin et al., 2013). The response Y is the child’s birth weight. The

binary treatment indicator T is whether or not the mother smoked during pregnancy. In

particular, the data set consists of 591,547 observations in total, 85,976 of whom smoked

during pregnancy. We estimate the heterogeneous treatment effects with all the features

fixed at the average levels of the corresponding treatment group, except for mother’s age

which we vary from 16 to 35. This allows us to see how the effect of smoking changes with

age, while controlling for all other observed confounders. Similarly as in the simulation

examples in Section 5, we also conduct the same analysis using the causal forests (CF) as

∗The data set used in our analysis can be found on the research web page of Robert P. Lieli,

https://sites.google.com/site/robertplieli/research.
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Figure 2: The effect of mother’s smoking on a child’s birth weight as a function of mother’s

age. The error bars correspond to 95% confidence intervals.

a popular benchmark for nonparametric heterogeneous treatment effect inference.

Figure 2 presents the heterogeneous treatment effect estimates for both TDNN and CF

along with 95% confidence intervals. The confidence intervals for TDNN are generated by

bootstrapping the difference between the treatment and control groups, while the confidence

intervals for CF are generated using the variance estimation method in the R package grf.

The results from both procedures suggest that as age increases, the decrease in a newborn’s

weight associated with a mother’s smoking behavior becomes larger. In particular, we see

from Figure 2 that the TDNN estimates exhibit a monotone decreasing relationship between

mother’s age and the heterogeneous treatment effect of smoking with tight confidence

intervals. In contrast, the CF estimates show a much more irregular relationship with wide

confidence intervals.

30



7 Discussions

In this paper, we have investigated the problem of heterogeneous treatment effect inference

in the setting of randomized experiments. Our suggested method of TDNN alleviates the

finite-sample bias issue of the classical k-nearest neighbors and admits easy implementation

with simple tuning. The new TDNN tool can enable tight heterogeneous treatment effect

inference that is important to identify individualized treatment effects.

Due to the complexities of our new theoretical developments, we have contented our-

selves with the setting of randomized experiments and fixed feature dimensionality. It

would be interesting to extend the idea of TDNN to the settings of observational studies

exploiting the treatment propensity information and of diverging or high feature dimen-

sionality. It would also be interesting to consider the non-i.i.d. data settings such as time

series, panel, and survival data. Since the distance function plays a natural role in iden-

tifying the nearest neighbors, it would be interesting to investigate the choice of distances

that are beyond the Euclidean one and pertinent to specific manifold structures intrinsic

to data. It would also be interesting to explore the idea of k-scale DNN with k ≥ 3 for

further bias reduction. These problems are beyond the scope of the current paper and will

be interesting topics for future research.
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Supplementary Material to “Nonparametric Inference

of Heterogeneous Treatment Effects with Two-Scale

Distributional Nearest Neighbors”

Emre Demirkaya, Yingying Fan, Lan Gao, Jinchi Lv,

Patrick Vossler and Jingbo Wang

This Supplementary Material contains additional simulation examples and the proofs of all

main results and key lemmas, and some additional technical details.

A Additional Simulation Examples

A.1 Comparison with KNN

We repeat the same simulation study as in Section 5.1 of the main text using the KNN

estimator whose performance is depicted in Figure 3. From Figure 3, we see that the finite-

sample bias of KNN tends to increase with the neighborhood size k, which is sensible since

moving further away from the fixed test point incurs naturally inflated bias. The MSE plot

in Figure 3 shows a similar U-shaped pattern of the bias-variance tradeoff. In contrast, the

minimum value of the MSE attained by KNN is 0.1250, which is outperformed by both

the single-scale DNN and TDNN. It is largely unclear to us whether and how the two-scale

idea can be implemented for the KNN estimator, so we opt not to explore it in the current

paper.

A.2 Comparison with Causal Forest Estimation

We present three simulation examples which complement the study in Section 5.2 of the

main text for heterogeneous treatment effect estimation. While the number of truly im-
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Figure 3: The bias and MSE results for KNN in Section 5.1.

portant predictors is always chosen to be 3, we explore higher ambient dimensionality p

for the predictors. We use the same screening method as discussed in the main text for

dimension reduction when implementing TDNN. The sample size is fixed at n = 1000.

The first simulation setting uses ambient dimensionality p = 10. The main effect m(x)

for the control group is defined as m(x) = x2
1 + x2, and the treatment effect function is

τ(x) = (x1 − 1)2 + (x2 + 1)3 − 3x3, where x = (x1, x2, · · · , xp)T and (xT , ε)T ∼ N(0, Ip+1).

We evaluate the performance of both TDNN and CF in terms of the bias and MSE at a

fixed test point (x1, · · · , xp)T chosen as x1 = 0.5, x2 = −0.5, x3 = 0.5, and xj = 0 for

j > 3.

For the second simulation setting, we investigate the performance of TDNN and CF as

we increase the ambient dimensionality. Specifically, for ambient dimensionality p = 10,

20, 30, 40, and 50, the data generating process is τ(x) =

∣∣∣∣log
[∑3

j=1(x3
j − 2x2

j + 2xj)
]2
∣∣∣∣+ ε

with (xT , ε)T ∼ N(0, Ip+1), and we set the main effect m(x) = 0 for the control group. In

addition to the fixed test point as chosen in example 1, we also evaluate the performance

of both methods at a random test point chosen as xj = 0 for j > 3, and xj ∼i.i.d N(0, 1)

2



for j = 1, 2 and 3.

The third simulation setting is a modification of the first simulation setting in Wager and

Athey (2018). This simulation setting is designed to test the capability of TDNN and CF

in resisting the bias due to an interaction between the treatment propensity e(x) = 1
4
(1 +

β2,4(x3)) and the main effect m(x) = x2
1 + x2 + x2

3 for the control group, where β2,4 denotes

the beta distribution with shape parameters 2 and 4. We choose x ∼ Uniform([0, 1]p) and

ε ∼ N(0, 1). As a departure from the original simulation setting, we set the population

version of the heterogeneous treatment effect τ(x) = x2 and ambient dimensionality p = 20.

We fix xj = 0.5 for j > 3, choose x1 = 0.2, x2 = 0.4 and x3 = 0.6 for the fixed test point,

and draw the first three components independently from the uniform distribution on the

interval [0, 1] for the random test point.

The first part in Table 2 presents the comparison results from our first simulation

setting, where TDNN produces a considerably more accurate estimate of the heterogeneous

treatment effect than CF. The second part in Table 2 summarizes the comparison results

as the ambient dimensionality p increases from 10 to 50 in the second simulation setting.

It is seen that the extra screening step ensures the robustness of TDNN with respect

to the increased number of noise predictors – it is still able to accurately estimate the

heterogeneous treatment effect. CF gives a consistently biased estimate, regardless of

the ambient dimension. The third part in Table 2 summarizes the results for the third

simulation setting and highlights the better robustness of TDNN to the bias caused by an

interaction between the treatment propensity and the main effect for the control group in

comparison to CF.
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B Proofs of main results

B.1 Proof of Theorem 1

Let us investigate the higher-order asymptotic expansion for the bias term of the single-scale

distributional nearest neighbors (DNN) estimator Dn(s)(x) introduced in (9) under the

asymptotic setting when the subsampling scale s→∞ as the sample size n increases. Recall

that the target point x is a given vector inside the domain supp(X) ⊂ Rd of the covariate

distribution, where the feature dimensionality d is assumed to be fixed for simplifying the

technical presentation of our work. The main idea of the proof is to first consider the

specific case of s = n in Lemma 5 in Section B.5, and then analyze the general case of

s→∞ by exploiting the projection of the mean function µ(X) = E(Y |X) onto the positive

half line R+ = [0,∞) given by ‖X− x‖ in Lemma 6 in Section B.6.

Since {i1, · · · , is} is a random subsample of {1, · · · , n} with subsampling scale s, in

view of (8) and (9) we have

EDn(s)(x) = EΦ(x; Zi1 ,Zi2 , · · · ,Zis)

= E [Y(1)(Zi1 ,Zi2 , · · · ,Zis)]

= E [m(r(1))(Zi1 ,Zi2 , · · · ,Zis)], (B.1)

where the kernel Φ(x; ·) in the U-statistic representation of the DNN estimator is simply the

1-nearest neighbor (1NN) estimator Y(1)(·) given by the response for the closest neighbor

Xi(1) of x in the random subsample {Xi1 , · · · ,Xis} with Zij denoting (Xij , Yij), m(r) =

E(Y | ‖X − x‖ = r) is the projection of the mean function µ(X) onto the positive half

line introduced in (C.97) in Lemma 6, and r(1) = ‖Xi(1) − x‖. The representation in (B.1)

provides a useful starting point for our technical analysis.

From (B.1) above, we see that it is necessary to first study the asymptotic behavior of

the term r(1). Without loss of generality, for this step we can simply replace parameter
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s with parameter n since both subsample size s and full sample size n are assumed to

diverge simultaneously. With such a notational simplification, the 1NN Xi(1) of x in the

subsample becomes the 1NN X(1) of x in the full sample and thus r(1) = ‖X(1) − x‖. We

see from Lemma 5 that Er2
(1) = E‖X(1) − x‖2 admits a higher-order asymptotic expansion

with explicit constants provided for the first two leading orders, which are respectively

n−2/d and n−4/d for d ≥ 2 as shown in (C.83) and (C.84), and respectively n−2 and n−3 for

d = 1 as shown in (C.84). To apply such an asymptotic expansion in Lemma 5 to the term

r(1) = ‖Xi(1) − x‖ in (B.1), we now need to replace parameter n back with parameter s,

which also diverges by assumption.

A natural next step is to consider the expectation on the right-hand side of (B.1) by

conditioning on r(1) = ‖Xi(1)−x‖. Indeed, this motivates us to investigate the higher-order

asymptotic expansion of the projected mean function m(r) = E(Y | ‖X−x‖ = r) in Lemma

6, where r → 0 and some constants are given for the first two leading orders r2 and r4 in

(C.99). Observe that the asymptotic regime of r → 0 is reasonable since it has been shown

by Lemma 2.2 in Biau and Devroye (2015) that r(1) = ‖Xi(1) − x‖ → 0 almost surely as

s→∞.

Based on the expansion of E‖X(1)−x‖2 under different regimes of d provided in (C.82)–

(C.84) in Lemma 5, we can see that there are two cases for the expansion of E‖X(1)− x‖2.

Specifically, the first two leading orders are n−2 and n−3 for d = 1, while the first two

leading orders are n−2/d and n−4/d for d ≥ 2. Thus, we calculate EDn(s)(x) for d ≥ 2 and

d = 1, separately.

First, for the case of d = 1, combining the arguments above using (C.82) and Lemma

5



6, from (B.1) we can deduce that

EDn(s)(x) = µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
Er2

(1) +O4Er4
(1)

= µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)

×
(

Γ(2/d+ 1)

(f(x)Vd)2/d
s−2/d −

(
Γ(2/d+ 2)

d(f(x)Vd)2/d

)
s−(1+2/d)

)
+O4

Γ(4/d+ 1)

(f(x)Vd)4/d
s−4/d + o(s−(1+2/d))

= µ(x) + Γ(2/d+ 1)
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d V
2/d
d f(x)2/d+1

s−2/d +R(s), (B.2)

where R(s) = A1(d, f,x)s−3 + o(s−3) with A1(d, f,x) a bounded quantity that depends

only on d, the underlying density function f(·), and regression function µ(·). In addition,

Γ(·) denotes the gamma function, Vd = πd/2

Γ(1+d/2)
, f ′(x) and µ′(x) represent the first-order

gradients of f(x) and µ(x) at x, respectively, µ′′(x) denotes the Hessian matrix of µ(·) at

x, O4 is some constant given in Lemma 6, and tr(·) stands for the trace operator.

We proceed to prove for the case of d ≥ 2. In the same fashion of deriving (B.2),

applying (C.83)–(C.84) and Lemma 6, from (B.1) we can obtain that

EDn(s)(x) = µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
Er2

(1) +O4Er4
(1)

= µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
×
(

Γ(2/d+ 1)

(f(x)Vd)2/d
s−2/d − C(d, f,x)s−4/d

)
+O4

Γ(4/d+ 1)

(f(x)Vd)4/d
s−4/d + o(s−4/d)

= µ(x) + Γ(2/d+ 1)
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d V
2/d
d f(x)2/d+1

s−2/d +R(s), (B.3)

where R(s) = A2(d, f,x)s−4/d+o(s−4/d) with C(d, f,x) and A2(d, f,x) two bounded quan-

tities that depend only on d, the underlying density function f(·), and regression function

µ(·).
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Therefore, combining the above results, we obtain the desired higher-order asymptotic

expansion for the bias term of the single-scale DNN estimator B(s) = EDn(s)(x)− µ(x).

This completes the proof of Theorem 1.

B.2 Proof of Theorem 2

We now proceed to prove the asymptotic normality of the single-scale DNN estimator

Dn(s)(x). Recall that in Theorem 1, the higher-order asymptotic expansion for the bias

term B(s) of Dn(s)(x) requires the assumption that the subsampling scale s→∞ as sample

size n increases. As shown in the proof of Theorem 1 in Section B.1, the single-scale DNN

estimator Dn(s)(x) reduces to the 1NN estimator when we choose s = n, since in such a

case, there is a single subsample with size s = n, i.e., the full sample. We immediately

realize that although the choice of s = n satisfies the need on the bias side, it does not

make the variance shrink asymptotically. Intuitively, we would need to form the empirical

average over a diverging number of such individual estimates in order to establish the

desired asymptotic normality. This naturally calls for the assumption of s = o(n), which

entails that the total number of these individual estimates
(
n
s

)
diverges as sample size n

increases. Thus we will work with the asymptotic regime of subsampling scale with s→∞

and s = o(n).

In view of the U-statistic representation of Dn(s)(x) given in (9), a natural idea of

the proof for the asymptotic normality of the single-scale DNN estimator is to exploit the

asymptotic theory of the U-statistic framework. However, the classical U-statistic asymp-

totic theory is not readily applicable due to the common assumption of fixed subsampling

scale s. In contrast, as discussed above, our asymptotic analysis needs the opposite assump-

tion of diverging subsampling scale s, i.e., s → ∞. Such a discrepancy causes additional

technical challenges when we derive the asymptotic normality.

Let us first exploit Hoeffding’s canonical decomposition introduced in (Hoeffding, 1948),

7



which is an extension of the projection idea. For each 1 ≤ i ≤ s, we define the centered

conditional expectation

Φ̃i(x; z1, · · · , zi) = E[Φ(x; z1, · · · , zi,Zi+1, · · · ,Zs) | z1, · · · , zi]

− EΦ(x; Z1, · · · ,Zs), (B.4)

where Φ(x; ·) is the kernel defined in (8) for the U-statistic representation of the single-scale

DNN estimator. Then in light of (B.4), for each 1 ≤ i ≤ s we can successively define the

canonical term

gi(x; z1, · · · , zi) = Φ̃i(x; z1, · · · , zi)−
i−1∑
j=1

∑
1≤α1<···<αj≤i

gj(x; zα1 , · · · , zαj
), (B.5)

where g1(x; z1) = Φ̃1(x; z1) by definition. Combining (8), (B.4), and (B.5), we see that the

kernel Φ(x; ·) can be rewritten as a sum of the canonical terms

Φ(x; Z1, · · · ,Zs)− EΦ(x; Z1, · · · ,Zs) =
s∑
j=1

∑
1≤α1<···<αj≤s

gj(x; Zα1 , · · · ,Zαj
). (B.6)

Moreover, it holds that

Var(Φ(x; Z1, · · · ,Zs)) =
s∑
j=1

(
s

j

)
Var(gj(x; Z1, · · · ,Zj)). (B.7)

The above Hoeffding’s canonical decomposition in (B.6) plays an important role in estab-

lishing the asymptotic normality.

In view of (9), (B.4), and (B.6), we can deduce that

Dn(s)− EDn(s) =

(
n

s

)−1 ∑
1≤i1<i2<···<is≤n

Φ̃s(x; Zi1 ,Zi2 , · · · ,Zis)

=

(
n

s

)−1{(n− 1

s− 1

) n∑
i1=1

g1(x; Zi1) +

(
n− 2

s− 2

) ∑
1≤i1<i2≤n

g2(x; Zi1 ,Zi2) + · · ·

+

(
n− s
s− s

) ∑
1≤i1<i2<···<is≤n

gs(x; Zi1 ,Zi2 , · · · ,Zis)
}
. (B.8)
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From the above Hoeffding’s canonical decomposition in (B.8) for the single-scale DNN

estimator, we see that the Hájek projection introduced in (Hájek, 1968) of the centered

DNN estimator Dn(s)− EDn(s) is given by

D̂n(s) =

(
n

s

)−1(
n− 1

s− 1

) n∑
i=1

g1(x; Zi), (B.9)

which is the first-order part of the decomposition in (B.8).

A useful observation is that the Hájek projection given in (B.9) involves the sum of

some independent and identically distributed (i.i.d.) terms. Denote by σ2
n the variance of

the Hájek projection. Then it follows from g1(x; z1) = Φ̃1(x; z1) and (B.4) that

σ2
n = Var(D̂n(s)) =

s2

n
Var(Φ̃1(x; Z1))

=
s2

n
Var(Φ1(x; Z1)) =

s2

n
η1, (B.10)

where the non-centered conditional expectation Φ1(x; Z1) is defined later in (C.114) and

η1 is defined as the variance of Φ1(x; Z1). From (B.4), we see that each term g1(x; Zi) =

Φ̃1(x; Zi) of the i.i.d. sum in (B.9) has zero mean. Thus by (B.10), an application of the

Lindeberg–Lévy central limit theorem in (Borovkov, 2013) leads to

D̂n(s)

σn

D−→ N(0, 1), (B.11)

which establishes the asymptotic normality of the Hájek projection D̂n(s).

Finally, we aim to show that similar asymptotic normality as above holds when the

Hájek projection D̂n(s) in the numerator on the left-hand side of (B.11) is replaced with

the centered single-scale DNN estimator Dn(s)(x)−EDn(s)(x) = Dn(s)(x)−µ(x)−B(s),

where B(s) is the bias term identified in Theorem 1. With the aid of the Slutsky’s lemma,

we see that it suffices to show that

Dn(s)− EDn(s)− D̂n(s)

σn
= oP (1). (B.12)
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In view of (B.7) and Hoeffding’s canonical decomposition in (B.8), we can deuce that

E[Dn(s)− EDn(s)− D̂n(s)]2 =

(
n

s

)−2{(n− 2

s− 2

)2(
n

2

)
E (g2(x; Z1,Z2))2+

· · ·+
(
n− s
s− s

)2(
n

s

)
E (gs(x; Z1, · · · ,Zs))

2
}

=
s∑
r=2

{(n
s

)−2(
n− r
s− r

)2(
n

r

)
E (gr(x; Z1, · · · ,Zr))

2
}

=
s∑
r=2

{s!(n− r)!
n!(s− r)!

(
s

r

)
E (gr(x; Z1, · · · ,Zr))

2
}

≤ s(s− 1)

n(n− 1)

s∑
r=2

(
s

r

)
E (gr(x; Z1, · · · ,Zr))

2

≤ s2

n2
Var(Φ(x; Z1, · · · ,Zs)). (B.13)

It remains to bound the variance term Var(Φ(x; Z1, · · · ,Zs)) above.

By Lemma 7 in Section B.7, we have an important result that

Var(Φ(x; Z1, · · · ,Zs)) = o(nη1). (B.14)

Combining (B.10), (B.13), and (B.14), it holds that

E

[
Dn(s)− EDn(s)− D̂n(s))

σn

]2

= o

{
1

σ2
n

s2

n2
(nη1)

}
= o

{
n

s2η1

s2

n2
(nη1)

}
= o(1). (B.15)

Therefore, we are ready to see that (B.15) entails the desired claim (B.12). Finally, by

(B.10) and (C.119) obtained in the proof of Lemma 7 in Section B.7, we see that σn is of

order (s/n)1/2, which concludes the proof of Theorem 2.

B.3 Proof of Theorem 3

We further prove the asymptotic normality of the two-scale DNN estimator Dn(s1, s2)(x)

introduced in (15). It is worth mentioning that Theorem 3 is not a simple consequence

10



of Theorem 2 since the marginal asymptotic normalities do not necessarily lead to the

joint asymptotic normality. This means that we need to analyze the two single-scale DNN

estimators involved in the definition of the two-scale DNN estimator in a joint fashion. To

this end, we will exploit the ideas in the proof of Theorem 2 in Section B.2. To facilitate

the technical analysis, some key technical tools are provided in Lemmas 8–10 in Sections

B.8–B.10, respectively.

Without loss of generality, let us assume that s1 < s2 for the two subsampling scales.

In particular, we make the assumptions that s1, s2 →∞, s1, s2 = o(n), and c1 ≤ s1/s2 ≤ c2

for some constants 0 < c1 < c2 < 1. From Lemma 8 in Section B.8, we see that the

two-scale DNN estimator Dn(s1, s2)(x) is also a U-statistic of order s2 with a new kernel

Φ∗(x; Z1,Z2, · · · ,Zs2) introduced later in (C.121). Thus Hoeffding’s canonical decompo-

sition for U-statistics can be applied to derive the asymptotic normality of the two-scale

DNN estimator. For each 1 ≤ i ≤ s2, let us define

Φ∗i (x; z1, · · · , zi) = E[Φ∗(x; z1, · · · , zi,Zi+1, · · · ,Zs2) | z1, · · · , zi], (B.16)

g∗i (x; z1, · · · , zi) = Φ∗i (x; z1, · · · , zi)− EΦ∗i (x; Z1, · · · ,Zi)

−
i−1∑
j=1

∑
1≤α1<···<αj≤i

g∗j (x; zα1 , · · · , zαj
), (B.17)

where g∗1(x; z1) = Φ∗1(x; z1)− EΦ∗1(x; Z1) by definition. We further define

Var Φ∗ = Var(Φ∗(x; Z1,Z2, · · · ,Zs2)) and η∗1 = Var(Φ∗1(x; Z1)). (B.18)

In view of (15), (B.16), and (B.17), an application of similar U-statistic and Hoeffding’s

canonical decomposition arguments to those in the proof of Theorem 2 in Section B.2

entails that

(n−1s2
2η
∗
1)−1/2

(
Dn(s1, s2)(x)− E[Dn(s1, s2)(x)]

)
(B.19)

11



can be approximated by the first-order part of Hoeffding’s canonical decomposition that

converges to a normal distribution with the remainders asymptotically negligible, where η∗1

is given in (B.18). More specifically, denote by

D̂n(s1, s2) =
s2

n

n∑
i=1

g∗1(x; Zi), (B.20)

where g∗1(x; Zi) is defined in (B.17). It follows from (B.18), (B.20), and the classical central

limit theorem for i.i.d. random variables that

D̂n(s1, s2)√
n−1s2

2η
∗
1

D−→ N(0, 1), (B.21)

since it holds that Var(g∗1(x; Z1)) = Var(Φ∗1(x; Z1)) = η∗1.

Similar to (B.13), by (B.17), (B.18), and (B.20) we can deduce that

E
[
Dn(s1, s2)(x)− EDn(s1, s2)(x)− D̂n(s1, s2)

]2
n−1s2

2η
∗
1

≤ n−2s2
2 Var Φ∗

n−1s2
2η
∗
1

=
Var Φ∗

nη∗1
. (B.22)

Moreover, it follows from the upper bound on Var Φ∗ obtained in Lemma 9 in Section B.9

and the asymptotic order of η∗1 established in Lemma 10 in Section B.10 that

Var Φ∗/(nη∗1)→ 0 (B.23)

since s2/n→ 0 by assumption. Therefore, combining (B.21)–(B.23), an application of the

Slutsky’s lemma yields the desired claim in (B.19), that is,

Dn(s1, s2)(x)− EDn(s1, s2)(x)

σn

D−→ N(0, 1), (B.24)

where we define σ2
n = n−1s2

2η
∗
1. Finally, we see from Lemma 10 that σn = (n−1s2

2η
∗
1)1/2

is of order (s2/n)1/2, and from the higher-order asymptotic expansion of the bias term in

Theorem 1 that

Λ = EDn(s1, s2)(x)− µ(x) =

O(s
−4/d
1 + s

−4/d
2 ), d ≥ 2,

O(s−3
1 + s−3

2 ), d = 1.

12



This together with (B.24) completes the proof of Theorem 3.

B.4 Proof of Theorem 4

We now aim to prove the asymptotic normality of the HTE estimator τ̂(x) = D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)

− D
(0)
n0 (s

(0)
1 , s

(0)
2 )(x) introduced in (23), where D

(1)
n1 (s

(1)
1 , s

(1)
2 )(x) and D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x) de-

note the two-scale DNN estimators constructed using the treatment sample of size n1 and

the control sample of size n0, respectively. Denote by n = n0 + n1 the total sample size.

By the assumption P (T = 1|X, YT=0, YT=1) = 1/2, it is easy to see that n0/n1
P−→ 1 as

n → ∞. For each of the treatment and control groups in the randomized experiment, by

the assumptions a separate application of Theorem 3 shows that there exist some positive

numbers σn1 of order (s
(1)
2 /n1)1/2 and σn0 of order (s

(0)
2 /n0)1/2 such that

D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)− E[D

(1)
n1 (s

(1)
1 , s

(1)
2 )(x)]

σn1

D−→ N(0, 1) (B.25)

and
D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x)− E[D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x)]

σn0

D−→ N(0, 1). (B.26)

In view of the randomized experiment assumption, the treatment sample and control

sample are independent of each other, which entails that the two separate two-scale DNN

estimators D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x) and D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x) are independent. Thus it follows from

(B.25) and (B.26) that

D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x)−D(0)

n0 (s
(0)
1 , s

(0)
2 )(x)− E[D

(1)
n1 (s

(1)
1 , s

(1)
2 )(x)−D(0)

n0 (s
(0)
1 , s

(0)
2 )(x)]

σn
D−→ N(0, 1), (B.27)

where we define σn = (σ2
n1

+σ2
n0

)1/2. Moreover, from the higher-order asymptotic expansion

of the bias term in Theorem 1 applied to the potential treatment and control responses,
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respectively, and the definition of the heterogeneous treatment effect (HTE) τ(x) introduced

in (22), we see that

E[D(1)
n1

(s
(1)
1 , s

(1)
2 )(x)]− E[D(0)

n0
(s

(0)
1 , s

(0)
2 )(x)] = τ(x) + Λ, (B.28)

where Λ = O{(s(1)
1 )−4/d+ (s

(1)
2 )−4/d+ (s

(0)
1 )−4/d+ (s

(0)
2 )−4/d} for d ≥ 2 and Λ = O{(s(1)

1 )−3 +

(s
(1)
2 )−3 + (s

(0)
1 )−3 + (s

(0)
2 )−3} for d = 1. Therefore, combining (B.27) and (B.28) yields

the desired asymptotic normality of the HTE estimator τ̂(x) based on the two-scale DNN

estimators. This concludes the proof of Theorem 4.

B.5 Proof of Theorem 5

In view of the arguments in the proof of Theorem 4 in Section B.4, the variance of the

HTE estimator τ̂(x) = D
(1)
n1 (s

(1)
1 , s

(1)
2 )(x) − D

(0)
n0 (s

(0)
1 , s

(0)
2 )(x) is naturally the sum of the

variances of the pair of two-scale DNN estimators. Thus the variance estimate for the HTE

estimator reduces to that for the two-scale DNN estimator Dn(s1, s2)(x), whose asymptotic

normality has been shown in Theorem 3. Now we aim to establish the consistency of the

jackknife estimator σ̂2
J introduced in (28) for the variance σ2 of the two-scale DNN estimator

Dn(s1, s2)(x) as defined in (26). We will build on the technique in Arvesen (1969) that

expands and reorganizes the jackknife estimator σ̂2
J . However, a major theoretical challenge

is that instead of an application of the classical asymptotic theory for the case of fixed order,

a more delicate technical analysis of the remainders is essential to proving the consistency

under our current assumption of diverging order s2 →∞.

More specifically, we will show that the jackknife estimator σ̂2
J can be written as a

weighted sum of a sequence of U-statistics {Uc}0≤c≤s2 to be introduced in (B.34) later,

where U0 and U1 are the dominating terms and the remaining ones are asymptotically

negligible under the assumption of s2 = o(n1/3). Since U-statistics are symmetric with

14



respect to the input arguments, it follows from (25) and (27) that

n∑
i=1

(
n− 1

s2

)
U

(i)
n−1 = (n− s2)

(
n

s2

)
Dn(s1, s2)(x),

which entails that

n−1

n∑
i=1

U
(i)
n−1 = Dn(s1, s2)(x). (B.29)

Thus, in light of the definition of the jackknife estimator σ̂2
J in (28) and (B.29), we can

deduce that

nσ̂2
J = (n− 1)

{ n∑
i=1

(
U

(i)
n−1

)2 − n(Dn(s1, s2)(x))2

}
= (n− 1)

{(
n− 1

s2

)−2 n∑
i=1

∑
i

Φ∗(x; Zαi
1
, · · · ,Zαi

s2
)Φ∗(x; Zβi

1
, · · · ,Zβi

s2
)

− n
(
n

s2

)−2∑
Φ∗(x; Zα1 , · · · ,Zαs2

)Φ∗(x; Zβ1 , · · · ,Zβs2
)

}
, (B.30)

where we use the shorthand notation
∑
i

for

∑
1≤αi

1<α
i
2<···<αi

s2
≤n

1≤βi
1<β

i
2<···<βi

s2
≤n

αi
1,α

i
2,··· ,αi

s2
6=i;βi

1,β
i
2,··· ,βi

s2
6=i

(B.31)

and
∑

for ∑
1≤α1<α2<···<αs2≤n
1≤β1<β2<···<βs2≤n

(B.32)

to simplify the technical presentation.

For each 0 ≤ c ≤ s2, by calculating the number of terms with c overlapping components
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in Φ∗(x; Zα1 , · · · ,Zαs2
)Φ∗(x; Zβ1 , · · · ,Zβs2

), we can obtain from (B.30)–(B.32) that

nσ̂2
J = (n− 1)

{(
n− 1

s2

)−2 s2∑
c=0

(n− 2s2 + c)
∑

Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)

· Φ∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c)

− n
(
n

s2

)−2 s2∑
c=0

∑
Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)

· Φ∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c)

}
=
n− 1

n

(
n− 1

s2

)−2 s2∑
c=0

(cn− s2
2)

(
n

2s2 − c

)(
2s2 − c
s2

)(
s2

c

)
Uc, (B.33)

where we introduce a sequence of U-statistics {Uc}0≤c≤s2 defined as

Uc =

{(
n

2s2 − c

)(
2s2 − c
s2

)(
s2

c

)}−1

·
∑

Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)Φ
∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c).

(B.34)

Here, with slight abuse of notation,
∑

is short for denoting the summation over all possible

combinations of distinct α1, · · · , αc, β1, · · · , βs2−c, γ1, · · · , γs2−c satisfying that 1 ≤ α1 <

· · · < αc ≤ n, 1 ≤ β1 < · · · < βs2−c ≤ n, and 1 ≤ γ1 < · · · < γs2−c ≤ n.

Observe that by symmetrization, Uc defined in (B.34) is indeed a U-statistic that can

be represented as

Uc =

(
n

2s2 − c

)−1 ∑
C2s2−c

K(c)(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c ,Zγ1 , · · · ,Zγs2−c), (B.35)

where
∑

C2s2−c

represents the summation taken over all combinations of 1 ≤ α1 < · · · < αc <

β1 < · · · < βs2−c < γ1 < · · · < γs2−c ≤ n, and the symmetrized kernel function K(c) is given
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by

K(c)(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c ,Zγ1 , · · · ,Zγs2−c)

=

{(
2s2 − c

c

)(
2s2 − 2c

s2 − c

)}−1 ∑
∏

2s2−c

Φ∗(x; Zi1 , · · · ,Zic ,Zic+1 , · · · ,Zis2
)

· Φ∗(x; Zi1 , · · · ,Zic ,Zis2+1 , · · · ,Zi2s2−c) (B.36)

with
∑∏
2s2−c

standing for the summation over all the
(

2s2−c
c

)(
2s2−2c
s2−c

)
possible permutations

of (α1, · · · , αc, β1, · · · , βs2−c, γ1, · · · , γs2−c) that are not permuted within sets (α1, · · · , αc),

(β1, · · · , βs2−c), and (γ1, · · · , γs2−c).

From (B.33)–(B.36) above, we can further deduce that as long as s2 = o(
√
n), it holds

that

nσ̂2
J =

s2∑
c=0

(cn− s2
2)

(n− s2 − 1)(n− s2 − 2) · · · (n− 2s2 + c+ 1)

(n− 2)(n− 3) · · · (n− s2)c!

· [s2(s2 − 1) · · · (s2 − c+ 1)]2Uc

= −s2
2

[
1 +O

(s2
2

n

)]
U0 + s2

2[1 +O
(s2

2

n

)
]U1 +

s2∑
c=2

O
(s2

2

n

)c−1 s2
2

c!
Uc

= s2
2(U1 − U0) +O

(s4
2

n

)
(U0 + U1) +

s2∑
c=2

O
(s2

2

n

)c−1 s2
2

c!
Uc,

which leads to

n

s2
2

σ̂2
J = U1 − U0 +O

(s2
2

n

)
(U0 + U1) +

s2∑
c=2

O
(s2

2

n

)c−1Uc
c!
. (B.37)

By (B.34), for the mean we have

EUc = E
[
Φ∗(x; Zα1 , · · · ,Zαc ,Zβ1 , · · · ,Zβs2−c)Φ

∗(x; Zα1 , · · · ,Zαc ,Zγ1 , · · · ,Zγs2−c)
]

= E
(
[Φ∗c(x; Z1, · · · ,Zc)]

2
)
, (B.38)

where Φ∗c(x; Z1, · · · ,Zc) = E[Φ∗(x; Z1, · · · ,Zs2)|Z1, · · · ,Zc].
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As for the variance, it follows from Lemmas 2 and 3 in Sections B.2 and B.3, respectively,

that for each 0 ≤ c ≤ s2 and fixed x, we have

Var(Uc) = O(s2/n). (B.39)

Moreover, in view of (B.38) and Jensen’s inequality, it holds that for each 2 ≤ c ≤ s2,

EUc ≤ E[(Φ∗)2]. (B.40)

Consequently, it follows from (B.37)–(B.40) that

E
([ n
s2

2

σ̂2
J − Var(Φ∗1(x; Z1))

]2)
≤ C

{
Var(U1) + Var(U0) +

s4
2

n2

[
(EΦ∗)4 +

(
E[Φ∗1(x; Z1)]2

)2]
+

s2∑
j=2

s2∑
i=2

(s2
2

n

)i+j−2[
Var(Ui) + (E(Φ∗)2)2

]1/2[
Var(Uj) + (E(Φ∗)2)2

]1/2}
, (B.41)

where C is some positive constant. Recall the facts that E[Φ∗] = O(1) and E[(Φ∗)2] = O(1),

which have been shown previously in the proof of Theorem 3 in Section B.3. Combining

(B.41) with these facts yields

E
([ n
s2

2

σ̂2
J − Var(Φ∗1(x; Z1))

])2

≤ C
(s2

n
+
s4

2

n2

)
. (B.42)

Furthermore, it has been shown in the proof of Theorem 3 in Section B.3 that

Var(Φ∗1(x; Z1)) ≥ Cs−1
2 (B.43)

with C some positive constant. Thus, when s2 = o(n1/3), we can obtain from (B.42) and

(B.43) that

σ̂2
J

s22
n

Var(Φ∗1(x; Z1))

p−→ 1. (B.44)
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In addition, it follows from (B.22) and the decomposition for the variance of the U-statistic

that as long as s2 = o(n), we have

σ2

s22
n

Var(Φ∗1(x; Z1))
→ 1. (B.45)

Therefore, combining (B.44) and (B.45) results in σ̂2
J/σ

2 p−→ 1, which establishes the

desired consistency of the jackknife estimator σ̂2
J . This completes the proof of Theorem 5.

B.6 Proof of Theorem 6

We now proceed with establishing the consistency of the bootstrap estimator σ̂2
B,n intro-

duced in (30) for the variance σ2 of the two-scale DNN estimator Dn(s1, s2)(x) as defined

in (26). Let us define the bootstrap version of the quantity σ2 conditional on the given

sample {Z1, · · · ,Zn} as

σ̂2
n = Var(D∗n(s1, s2)(x)|Z1, · · · ,Zn), (B.46)

where D∗n(s1, s2) defined in (29) denotes the two-scale DNN estimator constructed as in

(25) using the bootstrap sample {Z∗1, · · · ,Z∗n}. In fact, the quantity introduced in (B.46)

above provides a crucial bridge. The main ingredients of the proof consist of two parts.

First, we will show that the bootstrap estimator σ̂2
B,n is asymptotically close to σ̂2

n given

in (B.46) as the number of bootstrap samples B → ∞. Second, we will prove that the

bootstrap version σ̂2
n is further asymptotically close to the population quantity σ2 under

the assumption of s2 = o(n1/3). It is worth mentioning that the technical analysis for the

second part relies on the consistency of the jackknife estimator σ̂2
J established in Theorem

5.

For each 1 ≤ b ≤ B, denote by D
(b)
n (s1, s2)(x) the two-scale DNN estimator D∗n(s1, s2)

constructed using the bth bootstrap sample. It is easy to see from (B.46) that for each
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1 ≤ b ≤ B,

Var(D(b)
n (s1, s2)(x)|Z1, · · · ,Zn) = σ̂2

n. (B.47)

Since the sample variance defined in (30) is an unbiased estimator for the population

variance, by (B.47) it holds that

E[σ̂2
B,n|Z1,Z2, · · · ,Zn] = σ̂2

n. (B.48)

Thus, in view of (30) and (B.48), we can obtain

E[(σ̂2
B,n − σ2)2] = E[(σ̂2

B,n − σ̂2
n)2] + E[(σ̂2

n − σ2)2]. (B.49)

Without loss of generality, let us assume that E[Dn(s1, s2)(x)] = 0 to ease our technical

presentation; otherwise we can subtract the mean first.

We begin with considering the first term E[(σ̂2
B,n − σ̂2

n)2] on the right-hand side of

(B.49). Since {D(b)
n (s1, s2)(x)}1≤b≤B are i.i.d. random variables conditional on the given
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sample {Z1, · · · ,Zn}, we can deduce that

E[(σ̂2
B,n − σ̂2

n)2|Z1, · · · ,Zn]

= E
[ 1

(B − 1)2

( B∑
b=1

(
[D(b)

n (s1, s2)(x)]2 − σ̂2
n

)
− (BD̄2

B,n − σ̂2
n)
)2∣∣∣Z1, · · · ,Zn

]
≤ 2

(B − 1)2

{
E
[( B∑

b=1

(
[D(b)

n (s1, s2)(x)]2 − σ̂2
n

))2∣∣∣Z1, · · · ,Zn

]
+ E

[
(BD̄2

B,n − σ̂2
n)2|Z1, · · · ,Zn

]}
≤ 2

(B − 1)2

{
BE
[(

[D(1)
n (s1, s2)(x)]2 − σ̂2

n

)2∣∣Z1, · · · ,Zn

]
+

2B

B2
E
[(

[D(1)
n (s1, s2)(x)]2 − σ̂2

n

)2∣∣Z1, · · · ,Zn

]
+

4

B2

∑
1≤i 6=j≤B

E
[(
D(i)
n (s1, s2)(x)

)2(
D(j)
n (s1, s2)(x)

)2∣∣Z1, · · · ,Zn

]}
≤ C

B
E
[(

[D(1)
n (s1, s2)(x)]2 − σ̂2

n

)2∣∣Z1, · · · ,Zn

]
+

C

B2

(
E
[
[D(1)

n (s1, s2)(x)]2
∣∣Z1, · · · ,Zn

])2

≤ C

B
E
[
[D(1)

n (s1, s2)(x)]4
∣∣Z1, · · · ,Zn

]
, (B.50)

where the last inequality follows from the conditional Jensen’s inequality.

Let k = [n/s2] be the integer part of the number n/s2. We define

h(Z1, · · · ,Zn) = k−1
(
Φ∗(x; Z1, · · · ,Zs2) + Φ∗(x; Zs2+1, · · · ,Z2s2)

+ · · ·+ Φ∗(x; Zks2−s2+1, · · · ,Zks2)
)
. (B.51)

Note that it has been shown in (2.1.15) in Korolyuk and Borovskich (1994) that

E
[
[D(1)

n (s1, s2)(x)]4
∣∣Z1, · · · ,Zn

]
≤ E[h4(Z∗1, · · · ,Z∗n)|Z1, · · · ,Zn] (B.52)

with the functional h(·) given in (B.51). Moreover, with an application of Rosenthal’s
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inequality for independent random variables, we can obtain that

E[h4(Z∗1, · · · ,Z∗n)|Z1, · · · ,Zn]

≤ Ck−4k2E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
∣∣Z1, · · · ,Zn

)
, (B.53)

where C is some positive constant. Then in light of (B.53), it remains to bound the quantity

E([Φ∗(x; Z∗1, · · · ,Z∗s2)]
4), which has been dealt with in Lemma 4 in Section B.4. Thus, it

follows from (B.50), (B.52)–(B.53), and Lemma 4 that

E[(σ̂2
B,n − σ̂2

n)2] ≤ C

B

s2
2

n2
n−s2

n∑
i1=1

· · ·
n∑

is2=1

E
(
[Φ∗(x; Zi1 , · · · ,Zis2

)]4
)

≤ CMs2
2

Bn2
, (B.54)

where M is some positive constant given in Lemma 4.

We next proceed with analyzing the second term E[(σ̂2
n − σ2)2] on the right-hand side

of (B.49). Recall the definition of the bootstrap version σ̂2
n for the population quantity σ2

introduced in (B.46). Let us define

mn = E[Φ∗(x; Z∗1, · · · ,Z∗s2)|Z1, · · · ,Zn] (B.55)

and

h1(z) = E[Φ∗(x; Z∗1, · · · ,Z∗s2)−mn|Z∗1 = z]. (B.56)

Then applying similar arguments as for (B.13) in the proof of Theorem 2 in Section B.2,

we can deduce that

σ̂2
n =

s2
2

n
E[h2

1(Z∗1)|Z1, · · · ,Zn] + ∆1, (B.57)

where 0 ≤ ∆1 ≤ s22
n2 Var(Φ∗(x; Z∗1, · · · ,Z∗s2)|Z1, · · · ,Zn) and function h1(·) is given in (B.56)

and (B.55). Similarly, it holds that

σ2 =
s2

2

n
E[g2

1(Z1)] + ∆2, (B.58)
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where g1(Z1) = E[Φ∗(x; Z1, · · · ,Zn)|Z1] and 0 ≤ ∆2 ≤ s22
n2 Var(Φ∗(x; Z1, · · · ,Zs2)). Hence,

by (B.57) and (B.58) we can obtain that

E[(σ̂2
n − σ2)2]

≤ CE
( s4

2

n2

[
E[h2

1(Z∗1)|Z1, · · · ,Zn]− E[g2
1(Z1)]

]2
+ ∆2

1 + ∆2
2

)
, (B.59)

where C is some positive constant.

Observe that

∆2
2 = O(

s4
2

n4
) (B.60)

and

E(∆2
1) ≤ s4

2

n4
E
[
E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

2|Z1, · · · ,Zn

)]2
≤ s4

2

n4
E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
)

≤ Ms4
2

n4
, (B.61)

where the last inequality follows from Lemma 4 with M some positive constant. In addition,

it holds that

E[h2
1(Z∗1)|Z1, · · · ,Zn] =

1

n

n∑
i=1

h2
1(Zi) (B.62)

and

h1(Zi) = n−s2+1

n∑
i2=1

· · ·
n∑

is2=1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)

− n−s2
n∑

i1=1

· · ·
n∑

is2=1

Φ∗(x; Zi1 , · · · ,Zis2
). (B.63)

Let us further define

Si =

(
n− 1

s2 − 1

)−1 ∑
1≤j1<j2<···<js2−1≤n

j1,j2,··· ,js2−1 6=i

Φ∗(x; Zi,Zj1 , · · · ,Zjs2−1). (B.64)
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From the equality
(
n−1
s2

)
U

(i)
n−1 +

(
n−1
s2−1

)
Si =

(
n
s2

)
Dn(s1, s2)(x) in view of (B.64), it is easy to

see that the jackknife estimator σ̂2
J introduced in (28) satisfies that

nσ̂2
J

s2
2

=
n− 1

(n− s2)2

n∑
i=1

(
Si −Dn(s1, s2)(x)

)2
. (B.65)

Then the main idea of the remaining proof is to show that under the assumption of s2 =

o(n1/3), h1(Zi) is asymptotically close to Si −Dn(s1, s2)(x) and thus E[h2
1(Z∗1)|Z1, · · · ,Zn]

is asymptotically close to
nσ̂2

J

s22
. Observe that

n−s2+1

(
n− 1

s2 − 1

)
(s2 − 1)! = 1 +O(s2

2/n)

and

n−s2
(
n

s2

)
s2! = 1 +O(s2

2/n),

which entail that (
ns2−1 −

(
n− 1

s2 − 1

)
(s2 − 1)!

)
n−s2+1 = O(s2

2/n)

and (
ns2 −

(
n

s2

)
s2!
)
n−s2 = O(s2

2/n).

Thus, it follows from (B.63) and these facts that

h1(Zi) = (1 +O(s2
2/n))

[
Si −Dn(s1, s2)(x)

]
+ n−s2+1

∑
D1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)

− n−s2
∑
D2

Φ∗(x; Zi1 ,Zi2 , · · · ,Zis2
), (B.66)

where D1 = {(i2, · · · , is2) : there is at least one pair that are equal or there is a component

that is equal to i} and D2 = {(i1, · · · , is2) : there is at least one pair of components that are

equal}.

With an application of similar arguments as in the proof of Lemma 4 in Section B.4,

we can obtain that

E
(
[Φ∗(x; Zi1 ,Zi2 , · · · ,Zis2

)]4
)
≤M (B.67)
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with M some positive constant, regardless of how many components of (i1, i2, · · · , is2) are

equal. As a consequence, by (B.67) it holds that

E
[( 1

n

n∑
i=1

(
n−s2+1

∑
D1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)
)2)2]

≤ 1

n

n∑
i=1

E
[(
n−s2+1

∑
D1

Φ∗(x; Zi,Zi2 , · · · ,Zis2
)
)4]
≤ CMs8

2

n4
(B.68)

and similarly,

E
[( 1

n

n∑
i=1

(
n−s2

∑
D2

Φ∗(x; Zi1 ,Zi2 , · · · ,Zis2
)
))2]

≤ CMs8
2

n4
, (B.69)

where C represents some positive constant whose value may change from line to line. Hence,

combining (B.62), (B.66), and (B.68)–(B.69), we can deduce that as long as s2 = o(n1/3),

it holds that

E
([

E[h2
1(Z∗1)|Z1, · · · ,Zn]− E[g2

1(Z1)]
]2)

≤ CE
[( 1

n

n∑
i=1

(1 +O(s2
2/n))2[Si −Dn(s1, s2)(x)]2 − Var(Φ∗1(x; Z1))

)2]
+
CMs8

2

n4

≤ CE
[((n− s2)2

n(n− 1)
(1 +O(s2

2/n))
n

s2
2

σ̂2
J − Var(Φ∗1(x; Z1))

)2]
+
CMs8

2

n4

≤ C(1 +O(s2
2/n))E

(
[
n

s2
2

σ̂2
J − Var(Φ∗1(x; Z1))]2

)
+
Cs4

2

n2
(Var(Φ∗1(x; Z1)))2

+
CMs8

2

n4

≤ Cs2

n
+
s2

2

n2
+
CMs8

2

n4
≤ C(M + 1)s2

n
, (B.70)

where the second to the last inequality comes from (B.42) and (C.132) in the proof of

Lemma 10 in Section B.10.

Substituting the above bounds in (B.60)–(B.61) and (B.70) into (B.59) leads to

E[(σ̂2
n − σ2)2] = O

( s5
2

n3
+
s4

2

n4

)
. (B.71)
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Thus, combining (B.54) and (B.71), we can obtain that

E[(σ̂2
B,n − σ2)2] = O

( s5
2

n3
+

s2
2

Bn2

)
. (B.72)

Recall the fact that σ2 = O( s2
n

) under the assumption of s2 = o(n). Consequently, such

fact along with (B.72) entails that

E
[( σ̂2

B,n

σ2
− 1
)2]

= O(
s3

2

n
+

1

B
). (B.73)

Therefore, combining (B.73) and the assumptions of s2 = o(n1/3) and B → ∞ yields

σ̂2
B,n/σ

2 p−→ 1, which establishes the desired consistency of the bootstrap estimator σ̂2
B,n.

This concludes the proof of Theorem 6.

C Some key lemmas and their proofs

B.1 Proof of Lemma 1

Observe that the set of possible values Y(1)(Zi1 ,Zi2 , · · · ,Zis) can take is {Y(1), Y(2), · · · , Y(n−s+1)}.

If Y(1)(Zi1 ,Zi2 , · · · ,Zis) = Y(1), then the observation corresponding to Y(1) must be selected

and there are
(
n−1
s−1

)
options for the remaining s− 1 places in the subsample. In general, if

Y(1)(Zi1 ,Zi2 , · · · ,Zis) = Y(j) for some 1 ≤ j ≤ n−s+1, then the observation corresponding

to Y(j) must be selected and the observations corresponding to Y(1), Y(2), · · · , Y(j−1) will not

be selected, which entails that there are
(
n−j
s−1

)
options for the remaining s− 1 places in the

subsample. Applying these arguments, we can obtain the representation in (10) for the

single-scale DNN estimator Dn(s)(x).

It remains to show that for any given x, Dn(s)(x) is in fact an L-statistic. Denote by

Y1:n, Y2:n, · · · , Yn:n the order statistics for n scalars Y1, Y2, · · · , Yn. Note that for each given

x, Y(1), Y(2), · · · , Y(n−s−1) are fixed and there exists some set S(x) := {ij : 1 ≤ j ≤ n−s+1}
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that may depend upon x such that

(Y(1), Y(2), · · · , Y(n−s+1)) = (Yi1:n, Yi2:n, · · · , Yin−s+1:n). (C.74)

Conversely, for each k ∈ S(x), there exists some 1 ≤ mk ≤ n− s+ 1 that may depend on x

such that Yk:n = Y(mk). Consequently, combining such fact, (C.74), and the representation

in (10) established above, we can obtain that

Dn(s)(x) =

(
n

s

)−1 ∑
k∈S(x)

(
n−mk

s− 1

)
Yk:n,

which shows that for any given x, Dn(s)(x) is an L-statistic. This completes the proof of

Lemma 1.

B.2 Lemma 2 and its proof

Lemma 2. Under the conditions of Theorem 5, we have that for each 0 ≤ c ≤ s2 and fixed

x,

Var(Uc) ≤
2s2 − c
n

Var(K(c)), (C.75)

where Uc is the U-statistic defined in (B.34) and K(c) is the symmetrized kernel function

given in (B.36).

Proof. For notational simplicity, we will drop the dependence of all the functionals on the

fixed vector x whenever there is no confusion. For each 1 ≤ j ≤ 2s2 − c, let us define

K
(c)
j (Z1, · · · ,Zj) = E[K(c)|Z1, · · · ,Zj],

g
(c)
j (Z1, · · · ,Zj) = K

(c)
j − E[K(c)]−

j−1∑
i=1

∑
1≤α1<···<αi≤j

g
(c)
i (Zα1 , · · · ,Zαi

),
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and Vj = Var(g
(c)
j (Z1, · · · ,Zj)). Then it follows from Hoeffding’s decomposition that

Uc = E[K(c)] +

(
n

2s2 − c

)−1 2s2−c∑
i=1

(
n− i

2s2 − c− i

) ∑
1≤α1<···<αi≤n

g
(c)
i (Zα1 , · · · ,Zαi

). (C.76)

Observe that Var(K(c)) =
∑2s2−c

i=1

(
2s2−c
i

)
Vi. Thus, in view of (C.76), we can deduce that

Var(Uc) =

2s2−c∑
i=1

(
n

2s2 − c

)−2(
n− i

2s2 − c− i

)2(
n

i

)
Vj

=

2s2−c∑
i=1

(2s2 − c)!(n− i)!
n!(2s2 − c− i)!

(
2s2 − c

i

)
Vi

≤ 2s2 − c
n

2s2−c∑
i=1

(
2s2 − c

i

)
Vi

=
2s2 − c
n

Var(K(c)),

which establishes the desired upper bound in (C.75). This concludes the proof of Lemma

2.

B.3 Lemma 3 and its proof

Lemma 3. Under the conditions of Theorem 5, it holds that for each 0 ≤ c ≤ s2 and fixed

x,

Var(K(c)) ≤ C[(w∗1)4 + (w∗2)4]
(
µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41]

)
, (C.77)

where K(c) is the symmetrized kernel function given in (B.36) and C is some positive

constant.
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Proof. By the Cauchy–Schwarz inequality, we can deduce that

Var(K(c)) ≤ E[(K(c))2]

=

[(
2s2 − c

c

)(
2s2 − 2c

s2 − c

)]−2 ∑
Π2s2−c

∑
Π2s2−c

E
{

Φ∗(x; Zi1 , · · · ,Zic ,Zic+1 , · · · ,Zis2
)Φ∗(x; Zi1 , · · · ,Zic ,Zis2+1 , · · · ,Zi2s2−c)

× Φ∗(x; Zj1 , · · · ,Zjc ,Zjc+1 , · · · ,Zjs2
)Φ∗(x; Zj1 , · · · ,Zjc ,Zjs2+1 , · · · ,Zj2s2−c)

}
≤ E

{[
Φ∗(x; Z1,Z2, · · · ,Zs2)

]4}
, (C.78)

where
∑∏
2s2−c

denotes the summation introduced in (B.36). In light of the definition of Φ∗

in (C.121), we have

E
{[

Φ∗(x; Z1,Z2, · · · ,Zs2)
]4} ≤ 8(w∗1)4E[Φ4(x; Z1, · · · ,Zs1)]

+ 8(w∗2)4E[Φ4(x; Z1, · · · ,Zs2)]. (C.79)

Let us make some useful observations. Note that

E[Φ4(x; Z1, · · · ,Zs1)] = E
[( n∑

i=1

yiζi,s1

)4]
=
∑
i=1

E[y4
i ζi,s1 ] = s1E[y4

1ζ1,s1 ]

and

E[y4
1ζ1,s1 ] = E

(
[µ(X1) + ε1]4ζ1,s1

)
= E[µ4(X1)ζ1,s1 ] + 6E[µ2(X1)ζ1,s1 ]σ

2
ε + 4E[µ(X1)ζ1,s1 ] + E[ε41],

where ζi,s represents the indicator function for the event that Xi is the 1NN of x among

X1, · · · ,Xs. Moreover, it follows from Lemma 13 in section C.3 that as s1 →∞,

s1E[µk(X1)ζ1,s1 ]→ µk(x)
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for k = 1, 2, 4. Hence, it holds that

E[Φ4(x; Z1, · · · ,Zs1)] = s1E[y4
1ζ1,s1 ]

→ µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41]

as s1 →∞.

Using similar arguments, we can show that as s2 →∞,

E[Φ4(x; Z1, · · · ,Zs2)]→ µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41].

Therefore, combining the asymptotic limits obtained above, (C.78), and (C.79) results in

Var(K(c)) ≤ C[(w∗1)4 + (w∗2)4]
(
µ4(x) + 6µ2(x)σε + 4µ(x) + E[ε41]

)
,

where C is some positive constant. This completes the proof of Lemma 3.

B.4 Lemma 4 and its proof

Lemma 4. Under the conditions of Theorem 6, there exists some constant M > 0 depend-

ing upon w∗1, w∗2, x, and the distribution of ε such that

E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
)
≤M. (C.80)

Proof. Since the observations in the bootstrap sample {Z∗1, · · · ,Z∗n} are selected indepen-

dently and uniformly from the original sample {Z1, · · · ,Zn}, we have

E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
)

= E
(
E
(
[Φ∗(x; Z∗1, · · · ,Z∗s2)]

4
∣∣Z1, · · · ,Zn

))
= n−s2

n∑
i1=1

· · ·
n∑

is2=1

E
(
[Φ∗(x; Zi1 , · · · ,Zis2

)]4
)
.

Observe that for distinct i1, · · · , is2 , we have shown in the proof of Lemma 3 in Section B.3

that as s2 →∞,

E
(
[Φ∗(x; Z1, · · · ,Zs2)]

4
)
→ A
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for some positive constant A that depends upon w∗1, w∗2, x, and the distribution of ε.

Furthermore, note that if i1 = i2 = · · · = ic and the remaining arguments are distinct,

then it holds that

Φ(x; Zi1 , · · · ,Zis2
) = Φ(x; Zi1 ,Zic+1 , · · · ,Zis2

).

Therefore, there exists some positive constant M depending upon w∗1, w∗2, x, and the

distribution of ε such that

E
(
[Φ∗(x; Zi1 , · · · ,Zis2

)]4
)
≤M

for any 1 ≤ i1 ≤ n, · · · , 1 ≤ is2 ≤ n. This concludes the proof of Lemma 4.

B.5 Lemma 5 and its proof

In Lemma 5 below, we will provide the asymptotic expansion of E ‖X(1) − x‖k with k ≥ 1

and its higher-order asymptotic expansion for the case of k = 2 as the sample size n→∞.

Lemma 5. Assume that Conditions 1–3 hold and x ∈ supp(X) ⊂ Rd is fixed. Then the

1-nearest neighbor (1NN) X(1) of x in the i.i.d. sample {X1, · · · ,Xn} satisfies that for any

k ≥ 1,

E ‖X(1) − x‖k =
Γ(k/d+ 1)

(f(x)Vd)k/d
n−k/d + o(n−k/d) (C.81)

as n→∞, where Γ(·) is the gamma function and Vd = πd/2

Γ(1+d/2)
. In particular, when k = 2,

there are three cases. If d = 1, we have

E ‖X(1) − x‖2 =
Γ(2/d+ 1)

(f(x)Vd)2/d
n−2/d −

(
Γ(2/d+ 2)

d(f(x)Vd)2/d

)
n−(1+2/d) + o(n−(1+2/d)). (C.82)

If d = 2, we have

E ‖X(1) − x‖2 =
Γ(2/d+ 1)

(f(x)Vd)2/d
n−2/d −

(
tr(f ′′(x))Γ(4/d+ 1)

f(x)(f(x)Vd)4/dd(d+ 2)
+

Γ(2/d+ 2)

d(f(x)Vd)2/d

)
n−4/d

+ o(n−4/d), (C.83)
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where f ′′(·) stands for the Hessian matrix of the density function f(·). If d ≥ 3, we have

E ‖X(1) − x‖2 =
Γ(2/d+ 1)

(f(x)Vd)2/d
n−2/d −

(
tr(f ′′(x))Γ(4/d+ 1)

f(x)(f(x)Vd)4/dd(d+ 2)

)
n−4/d

+ o(n−4/d). (C.84)

Proof. Denote by ϕ the probability measure on Rd given by random vector X. We begin

with obtaining an approximation of ϕ(B(x, r)), where B(x, r) represents a ball in the

Euclidean space Rd with center x and radius r > 0. Recall that by Condition 2, the

density function f(·) of measure ϕ with respect to the Lebesgue measure λ is four-times

continuously differentiable with bounded corresponding derivatives in a neighborhood of

x. Then using the Taylor expansion, we see that for any ξ ∈ Sd−1 and 0 < ρ < r,

f(x + ρξ) = f(x) + f ′(x)Tξρ+
1

2
ξTf ′′(x)ξρ2 + o(ρ2), (C.85)

where Sd−1 denotes the unit sphere in Rd, and f ′(·) and f ′′(·) stand for the gradient vector

and the Hessian matrix, respectively, of the density function f(·). With the aid of the

representation in (C.85), an application of the spherical integration leads to

ϕ(B(x, r)) =

∫ r

0

∫
Sd−1

f(x + ρξ)ρd−1ν(dξ) dρ

=

∫ r

0

∫
Sd−1

(
f(x) + f ′(x)Tξρ+

1

2
ξTf ′′(x)ξρ2 + o(ρ2)

)
ρd−1ν(dξ) dρ

=

∫ r

0

[
f(x)dVdρ

d−1 +
tr(f ′′(x))Vd

2
ρd+1 + o(ρd+1)

]
dρ

= f(x)Vdr
d +

tr(f ′′(x))Vd
2(d+ 2)

rd+2 + o(rd+2), (C.86)

where ν denotes a measure constructed on the unit sphere Sd−1 as characterized in Lemma

11 in Section C.1 and d· stands for the differential of a given variable hereafter.
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We now turn our attention to the target quantity E ‖X(1)−x‖k for any k ≥ 1. It holds

that

E ‖X(1) − x‖k =

∫ ∞
0

P (‖X(1) − x‖k > t) dt

=

∫ ∞
0

P (‖X(1) − x‖ > t1/k) dt

=

∫ ∞
0

[1− ϕ(B(x, t1/k))]n dt

= n−k/d
∫ ∞

0

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
dt. (C.87)

To evaluate the integration in (C.87), we need to analyze the term
[
1− ϕ

(
B
(
x, t

1/k

n1/d

))]n
.

It follows from the asymptotic expansion of ϕ(B(x, r)) in (C.86) that[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
=
[
1− f(x)Vdt

d/k

n
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/k

n1+2/d
+ o(n−(1+2/d))

]n
. (C.88)

From (C.88), we see that for each fixed t > 0,

lim
n→∞

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
= exp(−f(x)Vdt

d/k).

Moreover, by Condition 1, we have[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
≤
[
exp

(
−α t

1/k

n1/d

)]n
≤ exp

(
−αt1/k

)
.

Thus, an application of the dominated convergence theorem yields

lim
n→∞

∫ ∞
0

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
dt =

∫ ∞
0

lim
n→∞

[
1− ϕ

(
B

(
x,
t1/k

n1/d

))]n
dt

=

∫ ∞
0

exp(−f(x)Vdt
d/k) dt

=
Γ(k/d+ 1)

(f(x)Vd)k/d
, (C.89)
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which establishes the desired asymptotic expansion in (C.81) for any k ≥ 1.

We further investigate higher-order expenasion for the case of k = 2. The leading term

of the asymptotic expansion for E ‖X(1)−x‖2 has been identified in (C.89) with the choice

of k = 2. But we now aim to conduct a higher-order asymptotic expansion. To do so, we

will resort to the higher-order asymptotic expansion given in (C.88). In view of (C.88), we

can deduce from Taylor expansion for log(1− x) around 0 that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
n log

[
1− f(x)Vdt

d/2

n
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n1+2/d
+ o(n−(1+2/d))

]}
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 −
tr(f ′′(x))Vd

2(d+2)
t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n
+ o(n−(2/d))

}
− exp

{
−f(x)Vdt

d/2
}

(C.90)

as n → ∞. To determine the order of above remainders, there are three cases, that is,

d = 1, d = 2, and d ≥ 3. First for d = 1, it follows from (C.90) that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 − f 2(x)V 2
d t

d

2n
+ o(n−1)

}
− exp

{
−f(x)Vdt

d/2
}

= exp
{
−f(x)Vdt

d/2
}(

exp

{
−f

2(x)V 2
d t

d

2n
+ o(n−1)

}
− 1

)
= exp

{
−f(x)Vdt

d/2
}(
−f

2(x)V 2
d t

d

2n
+ o(n−1)

)
(C.91)

as n→∞. Furthermore, it holds that∫ ∞
0

exp
{
−f(x)Vdt

d/2
}(
−f

2(x)V 2
d t

d

2

)
dt = − Γ(2/d+ 2)

d(f(x)Vd)2/d
, (C.92)
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where we have used the fact that for any a > 0 and b > 0,∫ ∞
0

xa−1 exp(−bxp) dx =
1

p
b−a/pΓ(

a

p
). (C.93)

Therefore, combining (C.87), (C.89), (C.91), and (C.92) results in the desired higher-order

asymptotic expansion in (C.82) for the case of k = 2 and d = 1.

When d = 2, noting that 2/d = 1, it follows from (C.90) that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 −
tr(f ′′(x))Vd

2(d+2)
t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n2/d
+ o(n−(2/d))

}
− exp

{
−f(x)Vdt

d/2
}

= exp
{
−f(x)Vdt

d/2
}(

exp

{
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n2/d
+ o(n−(2/d))

}
− 1

)

= exp
{
−f(x)Vdt

d/2
}(
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
− f 2(x)V 2

d t
d

2n2/d
+ o(n−(2/d))

)
(C.94)

as n→∞. Applying equality (C.93) again yields∫ ∞
0

exp
{
−f(x)Vdt

d/2
}(
− tr(f ′′(x))Vd

2(d+ 2)n2/d
t(d+2)/2

)
dt

= −
(

tr(f ′′(x))Γ(4/d+ 1)

d(d+ 2)f(x)(f(x)Vd)4/d

)
n−2/d. (C.95)

Hence, combining (C.87), (C.89), (C.92), (C.94), and (C.95) leads to the desired higher-

order asymptotic expansion in (C.83) for the case of k = 2 and d = 2.

Finally, it remains to investigate the case of d ≥ 3. Noticing that n−1 = o(n−2/d) for
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d ≥ 3, we obtain from (C.90) that[
1− ϕ

(
B

(
x,
t1/2

n1/d

))]n
− exp

{
−f(x)Vdt

d/2
}

= exp

{
−f(x)Vdt

d/2 −
tr(f ′′(x))Vd

2(d+2)
t(d+2)/2

n2/d
+ o(n−(2/d))

}
− exp

{
−f(x)Vdt

d/2
}

= exp
{
−f(x)Vdt

d/2
}(

exp

{
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
+ o(n−(2/d))

}
− 1

)

= exp
{
−f(x)Vdt

d/2
}(
−

tr(f ′′(x))Vd
2(d+2)

t(d+2)/2

n2/d
+ o(n−(2/d))

)
. (C.96)

Consequently, combining (C.87), (C.89), (C.95), and (C.96) yields the desired higher-order

asymptotic expansion in (C.84) for the case of k = 2 and d ≥ 3. This completes the proof

of Lemma 5.

B.6 Lemma 6 and its proof

As in Biau and Devroye (2015), we define the projection of the mean function µ(X) =

E(Y |X) onto the positive half line R+ = [0,∞) given by ‖X− x‖ as

m(r) = lim
δ→0+

E [µ(X) | r ≤ ‖X− x‖ ≤ r + δ] = E [Y | ‖X− x‖ = r] (C.97)

for any r ≥ 0. Clearly, the definition in (C.97) entails that

m(0) = E [Y |X = x] = µ(x). (C.98)

We will show in Lemma 6 below that the projection m(·) admits an explicit higher-order

asymptotic expansion as the distance r → 0.

Lemma 6. For each fixed x ∈ supp(X) ⊂ Rd, we have

m(r) = m(0) +
f(x) tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
r2 +O4r

4 (C.99)
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as r → 0, where O4 is some bounded quantity depending only on d and the fourth-order

partial derivatives of the underlying density function f(·) and regression function µ(·). Here

g′(·) and g′′(·) stand for the gradient vector and the Hessian matrix, respectively, of a given

function g(·).

Proof. We will exploit the spherical coordinate integration in our proof. Let us first

introduce some necessary notation. Denote by B(0, r) the ball centered at 0 and with

radius r in the Euclidean space Rd, Sd−1 the unit sphere in Rd, ν a measure constructed

on the unit sphere Sd−1 as in (C.86), and ξ = (ξi) ∈ Sd−1 an arbitrary point on the unit

sphere. Let Vd be the volume of the unit ball in Rd as given in (C.81). The integration with

the spherical coordinates is equivalent to the standard integration through the identity∫
B(0,r)

f(x) dx =

∫ r

0

ud−1

∫
Sd−1

f(u ξ) ν(dξ) du. (C.100)

From Lemma 11 in Section C.1, we have the following integration formulas with the spher-

ical coordinates ∫
Sd−1

ν(dξ) = d Vd, (C.101)∫
Sd−1

ξ ν(dξ) = 0, (C.102)∫
Sd−1

ξTA ξ ν(dξ) = tr(A)Vd, (C.103)∫
Sd−1

ξiξjξkν(dξ) = 0 for any 1 ≤ i, j, k ≤ d, (C.104)

where A is any d × d symmetric matrices. We will make use of the identities in (C.101)–

(C.104) in our technical analysis.

Let us decompose m(r) into two terms that we will analyze separately

m(r) = lim
δ→0+

E [µ(X) | r ≤ ‖X− x‖ ≤ r + δ]

= lim
δ→0+

E [µ(X)1(r ≤ ‖X− x‖ ≤ r + δ)]

P (r ≤ ‖X− x‖ ≤ r + δ)
, (C.105)
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where 1(·) stands for the indicator function. In view of (C.100), we can obtain the spherical

coordinate representations for the denominator and numerator in (C.105)

P (r ≤ ‖X− x‖ ≤ r + δ) =

∫ r+δ

r

ud−1

∫
Sd−1

f(x + u ξ) ν(dξ) du (C.106)

and

E [µ(X)1(r ≤ ‖X− x‖ ≤ r + δ)]

=

∫ r+δ

r

ud−1

∫
Sd−1

µ(x + u ξ)f(x + u ξ) ν(dξ) du. (C.107)

Note that in light of (C.105)–(C.107), an application of L’Hôpital’s rule leads to

m(r) = lim
δ→0+

E [µ(X)1(r ≤ ‖X− x‖ ≤ r + δ)]

P (r ≤ ‖X− x‖ ≤ r + δ)

=

∫
Sd−1 µ(x + r ξ)f(x + r ξ) ν(dξ)∫

Sd−1 f(x + r ξ) ν(dξ)
. (C.108)

First let us expand the denominator. Using the spherical coordinate integration, we

can deduce that∫
Sd−1

f(x + rξ) ν(dξ)

=

∫
Sd−1

(
f(x) + f ′(x)T ξ r +

1

2
ξT f ′′(x) ξ r2 +

1

6

∑
1≤i,j,k≤d

∂3f(x)

∂xi∂xj∂xk
ξiξjξkr

3

+
1

24

∑
1≤i,j,k,l≤d

∂4f(x + θrξ)

∂xi∂xj∂xk∂xl
ξiξjξkξlr

4
)
ν(dξ), (C.109)

where 0 < θ < 1. Note that the fourth-order partial derivatives of f are bounded in some

neiborghhood of x by Condition 2, and∫
Sd−1

∑
1≤i,j,k,l≤d

|ξiξjξkξl| ν(dξ) =

∫
Sd−1

( d∑
i=1

|ξi|
)4

ν(dξ)

≤
∫
Sd−1

d2
( d∑
i=1

ξ2
i

)2

ν(dξ)

= d2

∫
Sd−1

ν(dξ) = d3Vd. (C.110)
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Thus, from (C.101)–(C.104) and (C.110) we can obtain∫
Sd−1

f(x + rξ) ν(dξ) = f(x) d Vd +
1

2
tr(f ′′(x))Vd r

2 +R1(d, f,x) r4, (C.111)

where the coefficient R1(d, f,x) in the remainder term is bounded and depends only on the

fourth-order partial derivatives of f and dimensionality d.

For the numerator, it holds that∫
Sd−1

µ(x + r ξ)f(x + r ξ) ν(dξ)

=

∫
Sd−1

[
µ(x) + µ′(x)Tξ r +

1

2
ξTµ′′(x) ξ r2

+
1

6

∑
1≤i,j,k≤d

∂3µ(x)

∂xi∂xj∂xk
ξiξjξkr

3 +
1

24

∑
1≤i,j,k,l≤d

∂4µ(x + θ1rξ)

∂xi∂xj∂xk∂xl
ξiξjξkξlr

4
]

×
[
f(x) + f ′(x)Tξ r +

1

2
ξTf ′′(x) ξ r2

+
1

6

∑
i,j,k

∂3f(x)

∂xi∂xj∂xk
ξiξjξkr

3 +
1

24

∑
1≤i,j,k,l≤d

∂4f(x + θ2rξ)

∂xi∂xj∂xk∂xl
ξiξjξkξlr

4
]
ν(dξ), (C.112)

where 0 < θ1 < 1 and 0 < θ2 < 1. In the same manner as deriving (C.110), we can bound

the integrals associated with r4 and the higher-orders r5, r6, r7, and r8 under Condition 2

that the fourth-order partial derivatives of f(·) and µ(·) are bounded in a neighborhood of

x. Hence, we can deduce that∫
Sd−1

µ(x + r ξ)f(x + r ξ) ν(dξ)

= µ(x)f(x)

∫
Sd−1

ν(dξ) +
µ(x)r2

2

∫
Sd−1

ξTf ′′(x)ξ ν(dξ)

+ r2

∫
Sd−1

ξTµ′(x)f ′(x)Tξ ν(dξ) +
f(x)r2

2

∫
Sd−1

ξTµ′′(x)ξ ν(dξ)

+R2(d, f,x)r4 + o(r4)

= µ(x)f(x)dVd +
1

2
[f(x) tr(µ′′(x)) + µ(x) tr(f ′′(x))]Vd r

2

+ µ′(x)Tf ′(x)Vd r
2 +R2(d, f,x)r4 + o(r4), (C.113)
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where the coefficient R2(d, f,x) in the remainder term is bounded and depends only on

the fourth-order partial derivatives of f and dimensionality d. The last equality in (C.113)

follows from (C.101)–(C.104). Therefore, substituting (C.111) and (C.113) into (C.108)

leads to

m(r) = µ(x) +
f(x)tr(µ′′(x)) + 2µ′(x)Tf ′(x)

2 d f(x)
r2 +O4r

4

as r → 0, where O4 is a bounded quantity depending only on d and the fourth-order partial

derivatives of f(·) and µ(·). This concludes the proof of Lemma 6.

B.7 Lemma 7 and its proof

Lemma 7 below provides us with the order of the variance for the first-order Hájek projec-

tion. To simplify the technical presentation, we use Zi as a shorthand notation for (Xi, Yi).

Given any fixed vector x, the projection of Φ(x; Z1,Z2, · · · ,Zs) onto Z1 is denoted as

Φ1(x; z1) given by

Φ1(x; z1) = E [Φ(x; Z1,Z2, · · · ,Zs)|Z1 = z1]

= E [Φ(x; z1,Z2, · · · ,Zs)]. (C.114)

Denote by Ei and Ei:s the expectations with respect to Zi and {Zi,Zi+1, · · · ,Zs}, respec-

tively.

Lemma 7. For any fixed x, the variance η1 of Φ1(x; z1) defined in (C.114) satisfies that

when s→∞ and s = o(n),

lim
n→∞

Var(Φ)

nη1

= 0. (C.115)

Proof. A main ingredient of the proof is to decompose Var(Φ) and η1 using the conditioning

arguments. Denote by ζi,s the indicator function for the event that Xi is the 1NN of x

40



among {X1, · · · ,Xs}. By symmetry, we can see that ζi,s are identically distributed with

mean

Eζi,s = s−1.

In addition, observe that Φ(x; Z1,Z2, · · · ,Zs) =
∑s

i=1 yiζi,s. Then we can obtain an upper

bound of Var Φ as

Var(Φ) ≤ E[Φ2] = E
[( s∑

i=1

yiζ1,s

)2]
=

s∑
i=1

E[y2
i ζ1,s]

= sE[y2
1ζ1,s],

where we have used the fact that ζi,sζj,s = 0 with probability one when i 6= j.

Since E[ε|X] = 0 by assumption, it holds that

sE[y2
1ζ1,s] = sE[µ2(X1)ζ1,s] + σ2

ε sE[ζ1,s]

= E1[µ2(X1)sE2:s[ζ1,s]] + σ2
ε .

A key observation is that E2:s[ζ1,s] = {1 − ϕ(B(x, ‖X1 − x‖))}s−1 and E1[sE2:s[ζ1,s]] = 1.

See Lemma 12 in Section C.2 for a list of properties for the indicator functions ζi,s. Thus,

sE2:s[ζ1,s] behaves like a a Dirac measure at x as s→∞. Such observation leads to Lemma

13 in Section C.3, which entails that

Var(Φ) ≤ µ2(x) + σ2
ε + o(1) (C.116)

as s→∞.

To derive a lower bound for η1, we exploit the idea in Theorem 3 of Peng et al. (2019).

Let B be the event that X1 is the nearest neighbor of x among {X1, · · · ,Xs}. Denote by
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X∗1 the nearest point to x and y∗1 the corresponding response. Then we can deduce that

Φ1(x; Z1) = E[y11B|Z1] + E[y∗11Bc|Z1]

= y1E[1B|Z1] + E[y∗11Bc |Z1]

= ε1E[1B|X1] + µ(X1)E[1B|X1] + E[µ(X∗1)1Bc |X1]

= ε1E[1B|X1] + E[µ(X∗1)|X1].

Since ε is an independent model error term with E[ε|X] = 0 by assumption, it holds that

η1 = Var(Φ1(x; Z1)) = Var(ε1E[1B|X1]) + Var(E[µ(X∗1)|X1])

≥ Var(ε1E[1B|X1]) = σ2
εE
[
E2[1B|X1]

]
=

σ2
ε

2s− 1
, (C.117)

where we have used the fact that

E[E2[1B|X1]] = E[1B′|X1] =
1

2s− 1

with B′ representing the event that X1 is the nearest neighbor of x among the i.i.d. obser-

vations {X1,X2, · · · ,Xs,X
′
2, · · · ,X′s}.

We now turn to the upper bound for η1. From the variance decomposition for Var(Φ)

given in (B.7), we can obtain

Var(Φ) =
s∑
j=1

(
s

j

)
Var(gj(x; Z1, · · · ,Zj))

= sη1 +
s∑
j=2

(
s

j

)
Var(gj(x; Z1, · · · ,Zj)),

which along with (C.116) entails that

sη1 ≤ Var(Φ) ≤ µ2(x) + σ2
ε + o(1). (C.118)
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Consequently, combining (C.117) and (C.118) leads to

η1 ∼ s−1, (C.119)

where ∼ denotes the asymptotic order. Finally, recall that it has been shown that Var(Φ) ≤

C for some positive constant depending upon µ(x) and σε. Therefore, we see that as long

as s→∞ and s = o(n),
Var(Φ)

nη1

= O(
s

n
)→ 0,

which yields the desired conclusion in (C.115). This completes the proof of Lemma 7.

B.8 Lemma 8 and its proof

Assume that s1 < s2 for the two subsampling scales. Let us define

Φ(1)(x; Z1,Z2, · · · ,Zs2) =

(
s2

s1

)−1 ∑
1≤i1<i2<···<is1≤s2

Φ(x; Zi1 ,Zi2 , · · · ,Zis1
) (C.120)

and

Φ∗(x; Z1,Z2, · · · ,Zs2) = w∗1Φ(1)(x; Z1,Z2, · · · ,Zs2) + w∗2Φ(x; Z1,Z2, · · · ,Zs2), (C.121)

where w∗1 and w∗2 are determined by the system of linear equations (13)–(14).

Lemma 8. The two-scale DNN estimator Dn(s1, s2)(x) admits a U-statistic representation

given by

Dn(s1, s2)(x) =

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ∗(x; Z1,Z2, · · · ,Zs2), (C.122)

where the kernel function Φ∗(x; ·) is defined in (C.121).
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Proof. From the definition of the two-scale DNN estimator Dn(s1, s2)(x) introduced in

(15), we have

Dn(s1, s2)(x) = w∗1

(
n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
)

+ w∗2

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ(x; Zi1 , · · · ,Zis2
).

Thus, to establish the U-statistic representation for the two-scale DNN estimatorDn(s1, s2)(x),

it suffices to show that(
n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
)

=

(
n

s2

)−1 ∑
1≤i1<i2<···<is2≤n

Φ(1)(x; Z1,Z2, · · · ,Zs2)

=

(
n

s2

)−1(
s2

s1

)−1 ∑
1≤i1<i2<···<is2≤n

∑
1≤j1<j2<···<js1≤s2

Φ(x; Zij1
,Zij2

, · · · ,Zijs1
). (C.123)

Observe that for each given tuple 1 ≤ u1 < u2 < · · · < us1 ≤ n, it will appear a total of(
n−s1
s2−s1

)
times in the summation∑

1≤i1<i2<···<is2≤n

∑
1≤j1<j2<···<js1≤s2

Φ(x; Zij1
,Zij2

, · · · ,Zijs1
).

Indeed, if (ij1 , ij2 , · · · , ijs1 ) = (u1, u2, · · · , us1) are fixed, then there exist
(
n−s1
s2−s1

)
options for

the remaining s2 − s1 places in (i1, i2, · · · , is2). Consequently, it holds that(
n

s2

)−1(
s2

s1

)−1 ∑
1≤i1<i2<···<is2≤n

∑
1≤j1<j2<···<js1≤s2

Φ(x; Zij1
,Zij2

, · · · ,Zijs1
)

=

(
n

s2

)−1(
s2

s1

)−1(
n− s1

s2 − s1

) ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
)

=

(
n

s1

)−1 ∑
1≤i1<i2<···<is1≤n

Φ(x; Zi1 , · · · ,Zis1
),

which establishes the desired claim in (C.123). This concludes the proof of Lemma 8.
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B.9 Lemma 9 and its proof

We provide in Lemma 9 below the order of the variance of the kernel function Φ∗ defined

in (C.121) for the two-scale DNN estimator Dn(s1, s2)(x), which states that the variance

of the kernel function is bounded from above by some positive constant depending upon

the underlying distributions. Denote by Var(Φ∗) = Var[Φ∗(x; Z1, · · · ,Zs2)] for simplicity.

Lemma 9. Under the conditions of Theorem 3, there exists some positive constant C

depending upon c1 and c2 such that

Var(Φ∗) ≤ C
(
µ2(x) + σ2

ε + o(1)
)

(C.124)

as s1 →∞ and s2 →∞.

Proof. Since Var(Φ∗) ≤ E[(Φ∗)2], it suffices to bound E[(Φ∗)2]. It follows that

E[(Φ∗)2] ≤ 2(w∗1)2E
{

[Φ(1)(x; Z1, · · · ,Zs2)]
2
}

+ 2(w∗2)2E[Φ2(x; Z1, · · · ,Zs2)]

≤ 2(w∗1)2E[Φ2(x; Z1, · · · ,Zs1)]

+ 2(w∗2)2E[Φ2(x; Z1, · · · ,Zs2)], (C.125)

where the last inequality holds since

E
{

[Φ(1)(x; Z1, · · · ,Zs2)]
2
}

=

(
s2

s1

)−2 ∑
1≤i1<···<is1≤s2
1≤j1<···<js1≤s2

E
{

Φ(x; Zi1 , · · · ,Zis1
)Φ(x; Zj1 , · · · ,Zjs1

)
}

≤
(
s2

s1

)−2 ∑
1≤i1<···<is1≤s2
1≤j1<···<js1≤s2

E[Φ2(x; Z1, · · · ,Zs1)]

= E[Φ2(x; Z1, · · · ,Zs1)].
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Since Φ(x; Z1, · · · ,Zs1) =
∑s1

i=1 yiζi,s1 and ζi,s1ζj,s1 = 0 with probability one when i 6= j,

we can deduce that

E[Φ2(x; Z1, · · · ,Zs1)] = E
[( s1∑

i=1

yiζi,s1

)2]
=

s1∑
i=1

s1∑
j=1

yiyjζi,s1ζj,s1

=

s1∑
i=1

y2
i ζi,s1 = s1E[y2

1ζ1,s1 ]

= s1E[µ2(X1)ζ1,s1 ] + σ2
ε s1E[ζ1,s1 ].

Note that s1E[ζ1,s1 ] =
∑n

i=1 ζi,s1 . Furthermore, it follows from Lemma 13 in Section C.3

that

s1E[µ2(X1)ζ1,s1 ]→ µ2(x)

as s1 →∞. Thus, we have that as s1 →∞,

E[Φ2(x; Z1, · · · ,Zs1)] = µ2(x) + σ2
ε + o(1). (C.126)

Similarly, we can show that as s2 →∞,

E[Φ2(x; Z1, · · · ,Zs2)] = µ2(x) + σ2
ε + o(1). (C.127)

Consequently, combining (C.125), (C.126), and (C.127) results in

E[(Φ∗)2] ≤ 2
[
(w∗1)2 + (w∗2)2

][
µ2(x) + σ2

ε + o(1)
]
. (C.128)

Since c1 ≤ s1/s2 ≤ c2 by assumption, it holds that

(w∗1)2 ≤ C and (w∗2)2 ≤ C

for some absolute positive constant C depending upon c1 and c2, which together with

(C.128) entails the desired upper bound in (C.124). This completes the proof of Lemma 9.
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B.10 Lemma 10 and its proof

Lemma 10 below establishes the order of the variance for the first-order Hájek projection of

the kernel function Φ∗ defined in (C.121). Recall that in the proof of Theorem 3 in Section

B.3, we have defined that for each 1 ≤ i ≤ s2,

Φ∗i (x; z1, · · · , zi) = E[Φ∗(x; z1, · · · , zi,Zi+1, · · · ,Zs2) | z1, · · · , zi],

g∗i (z1, · · · , zi) = Φ∗i (x; z1, · · · , zi)− EΦ∗(x; Z1, · · · ,Zi)

−
i−1∑
j=1

∑
1≤α1<···<αj≤i

g∗j (zα1 , · · · , zαj
),

and η∗1 = Var(Φ∗1(x; Z1)).

Lemma 10. Under the conditions of Theorem 3, it holds that

η∗1 ∼ s−1
2 , (C.129)

where ∼ denotes the asymptotic order.

Proof. We begin with the lower bound for η∗1. The proof follows the ideas used in the proof

of Lemma 7 in Section B.7. By definition, it holds that

Φ∗1(x; Z1) = w∗1

(
s2

s1

)−1 ∑
1≤i1<···<is1≤s2

E[Φ(x; Zi1 , · · · ,Zis1
)|Z1]

+ w∗2E[Φ(x; Zi1 , · · · ,Zis2
)|Z1]

= w∗1
s2 − s1

s2

E[Φ(x; Z1, · · · ,Zs1)] + w∗1
s1

s2

E[Φ(x; Z1, · · · ,Zs1)|Z1]

+ w∗2E[Φ(x; Z1, · · · ,Zs2)|Z1].

Since the first term on the right-hand side of the above equality is a constant, we have

Var(Φ∗1(x; Z1)) = Var
(
w∗1
s1

s2

E[Φ(x; Z1, · · · ,Zs1)|Z1]

+ w∗2E[Φ(x; Z1, · · · ,Zs2)|Z1]
)
.

47



Denote by A1 the event that X1 is the nearest neighbor of x among {X1, · · · ,Xs1} and

A2 the event that X1 is the nearest neighbor of x among {X1, · · · ,Xs2}. Let X∗1 be the

nearest point to x among {X1, · · · ,Xs1} and y∗1 the corresponding value of the response.

Similarly, we define X̆1 as the nearest point to x among {X1, · · · ,Xs2} and y̆1 as the

corresponding value of the response. Since εi ⊥⊥ Xi and E[εi] = 0 by assumption, we can

write

E[Φ(x; Z1, · · · ,Zs1)|Z1] = E[y11A1|Z1] + E[y∗11Ac
1
|Z1]

= ε1E[1A1|X1] + E[µ(X1)1A1|X1] + E[µ(X∗1)1Ac
1
|X1]

= ε1E[1A1|X1] + E[µ(X∗1)|X1].

Similarly, we can show that

E[Φ(x; Z1, · · · ,Zs2)|Z1] = ε1E[1A2|X1] + E[µ(X̆1)|X1].

Thus, we can obtain

Var(Φ∗1(x; Z1)) = Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)

+ w∗1
s1

s2

E[µ(X∗1)|X1] + w∗2E[µ(X̆1)|X1]
}
,

which along with the assumption of ε1 ⊥⊥ X1 and E[ε1] = 0 yields

Var(Φ∗1(x; Z1)) = Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)}

+ Var
{
w∗1
s1

s2

E[µ(X∗1)|X1] + w∗2E[µ(X̆1)|X1]
}

≥ Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)}
.
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Furthermore, we can deduce that

Var
{
ε1

(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)}

= σ2
εE
{(
w∗1
s1

s2

E[1A1|X1] + w∗2E[1A2|X1]
)2}

= σ2
ε

{(
w∗1
s1

s2

)2

E
[
E2[1A1|X1]

]
+ 2w∗1w

∗
2

s1

s2

E
[
E[1A1|X1]E[1A2 |X1]

]
+ (w∗2)2E

[
E2[1A2|X1]

]}
.

Let us make use of the following basic facts

E
[
E2[1A1|X1]

]
=

1

2s1 − 1
,

E
[
E[1A1|X1]E[1A2|X1]

]
=

1

s1 + s2 − 1
,

E
[
E2[1A2|X1]

]
=

1

2s2 − 1
.

Then it follows that

Var(Φ∗1(x; Z1)) ≥ σ2
ε

{(
w∗1
s1

s2

)2 1

2s1 − 1
+ 2w∗1w

∗
2

s1

s2

1

s1 + s2 − 1

+ (w∗2)2 1

2s2 − 1

}
. (C.130)

By (C.130) and the assumption of c1 ≤ s1/s2 ≤ c2, we can obtain

Var(Φ∗1(x; Z1)) ≥ Cσ2
ε s
−1
2 (C.131)

for some positive constant C depending upon c1 and c2.

We next proceed to show the upper bound for Var(Φ∗1(x; Z1)). Since

Φ∗(x; Z1, · · · ,Zs2)− EΦ∗(x; Z1, · · · ,Zs2) =

s2∑
j=1

∑
1≤α1<···<αj≤s2

g∗j (Zα1 , · · · ,Zαj
),

we see that

Var(Φ∗(x; Z1, · · · ,Zs2)) =

s2∑
j=1

(
s2

j

)
Var(g∗j (Z1, · · · ,Zj)).
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Then it follows that

Var(Φ∗(x; Z1, · · · ,Zs2)) ≥ s2 Var(Φ∗1(x; Z1)).

Recall that it has been shown in Lemma 9 in Section B.9 that

Var(Φ∗(x; Z1, · · · ,Zs2)) ≤ C,

where C is some positive constant depending upon c1, c2, and the underlying distributions.

Therefore, we can deduce that

Var(Φ∗1(x; Z1)) ≤ Cs−1
2 , (C.132)

which together with (C.131) entails the desired asymptotic order in (C.129). This concludes

the proof of Lemma 10.

D Additional technical details

C.1 Lemma 11 and its proof

We present in Lemma 11 below some useful spherical integration formulas.

Lemma 11. Let Sd−1 be the unit sphere in Rd, ν some measure constructed specifically on

the unit sphere Sd−1, and ξ = (ξi) ∈ Sd−1 an arbitrary point on the unit sphere. Then for

any d× d symmetric matrices A, it holds that∫
Sd−1

ν(dξ) = d Vd, (D.133)∫
Sd−1

ξ ν(dξ) = 0, (D.134)∫
Sd−1

ξTA ξ ν(dξ) = tr(A)Vd, (D.135)∫
Sd−1

ξiξjξkν(dξ) = 0 for any 1 ≤ i, j, k ≤ d, (D.136)
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where Vd = πd/2

Γ(1+d/2)
denotes the volume of the unit ball in Rd.

Proof. It is easy to see that identities (D.134) and (D.136) hold. This is because for each

of them, the integrand is an odd function of variable ξ, which entails that the integral is

zero. Identity (D.133) can be derived using the iterated integral

Vd =

∫ 1

0

∫
Sd−1

ρd−1ν(dξ) dρ =

(∫ 1

0

ρd−1 dρ

)(∫
Sd−1

ν(dξ)

)
=

1

d

∫
Sd−1

ν(dξ).

To prove (D.135), we first represent the integral in (D.135) as a sum of integrals by

expanding the quadratic expression in the integrand∫
Sd−1

ξTA ξ ν(dξ) =
∑

1≤i,j≤d

Aij

∫
Sd−1

ξiξj ν(dξ). (D.137)

For i 6= j, we have by symmetry that∫
Sd−1

ξiξj ν(dξ) =

∫
Sd−1

−ξiξj ν(dξ) = 0. (D.138)

Thus, it holds that ∫
Sd−1

ξTA ξ ν(dξ) =
d∑
i=1

Aii

∫
Sd−1

ξ2
i ν(dξ)

= tr(A)

∫
Sd−1

ξ2
1 ν(dξ). (D.139)

When d = 1, Sd−1 reduces to the trivial case of two points, 1 and −1. Then we can obtain

that for d = 1, ∫
Sd−1

ξTA ξ ν(dξ) = 2tr(A) = tr(A)Vd, (D.140)

where the last equality comes from the fact that Vd = 2 for d = 1. When d ≥ 2, we now

use the spherical coordinates: ξ1 = cos(φ1), ξk = cos(φk)
∏k−1

i=1 sin(φi) for 1 ≤ k ≤ d − 1,
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and ξd =
∏d−1

i=1 sin(φi), where 0 ≤ φd−1 < 2π and 0 ≤ φi < π for 1 ≤ i ≤ d − 2. Then the

volume element becomes

ν(dξ) =

(
d−2∏
i=1

sind−1−i(φi)

)
d∏
i=1

dφi.

It follows that∫
Sd−1

ξ2
1 ν(dξ) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

cos2(φ1)

(
d−2∏
i=1

sind−1−i(φi)

)
d∏
i=1

dφi

=

∫ π
0

cos2(φ1) sind−2(φ1) dφi∫ π
0

sind−2(φ1) dφi

∫ 2π

0

∫ π

0

· · ·
∫ π

0

(
d−2∏
i=1

sind−1−i(φi)

)
d∏
i=1

dφi

=

∫ π
0

cos2(φ1) sind−2(φ1) dφi∫ π
0

sind−2(φ1) dφi

∫
Sd−1

ν(dξ)

=

∫ π
0

cos2(φ1) sind−2(φ1) dφi∫ π
0

sind−2(φ1) dφi
dVd. (D.141)

By applying the integration by parts twice to the numerator from the above expression,

we can obtain ∫ π

0

cos2(φ1) sind−2(φ1) dφ1 =
1

d− 1

∫ π

0

sind(φ1) dφ1.

In addition, using the trigonometric integration formulas, we can show that∫ π
0

sind(φ1) dφ1∫ π
0

sind−2(φ1) dφ1

=
d− 1

d
,

which along with (D.139) and (D.141) leads to∫
Sd−1

ξTA ξ ν(dξ) = tr(A)Vd

for the case of d = 2. Also, it is easy to see that the same formula holds for the case of

d = 1 by (D.140). This completes the proof of Lemma 11.
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C.2 Lemma 12 and its proof

Let us define ζi,s as the indicator function for the event that Xi is the 1NN of x among

{X1, · · · ,Xs}. We provide in Lemma 12 below a list of properties for these indicator

functions ζi,s.

Lemma 12. The indicator functions ζi,s satisfy that

1) For any i 6= j, we have ζi,sζj,s = 0 with probability one;

2)
∑s

i=1 ζi,s = 1;

3) E[ζi,s] = s−1;

4) E2:s[ζ1,s] = {1−ϕ(B(x, ‖X1−x‖))}s−1, where Ei:s denotes the expectation with respect

to {Zi,Zi+1, · · · ,Zs}.

The proof of Lemma 12 involves some standard calculations and thus we omit it here

for simplicity. Let us make some remarks on E2:s[ζ1,s] that can be regarded as a function

of X1. The last property in Lemma 12 above shows that E2:s[ζ1,s] vanishes asymptotically

as s tends to infinity, unless X1 is equal to x. Moreover, we see that

E1[E2:s[ζ1,s]] = s−1.

These two facts suggest that E2:s[ζ1,s] tends to approximate the Dirac delta function at x,

which will be established formally in Lemma 13 in Section C.3.

C.3 Lemma 13 and its proof

Lemma 13. For any L1 function f that is continuous at x, it holds that

lim
s→∞

E1[f(X1)sE2:s[ζ1,s]] = f(x). (D.142)
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Proof. We will show that the absolute difference |E1[f(X1)sE2:s[ζ1,s]]− f(x)| converges to

zero as s→∞. By property 3) in Lemma 12 in Section C.2, we have

E1[sE2:s[ζ1,s]] = 1.

Thus, we can deduce that

|E1[f(X1)sE2:s[ζ1,s]]− f(x)| = |E1[(f(X1)− f(x)) sE2:s[ζ1,s]]|

≤ E1[|f(X1)− f(x)|sE2:s[ζ1,s]]. (D.143)

Let ε > 0 be arbitrarily given. By the continuity of function f at point x, there exists a

neighborhood B(x, δ) of x with some δ > 0 such that

|f(X1)− f(x)| < ε

for all X1 ∈ B(x, δ). We will decompose the above expectation in (D.143) into two parts:

one inside and the other outside of B(x, δ) as

E1[|f(X1)− f(x)|sE2:s[ζ1,s]] = E1[|f(X1)− f(x)|sE2:s[ζ1,s]1B(x,δ)(X1)]

+ E1[|f(X1)− f(x)|sE2:s[ζ1,s]1Bc(x,δ)(X1)], (D.144)

where the superscript c stands for set complement in Rd.

The first term on the right-hand side of (D.144) is bounded by ε since

E1[|f(X1)− f(x)|sE2:s[ζ1,s]1B(x,δ)(X1)] ≤ E1[εsE2:s[ζ1,s]1B(x,δ)(X1)]

≤ E1[εsE2:s[ζ1,s]] = ε. (D.145)

To bound the second term on the right-hand side of (D.144), observe that

B(x, δ) ⊂ B(x, ‖X1 − x‖)

when X1 ∈ Bc(x, δ). Then an application of Lemma 12 gives

E2:s[ζ1,s] ≤ (1− ϕ(B(x, δ)))s−1
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when X1 ∈ Bc(x, δ). Thus, we can deduce that

E1[|f(X1)− f(x)|sE2:s[ζ1,s]1Bc(x,δ)(X1)]

≤ E1[|f(X1)− f(x)|s(1− ϕ(B(x, δ)))s−1
1Bc(x,δ)(X1)]

≤ s(1− ϕ(B(x, δ)))s−1E1[|f(X1)− f(x)|]

≤ s(1− ϕ(B(x, δ)))s−1 (‖f‖L1 + f(x)) . (D.146)

Finally, we see that the right-hand side of the last equation in (D.146) tends to 0 as

s→∞. Therefore, for large enough s,

E1[|f(X1)− f(x)|sE2:s[ζ1,s]1Bc(x,δ)(X1)]

can be bounded from above by 2ε. Since the choice of ε > 0 is arbitrary, combining such

upper bound, (D.143), (D.144), and (D.145) yields the desired limit in (D.142) as s→∞.

This concludes the proof of Lemma 13.
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p Method True Mean Est. Mean (SE) Bias MSE Est. Variance Bias (R) MSE (R)

Simulation setting 1

10 TDNN -1.12500 -1.63763 (0.01) -0.51263 0.36274 0.09192 - -

10 CF -1.12500 0.06665 (0.00078) 1.19165 1.42063 0.00078 - -

Simulation setting 2

10 TDNN 1.96166 1.44716 (0.00989) -0.51449 0.36240 0.09372 0.06597 0.29096

10 CF 1.96166 0.19061 (0.00024) -1.77105 3.13668 0.00007 -0.90673 1.05201

20 TDNN 1.96166 1.44355 (0.00977) -0.51811 0.36378 0.09270 0.04766 0.29497

20 CF 1.96166 0.18936 (2e-04) -1.77230 3.14110 0.00006 -0.87784 1.00680

30 TDNN 1.96166 1.44243 (0.00955) -0.51923 0.36070 0.09403 0.00592 0.27087

30 CF 1.96166 0.18877 (2e-04) -1.77289 3.14316 0.00005 -0.89306 1.03192

40 TDNN 1.96166 1.4347 (0.00989) -0.52696 0.37550 0.09592 -0.01069 0.27223

40 CF 1.96166 0.18679 (0.00017) -1.77487 3.15021 0.00005 -0.90926 1.04946

50 TDNN 1.96166 1.41684 (0.00987) -0.54482 0.39408 0.09824 0.02465 0.28106

50 CF 1.96166 0.1856 (0.00017) -1.77606 3.15442 0.00005 -0.91459 1.05752

Simulation setting 3

20 TDNN 0.40000 0.47782 (0.00781) 0.07782 0.06706 0.06077 -1.08856 1.42839

20 CF 0.40000 0.09126 (0.00052) -0.30874 0.09559 0.00048 -1.47286 2.33523

Table 2: Comparison of TDNN and CF in the three simulation settings in Section A.2.

The true mean corresponds to the data generating process evaluated at the fixed test

point. The standard error of the estimated mean is included in the parentheses, while the

estimated variance corresponds to the variance estimated from the fixed test point. The

columns with “(R)” correspond to the bias and MSE for the random test point.
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