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LOW ENERGY SCATTERING ASYMPTOTICS FOR PLANAR OBSTACLES

T. J. CHRISTIANSEN AND K. DATCHEV

ABSTRACT. We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce
asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-
Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent
and an identity of Petkov and Zworski to relate the scattering matrix to the resolvent. The leading
singularities are given in terms of the obstacle’s logarithmic capacity or Robin constant. We expect
these results to hold for more general compactly supported perturbations of the Laplacian on R?,
with the definition of the Robin constant suitably modified, under a generic assumption that the
spectrum is regular at zero.

1. INTRODUCTION

1.1. Main results. Consider the Dirichlet Laplacian —A on a planar exterior domain = R?\ &,
where ¢ C R? is a compact set. We study three fundamental objects in the scattering theory of
—A on Q: the resolvent, the scattering matrix, and the scattering phase. Each is a function of
the frequency A. Our main results are uniformly convergent series expansions for all three objects
near A = 0. We also deduce asymptotics for the Dirichlet-to-Neumann operator and for its lowest
eigenvalue.

We begin with the resolvent R()\), defined for Im A > 0 to be the operator which takes f € L?(€2)
to the unique u € D := {u € H}(Q): Au € L*(Q)} solving (—A—\?)u = f. For every x € C5°(R?),
the product x R(\)x extends meromorphically as an operator-valued function of A to A, the Riemann
surface of the logarithm: see Section 1.4 for more on the notation used here and below.

For our main results we assume that & is not polar, i.e. that C§°(£2) is not dense in H'(R?).
For example, by Lemma A.1, it is enough if & contains a line segment.

Theorem 1. Suppose O is not polar. Then there are operators Baj L2(Q) = Dy (i.e. mapping
compactly supported functions in L?(Q) to functions which are locally in D) and a constant a, such
that, for every x € C§°(R?), we have

00 J
XR(\)x = Z Z XBajix A% (log A — a)*
§=0 k=—j—1 (1.1)

= XBoox + xBo,—1x(log A — a) ' + xBa,1x\*(log A —a) + - - -,

with the series converging absolutely in the space of bounded operators L*(Q)) — D, uniformly on
sectors mear zero.
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Remarks. 1. Our proof also shows that if k # 0, then Byj;; has finite rank. Moreover, there is a
unique harmonic function G in Dj,. such that log|z| — G(z) is bounded as || — oo, and
1 .
By_1=—G®G, a=log2—~v—-C(0)+ W—Z, C(0):= lim log|z| — G(z). (1.2)
’ 2 2 |z|—00
The quantity C(€) is important in potential theory. It is the negative of Robin’s constant and as
the logarithm of the logarithmic capacity: see Appendix A.

2. We used the following definition, which will recur below: Given functions f, mapping A to a
Banach space B, we say » . fn()\) converges absolutely in B, uniformly on sectors near zero if, for
any ¢ > 0, there is Ay > 0 such that ) ||fn()\)|lg converges uniformly on {A € A: 0 < [\ <
A1 and |arg A| < ¢}. Moreover, the series (1.1), as well as the series (1.6) below, may be freely
differentiated term by term, with each resulting series having a tail which converges absolutely in B,
uniformly on sectors near zero: see Appendix B.

3. If we used A¥ (log A\)* instead of A%/ (log A — a)* in our expansion, in place of (1.1) we would get
o J
XR)x =) XBaj i x 2% (log \)*. (1.3)
7=0 k=—00

Note that terms in (1.3) with j > 1 have infinitely many predecessors, and hence (1.3) is an
asymptotic expansion only as far as the terms with j = 0. The technique of using a shift of the
logarithm to reduce the number of terms comes from [Jen84].

Our second theorem concerns the scattering matrix S(A), which is a meromorphic family of
operators L2(S') — L2(S!). It can be defined for A € A by Petkov and Zworski’s formula
1 _
SV =T+AN),  where AW = BB alRWB, REQ.  (14)
Here E()) is the operator from L2(R?) to L?(S') which has integral kernel e=“®y3(z), and
X1, X2, X3 are radial functions in C§°(R?) obeying
x1 = 1 near D, Xi = 1 near supp Xi—1, 0<y; <1, (1.5)

where p is large enough that & C D,, and D, = {z € R?: |z| < p}. The formula (1.4) comes from
Theorem 4.26 of [DyZw19], and is a variant of the original Proposition 2.1 of [PeZwO01].

Theorem 2. Suppose € is not polar. Then there are finite rank operators S;y: L*(S') — L*(S1),
such that

. 00 Li/2]
S\ =1+ %(1 ®1)(logh—a) ' + 811 A(logh—a) T+ > SipM(logh—a)f, (1.6)
J=2k==1j/2)-1
with the series converging absolutely in the space of trace-class operators L*(S') — L2(S'), uni-
formly on sectors near zero.

Our third theorem concerns the scattering phase o(\) for A near zero, defined by

1 1
o(A) = %log det S(\) = %trlog S(A). (1.7)
Theorem 3. Suppose O is not polar. Then there are complex numbers asj . and bajy such that
o(\) = 9 log (1 + m) + Z Z azj kA (log A — a)”, (1.8)

J=1k=—o00
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and
—1
log A —a)

o
. 2j—1 Y
S D) S YT NS

j=1k=—00

o) = 2X(

with the series converging absolutely in C, uniformly on sectors near zero. In particular, as A — 0
through positive real values, we have

s

2log(A/2) +2C(0) + 2v

o(A) = %arctan ( ) +O(Nlog \), (1.10)

and
—2/A
(log(\/2) + C(O) +v)? + =2

o' (\) = 1 + O(Alog \). (1.11)

Remark. In each of the theorems above, the assumption that & is not polar is necessary as well as
sufficient. Indeed, if & is polar, then the expansion near A = 0 of R(\) is not of the form (1.1) but
instead equals that of the free resolvent (2.4). Moreover, S(A\) = I and o(\) = 0 for all A\. To see
this, note that if & is polar, then H}(2), the form domain of the Dirichlet Laplacian on €2, is dense
in H'(R?), the form domain of the free Laplacian on R?. Consequently the continuous extension
of R(\) from L2(Q) to L?(R?) equals the free resolvent Ry()\) of Section 2.1.

1.2. Background and context. Early low frequency resolvent expansions were obtained by Mac-
Camy [Mac65]. Vainberg [Vai75, Vai89] has very general results and many references. We focus on
dimension two because of its physical importance and because the problem is harder here than in
other dimensions; see for example Lemma 2.3 in [LaPh72] by Lax and Phillips for an expansion of
the scattering matrix in dimension three.

Our Theorem 1 is a variant of Theorem 2 of [WeWi92] by Weck and Witsch, of Theorem 1 of
[K1Va94] by Kleinman and Vainberg, and of Theorem 1.7 of [StWa20] by Strohmaier and Waters.

More specifically, the results of [KIVa94] and [StWa20] cover problems which are more general
than ours in many respects, but specialized to our setting they require 92 to be C*°, while our
assumption that & is polar is optimal. The results of [WeWi92] expand only up to O(A\?). Our
methods are different from those in the papers mentioned above. Specifically, [K1Va94] and [StWa20]
rely on general theory developed in [Vai89] and [MiiSt14] respectively, while our approach based on
algebra of series of operators as in Vodev [Vod99, Vod14] leads to a direct short proof of complete
resolvent asymptotics: see Section 2.

Our scattering phase asymptotic (1.10) improves previous results in [HaZe99] and [McG13], and
is implicit in the proof of Theorem 3.25 of [StWa20]. To compare the results, recall that in [McG13],
McGillivray computes asymptotics of the Krein spectral shift function ¢ defined by

tr (o) = 9(-2)) = [ g gty

where J is the operator taking functions on R?\ & to functions on R? by extending them by zero.
By the Birman-Krein formula (see [JeKaT78] or Proposition 0.1 and Theorem 1.1 of [Chr98]), we
see that (u) = —o (/). Putting b = log4 — 2C (&) — 2y and applying (1.10) gives

&(p) = %arctan (@) + O(plog p) (1.12)

1 —b -
= + + + O((log p)™). 1.13
—logp  (—logu)? = (—logu)? ((og )™ (1.13)
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Thus, (1.12) recovers and improves (1.13). The first term of (1.13) was first computed in
[HaZe99], and all three terms of (1.13) were computed in [McG13] (note that C(K) in [McG13]
corresponds to 2C(0) here). See Figure 1 for a comparison of the approximations when the obstacle
0 is a disk of radius p, in which case the spectral shift function is given by

Ly 2 1) .
&) == D arg (Hy (pv/im)/Hy (p/0)); (1.14)
f=—00
see (C.1). Note that the scaling &,(u) = &1(p?u) exhibited by (1.14) is also respected by our
approximation in (1.12), but not by the individual terms of (1.13).
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F1GURE 1. Graphs of the spectral shift function ¢ and its first three approximations,
when the obstacle € is a disk of radius p = 0.15 (top left), 1.5 (top right), 15 (bottom
left), and 150 (bottom right). The horizontal axis is the dimensionless (scaling-
invariant) variable pA = p,/fi. The blue is the true value (1.14). The green is the
first term from (1.13), first obtained in [HaZe99]. The red is the first three terms
from (1.13), first obtained in [McG13]. The yellow is the leading approximation
obtained in this paper, given by the first term of (1.12), which is implicit in the
proof of Theorem 3.25 of [StWa20]. Observe that the yellow and blue curves are
independent of the radius p, while the red and green depend on p.

More recently, in [GMWZ22], more accurate analytic and numerical investigations of the scatter-
ing phase have been conducted for both a disk and for other obstacles, including ones with different
kinds of stable and unstable trapping.

1.3. Discussion of methods and outline of proof. The method of proof is as follows. In
Section 2, we deduce the series for the resolvent R(A) of Theorem 1 from the series for the free
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resolvent Rp(\), using a resolvent identity due to Vodev [Vod14], and techniques in part based on
Vodev’s work in [Vod99].

Our techniques can be applied to quite general compactly supported perturbations of —A on
R?, far beyond the specific, classical setting considered here, that of the Dirichlet problem on an
exterior domain. In a companion paper we will address the more general case. As demonstrated
already in [BGDS8S, JeNe01] for the case of Schrédinger operators on R?, different kinds of singular
behavior of the resolvent near zero can then appear.

We deduce the series for the scattering matrix and scattering phase of Theorems 2 and 3 in
Section 3, by inserting the resolvent expansion (1.1) into the formulas (1.4) and (1.7). Section 4
contains some related results for the Dirichlet-to-Neumann operator.

Appendix A collects background on polar and nonpolar sets, Appendix B contains a lemma
about series with logarithmic terms, and Appendix C contains formulas for the scattering matrix
and scattering phase of a disk; see also Section 5.2 of [HaZe99] and Section 3 of [GMWZ22].

The presentation of Theorems 1, 2, and 3 is self-contained, based on standard complex and
functional analysis, except for a few ingredients. For the resolvent expansions we quote the series
(2.1) and (2.2) for the free resolvent. For the scattering matrix and scattering phase we quote
Petkov and Zworski’s formula (1.4). Our analysis of the Dirichlet-to-Neumann operator in Section 4
requires more, namely mapping properties from [GMZ07], results on solutions of boundary value
problems from [McL00], and results on analyticity of eigenvalues for which [ReSi78] is a reference.

1.4. Notation and conventions.

o C§°(U) is the set of functions in C*°(U) with compact support in U.
e 0 C R?is compact and ) = R?\&. We say O is polar if C§°(Q) is dense in H'(R?). The Dirichlet
Laplacian is —A: D — L*(2), with D = {u € H}(Q): Au € L*(Q)}, and A := 82, + 52,.

e The Dirichlet resolvent R(\) is defined for Im A > 0 to be the operator which takes f € L%(Q) to
the unique u € D solving (—A—M\2)u = f. For every x € C§°(R?), the product xR(\)x continues
meromorphically from the upper half plane to A, the Riemann surface of the logarithm. The free
resolvent Ro()\) is defined in the same way but with L?(2) replaced by L?(R?) and D replaced
by H?(R?). See Sections 2.1 and 2.3 for a review of these facts.

e The mapping A — C given by A — log\ is bijective, with the upper half plane ImA > 0
identified with the subset of A where arg A = Imlog A takes values in (0, 7).

e The mapping A — A on A is defined by |A\| = |\| and arg A = — arg \.

e The product of a function y on R? and a function f on € is the function yf on © obtained by
ignoring the values of x on R?\ Q.

e L2(9) is the set of functions f € L?(Q2) such that yf = f for some x € C§°(R?). Other function
spaces with a ‘c’ subscript are defined analogously.

o Dy, is the set of functions f on Q such that xf € D for all y € C§°(R?). Other function spaces
with a ‘loc’ subscript are defined analogously.

e (G is the unique harmonic function in Dj,. such that log |x| — G(z) is bounded as |z| — co. We
construct G and prove its uniqueness in Lemma 2.6.

C(0) = lim|g|_,o0 log |z| — G ().
7 is Euler’s constant, given by v = —I"(1) = 0.577....
a=log2—~—C(0O)+ %
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e g ® h means the operator of rank one which maps f to ([ hf)g.

e Petkov and Zworski’s formula for the scattering matrix S(\) = I + A(A) is given in (1.4). This
corresponds to the definition S(A\) = S,(A)Sa0(A) ™1, where S, is the absolute scattering matrix
and S, is the free absolute scattering matrix, as in Section 4.4.3 of [DyZw19]. Note that the
convention in [PeZwO01], as in [Mel95], has instead S(\) = Sz0(A)"1S.(N).

e The cutoff functions x1, x2, and ys are introduced in (1.5).

e The scattering phase is o(\) = 5= logdet S(A) = 51 trlog S(X). This definition gives the same
value for either convention of S(\).

N={1,2...} and Ny = {0} UN.

2. THE RESOLVENT

2.1. The free resolvent. Let Ro()\) be the free resolvent on R?, defined for Im A > 0 to be the
operator which takes f € L?(R?) to the unique u € H%(R?) solving (—A — A?)u = f. The integral
kernel of Ro(\) is given in terms of Bessel functions of order 0 by

Ro(N)(ar0) = o Ko(-iMe — yl) = {H (Ao — ), 2.1)
where
i i e )2 m X2 m
00 = (1 g (3)) w0 =2 v+ DT o = 32 R

and 1 is the digamma function, i.e. (1) =T"(1) = —v, ¥(m + 1) = ¥(m) + L; see e.g. [Bor20,

Section 4.1.3] and [Olv97, Sections 2.9.3, 7.5, and 7.8.1]. Thus,
= (2 A\ 26 (=X\2/4)™

HV () = Zlog(2) -2 ) +1) 2 2.2

o= 3 (Zes (3) ~Feom 1) SO (2.2

By large argument Bessel function asymptotics, (see e.g. [Olv97, Section 7.4.1]), for any A in the

upper half plane we have |Ro(\)(z,y)| = O(e~1*=¥/"mX) Hence, for any f € L2(R?) and X in the
upper half plane,

Ro(N) f(z) = O(e71#ImA) g 2] — o0 (2.3)
It follows from (2.1) and (2.2) that Ro(A\)(x,y), and hence also Ro()\): L2(R?) — HZ_(R?),

continue holomorphically from the upper half plane to A, the Riemann surface of log A\. For each
A € A we write

co 1

Ro(A) = ) " Ryjd¥(log A\)* = Rop log A+ Ro(N), (2.4)
j=0 k=0
where Ro(\) is defined by the equation, the Ry} are operators L2(R?) — HZ_(R?) such that
xRa2j kX is bounded L?(R?) — H?(R?) for any y € C§°(R?), and the series converges in the sense
that, for every Ao > 0 and y € C§°(R?), the series

co 1
Z Z HXR2j,kXHL2(R2)—>H2(R2)’)\|2j| log )\|k
§=1 k=0

converges uniformly for all A € A with |A] < A.

The leading coefficient is
1
Ryp=——(1®1
01 271'( ® )7



LOW ENERGY SCATTERING ASYMPTOTICS FOR PLANAR OBSTACLES 7

where 1 ® 1 means the operator mapping ¢ to the constant ng . The next term has integral kernel
log?2 — 1
log2 =7 i

1
Roo(z,y) :—%log|x—y|+ or 1

Since log |z — y| = 3 log |z — y|*> = log |z| 4 § log(1 — Tj—lé/ + %), we obtain
1 log2 —~ i I = 1 / )
R :(——1 i Sl 7) =N ey — P fy) dy, (2.5
oof (x) 5 logla+ = —+ R2f+47r?§:lm]m\2m Q2z-y—|y)™f(y) dy, (2.5)

for |z| large enough, when f € L2(R?).

2.2. The Dirichlet resolvent. Recall that the Dirichlet Laplacian —A is the unique operator
D:={u€ H}(Q): Au € L*(Q)} — L*(Q2) such that

/ Vu-Vov = /(—Au)v, for all w € D and v € H(Q); (2.6)
Q Q

see the first two pages of Section 2 of Chapter 8 of [Tay11], or Section 6.1.2 of [Bor20].

From the fact that —A: D — L%(Q) is nonnegative, we know that | R(ik) | 2 ()= 12(0) = k2 for
all kK > 0. We begin our analysis of the resolvent near x = 0 by showing that

81(10p1] |]/<;3/2R(i/i)x||L2(Q)_>H3(Q) < 00, for all x € C5°(R?). (2.7)
re(0,

The bound (2.7) follows from ||xf|l 43 < [Ix|lzallfllzz (by Hélder’s inequality, Theorem 189 of
[HLP34]) and the following lemma based on a Sobolev interpolation inequality of Ladyzhenskaya.

Lemma 2.1. Let k > 0, g € L*(Q) N L*3(Q), and u = R(ir)g. Then

1
2 211,112 2
IVellzag) + Ml ) < == l9lLos o) (2.8)

Proof. By (2.6) with u = v, and using Holder’s inequality, we have

/ 00y uf? + / Oauf? + 2 / fuf? = / 9 < llgl passllul .
Q Q Q Q

By equation (7.2) of Chapter 4 of [Tayll], if u € H}(Q) then u € H}(R?), where we identify
u with its extension by 0 from Q to R?. As in Supplement 2 of Chapter 1 of [Lad85], we use

t .
o) =51 [0 @' = 7¢I < 3 Jg '] to obtain

/ \u|4 §/ sup |u(x1,:c2)|2d:c2/ sup |u(a:1,x2)]2dx1
R2 R R

r1€ER xo€R

1/2 1/2
S Ry e ey T O O T e (B
R2 R2 R2 R2 R2

Hence, using also a'/2p'/4c1/8q1/8 < $a+ 1b+ tc+ £d (see Theorem 9 of [HLP34]), we obtain

1/2 1/4 1/4
/Q O, uf*+ /Q Oauf? + 2 /Q ul? < gl s el 2210l Y Dl

1 3/2 g2 1 1
< (/ 4/3> —|—/ u2—|—/ 6mu2+/ axu2,
which implies (2.8). O
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We will also need two basic facts about harmonic functions. The first is that, if u is harmonic
and bounded on {z € R? : |z| > p}, then there are constants co, ¢j, ¢js, such that

oo
u(rcosf,rsinf) = co + Z(cm cos j60 + c; s sin j0)r 7, for r > p. (2.9)
j=1

The second gives the way that the assumption that & is not polar is used in our main results.

Lemma 2.2. If 0 is not polar, then the only bounded harmonic function in Dy, is the zero function.

Proof. Let u € Djoc be harmonic and bounded, and let D, = {z € R?: |z| < p}. By (2.9),

/ |Vul? = / uwdudS = O0(p 1), as p — 00,

QnD, oD,

which implies that Vu is identically 0. Because € is not polar, the only locally constant function
in Dyyc is the zero function: see the implication (2) = (1) of Lemma A.2. O

2.3. Vodev’s identity. Recall that x; € C§°(R?) is 1 near &. Let z and A be in the upper half
plane. To relate the resolvents R(\) and Ry()), we start by using

RO = x1)(=A = X)Ro(A) = ROV{(=A = X*)(1 = x1) + [x1, Al}Ro(N)

to write
R = x1) = {1 = x1 — RN)[A, xal} Ro(A). (2.10)
Similarly to (2.10) we have
(1 =x1)R(2) = Ro(2){1 — x1 + [A, x1]R(2)}. (2.11)
Note, for later reference, that combining (2.11) with (2.3) shows that
fel? Q) and ImA>0 =  R(2)f(z)=0( ™ a5 |z] — co. (2.12)

Inserting (2.11) and (2.10) into
R(A) = R(2) = (A = 2 ROVR(z) = (W = 22) (RO (2 = x) R() + RO = x1)2R(2) )
gives
R(\) = R(z) =(0 = 22) (RO)x1 (2 = x1)R(2)
+ {1 =x1) = RVIA, xal}Ro(MN) Ro(2){ (1 = x1) + [A, Xl]R(Z)})-
Plugging in (A2 — 22)Ro(A\) Ro(2) = Ro(\) — Ro(2), and introducing the notation
K1 =1-x1+[Axa]R(2), (2.13)
gives
R(A) — R(2) =(\* = 2)R(\)x1(2 — x1) R(2) + {1 — x1 = RO)[A, x1]}(Ro(A) — Ro(2)) K1. (2.14)
We now bring the R(A) terms to the left, the remaining terms to the right, and factor, obtaining
RN (I —K(N) =F(N), (2.15)
where
K = (N =2)xa(2 = x1)R(2) — [A xa](Ro(A) — Ro(2)) K1,
F(A) = R(2) + (1 = x1)(Ro(A) — Ro(2)) K. (2.16)
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Here and below we shorten formulas by using notation which displays A-dependence but not z-
dependence for operators other than resolvents. The identities (2.14) and (2.15) are versions of
Vodev’s resolvent identity [Vod14, (5.4)].

For any x € C§°(R?), the resolvent R(\) continues meromorphically to A, the logarithmic cover
of C\ {0}. This well-known fact follows directly from Vodev’s identity, as in Section 2 of [ChDa22].
Indeed, take x € C5°(R?) such that y is 1 near the support of x; and multiply (2.15) on the left
and right by x. That gives xR(A)x(I — K(X\)x) = xF'(\)x. Observe now that K (A)x is compact
L2(Q) — L*(2), and |[K(N)|l12()—12(0) — 0 as X = z. Consequently, by the analytic Fredholm
theorem (Theorem 4.19 of [Bor20]), xR(\)x = xF(N)x(I — K(\)x)~! continues meromorphically
from the upper half plane to A, the Riemann surface of log A.

Thus (2.14) and (2.15) continue to hold for any z and X in A, with K (\) and K7 mapping L2(9)
to L2(9), and R()\) and F(\) mapping L2(Q) — Dioc.

2.4. Resolvent expansions. We derive our series formula for the resolvent near A = 0, which is
the main result of Theorem 1, over the course of several lemmas, in which we establish successively
more explicit formulas for R(\) based on Vodev’s identity (2.15). The first lemma is partly based
on the proof of Proposition 3.1 from [Vod99]:

Lemma 2.3. There is zg > 0 such that for every z on the positive imaginary axis obeying 0 < —iz <
2o and for every g > 0, there is A9 > 0 such that for all X € z with |\ < Ao and |arg \| < g, the
operator I — K () is invertible L2(2) — L2(Q2), and

R\) = F\)(I - K(\)™ (2.17)
Moreover,
o A(AN)D(N)
(I — K(\)! _D()\)<I+ 1—(log)\—logz)a()\)>’ (2.18)
where
w = %Axh A(N) = (log A —log z)(w ® 1)K,
and
D) =3 DypX¥(log ),  a(X) = / KiD(Nwdr =Y > " agp A (log ), (2.19)
=0 k=0 Q =0 k=0

for some bounded operators Dajj: L2(2) — L2(2) and complex numbers agjy, which depend on z
but not on . If k # 0 then Doj . has finite rank. The series converge uniformly for all A € A with
0 < |\ <X and |arg \| < . Finally, we have the following variant of Vodev’s identity:

RO)(I — AN)D(N)) = F(\)D(N). (2.20)

To define A(X) we used the notation (w ® 1)f = w [, f for f € L(2), and the fact that
K1 maps L2(9Q) into L2(Q). We understand (2.17) and (2.20) as identities of operators mapping
LE(Q) — Dloc-

Proof. We define K(\) = K(\) — A(\). Writing
K() = (N = 2)x1(2 = x1)R(2) + [A, xa] (Ro(2) — Ro(N)) K,
and using the free resolvent series (2.4) shows that

oo min(j,1)

KX =3 Y KXY (log\),

j=0 k=0
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for some bounded operators Kojx: L2(€2) — L2(Q2) which depend on z but not on A. If k # 0 then
Kyj 1 has finite rank, because, by the Hankel function series (2.2), if k # 0 then Ry;; has finite
rank. Since

Koo = =212 = x1) R(2) + [A, x1] (Ro(2) — Ro(0)) K1,

we see, using the resolvent bounds (2.7) and ||x(Ro(2) — Ro( 0)) x|l r2(r2)— Hr2(r2) = O(2 log 2) from

(2.4), that ||[Koox||r2—r2 — 0 as zop — 0. Hence, if |zp| is small enough and |)g| is small enough

depending on z, then I — K()\) is invertible LQ(Q) — L2(Q) with

- K(\) = (I = ANDO)DN) L, D) = (1 - KO)™ = (I = K)xa) " (I + KO)(1 - x2)).
(2.21)

Recall that x2 € C2°(R?) is 1 on the support of x1. By Vodev’s identity (2.15), it remains to show

that I — A(A)D() is invertible with

(log A —log z)(w @ 1) K1 D(\)

(I—ANDM) =T+ g A~ log )a(V) (2.22)
For this, observe that u solves u — A(A\)D(A)u = f if and only if u = f + ¢(\)w, where
c(Nw — c(N)AN)DNw = AN)DN) f
Pairing with w, plugging in A(A)D(A)w = (log A — log z)a(A\)w, and solving for ¢(\) gives
o) = g n o Tog O TTE, = T Gogh Sl Ja s X100
This implies (2.22) and concludes the proof. O

Our next lemma rewrites the formula (2.17) for R(\) as a sum of terms of rank one and terms
where log A does not appear in the denominator.

Lemma 2.4. Under the assumptions and notation of Lemma 2.3, we have

log A -1 ~
= — (1 — F(\N)D 1) K1D(A
RO =1 o oy (321~ )+ FODOY0 ) 1) D) -
log z ~ ~ ’
F(\N)D 1)K1D F(\)D
where
co 1 _
=3 ) Fypr¥(log \)F = Fyplog A + F(N), (2.24)
§=0 k=0
each Fyj is bounded LZ(Q) — Dioe, if k # 0 then Fajy, has finite rank, and
1
Fy = —f(l—Xl)(l(X)l)Kl. (225)

2

Proof. The statements about the Fy;j, follow from the free resolvent series (2.2) and (2.4).
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Next, to simplify the contribution of Fy; in the resolvent formula (2.17), we write
_ log A —log 2z)(w ® 1) K1 D(X)
1o DK (I - K ' (e KD (14
(L DI (- K) ™ = (1 DED() (14 CEAZ RS
_(; (log A —log 2) [pe K1D(N)w
N 1 — (log A —log z)a(A)
(log A — log z)a(A)
=(1+
1 — (log A — log z)a(\)

) (1®1)K1D()N)

> (1®1)K1D(N)

1
N <1 — (log A — log z)a(\)
Combining with the formula (2.25) for Fy; and plugging into (2.17) gives

) (1® 1)K D(\).

B == 5 (o ey ) (1~ ) © DEDO) + FONT - KOy
"1 (log Alo_g i\ogz)a(A) C;(“ —x1) @)+ FO)DN)(w & 1>> KiD(\)
+ F(\)D()) (1 S Aloi% lzog e (w® l)KlD()\)) :
which in turn gives (2.23). O

In our next lemma we prove that if & is not polar, then the absolute value of the denominators
in (2.23) tends to infinity as A — 0.

Lemma 2.5. Under the assumptions and notation of Lemma 2.4, if ago = 0 then O is polar.

For the proof of Lemma 2.5 we will use the following observation, which will also be useful later.
Suppose there are operators Agj . : LE(Q) — Dy, integers K(j) € N and an a € C so that for any

X € C°(R?), xR(2)x = Z;.;OZWKK(ﬂ xAz;px(logz — a)*2%. Then using (—A — z%)R(z) = I,
expanding both sides in z and log z and equating like powers yields

—AAgj = Agj_oy if (25, k) # (0,0)

—AAgp=1 (2.26)

where we understand Agj, = 0 if j < 0 or if |k| > K (j).

Proof. If agg = 0, then |(log A — log z)a(X)| — 0 as A — 0 and, using the series for « from (2.19),
we have

0 co 27
1 .
= log A —log 2)"a(A)™ = a;ixA¥ (log MF.
1 — (log A — log z)a(\) mzo( )" a(X) jgmfzzo kA ( )

Inserting this, and the series for D and F' from (2.19) and (2.24), into the resolvent formula (2.23)
gives the resolvent series expansion

oo 27+1

XR(A)x = x | (va ® 1) K1Dgo log A + Ago + Z Z Agj A% (log M) | x. (2.27)
=1 k=0

Now by the formula for F in (2.16), and the exponential decay estimates (2.3) and (2.12), we have
(FooDoow)(z) = (RooK1Doow)(x) + Oe™ 711 %), (2.28)
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and since agy = f K1 Dgow = 0, by the asymptotics for Rgo in (2.5) we obtain
1 1
=——(1- -1 - )
ua(z) 277( x1(z)) +O0(Jz|™") — 5 as |z| — oo

Hence uy € Dio. is bounded and nontrivial. By (2.26), we can conclude that (Aua) [ KiDoof =0
for all f € L2(2). Thus, by Lemma 2.2, it is enough to show that there is f € L%(Q) such
that [ K1Doof # 0. By (2.21), Dgo: L%(Q) — L2(R) is invertible and hence it is enough to find
f € L%(Q) such that [ K;f # 0. By the resolvent identities (2.11) and (2.13) we have

[rr= [ca-P0-xres=-2 [0- RS,

which is nonzero when f = (—A — 2%)g for g € H*(Q) with (1 — x1)g = g and [ g # 0. O
We are now ready to obtain the final form of the resolvent expansion stated in (1.1).

Proof of Theorem 1. With the assumptions and notation of Lemma 2.4, and using the fact that
ago # 0, we write

1 1 1
= 2.2
— (log A —log 2)a(N) 1 — (logA —logz)agy 1 —r(A\)’ (2.29)
where
(log A —log z)(a(A) — o) 1 1
) 1 — (log A — log z)ago 00 1 — (log A — log 2z)ago (a(A) = a0o)

Using the series for a from (2.19) to write,

7( Z(Zrmgﬁ (log A) —|—Zrm2j7 (log A —log z — aOO) >/\2]

J=m

and inserting the geometric series ﬁ()\) => > _,r(A)™ into (2.29) gives

m=0
L Z Z by k(log \) )\ Jil ba; —k(log A — log z — oy ) A% (2.30)
— (log A — log z) S — S 00

Inserting this series and the series (2.19) and (2.24) for D and F into (2.23) gives (1.1) with
a=logz+ aoo Moreover, this shows all the B;;, for & # 0 have finite rank, and By 1 has rank
at most one. ]

We end this section with some computations concerning the resolvent expansion (1.1). The first
set of formulas (2.31) is a restatement of (1.2) from our main result. The second set of formulas
(2.32) will be used in Section 3 to analyze the scattering matrix.

Lemma 2.6. There is a unique harmonic function G in Dj,. such that log |x| — G(x) is bounded
as |x| — oo, and

1 .
By 1= 2—G®G, a:10g2—'7—0(ﬁ)+%z, c(0) = ‘ l|1m log |z| — G(x). (2.31)
™ x|—
Also,

BooAxz = (1 — x2), By —1Ax2 =G. (2.32)
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Proof. Inserting R(i|\|) = Boo + Bo,—1(log |\| —log |z| — agg) ™" + O(X2log \) into (R(i|A|)u,v) =
(u, R(i|\|)v), and matching coefficients of (log|\| — log|z| — agy ) ™", gives
By,—1 = cpup ® up, (2.33)
for some up € Dy and cp € R. From the term matching formula (2.26) we see that —Aup = 0.

We claim that we may choose cp and up in such a way that log|z| — up(x) is bounded as
|x| — oo. Then we may put G = up, as uniqueness of G follows from Lemma 2.2.

To prove the claim, we use Vodev’s identity in the form (2.20). Inserting the expansions for
D()\), F(A), and R(\) from (2.19), (2.24), and (1.1) into (2.20), gives

(BOO + Bg7,1(log)\ —logz — Oéaol)_l)(l + (logz — log )\)(w ® 1)K1D00)

(-

Equating the coefficients of log A and \°, gives

(1= x1)(1 ® 1K1 + Foo) Doo + O(\21og? A).

1
Boo(w @ 1) K1 Doo = 5 (1 —x1)(1® 1)K1 Do,

o
Boo + (logz Boo — Bo,—1) (w® 1)K1Dgg = FooDoo.
The first equality implies
1
Boow = %(1 - Xl)' (234)

Applying the second equality to w and plugging in (2.34) and ago = | K1Doow gives

1 ago log 2z
—(1-— ——(1-— — By 1w = FyoD
271( x1) + o (1 —=x1) — o Bo,—1w o0 Doow,
or
_ 1 _
By 1w = _aoolFOODOOw + %(aool +log 2)(1 — x1). (2.35)
Using the expansion for FyoDgow in (2.28) and the expansion for Ry in (2.5) gives
1 log2 —~v 1 -1
FooD = (— —1 —_— 7> 0 . 2.36
00 Doow () 5 10g |z] + —5—+ 7 Jago + O(|z] ™) (2.36)

Inserting (2.36) into (2.35) and setting up = 2w By 1w we get
up(r) = 21 By _1w(zx) = log |z| + agy +logz —log2 4+~ — mi/2 + O(|z| ™). (2.37)
This completes the proof of the claim.

Combining (2.37) and (2.30) shows that the expression for a in (2.31) holds. To complete the
proof of (2.31), it remains to show that cg = 1/2n. Inserting (2.37) into (2.33) gives By 1w =
cgG(w,G) 2 = G /2w, and so this is equivalent to showing that

(w, Gy = 1. (2.38)
Let D, = {z € R2: r < p}. For p large, the asymptotics for harmonic functions (2.9) imply

1 _ 1 _ _
G =5 | (Ma)Gdr=g (1= x0)0:G = 0,(1 = x1)G) ds
_ 1 (1—x1)0,GdS = 1/ (7“_1 + O(r_2)>dS =1+0(p™).
2 8Dp 2 8Dp

Taking p — oo completes the proof of (2.38), and hence of (2.31).
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It remains to prove (2.32). Observe that (2.34) and (2.37) are the same as (2.32), but with 2
replaced by x1. But (2.34) and (2.37) hold for any x; which is 1 near &, so they also hold with x;
replaced by 2, as desired. ([l

3. THE SCATTERING MATRIX AND SCATTERING PHASE

The asymptotic expansions of the scattering matrix and scattering phase follow from the asymp-
totic expansion of the resolvent when combined with Petkov and Zworski’s formula (1.4) which
expresses the scattering matrix in terms of the resolvent.

Proof of Theorem 2. We use the series

=Y MNEixs, (3.1)
(=0
where

¢ Lo w@ m
Eif(w) = ;!/RZ(—iw cx)f(x)de = Z W/R P ™ f(x)da. (3.2)

m=0

Since a rank one operator ¢ ® ¢: H — H' has trace norm ||<P”H’”1/)”Ha we obtain

2@ (41

Jw?™ wh HL2 sy ll=7 a4 "x3(z)| L2 R2) V2mptt
[Eexslle < Z el 1171 2 ) < Z P ) =V2r=——, (3.3)
m=0

ml(f —m)! ml(f —m)!

where p is chosen large enough that |z| < p on the support of x3, and we used the fact that
max |y3| = 1. Plugging in the series (1.1) for R()), and the series (3.1) for F(\), into Petkov and
Zworski’s formula for the scattering matrix (1.4), gives

[c oo OlNe o

= 1 ZZ Z Z Eo[A, x1]Boj k[ A, x2] Ep A (Jog X — @), (3.4)

(=0 £'=0 j=0 k=—j—1
The series (3.4) is absolutely convergent in the sense that

[ o ZuNNe olNNe o]

X2 Z 1Eo[A, x1) Baj A, Xa) Ep |l A log A — al¥,

(=0 0/=0 j=0 k=—7j—1

converges for A on the positive imaginary axis with |A| small enough, because it is the prod-
uct of the convergent series for E()\): L?(R?) — L2(S'), [A, x1]R(\)x3: L?(2) — L*(R?), and
[A, x2] E(A)*: L2(S') — L%(Q), with the series for E()\) being convergent in the trace norm by (3.3).

Hence, by Lemma B.1, the series (3.4) is absolutely convergent in the space of trace-class oper-

ators L2(S') — L%(S'), uniformly on sectors near zero. Since the Ey have finite rank, the S; also
have finite rank.

To complete the proof of Theorem 2, it remains to simplify the leading order terms in (3.4).

We first show that all terms of (3.4) with j = k =0 and ¢+ ¢’ < 1 simplify to 0. By (2.32), we
have Boo[A, x2]E5 = (1 — x2) ® 1, and hence [A, x1]Boo[A, x2]E5 = 0. Hence all terms of (3.4)
with j = k = ¢/ = 0 simplify to 0. To prove that the term with j = k =¢ =0 and ¢ = 1 simplifies
to 0 too, we observe that since Bj o = Boo, we have Fy[A, x1]Boo = 1 ® (1 — x1), and so

Eol x1)BoolA xal ES f = 1@ (1 — x1)[A, ] Ef f = i / A, xal / ¢ - wf(w)dSd,
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while integrating by parts shows
/[A,m]%’ = /(Am)ﬂ:j + 202, x2 = 0.

Second, we simplify the term with j = /¢ = /¢ =0 and k = —1. By (2.32) we have

EolA,x1)Bo,1[A, xal B = (1@ xa(@)) [ ) (Ga) 1))

Moreover, for p large enough we have

—/ A, x1]G = / Al —x1)G = / 0,G =21 +0(p~ ') — 2m, as p — o0,
R? B(0,p) T=p

SO we get
(1 ® X3(:C)) A, 1] (G(:r) ® 1) = —2r(1®1),

which completes the calculation of Sy 1. ]

We introduce the following notation to help with the proof of Theorem 3. For t € [0,00) we
denote by {t} the fractional part of . Thus, for ¢ € Ny, {¢/2} = 0if £is even and {¢/2} =1/2if (s
odd. We define two orthogonal projection operators acting on L?(S'), Py and P, /2 The projection
Py projects onto the span of {e2™?, n € Z} and P1/2 projects onto the span of {6(2”+1)i9, n € Z}.
Hence PoPy/p = 0 = PyoPo, and Py + Py = I. The following elementary lemma gives an
indication of how we will use these projections.

Lemma 3.1. Letm € N. For j=1,...,m, let {;, £; € Ng and A; : L2(SY) — L2(SY) be trace class.
If 3751, (65 + £5) is odd, then

tr (7’{@1/2}Aﬂ’{ea/2}7’{62/2}A27’{f5/2} e P{em/z}AmP{em}) =0.

Proof. Since » 1, (¢; + £}) is odd, there must be at least one jo with 1 < jo < m so that ¢}
and {41 have opposite parities, or ¢; and ¢, must have opposite parities (or both). By the
cyclicity of the trace, for the purposes of computing the trace we can assume the latter holds.
But in this case since Py 3Py = 0 = PPy 2, noting that for a trace class T : L2(SY) — L3(SY),
tr(PoT Py j2) = tr(P1oPoTPyj2) = 0 and tr(Py 9T Po) = tr(PoPy/2TPo) = 0 proves the lemma. [

Proof of Theorem 3. By the series (1.6) for S(\) = I + A(X\) we see that ||A(\)||tx = O(1/log ),
and so (by Theorem 1 of Section 4.3 of [Kno56] on substituting a convergent series into a power
series) we have the following convergent series for the scattering phase:

1 —1 ( 1)6 l
= log(I + = — . .
a(A) 57 trlog( A(N)) 57 2 i tr A(N) (3.5)
Using the expression (3.2) for Ey, we see that
p{g/Q}Eg = Eg and P{(@+1)/2}Eg =0. (36)

In order to get an odd power of \ in the expansion (3.4) we see that exactly one of £ or ¢/ must be
odd. This implies by (3.6) that the coefficients of A2"*1(log A — a)¥ in the expansion of A =8 — I
can be written in the form

Sont1k = PoS2nt1k.e0P1/2 + Pi1 /252041806 Po (3.7)
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for some trace class operators S’2n+1,k7eo and §2n+1,k,oe' Likewise, the coefficients of A2 (log A — a)k
in the expansion of S can be written

SZn,k = POSQn,k,eePO + P1/2§2n,k,00731/27 when (n7 k) 7& (07 0)7 (38)
for some trace class operators Soy, . ce and Say, i oo-

Using (3.7), (3.8) and Lemma 3.1 yields

i
trA\\) = —— Z Z tr S, p(log A — a)¥A%.

logA—a o Wi
Note there are no odd powers of A\. Moreover, there are constants a;j; such that

J

tr AN’ = (logA—a) Z 3 ajnellog A — a)f XY, (3.9)

j=1k=—j—4

Again, the absence of odd powers of A comes from applying Lemma 3.1, (3.7) and (3.8). Substituting
(3.9) into (3.5) gives

—1 . (—1)¢ s
:27T1iz( El) <<log)\—a)e+z Z aje(log A —a) )‘2J> (3.10)

(=1

and combining with

= (—1)5( it \! i

= —log (14— —
Z} 14 log)\—a) i +log)\—a>’
0) follows from (1.8) together with

;_AN

we obtain (1.8). Then (1.

T v U
1 14— =1 1+ —— | =2: . A1
og( +log)\—a) zarg( +log)\—a) ZarCtan<2log()\/2)+20(ﬁ)+27) (3.11)

Absolute convergence of the series for o(\) and ¢’(\), uniformly on sectors near zero, again follows
from Lemma B.1. Differentiating (3.11) gives (1.11). O

4. THE DIRICHLET-TO-NEUMANN OPERATOR

In this section we show that the Dirichlet-to-Neumann operator for the exterior Helmholtz equation
(—A = X?)u =0, in Q,
u=f, on 0f2,

has an expansion near A = 0 very much like that of the resolvent in Theorem 1. In fact, the
expansion follows easily from our Theorem 1. We use this to answer a question raised by D.
Grebenkov regarding the lowest eigenvalue of the Dirichlet-to-Neumann operator near A = 0 [Gre22,
page 11]. See [McLO00, Chapter 4], [CoKr13, Chapter 3], and [Tay11, Chapters 7 and 9] for textbook
introductions to the Dirichlet-to-Neumann operator. The papers [ArEl15, BSW16] contain results
on exterior Dirichlet-to-Neumann operators and some references to further results on the subject.

(4.1)

In this section for simplicity we assume that 0 = 0} is smooth, without boundary, and 2 =
R?\ € is connected.

Let Im A > 0, and define DtN(\), the Dirichlet-to-Neumann operator on €2, to be the operator
that maps H'/2(9Q) 3 f — 0,u € H-/2(9Q) where u € L?(Q) satisfies (4.1) and 9, is the outward
(with respect to §2) pointing unit normal. Here we use an extended notion of the normal derivative
as described in [McL00, Lemma 4.3]. Then DtN(\) has a meromorphic continuation to A. We



LOW ENERGY SCATTERING ASYMPTOTICS FOR PLANAR OBSTACLES 17

prove this well-known fact in the course of the proof of our next theorem, which is the analog of
Theorems 1, 2, and 3 for the Dirichlet-to-Neumann operator.

Theorem 4. Let 02 be smooth and €2 be connected. There are operators Tyjy : HY2(09) —
H=12(09Q) such that

00 J
DINOA) => " > T3 (log A — a)¥, (4.2)
j=0 k=—j—1

with a as in (1.2), and with the series converging absolutely in the space of bounded operators
HY2(0Q) — H-Y2(0Q), uniformly on sectors near zero.

In fact, our first proof shows that if (4, k) # (0,0), then Ty;x : HY/2(9Q) — HY2(00).

We remark that for A > 0 the function v used in the definition of the Dirichlet-to-Neumann
operator can be uniquely determined by requiring it to satisfy a Sommerfeld radiation condition
rather than be in L?(Q); this is done in [BSW16], for example.

Proof. We begin by describing a construction of the unique u = u(x,\) € L*(Q) satisfying (4.1)
for Im A > 0 and f € HY2(99Q). Choose p > 0 so that & C D, = {x € R? : |z| < p}. By [McL00,
Theorem 4.10] there is a unique @ € H' (2 N D,) satisfying
—Au=00nQND,
i [oo=f
i lop,= 0.
Denote by U the mapping f +— @; by [McL00, Theorem 4.10] this is a continuous map U :
HY2(0Q) — HY(Q N D,). Choose x € C§°(D,) so that x is one in a neighborhood of &, and
set
w=xUf = ROA)(=A = N)(xU[) = xUf + ROV ([A, XU + N2xUS). (4.3)
Since ([A, XJUf + X2xUF) € LE(Q), RO)([A, X]Uf + A\2xUf) has a meromorphic continuation (as
an element of HZ_(Q2)) to A, as does 8, RO\ ([A, XJUf + N2xUf) € HY/2(9Q). This shows DtN())
has a meromorphic extension to A. Moreover, the expansion (4.2) for DtN(A) follows from the
expansion (1.1) for R(\) and the expression (4.3). O

We sketch an alternate proof of Theorem 4. This second proof is more similar in approach to our
proof of Proposition 4.1. Moreover, it addresses the mapping properties of R(\) and By acting
on distributions with less regularity than L?, which is of independent interest.

Proof. Let £ : H'/2(9Q) — H].(Q) be an extension operator, so that £f [so= f: see [Grill,
Theorem 1.5.1.2]. This extension is not uniquely determined, but any such extension will do. Let
x € C§°(R?) be 1 in a neighborhood of 2. Then (—A — A\ (xEf) € H71(Q) := (H}(2))* and has
compact support.

For Im A > 0 the function u = xEf + R(A)(A + A\2)xEf satisfies (4.1) and u € L*(Q). This is
straightforward if f € H3/ 2(Q), but we need some argument that this also holds for f € H 1/ 2(00).
In addition, we will need that the expansion (1.1) holds as a map H; () — (H}(Q))10c- Suppose
—ilmz > 0 and g € H~(Q). We consider a weak formulation of the problem (—A — z2)v = g via
a bilinear form. By the Riesz representation theorem ([Bor20, Theorem 2.28] or the Lax-Milgram
theorem (e.g. [Eva98, Section 6.2.1]) there is a unique v € H}(f2) so that for all w € HZ(Q),
(Vu, Vw) — 2%(v,w) = (g,w), where the last pairing is the dual pairing of H~1(Q2) and HE(Q).
Moreover, v depends continuously on g. Hence R(z) : H () — H}(Q) continuously when
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—iz > 0 (with the norm depending on z). Now we use the notation of the proof of Theorem 1.
Since Ry(z) commutes with the Laplacian, for Imz > 0 Ro(z) : H '(R?) — H!'(R?) and with
Ry ) from (2.4), Rojy : Ho'(R?*) — H] (R?). This and the mapping properties of R(z) show that

ot H7H(Q) — (HJ(2))1oe- Then since Doy« Ho1(Q) — H_ (), inspection of our proof of

c C

Theorem 1 shows that By : Ho () — (H(2))10c-
Thus we have, for Im A > 0
u=xEf + RN (A+N)(XEF) € HY(Q). (4.4)

Therefore u has a meromorphic continuation to A and has an expansion near 0 in powers of A and
(log A — a) just as the resolvent does, (1.1). Hence 0,u = DtN(A)u has a meromorphic continuation
to A and the expansion (4.2) for DtN(\) follows from the expansion (1.1) for R(\) and (4.4). O

For the convenience of the reader, we include brief proofs of two variational formulas for eigen-
values, which we shall use below. The first, (4.5), is known as Hadamard’s variational formula
and as the Feynman—Hellmann Theorem (see [Sim15, Theorem 1.4.7]). Both (4.5) and (4.6) are
essentially special cases of equation (2.36) of Chapter II of [Kat95], which generalizes well-known
perturbation theory formulas from quantum mechanics as in equations (7.9) and (7.15) of [GrSc18].

Lemma 4.1 (Variational formulas). Let H be a Hilbert space with inner product (e, e)s, and let
A(7) : H — H be a (possibly unbounded) self-adjoint linear operator depending in a Ct fashion on
T € (a,8) CR. Let ¢p1(7) be an eigenfunction of A(T), which has ||¢1(7)||% = 1 and which depends
in a Ct fashion on 7 € (o, B). Suppose A(T)¢p1(7) = o1(7)¢1(7). Then o1 € Cl(a, B), and

Oro1 = ((0-A)¢1, d1)n.- (4.5)

For the second variational formula, suppose in addition that A(T) and ¢1(7) are C?, that H is
separable, and that for T € (a, 8) A(T) has a complete orthonormal set of eigenfunctions {gbj}]?’il =
{0;(7)}52, with A(1)¢;(T) = 0;(1)¢;(7). Moreover, assume that o # o1 if j # 1. Then o1 €
C*(a, B), and

1

01—0']'

Olor = (02 A)1, 1w +2) (0 A) 1, dj)nl” (4.6)
et

Proof. Since o1 = (¢1, ¢1) and the right hand side is differentiable on (v, 8), so is 1. Then

Oro1 = 0r(Ad1, d1)u = ((0r A)d1, P1)u + (A0r 1, ¢1)n + (A1, O0rd1)w.
By the self-adjointness of A, this is
0ro1 = ((0-A)b1, d1)u + (0-01, AP1)y + (A1, 0-01)n
= ((0rA)p1, 1)1 + 01 ((Or 1, d1) 1 + (D1, 0rd1)n) = ((9-A) 1, d1)m (4.7)
since 0-(¢1, ¢1)3 = 0. This yields the first variational formula, (4.5).

For the second variational formula we use
(0-A)p1 + AD-¢p1 = Or0141 + 010:01.

Taking the inner product with ¢; when j # 1 yields, after some simplification and rearrangement,

(Or1, byt = Jll«aTA)czn, 6021 (4.8)

J
Differentiate (4.5) to get

0201 = ((02A)$1, d1)% + 2Re((9, A)p1, Drd1) 2.
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Now use (4.8) and Re(0-¢1, ¢1)5 = 0 to write 0;¢; in terms of {¢;}, giving the second variational
formula, (4.6). O

We now return to the Dirichlet-to-Neumann operator, and consider the special case of A = ix with
k > 0. For such « the Dirichlet-to-Neumann operator DtN(ix) is bijective from H'(9Q) to L?(99):
see Lemma 3.5 of [GMZ07]. Hence (see Proposition 8.3 of Appendix A of [Tay11]) DtN(ix) is non-
negative and self-adjoint on L?(92), with domain H*(92) and with discrete spectrum accumulating
at infinity. Our theorem shows lim, o DtN(ix) exists, and we we denote it DtN(0).

In fact, DtN(0) is self-adjoint and non-negative as well, with discrete spectrum accumulating
only at infinity. To see this, note that for x > 0 and pu € C

(DtN(0) — p)(DtN(ik) — )" = I + (DtN(0) — DtN(ix))(DtN(ir) — ). (4.9)

Since by the first proof of Theorem 4, DtN(0) — DtN(ix) : H'/2(9Q) — H'/?(9Q) and (DtN(ix) —
)~ L2(09) — HY(0R) (for p & spec(DtN(ik))),

(DtN(0) — DtN(ix))(DtN(ix) — ) "' : L*(0Q) — L*(00)

is compact. Moreover, for p < 0 the right hand side of (4.9) is invertible. Thus DtN(0) has
compact resolvent, and hence has discrete spectrum accumulating only at infinity. A Green’s
theorem argument shows that DtN(0) is symmetric with one-dimensional null space spanned by
the constant functions. Moreover, we see from this that DtN(0) + 4 is invertible, so that DtN(0) is
self-adjoint.

For k > 0, denote the smallest eigenvalue of DtN(ix) by o1 (ix). Note that o1(0) = 0, and 0 has
multiplicity 1 as an eigenvalue of DtN(0). By our discussion above, 0 is an isolated eigenvalue of
DtN(0). Then there is an € > 0 so that o1 (ix) is an analytic function of k € (0, €) and is continuous
on [0, €]: see [ReSi78, Theorem XII.8]. Moreover, if ¢1(ix) is the associated eigenfunction of DtN(ik)
with [|¢1(ir)| 12(90) = 1, then ¢ can be chosen to depend smoothly on € (0, €).

Proposition 4.1. For Q) as in Theorem 4 and k > 0

27 1
2(09) log(ik) — a
as k| 0. Here £(00) is the length of ON.

o1(ik) = — + O((log k) ~?) (4.10)

In dimension two this answers a question of D. Grebenkov [Gre22, page 11]. Grebenkov computed
this when € is a disk (see equations (62) of [Grel9], and (C.2) of [Gre21]) and has shown that such
quantities are related to the behavior of ‘boundary local time’—see [Grel9)].

Proof. Let (,-)r2(9q) denote the inner product in L%(082), and let -’ denote differentiation with
respect to (log(ix) — a)~!. By (4.5),
o1(ik) = <D£N(i/<;)¢1(i/<;), <Z51(i’€)>L2(aQ)7

for k € (0,€). Because ¢; is continuous at 0 with ¢;(0) = (£(9Q))~/? and DtN(ix) is continuous
at 0, this identity holds in the limit as x | 0. Now we note that we can find the unique u € L?(f2)
satisfying (4.1) with A = ix and f = 1 by setting u(ix) = x — R(ik)(—A + k?)x where x € C§°(R?)
is 1 in a neighborhood of &¢. Our asymptotics of R(ix) from (1.1) and the formulas (2.32) imply

xu(ir) = x(x +1 = x + (log(ir) — a)~'G) + O(x* log k).

Thus
DtN(ir)$1(0) = (log(ir) — a)~ ' (£(89))~?8,G + O(k*log k),
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and, recalling our expansions hold under differentiation with respect to (log(ix) — a)™! as well

gives lim, o (DtN(k)¢1(x), b1 (k Ni20) = (0.G, 1>L2(8Q)(€(8§2))_1. A Green’s theorem argument
then shows that [, d,G = —2m. This completes the proof of (4.10) except that it gives an error
o((log #)™).

To get an error O((log k)~2), we use (4.6). For this, we introduce the notation that {¢;(ix)} are
a complete orthonormal set of eigenfunctions of DtN(ix) satisfying DtN(ik)¢;(ix) = o;(ik)d;(ik)
with 01 < 09 < o3 <---. Then (4.6) implies, for x > 0 sufficiently small

! (6(ir), DIN(ir)n (ir)) 20|

G1(ir) = (DEN(ir) 1 (i), 61(ir)) 2 000 + 22

o1(ik) — oj(ik)

Using that the right hand side has a finite limit as & | 0 allows us to improve the error in (4.10) to
O((log k)72). O

APPENDIX A. POLAR AND NONPOLAR SETS

In this appendix we present some standard material about polar and nonpolar sets. Section A.1
contains the elementary basic facts used in the rest of the paper. Section A.2 has more general
background and context. Throughout, let & C R? be compact, let = R?\ &, and recall that ¢
is polar if C§°(€2) is dense in H'(R?).

A.1. Basic facts. We begin with a geometric necessary condition for a compact set to be polar.
Lemma A.1l. Let 0 C R? be a compact set. If O is polar, then the projection of O onto any line

in R? has measure zero.

Proof. Without loss of generality, we are projecting onto the z9 axis, and z1 > 0 on 0. Let
W = {(x1 +t,22) € R? such that (z1,23) € € and t > 0}.

It is enough to show that W has measure zero in R?. Let u € C§°(Q). By integration by parts and
Cauchy—Schwarz (Theorem 181 of [HLP34]), for any s > 0 we have

_-—_3 2 —
oy ulBagr = [ ol = TRe [ artudna < DT
w w §

which implies Hardy’s inequality (Theorem 330 of [HLP34]):

1—
u”L2(W H% 8931“”L2

=l=s 2
=l wy < Sl ™ O ull 2w (A1)

Since ¢ is polar, by density (A.1) holds for all w € H'(R?). Applying (A.1) with s = 3 and
u(x) = e“‘”'z/”, and letting n — oo, gives fW :c1_4 = 0, which implies that W has measure zero. [J

Compact polar sets have many well-known equivalent characterizations, some of which we discuss
in Section A.2. For our main results we need only Lemma A.2, which follows Section 13.2 of [Maz11].
Lemma A.2. Let ¢ C R? be compact, and let @ = R?\ €. The following are equivalent:

(1) O is polar.

(2) The constant function 1 is locally in HJ ().
(3) inf{||ull g1 (r2): u € C§°(R?), u =1 near 6} =0.
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Proof. (1) = (2). This follows from the fact that the constant function 1 is locally in H'(R?).

(2) => (3). Let v, be a sequence in C§°(£2) converging to 1 in HL _(R?). Fix y € C§°(R?) such
that x = 1 near &. Then inf,, {||(1 — vn)x||g1 (r2)} = 0.

(3) = (1). Let u, be a sequence of functions in C§°(R?) which are 1 near ¢ such that
|tun |l 2y — 0. Let ¢ € C&°(R?). For any w € H~!(R?) which vanishes on C°(Q), we have

(w,) = lim (w, (1 = un)p) = 0.

By the separating hyperplane version of the Hahn—Banach theorem (see Proposition 4.6 of Appen-
dix A of [Tay11]), it follows that the H'(R?) distance from ¢ to C§°(Q2) is zero. O

A.2. Background and context. If & is nonpolar, then —C(&) is known as Robin’s constant,
because it solves Robin’s problem, which asks for the constant value assumed on & by the potential
of the equilibrium unit charge distribution on ¢ [Rob86]. The quantity e“(“) is known as the
logarithmic capacity of & and it measures the size of &'. For example, a disk or circle has logarithmic
capacity equal to its radius. See Sections V.2 and V.3 of [Nev70], and Chapter 5 of [Ran95|, for
general introductions, and see [Ran10, BaTr21] for more on computing C(0).

To expand on the above, and to also make contact with the theory of subharmonic functions, let

Iatwv) = [ [1og 145 du(w) dv(w),

for A > 0 and pu, v finite signed Borel measures of compact support in R2. By Theorem 1.16 of
[Lan72], if 11 # 0 and the diameter of the support of p is < A, then 0 < Ja(p, u) < oo.

Lemma A.3. Let 0 C R? be compact. The following are equivalent:

(1) O is polar.
(2) Ji(p, ) = 400 for every nonzero finite signed Borel measure pu supported on O.
(3) O = {x € R?: u(z) = —oo} for some subharmonic function u on RZ.

In physical terms, if © and v are two distributions of some finite quantity of charge, then
Ja(p, p) — Ja(v,v) is the difference of their electrostatic potential energies. Thus, a compact
set is polar if and only if it is so small that gathering a finite quantity of charge onto it requires
infinite work.

By Theorems 3.7.6 and 5.2.1 of [Ran95], if & is not polar, then C(&) = — min, {Ji(u, i)}, where
the minimum is taken over all Borel probability measures supported in &. If ¢ is the unit circle,
then C(0) = 0. If & is any nonpolar set, then C'(&) is the work done moving a unit quantity of
charge from its equilibrium distribution on & to its equilibrium distribution on the unit circle.

Let us also briefly mention some further geometric characterizations and properties of polar sets.
By Theorem 5.5.2 of [Ran95], a compact set is polar if and only if its transfinite diameter is zero,
and thus Lemma A.1 is a special case of Theorem 2 of Section VIL.2 of [Gol69]. Polar sets have
Hausdorff dimension zero: see Section 3.2 of [Ran95] and Section V.6 of [Nev70]. By Kakutani’s
Theorem, [M6Pel0, Section 8.3], a compact set is polar if and only if Brownian motion hits it with
probability zero.

Proof of Lemma A.3. (1) => (2). It is enough to prove that, if u € C§°(R?) is 1 near &, then

21 (1u(6))? < Jalus ) / Vul?, (A2)
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where A is the diameter of the support of u. We follow Lemma 1.1 of Chapter II of [DeLi54]. Let
1) = —Awu. By Cauchy—Schwarz, we have

JA(1/17M)2 < JA(M:M)JA(¢7w) <A3)
Since 1 Alog \?AI = 0(z) (see Proposition 4.9 of Chapter 3 of [Tayl1]), we have

[ 1o 4500 de = 27y,

which gives

Ja(, ) = 27r/uAu = 277/ |Vul?, (A.4)
and, using also the fact that u =1 on O,
Ja(, p) = 27r/ud,u, = 27r/du = 2mp(0). (A.5)

Inserting (A.4) and (A.5) into (A.3) gives (A.2).
(2) = (1). This is a special case of equation (2.1) of [Wal64].
(2) <= (3). See Theorem 3.5.1 and Corollary 3.5.4 of [Ran95]. O

APPENDIX B. CONVERGENCE NEAR ZERO OF SERIES WITH LOGARITHMIC TERMS

To analyze series of the form } ., ¢;(log A — a)* M, where A € A, it is convenient to introduce
a new coordinate v on A, defined by

a

V=2 logrv =log A — a.
Then

Z cjk(log\ —a)kN = Z c;jre™ (logv)Fvi.
Jik 4.k

In our applications, Ima = 7/2, so the physical region 0 < arg\ < 7 corresponds to —7/2 <
argr < /2.

Lemma B.1. Let N € Ny, let (B, || - ||) be a Banach space, and for each j € N and each k < Ny,
let Vi be an element of B. Let vg € (0,1), and suppose the series

oo Nj

>3 IViklllog vl

j=1k=—oc0

converges. Then for any ¢ > 0, there is v1 > 0 such that the series

oo Nj
> Vikllogw)d, (B.1)
j=1k=—o0
and
oo Nj
Z Z Vm(kz+jlogy)(log1/)k*11/j*1. (B.2)
§=2 k=—oc

converge absolutely in B, uniformly on Uy, , :={v € A: 0 <|v| < vy and |argv| < ¢}.
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Since the terms of (B.1) are holomorphic, it follows that for any ¢ > 0, there is 4 > 0 such
that the function f(v) given by (B.1) is holomorphic on U, ., with f’(v) given by term-by-term
differentiation of (B.1) (see Theorem 1 of Chapter 5 of [Ahl79]). Moreover, since the series for f’ is
of the same form as the series for f, by induction these series may be freely differentiated term by
term. Note, however, that convergence is uniform on U, , only if we omit terms whose norm goes
to 0o as |v| — 0, and the value of v; depends on the number of differentiations as well as on .

Proof. For (B.1), observe that for v € U,, ,, we have

[log | |v| < [log[v] + ™ |v] < [log vy + i V1 < | log ol o, (B.3)
when v1 > 0 is small enough. Combining (B.3) with the fact that |log v|F=Ni < |log 1p[F =7 when
k < Nj, and with |(log v)*17| = |log v|*~"7(|log v|N|v|)’, we obtain

oo Nj oo Nj

> D Wiklog)* w7l < 7 > IIVikllllog vol*[rol,

Jj=1 k=—o0 j=1k=—00
which implies the absolute convergence of the series (B.1), uniformly on Uy, .
For (B.2), it is enough to show that there exist positive constants 1y and C such that
k+ jlogv||logv[F it < C|log w14, (B.4)
whenever v € Uy, o, and k < Nj.

The case k < 0 is easier. It suffices to take 14 small enough that we have [logv/log vo|F < 2%
and |v/1vp/~! < 2179 and then put C' = sup{|k + jlogv||logv|~12k2'77: j > 2 k <0, v € Uy, ,}.

For the case k > 0, observe that since |k + jlogv| < j(N + |logv|) < 2j|logv| when vy < eV,
it is enough to obtain

2j|log v|*|v' 1 < C|log vyl 14

Analogously to (B.3), we have (|logv|M|v|)~1 < (|logvg|M1p)i~! for all v € U when vq > 0 is
small enough, with M € N to be determined later, and so it is enough to obtain

24| log v|F~ MU= < Cuy|log vp|F~ MUY,
Since k — Nj < 0, we have |log v|[*~"7 < |logvo|*~™7, and so it is enough to obtain
27| log v|N MU= < Cup| log vV MU,

We now take M = 2N + 1, so that the exponent Nj — M (j —1) =2N + 1 — (N + 1)j is negative
and decreasing for j > 2. We further require v < 12, so that 2|logv|™! < |logrp|~!. It is then
enough to obtain

joWN+DE=9) < Oy,
which we do by putting C = max{j2(N+l)(2*j)/u0: Jj>2} =2/ O

APPENDIX C. SCATTERING BY A DISK

Let 0 = {z € R?: |z| < p} for some p > 0. Solutions to the Helmholtz equation (—A — A\2)u = 0
can be written in polar coordinates in terms of the Hankel functions (see [Olv97, Section 7.4.1]) as

o
u(r,6) = Z (agHz(l)()\r) + bng)()\r))eiw,

l=—o00
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and they vanish at 90 if and only if
athgl)()‘P) + bZHéQ)()\p) =0, for every £.

Consequently, with respect to the basis {€??},cz, the scattering matrix S()\) is the diagonal matrix
mapping the incoming data (the by) to the outgoing data (the ay), i.e. its ¢-th entry is given by

Hém()\p)/Hél)()\p). Hence,

H? (Ap)
o(A) = ﬁlogdetS 2m Z_:OO log( g( )()\p)>. (C.1)
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