
LOW ENERGY SCATTERING ASYMPTOTICS FOR PLANAR OBSTACLES

T. J. CHRISTIANSEN AND K. DATCHEV

Abstract. We compute low energy asymptotics for the resolvent of a planar obstacle, and deduce
asymptotics for the corresponding scattering matrix, scattering phase, and exterior Dirichlet-to-
Neumann operator. We use an identity of Vodev to relate the obstacle resolvent to the free resolvent
and an identity of Petkov and Zworski to relate the scattering matrix to the resolvent. The leading
singularities are given in terms of the obstacle’s logarithmic capacity or Robin constant. We expect
these results to hold for more general compactly supported perturbations of the Laplacian on R

2,
with the definition of the Robin constant suitably modified, under a generic assumption that the
spectrum is regular at zero.

1. Introduction

1.1. Main results. Consider the Dirichlet Laplacian −∆ on a planar exterior domain Ω = R
2 \O,

where O ⊂ R
2 is a compact set. We study three fundamental objects in the scattering theory of

−∆ on Ω: the resolvent, the scattering matrix, and the scattering phase. Each is a function of
the frequency λ. Our main results are uniformly convergent series expansions for all three objects
near λ = 0. We also deduce asymptotics for the Dirichlet-to-Neumann operator and for its lowest
eigenvalue.

We begin with the resolvent R(λ), defined for Imλ > 0 to be the operator which takes f ∈ L2(Ω)
to the unique u ∈ D := {u ∈ H1

0 (Ω): ∆u ∈ L2(Ω)} solving (−∆−λ2)u = f . For every χ ∈ C∞
0 (R2),

the product χR(λ)χ extends meromorphically as an operator-valued function of λ to Λ, the Riemann
surface of the logarithm: see Section 1.4 for more on the notation used here and below.

For our main results we assume that O is not polar, i.e. that C∞
0 (Ω) is not dense in H1(R2).

For example, by Lemma A.1, it is enough if O contains a line segment.

Theorem 1. Suppose O is not polar. Then there are operators B2j,k : L
2
c(Ω) → Dloc (i.e. mapping

compactly supported functions in L2(Ω) to functions which are locally in D) and a constant a, such
that, for every χ ∈ C∞

0 (R2), we have

χR(λ)χ =
∞∑

j=0

j∑

k=−j−1

χB2j,kχλ
2j(log λ− a)k

= χB0,0χ+ χB0,−1χ(log λ− a)−1 + χB2,1χλ
2(log λ− a) + · · · ,

(1.1)

with the series converging absolutely in the space of bounded operators L2(Ω) → D, uniformly on
sectors near zero.
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Remarks. 1. Our proof also shows that if k 6= 0, then B2j,k has finite rank. Moreover, there is a
unique harmonic function G in Dloc such that log |x| −G(x) is bounded as |x| → ∞, and

B0,−1 =
1

2π
G⊗G, a = log 2− γ − C(O) +

πi

2
, C(O) := lim

|x|→∞
log |x| −G(x). (1.2)

The quantity C(O) is important in potential theory. It is the negative of Robin’s constant and as
the logarithm of the logarithmic capacity: see Appendix A.

2. We used the following definition, which will recur below: Given functions fn mapping Λ to a
Banach space B, we say

∑
n fn(λ) converges absolutely in B, uniformly on sectors near zero if, for

any ϕ > 0, there is λ1 > 0 such that
∑

n ‖fn(λ)‖B converges uniformly on {λ ∈ Λ: 0 < |λ| ≤
λ1 and | arg λ| ≤ ϕ}. Moreover, the series (1.1), as well as the series (1.6) below, may be freely
differentiated term by term, with each resulting series having a tail which converges absolutely in B,
uniformly on sectors near zero: see Appendix B.

3. If we used λ2j(log λ)k instead of λ2j(log λ− a)k in our expansion, in place of (1.1) we would get

χR(λ)χ =
∞∑

j=0

j∑

k=−∞

χB̃2j,kχλ
2j(log λ)k. (1.3)

Note that terms in (1.3) with j ≥ 1 have infinitely many predecessors, and hence (1.3) is an
asymptotic expansion only as far as the terms with j = 0. The technique of using a shift of the
logarithm to reduce the number of terms comes from [Jen84].

Our second theorem concerns the scattering matrix S(λ), which is a meromorphic family of
operators L2(S1) → L2(S1). It can be defined for λ ∈ Λ by Petkov and Zworski’s formula

S(λ) = I +A(λ), where A(λ) =
1

4πi
E(λ)[∆, χ1]R(λ)[∆, χ2]E(λ)∗. (1.4)

Here E(λ) is the operator from L2(R2) to L2(S1) which has integral kernel e−iλω·xχ3(x), and
χ1, χ2, χ3 are radial functions in C∞

0 (R2) obeying

χ1 ≡ 1 near Dρ, χi ≡ 1 near supp χi−1, 0 ≤ χi ≤ 1, (1.5)

where ρ is large enough that O ⊂ Dρ, and Dρ = {x ∈ R
2 : |x| < ρ}. The formula (1.4) comes from

Theorem 4.26 of [DyZw19], and is a variant of the original Proposition 2.1 of [PeZw01].

Theorem 2. Suppose O is not polar. Then there are finite rank operators Sj,k : L
2(S1) → L2(S1),

such that

S(λ) = I +
i

2
(1⊗ 1)(log λ− a)−1 + S1,−1λ(log λ− a)−1 +

∞∑

j=2

bj/2c∑

k=−bj/2c−1

Sj,kλ
j(log λ− a)k, (1.6)

with the series converging absolutely in the space of trace-class operators L2(S1) → L2(S1), uni-
formly on sectors near zero.

Our third theorem concerns the scattering phase σ(λ) for λ near zero, defined by

σ(λ) =
1

2πi
log detS(λ) =

1

2πi
tr logS(λ). (1.7)

Theorem 3. Suppose O is not polar. Then there are complex numbers a2j,k and b2j,k such that

σ(λ) =
1

2πi
log
(
1 +

iπ

log λ− a

)
+

∞∑

j=1

j∑

k=−∞

a2j,kλ
2j(log λ− a)k, (1.8)
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and

σ′(λ) =
−1

2λ(log λ− a)(log λ− ā)
+

∞∑

j=1

j∑

k=−∞

b2j−1,kλ
2j−1(log λ− a)k, (1.9)

with the series converging absolutely in C, uniformly on sectors near zero. In particular, as λ→ 0
through positive real values, we have

σ(λ) =
1

π
arctan

( π

2 log(λ/2) + 2C(O) + 2γ

)
+O(λ2 log λ), (1.10)

and

σ′(λ) =
−2/λ

4(log(λ/2) + C(O) + γ)2 + π2
+O(λ log λ). (1.11)

Remark. In each of the theorems above, the assumption that O is not polar is necessary as well as
sufficient. Indeed, if O is polar, then the expansion near λ = 0 of R(λ) is not of the form (1.1) but
instead equals that of the free resolvent (2.4). Moreover, S(λ) = I and σ(λ) = 0 for all λ. To see
this, note that if O is polar, then H1

0 (Ω), the form domain of the Dirichlet Laplacian on Ω, is dense
in H1(R2), the form domain of the free Laplacian on R

2. Consequently the continuous extension
of R(λ) from L2(Ω) to L2(R2) equals the free resolvent R0(λ) of Section 2.1.

1.2. Background and context. Early low frequency resolvent expansions were obtained by Mac-
Camy [Mac65]. Vainberg [Vai75, Vai89] has very general results and many references. We focus on
dimension two because of its physical importance and because the problem is harder here than in
other dimensions; see for example Lemma 2.3 in [LaPh72] by Lax and Phillips for an expansion of
the scattering matrix in dimension three.

Our Theorem 1 is a variant of Theorem 2 of [WeWi92] by Weck and Witsch, of Theorem 1 of
[KlVa94] by Kleinman and Vainberg, and of Theorem 1.7 of [StWa20] by Strohmaier and Waters.

More specifically, the results of [KlVa94] and [StWa20] cover problems which are more general
than ours in many respects, but specialized to our setting they require ∂Ω to be C∞, while our
assumption that O is polar is optimal. The results of [WeWi92] expand only up to O(λ2). Our
methods are different from those in the papers mentioned above. Specifically, [KlVa94] and [StWa20]
rely on general theory developed in [Vai89] and [MüSt14] respectively, while our approach based on
algebra of series of operators as in Vodev [Vod99, Vod14] leads to a direct short proof of complete
resolvent asymptotics: see Section 2.

Our scattering phase asymptotic (1.10) improves previous results in [HaZe99] and [McG13], and
is implicit in the proof of Theorem 3.25 of [StWa20]. To compare the results, recall that in [McG13],
McGillivray computes asymptotics of the Krein spectral shift function ξ defined by

tr
(
Jg(H)J∗ − g(−∆)

)
=

∫ ∞

0
g′(µ)ξ(µ)dµ,

where J is the operator taking functions on R
2 \O to functions on R

2 by extending them by zero.
By the Birman–Krein formula (see [JeKa78] or Proposition 0.1 and Theorem 1.1 of [Chr98]), we
see that ξ(µ) = −σ(√µ). Putting b = log 4− 2C(O)− 2γ and applying (1.10) gives

ξ(µ) =
1

π
arctan

( π

b− logµ

)
+O(µ logµ) (1.12)

=
1

− logµ
+

−b
(− logµ)2

+
b2 − π2

3

(− logµ)3
+O((logµ)−4). (1.13)
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resolvent R0(λ), using a resolvent identity due to Vodev [Vod14], and techniques in part based on
Vodev’s work in [Vod99].

Our techniques can be applied to quite general compactly supported perturbations of −∆ on
R
2, far beyond the specific, classical setting considered here, that of the Dirichlet problem on an

exterior domain. In a companion paper we will address the more general case. As demonstrated
already in [BGD88, JeNe01] for the case of Schrödinger operators on R

2, different kinds of singular
behavior of the resolvent near zero can then appear.

We deduce the series for the scattering matrix and scattering phase of Theorems 2 and 3 in
Section 3, by inserting the resolvent expansion (1.1) into the formulas (1.4) and (1.7). Section 4
contains some related results for the Dirichlet-to-Neumann operator.

Appendix A collects background on polar and nonpolar sets, Appendix B contains a lemma
about series with logarithmic terms, and Appendix C contains formulas for the scattering matrix
and scattering phase of a disk; see also Section 5.2 of [HaZe99] and Section 3 of [GMWZ22].

The presentation of Theorems 1, 2, and 3 is self-contained, based on standard complex and
functional analysis, except for a few ingredients. For the resolvent expansions we quote the series
(2.1) and (2.2) for the free resolvent. For the scattering matrix and scattering phase we quote
Petkov and Zworski’s formula (1.4). Our analysis of the Dirichlet-to-Neumann operator in Section 4
requires more, namely mapping properties from [GMZ07], results on solutions of boundary value
problems from [McL00], and results on analyticity of eigenvalues for which [ReSi78] is a reference.

1.4. Notation and conventions.

• C∞
0 (U) is the set of functions in C∞(U) with compact support in U .

• O ⊂ R
2 is compact and Ω = R

2\O. We say O is polar if C∞
0 (Ω) is dense inH1(R2). The Dirichlet

Laplacian is −∆: D → L2(Ω), with D = {u ∈ H1
0 (Ω): ∆u ∈ L2(Ω)}, and ∆ := ∂2x1

+ ∂2x2
.

• The Dirichlet resolvent R(λ) is defined for Imλ > 0 to be the operator which takes f ∈ L2(Ω) to
the unique u ∈ D solving (−∆−λ2)u = f . For every χ ∈ C∞

0 (R2), the product χR(λ)χ continues
meromorphically from the upper half plane to Λ, the Riemann surface of the logarithm. The free
resolvent R0(λ) is defined in the same way but with L2(Ω) replaced by L2(R2) and D replaced
by H2(R2). See Sections 2.1 and 2.3 for a review of these facts.

• The mapping Λ → C given by λ 7→ log λ is bijective, with the upper half plane Imλ > 0
identified with the subset of Λ where arg λ = Im log λ takes values in (0, π).

• The mapping λ 7→ λ̄ on Λ is defined by |λ̄| = |λ| and arg λ̄ = − arg λ.

• The product of a function χ on R
2 and a function f on Ω is the function χf on Ω obtained by

ignoring the values of χ on R
2 \ Ω.

• L2
c(Ω) is the set of functions f ∈ L2(Ω) such that χf = f for some χ ∈ C∞

0 (R2). Other function
spaces with a ‘c’ subscript are defined analogously.

• Dloc is the set of functions f on Ω such that χf ∈ D for all χ ∈ C∞
0 (R2). Other function spaces

with a ‘loc’ subscript are defined analogously.

• G is the unique harmonic function in Dloc such that log |x| −G(x) is bounded as |x| → ∞. We
construct G and prove its uniqueness in Lemma 2.6.

• C(O) = lim|x|→∞ log |x| −G(x).

• γ is Euler’s constant, given by γ = −Γ′(1) = 0.577 . . . .

• a = log 2− γ − C(O) + πi
2 .
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• g ⊗ h means the operator of rank one which maps f to (
∫
hf)g.

• Petkov and Zworski’s formula for the scattering matrix S(λ) = I + A(λ) is given in (1.4). This
corresponds to the definition S(λ) = Sa(λ)Sa,0(λ)

−1, where Sa is the absolute scattering matrix
and Sa,0 is the free absolute scattering matrix, as in Section 4.4.3 of [DyZw19]. Note that the
convention in [PeZw01], as in [Mel95], has instead S(λ) = Sa,0(λ)

−1Sa(λ).

• The cutoff functions χ1, χ2, and χ3 are introduced in (1.5).

• The scattering phase is σ(λ) = 1
2πi log detS(λ) =

1
2πi tr logS(λ). This definition gives the same

value for either convention of S(λ).

• N = {1, 2 . . . } and N0 = {0} ∪ N.

2. The resolvent

2.1. The free resolvent. Let R0(λ) be the free resolvent on R
2, defined for Imλ > 0 to be the

operator which takes f ∈ L2(R2) to the unique u ∈ H2(R2) solving (−∆− λ2)u = f . The integral
kernel of R0(λ) is given in terms of Bessel functions of order 0 by

R0(λ)(x, y) =
1

2π
K0(−iλ|x− y|) = i

4
H

(1)
0 (λ|x− y|), (2.1)

where

H
(1)
0 (λ) =

(
1 +

2i

π
log

(
λ

2

))
J0(λ)−

2i

π

∞∑

m=0

ψ(m+ 1)
(−λ2/4)m
(m!)2

, J0(λ) =
∞∑

m=0

(−λ2/4)m
(m!)2

,

and ψ is the digamma function, i.e. ψ(1) = Γ′(1) = −γ, ψ(m + 1) = ψ(m) + 1
m ; see e.g. [Bor20,

Section 4.1.3] and [Olv97, Sections 2.9.3, 7.5, and 7.8.1]. Thus,

H
(1)
0 (λ) =

∞∑

m=0

(
2i

π
log

(
λ

2

)
− 2i

π
ψ(m+ 1) + 1

)
(−λ2/4)m
(m!)2

. (2.2)

By large argument Bessel function asymptotics, (see e.g. [Olv97, Section 7.4.1]), for any λ in the

upper half plane we have |R0(λ)(x, y)| = O(e−|x−y| Imλ). Hence, for any f ∈ L2
c(R

2) and λ in the
upper half plane,

R0(λ)f(x) = O(e−|x| Imλ), as |x| → ∞. (2.3)

It follows from (2.1) and (2.2) that R0(λ)(x, y), and hence also R0(λ) : L
2
c(R

2) → H2
loc(R

2),
continue holomorphically from the upper half plane to Λ, the Riemann surface of log λ. For each
λ ∈ Λ we write

R0(λ) =
∞∑

j=0

1∑

k=0

R2j,kλ
2j(log λ)k = R01 log λ+ R̃0(λ), (2.4)

where R̃0(λ) is defined by the equation, the R2j,k are operators L2
c(R

2) → H2
loc(R

2) such that
χR2j,kχ is bounded L2(R2) → H2(R2) for any χ ∈ C∞

0 (R2), and the series converges in the sense
that, for every λ0 > 0 and χ ∈ C∞

0 (R2), the series

∞∑

j=1

1∑

k=0

‖χR2j,kχ‖L2(R2)→H2(R2)|λ|2j | log λ|k

converges uniformly for all λ ∈ Λ with |λ| ≤ λ0.

The leading coefficient is

R01 = − 1

2π
(1⊗ 1),
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where 1⊗1 means the operator mapping ϕ to the constant
∫
R2 ϕ. The next term has integral kernel

R00(x, y) = − 1

2π
log |x− y|+ log 2− γ

2π
+
i

4
.

Since log |x− y| = 1
2 log |x− y|2 = log |x|+ 1

2 log(1−
2x·y
|x|2

+ |y|2

|x|2
), we obtain

R00f (x) =
(
− 1

2π
log |x|+ log 2− γ

2π
+
i

4

)∫

R2

f +
1

4π

∞∑

m=1

1

m|x|2m
∫
(2x · y − |y|2)mf(y) dy, (2.5)

for |x| large enough, when f ∈ L2
c(R

2).

2.2. The Dirichlet resolvent. Recall that the Dirichlet Laplacian −∆ is the unique operator
D := {u ∈ H1

0 (Ω): ∆u ∈ L2(Ω)} → L2(Ω) such that
∫

Ω
∇u · ∇v =

∫

Ω
(−∆u)v, for all u ∈ D and v ∈ H1

0 (Ω); (2.6)

see the first two pages of Section 2 of Chapter 8 of [Tay11], or Section 6.1.2 of [Bor20].

From the fact that −∆: D → L2(Ω) is nonnegative, we know that ‖R(iκ)‖L2(Ω)→L2(Ω) = κ−2 for
all κ > 0. We begin our analysis of the resolvent near κ = 0 by showing that

sup
κ∈(0,1]

‖κ3/2R(iκ)χ‖L2(Ω)→H1

0
(Ω) <∞, for all χ ∈ C∞

0 (R2). (2.7)

The bound (2.7) follows from ‖χf‖L4/3 ≤ ‖χ‖L4‖f‖L2 (by Hölder’s inequality, Theorem 189 of
[HLP34]) and the following lemma based on a Sobolev interpolation inequality of Ladyzhenskaya.

Lemma 2.1. Let κ > 0, g ∈ L2(Ω) ∩ L4/3(Ω), and u = R(iκ)g. Then

‖∇u‖2L2(Ω) + κ2‖u‖2L2(Ω) ≤
1

κ
√
8
‖g‖2

L4/3(Ω)
. (2.8)

Proof. By (2.6) with u = v, and using Hölder’s inequality, we have
∫

Ω
|∂x1

u|2 +
∫

Ω
|∂x2

u|2 + κ2
∫

Ω
|u|2 =

∫

Ω
g ū ≤ ‖g‖L4/3‖u‖L4 .

By equation (7.2) of Chapter 4 of [Tay11], if u ∈ H1
0 (Ω) then u ∈ H1

0 (R
2), where we identify

u with its extension by 0 from Ω to R
2. As in Supplement 2 of Chapter 1 of [Lad85], we use

|ϕ(t)| = 1
2 |
∫ t
−∞ ϕ′ −

∫∞
t ϕ′| ≤ 1

2

∫
R
|ϕ′| to obtain

∫

R2

|u|4 ≤
∫

R

sup
x1∈R

|u(x1, x2)|2 dx2
∫

R

sup
x2∈R

|u(x1, x2)|2 dx1

≤
∫

R2

|u∂x1
u|
∫

R2

|u∂x2
u| ≤

∫

R2

|u|2
(∫

R2

|∂x1
u|2
)1/2(∫

R2

|∂x2
u|2
)1/2

.

Hence, using also a1/2b1/4c1/8d1/8 ≤ 1
2a+

1
4b+

1
8c+

1
8d (see Theorem 9 of [HLP34]), we obtain

∫

Ω
|∂x1

u|2+
∫

Ω
|∂x2

u|2 + κ2
∫

Ω
|u|2 ≤ ‖g‖L4/3‖u‖1/2L2 ‖∂x1

u‖1/4
L2 ‖∂x2

u‖1/4
L2

≤ 1

κ
√
32

(∫

Ω
|g|4/3

)3/2
+
κ2

2

∫

Ω
|u|2 + 1

2

∫

Ω
|∂x1

u|2 + 1

2

∫

Ω
|∂x2

u|2,

which implies (2.8). �
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We will also need two basic facts about harmonic functions. The first is that, if u is harmonic
and bounded on {x ∈ R

2 : |x| > ρ}, then there are constants c0, cj,c, cj,s, such that

u(r cos θ, r sin θ) = c0 +
∞∑

j=1

(cj,c cos jθ + cj,s sin jθ)r
−j , for r > ρ. (2.9)

The second gives the way that the assumption that O is not polar is used in our main results.

Lemma 2.2. If O is not polar, then the only bounded harmonic function in Dloc is the zero function.

Proof. Let u ∈ Dloc be harmonic and bounded, and let Dρ = {x ∈ R
2 : |x| < ρ}. By (2.9),

∫

Ω∩Dρ

|∇u|2 =
∫

∂Dρ

u ∂rū dS = O(ρ−1), as ρ→ ∞,

which implies that ∇u is identically 0. Because O is not polar, the only locally constant function
in Dloc is the zero function: see the implication (2) =⇒ (1) of Lemma A.2. �

2.3. Vodev’s identity. Recall that χ1 ∈ C∞
0 (R2) is 1 near O. Let z and λ be in the upper half

plane. To relate the resolvents R(λ) and R0(λ), we start by using

R(λ)(1− χ1)(−∆− λ2)R0(λ) = R(λ){(−∆− λ2)(1− χ1) + [χ1,∆]}R0(λ)

to write

R(λ)(1− χ1) = {1− χ1 −R(λ)[∆, χ1]}R0(λ). (2.10)

Similarly to (2.10) we have

(1− χ1)R(z) = R0(z){1− χ1 + [∆, χ1]R(z)}. (2.11)

Note, for later reference, that combining (2.11) with (2.3) shows that

f ∈ L2
c(Ω) and Imλ > 0 =⇒ R(z)f(x) = O(e−|x| Imλ), as |x| → ∞. (2.12)

Inserting (2.11) and (2.10) into

R(λ)−R(z) = (λ2 − z2)R(λ)R(z) = (λ2 − z2)
(
R(λ)χ1(2− χ1)R(z) +R(λ)(1− χ1)

2R(z)
)
,

gives

R(λ)−R(z) =(λ2 − z2)
(
R(λ)χ1(2− χ1)R(z)

+ {(1− χ1)−R(λ)[∆, χ1]}R0(λ)R0(z){(1− χ1) + [∆, χ1]R(z)}
)
.

Plugging in (λ2 − z2)R0(λ)R0(z) = R0(λ)−R0(z), and introducing the notation

K1 = 1− χ1 + [∆, χ1]R(z), (2.13)

gives

R(λ)−R(z) =(λ2 − z2)R(λ)χ1(2− χ1)R(z) + {1− χ1 −R(λ)[∆, χ1]}(R0(λ)−R0(z))K1. (2.14)

We now bring the R(λ) terms to the left, the remaining terms to the right, and factor, obtaining

R(λ)(I −K(λ)) = F (λ), (2.15)

where

K(λ) = (λ2 − z2)χ1(2− χ1)R(z)− [∆, χ1](R0(λ)−R0(z))K1,

F (λ) = R(z) + (1− χ1)(R0(λ)−R0(z))K1. (2.16)
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Here and below we shorten formulas by using notation which displays λ-dependence but not z-
dependence for operators other than resolvents. The identities (2.14) and (2.15) are versions of
Vodev’s resolvent identity [Vod14, (5.4)].

For any χ ∈ C∞
0 (R2), the resolvent R(λ) continues meromorphically to Λ, the logarithmic cover

of C\{0}. This well-known fact follows directly from Vodev’s identity, as in Section 2 of [ChDa22].
Indeed, take χ ∈ C∞

0 (R2) such that χ is 1 near the support of χ1 and multiply (2.15) on the left
and right by χ. That gives χR(λ)χ(I −K(λ)χ) = χF (λ)χ. Observe now that K(λ)χ is compact
L2(Ω) → L2(Ω), and ‖K(λ)‖L2(Ω)→L2(Ω) → 0 as λ → z. Consequently, by the analytic Fredholm

theorem (Theorem 4.19 of [Bor20]), χR(λ)χ = χF (λ)χ(I −K(λ)χ)−1 continues meromorphically
from the upper half plane to Λ, the Riemann surface of log λ.

Thus (2.14) and (2.15) continue to hold for any z and λ in Λ, with K(λ) and K1 mapping L2
c(Ω)

to L2
c(Ω), and R(λ) and F (λ) mapping L2

c(Ω) → Dloc.

2.4. Resolvent expansions. We derive our series formula for the resolvent near λ = 0, which is
the main result of Theorem 1, over the course of several lemmas, in which we establish successively
more explicit formulas for R(λ) based on Vodev’s identity (2.15). The first lemma is partly based
on the proof of Proposition 3.1 from [Vod99]:

Lemma 2.3. There is z0 > 0 such that for every z on the positive imaginary axis obeying 0 < −iz ≤
z0 and for every ϕ0 > 0, there is λ0 > 0 such that for all λ ∈ z with |λ| ≤ λ0 and | arg λ| ≤ ϕ0, the
operator I −K(λ) is invertible L2

c(Ω) → L2
c(Ω), and

R(λ) = F (λ)(I −K(λ))−1. (2.17)

Moreover,

(I −K(λ))−1 = D(λ)
(
I +

A(λ)D(λ)

1− (log λ− log z)α(λ)

)
, (2.18)

where

w =
1

2π
∆χ1, A(λ) = (log λ− log z)(w ⊗ 1)K1,

and

D(λ) =

∞∑

j=0

j∑

k=0

D2j,kλ
2j(log λ)k, α(λ) =

∫

Ω
K1D(λ)wdx =

∞∑

j=0

j∑

k=0

α2j,kλ
2j(log λ)k, (2.19)

for some bounded operators D2j,k : L
2
c(Ω) → L2

c(Ω) and complex numbers α2j,k which depend on z
but not on λ. If k 6= 0 then D2j,k has finite rank. The series converge uniformly for all λ ∈ Λ with
0 < |λ| ≤ λ0 and | arg λ| ≤ ϕ0. Finally, we have the following variant of Vodev’s identity:

R(λ)(I −A(λ)D(λ)) = F (λ)D(λ). (2.20)

To define A(λ) we used the notation (w ⊗ 1)f = w
∫
Ω f for f ∈ L2

c(Ω), and the fact that

K1 maps L2
c(Ω) into L2

c(Ω). We understand (2.17) and (2.20) as identities of operators mapping
L2
c(Ω) → Dloc.

Proof. We define K̃(λ) = K(λ)−A(λ). Writing

K̃(λ) = (λ2 − z2)χ1(2− χ1)R(z) + [∆, χ1]
(
R̃0(z)− R̃0(λ)

)
K1,

and using the free resolvent series (2.4) shows that

K̃(λ) =
∞∑

j=0

min(j,1)∑

k=0

K2j,kλ
2j(log λ)k,
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for some bounded operators K2j,k : L
2
c(Ω) → L2

c(Ω) which depend on z but not on λ. If k 6= 0 then
K2j,k has finite rank, because, by the Hankel function series (2.2), if k 6= 0 then R2j,k has finite
rank. Since

K00 = −z2χ1(2− χ1)R(z) + [∆, χ1]
(
R̃0(z)− R̃0(0)

)
K1,

we see, using the resolvent bounds (2.7) and ‖χ(R̃0(z)− R̃0(0))χ‖L2(R2)→H2(R2) = O(z2 log z) from
(2.4), that ‖K00χ‖L2→L2 → 0 as z0 → 0. Hence, if |z0| is small enough and |λ0| is small enough

depending on z, then I − K̃(λ) is invertible L2
c(Ω) → L2

c(Ω) with

I −K(λ) = (I −A(λ)D(λ))D(λ)−1, D(λ) = (I − K̃(λ))−1 = (I − K̃(λ)χ2)
−1(I + K̃(λ)(1− χ2)).

(2.21)
Recall that χ2 ∈ C∞

c (R2) is 1 on the support of χ1. By Vodev’s identity (2.15), it remains to show
that I −A(λ)D(λ) is invertible with

(I −A(λ)D(λ))−1 = I +
(log λ− log z)(w ⊗ 1)K1D(λ)

1− (log λ− log z)α(λ)
. (2.22)

For this, observe that u solves u−A(λ)D(λ)u = f if and only if u = f + c(λ)w, where

c(λ)w − c(λ)A(λ)D(λ)w = A(λ)D(λ)f.

Pairing with w, plugging in A(λ)D(λ)w = (log λ− log z)α(λ)w, and solving for c(λ) gives

c(λ) =
〈A(λ)D(λ)f, w〉H

(1− (log λ− log z)α(λ))‖w‖2H
=

log λ− log z

1− (log λ− log z)α(λ)

∫

R2

K1D(λ)f.

This implies (2.22) and concludes the proof. �

Our next lemma rewrites the formula (2.17) for R(λ) as a sum of terms of rank one and terms
where log λ does not appear in the denominator.

Lemma 2.4. Under the assumptions and notation of Lemma 2.3, we have

R(λ) =
log λ

1− (log λ− log z)α(λ)

((−1

2π
(1− χ1) + F̃ (λ)D(λ)w

)
⊗ 1

)
K1D(λ)

− log z

1− (log λ− log z)α(λ)
F̃ (λ)D(λ)(w ⊗ 1)K1D(λ) + F̃ (λ)D(λ),

(2.23)

where

F (λ) =
∞∑

j=0

1∑

k=0

F2j,kλ
2j(log λ)k = F01 log λ+ F̃ (λ), (2.24)

each F2j,k is bounded L2
c(Ω) → Dloc, if k 6= 0 then F2j,k has finite rank, and

F01 = − 1

2π
(1− χ1)(1⊗ 1)K1. (2.25)

Proof. The statements about the F2j,k follow from the free resolvent series (2.2) and (2.4).
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Next, to simplify the contribution of F01 in the resolvent formula (2.17), we write

(1⊗ 1)K1(I −K(λ))−1 = (1⊗ 1)K1D(λ)

(
I +

(log λ− log z)(w ⊗ 1)K1D(λ)

1− (log λ− log z)α(λ)

)

=

(
1 +

(log λ− log z)
∫
R2 K1D(λ)w

1− (log λ− log z)α(λ)

)
(1⊗ 1)K1D(λ)

=

(
1 +

(log λ− log z)α(λ)

1− (log λ− log z)α(λ)

)
(1⊗ 1)K1D(λ)

=

(
1

1− (log λ− log z)α(λ)

)
(1⊗ 1)K1D(λ).

Combining with the formula (2.25) for F01 and plugging into (2.17) gives

R(λ) =− 1

2π

(
log λ

1− (log λ− log z)α(λ)

)
((1− χ1)⊗ 1)K1D(λ) + F̃ (λ)(I −K(λ))−1

=
log λ

1− (log λ− log z)α(λ)

(−1

2π
((1− χ1)⊗ 1) + F̃ (λ)D(λ)(w ⊗ 1)

)
K1D(λ)

+ F̃ (λ)D(λ)

(
I − log z

1− (log λ− log z)α(λ)
(w ⊗ 1)K1D(λ)

)
,

which in turn gives (2.23). �

In our next lemma we prove that if O is not polar, then the absolute value of the denominators
in (2.23) tends to infinity as λ→ 0.

Lemma 2.5. Under the assumptions and notation of Lemma 2.4, if α00 = 0 then O is polar.

For the proof of Lemma 2.5 we will use the following observation, which will also be useful later.
Suppose there are operators A2j,k : L2

c(Ω) → Dloc, integers K(j) ∈ N and an a ∈ C so that for any

χ ∈ C∞
0 (R2), χR(z)χ =

∑∞
j=0

∑
|k|≤K(j) χA2j,kχ(log z − a)kz2j . Then using (−∆ − z2)R(z) = I,

expanding both sides in z and log z and equating like powers yields

−∆A2j,k = A2j−2,k if (2j, k) 6= (0, 0)

−∆A0,0 = I (2.26)

where we understand A2j,k = 0 if j < 0 or if |k| ≥ K(j).

Proof. If α00 = 0, then |(log λ − log z)α(λ)| → 0 as λ → 0 and, using the series for α from (2.19),
we have

1

1− (log λ− log z)α(λ)
=

∞∑

m=0

(log λ− log z)mα(λ)m =

∞∑

j=0

2j∑

k=0

ajkλ
2j(log λ)k.

Inserting this, and the series for D and F̃ from (2.19) and (2.24), into the resolvent formula (2.23)
gives the resolvent series expansion

χR(λ)χ = χ


(uA ⊗ 1)K1D00 log λ+A00 +

∞∑

j=1

2j+1∑

k=0

A2j,kλ
2j(log λ)k


χ. (2.27)

Now by the formula for F in (2.16), and the exponential decay estimates (2.3) and (2.12), we have

(F00D00w)(x) = (R00K1D00w)(x) +O(e−|x| Im z), (2.28)
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and since α00 =
∫
K1D00w = 0, by the asymptotics for R00 in (2.5) we obtain

uA(x) = − 1

2π
(1− χ1(x)) +O(|x|−1) → − 1

2π
, as |x| → ∞.

Hence uA ∈ Dloc is bounded and nontrivial. By (2.26), we can conclude that (∆uA)
∫
K1D00f = 0

for all f ∈ L2
c(Ω). Thus, by Lemma 2.2, it is enough to show that there is f ∈ L2

c(Ω) such
that

∫
K1D00f 6= 0. By (2.21), D00 : L

2
c(Ω) → L2

c(Ω) is invertible and hence it is enough to find
f ∈ L2

c(Ω) such that
∫
K1f 6= 0. By the resolvent identities (2.11) and (2.13) we have

∫
K1f =

∫
(−∆− z2)(1− χ1)R(z)f = −z2

∫
(1− χ1)R(z)f,

which is nonzero when f = (−∆− z2)g for g ∈ H2(Ω) with (1− χ1)g = g and
∫
g 6= 0. �

We are now ready to obtain the final form of the resolvent expansion stated in (1.1).

Proof of Theorem 1. With the assumptions and notation of Lemma 2.4, and using the fact that
α00 6= 0, we write

1

1− (log λ− log z)α(λ)
=

1

1− (log λ− log z)α00

1

1− r(λ)
, (2.29)

where

r(λ) =
(log λ− log z)(α(λ)− α00)

1− (log λ− log z)α00
= −α−1

00

(
1− 1

1− (log λ− log z)α00

)
(α(λ)− α00).

Using the series for α from (2.19) to write,

r(λ)m =
∞∑

j=m

(
j∑

k=0

rm,2j,k(log λ)
k +

m∑

k=1

rm,2j,−k(log λ− log z − α−1
00 )

−k

)
λ2j ,

and inserting the geometric series 1
1−r(λ) =

∑∞
m=0 r(λ)

m into (2.29) gives

1

1− (log λ− log z)α(λ)
=

∞∑

j=0

(
j−1∑

k=1

b2j,k(log λ)
k +

j+1∑

k=0

b2j,−k(log λ− log z − α−1
00 )

−k

)
λ2j . (2.30)

Inserting this series and the series (2.19) and (2.24) for D and F̃ into (2.23) gives (1.1) with
a = log z + α−1

00 . Moreover, this shows all the Bj,k for k 6= 0 have finite rank, and B0,−1 has rank
at most one. �

We end this section with some computations concerning the resolvent expansion (1.1). The first
set of formulas (2.31) is a restatement of (1.2) from our main result. The second set of formulas
(2.32) will be used in Section 3 to analyze the scattering matrix.

Lemma 2.6. There is a unique harmonic function G in Dloc such that log |x| − G(x) is bounded
as |x| → ∞, and

B0,−1 =
1

2π
G⊗G, a = log 2− γ − C(O) +

πi

2
, C(O) := lim

|x|→∞
log |x| −G(x). (2.31)

Also,

B00∆χ2 = (1− χ2), B0,−1∆χ2 = G. (2.32)
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Proof. Inserting R(i|λ|) = B00 + B0,−1(log |λ| − log |z| − α−1
00 )

−1 + O(λ2 log λ) into 〈R(i|λ|)u, v〉 =
〈u,R(i|λ|)v〉, and matching coefficients of (log |λ| − log |z| − α−1

00 )
−1, gives

B0,−1 = cBuB ⊗ uB, (2.33)

for some uB ∈ Dloc and cB ∈ R. From the term matching formula (2.26) we see that −∆uB = 0.

We claim that we may choose cB and uB in such a way that log |x| − uB(x) is bounded as
|x| → ∞. Then we may put G = uB, as uniqueness of G follows from Lemma 2.2.

To prove the claim, we use Vodev’s identity in the form (2.20). Inserting the expansions for
D(λ), F (λ), and R(λ) from (2.19), (2.24), and (1.1) into (2.20), gives

(B00 +B0,−1(log λ− log z − α−1
00 )

−1)(I + (log z − log λ)(w ⊗ 1)K1D00)

=
(
− log λ

2π
(1− χ1)(1⊗ 1)K1 + F00

)
D00 +O(λ2 log2 λ).

Equating the coefficients of log λ and λ0, gives

B00(w ⊗ 1)K1D00 =
1

2π
(1− χ1)(1⊗ 1)K1D00,

B00 +
(
log z B00 −B0,−1

)
(w ⊗ 1)K1D00 = F00D00.

The first equality implies

B00w =
1

2π
(1− χ1). (2.34)

Applying the second equality to w and plugging in (2.34) and α00 =
∫
K1D00w gives

1

2π
(1− χ1) +

α00 log z

2π
(1− χ1)− α00B0,−1w = F00D00w,

or

B0,−1w = −α−1
00 F00D00w +

1

2π
(α−1

00 + log z)(1− χ1). (2.35)

Using the expansion for F00D00w in (2.28) and the expansion for R00 in (2.5) gives

F00D00w(x) =
(
− 1

2π
log |x|+ log 2− γ

2π
+
i

4

)
α00 +O(|x|−1). (2.36)

Inserting (2.36) into (2.35) and setting uB = 2πB0,−1w we get

uB(x) = 2πB0,−1w(x) = log |x|+ α−1
00 + log z − log 2 + γ − πi/2 +O(|x|−1). (2.37)

This completes the proof of the claim.

Combining (2.37) and (2.30) shows that the expression for a in (2.31) holds. To complete the
proof of (2.31), it remains to show that cB = 1/2π. Inserting (2.37) into (2.33) gives B0,−1w =
cBG〈w,G〉L2 = G/2π, and so this is equivalent to showing that

〈w,G〉L2 = 1. (2.38)

Let Dρ = {x ∈ R
2 : r < ρ}. For ρ large, the asymptotics for harmonic functions (2.9) imply

〈w,G〉L2 =
1

2π

∫

Ω∩Dρ

(∆χ1)Gdx =
1

2π

∫

∂Dρ

(
(1− χ1)∂rG− ∂r(1− χ1)G

)
dS

=
1

2π

∫

∂Dρ

(1− χ1)∂rGdS =
1

2π

∫

∂Dρ

(
r−1 +O(r−2)

)
dS = 1 +O(ρ−1).

Taking ρ→ ∞ completes the proof of (2.38), and hence of (2.31).
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It remains to prove (2.32). Observe that (2.34) and (2.37) are the same as (2.32), but with χ2

replaced by χ1. But (2.34) and (2.37) hold for any χ1 which is 1 near O, so they also hold with χ1

replaced by χ2, as desired. �

3. The scattering matrix and scattering phase

The asymptotic expansions of the scattering matrix and scattering phase follow from the asymp-
totic expansion of the resolvent when combined with Petkov and Zworski’s formula (1.4) which
expresses the scattering matrix in terms of the resolvent.

Proof of Theorem 2. We use the series

E(λ) =
∞∑

`=0

λ`E`χ3, (3.1)

where

E`f(ω) :=
1

`!

∫

R2

(−iω · x)`f(x)dx =
∑̀

m=0

(−i)`ωm
1 ω

`−m
2

m!(`−m)!

∫

R2

xm1 x
`−m
2 f(x)dx. (3.2)

Since a rank one operator ϕ⊗ ψ : H → H′ has trace norm ‖ϕ‖H′‖ψ‖H, we obtain

‖E`χ3‖tr ≤
∑̀

m=0

‖ωm
1 ω

`−m
2 ‖L2(S1)‖xm1 x`−m

2 χ3(x)‖L2(R2)

m!(`−m)!
≤
∑̀

m=0

√
2πρ`+1

m!(`−m)!
=

√
2π

2`ρ`+1

`!
, (3.3)

where ρ is chosen large enough that |x| ≤ ρ on the support of χ3, and we used the fact that
max |χ3| = 1. Plugging in the series (1.1) for R(λ), and the series (3.1) for E(λ), into Petkov and
Zworski’s formula for the scattering matrix (1.4), gives

A(λ) =
1

4πi

∞∑

`=0

∞∑

`′=0

∞∑

j=0

j∑

k=−j−1

E`[∆, χ1]B2j,k[∆, χ2]E
∗
`′λ

2j+`+`′(log λ− a)k. (3.4)

The series (3.4) is absolutely convergent in the sense that

∞∑

`=0

∞∑

`′=0

∞∑

j=0

j∑

k=−j−1

‖E`[∆, χ1]B2j,k[∆, χ2]E
∗
`′‖tr|λ|2j+`+`′ | log λ− a|k,

converges for λ on the positive imaginary axis with |λ| small enough, because it is the prod-
uct of the convergent series for E(λ) : L2(R2) → L2(S1), [∆, χ1]R(λ)χ3 : L

2(Ω) → L2(R2), and
[∆, χ2]E(λ)∗ : L2(S1) → L2(Ω), with the series for E(λ) being convergent in the trace norm by (3.3).

Hence, by Lemma B.1, the series (3.4) is absolutely convergent in the space of trace-class oper-
ators L2(S1) → L2(S1), uniformly on sectors near zero. Since the E` have finite rank, the Sj,k also
have finite rank.

To complete the proof of Theorem 2, it remains to simplify the leading order terms in (3.4).

We first show that all terms of (3.4) with j = k = 0 and `+ `′ ≤ 1 simplify to 0. By (2.32), we
have B0,0[∆, χ2]E

∗
0 = (1 − χ2) ⊗ 1, and hence [∆, χ1]B0,0[∆, χ2]E

∗
0 = 0. Hence all terms of (3.4)

with j = k = `′ = 0 simplify to 0. To prove that the term with j = k = ` = 0 and `′ = 1 simplifies
to 0 too, we observe that since B∗

0,0 = B0,0, we have E0[∆, χ1]B0,0 = 1⊗ (1− χ1), and so

E0[∆, χ1]B0,0[∆, χ2]E
∗
1f = 1⊗ (1− χ1)[∆, χ2]E

∗
1f = i

∫
[∆, χ2]

∫
x · ωf(ω)dSdx,



LOW ENERGY SCATTERING ASYMPTOTICS FOR PLANAR OBSTACLES 15

while integrating by parts shows
∫
[∆, χ2]xj =

∫
(∆χ2)xj + 2∂xjχ2 = 0.

Second, we simplify the term with j = ` = `′ = 0 and k = −1. By (2.32) we have

E0[∆, χ1]B0,−1[∆, χ2]E
∗
0 =

(
1⊗ χ3(x)

)
[∆, χ1]

(
G(x)⊗ 1

)
.

Moreover, for ρ large enough we have

−
∫

R2

[∆, χ1]G =

∫

B(0,ρ)
∆(1− χ1)G =

∫

r=ρ
∂rG = 2π +O(ρ−1) → 2π, as ρ→ ∞,

so we get (
1⊗ χ3(x)

)
[∆, χ1]

(
G(x)⊗ 1

)
= −2π(1⊗ 1),

which completes the calculation of S0,−1. �

We introduce the following notation to help with the proof of Theorem 3. For t ∈ [0,∞) we
denote by {t} the fractional part of t. Thus, for ` ∈ N0, {`/2} = 0 if ` is even and {`/2} = 1/2 if ` is
odd. We define two orthogonal projection operators acting on L2(S1), P0 and P1/2. The projection

P0 projects onto the span of {e2inθ, n ∈ Z} and P1/2 projects onto the span of {e(2n+1)iθ, n ∈ Z}.
Hence P0P1/2 = 0 = P1/2P0, and P0 + P1/2 = I. The following elementary lemma gives an
indication of how we will use these projections.

Lemma 3.1. Let m ∈ N. For j = 1, ...,m, let `j , `
′
j ∈ N0 and Aj : L

2(S1) → L2(S1) be trace class.

If
∑m

j=1(`j + `′j) is odd, then

tr
(
P{`1/2}A1P{`′

1
/2}P{`2/2}A2P{`′

2
/2} · · · P{`m/2}AmP{`′m/2}

)
= 0.

Proof. Since
∑m

j=1(`j + `′j) is odd, there must be at least one j0 with 1 ≤ j0 < m so that `′j0
and `j0+1 have opposite parities, or `1 and `′m must have opposite parities (or both). By the
cyclicity of the trace, for the purposes of computing the trace we can assume the latter holds.
But in this case since P1/2P0 = 0 = P0P1/2, noting that for a trace class T : L2(S1) → L2(S1),
tr(P0TP1/2) = tr(P1/2P0TP1/2) = 0 and tr(P1/2TP0) = tr(P0P1/2TP0) = 0 proves the lemma. �

Proof of Theorem 3. By the series (1.6) for S(λ) = I + A(λ) we see that ‖A(λ)‖tr = O(1/ log λ),
and so (by Theorem 1 of Section 4.3 of [Kno56] on substituting a convergent series into a power
series) we have the following convergent series for the scattering phase:

σ(λ) =
1

2πi
tr log(I +A(λ)) =

−1

2πi

∞∑

`=1

(−1)`

`
trA(λ)`. (3.5)

Using the expression (3.2) for E`, we see that

P{`/2}E` = E` and P{(`+1)/2}E` = 0. (3.6)

In order to get an odd power of λ in the expansion (3.4) we see that exactly one of ` or `′ must be
odd. This implies by (3.6) that the coefficients of λ2n+1(log λ− a)k in the expansion of A = S − I
can be written in the form

S2n+1,k = P0S̃2n+1,k,eoP1/2 + P1/2S̃2n+1,k,oeP0 (3.7)
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for some trace class operators S̃2n+1,k,eo and S̃2n+1,k,oe. Likewise, the coefficients of λ2n(log λ− a)k

in the expansion of S can be written

S2n,k = P0S̃2n,k,eeP0 + P1/2S̃2n,k,ooP1/2, when (n, k) 6= (0, 0), (3.8)

for some trace class operators S2n,k,ee and S2n,k,oo.

Using (3.7), (3.8) and Lemma 3.1 yields

trA(λ) =
iπ

log λ− a
+

∞∑

j=1

j∑

k=−j−1

trS2j,k(log λ− a)kλ2j .

Note there are no odd powers of λ. Moreover, there are constants aj,k,l such that

trA(λ)` =
( iπ

log λ− a

)`
+

∞∑

j=1

j∑

k=−j−`

aj,k,`(log λ− a)kλ2j . (3.9)

Again, the absence of odd powers of λ comes from applying Lemma 3.1, (3.7) and (3.8). Substituting
(3.9) into (3.5) gives

σ(λ) =
−1

2πi

∞∑

`=1

(−1)`

`

(( iπ

log λ− a

)`
+

∞∑

j=1

j∑

k=−j−`

aj,k,`(log λ− a)kλ2j

)
, (3.10)

and combining with
∞∑

`=1

(−1)`

`

( iπ

log λ− a

)`
= − log

(
1 +

iπ

log λ− a

)
,

we obtain (1.8). Then (1.10) follows from (1.8) together with

log
(
1 +

iπ

log λ− a

)
= i arg

(
1 +

iπ

log λ− a

)
= 2i arctan

( π

2 log(λ/2) + 2C(O) + 2γ

)
. (3.11)

Absolute convergence of the series for σ(λ) and σ′(λ), uniformly on sectors near zero, again follows
from Lemma B.1. Differentiating (3.11) gives (1.11). �

4. The Dirichlet-to-Neumann operator

In this section we show that the Dirichlet-to-Neumann operator for the exterior Helmholtz equation

(−∆− λ2)u = 0, in Ω,

u = f, on ∂Ω,
(4.1)

has an expansion near λ = 0 very much like that of the resolvent in Theorem 1. In fact, the
expansion follows easily from our Theorem 1. We use this to answer a question raised by D.
Grebenkov regarding the lowest eigenvalue of the Dirichlet-to-Neumann operator near λ = 0 [Gre22,
page 11]. See [McL00, Chapter 4], [CoKr13, Chapter 3], and [Tay11, Chapters 7 and 9] for textbook
introductions to the Dirichlet-to-Neumann operator. The papers [ArEl15, BSW16] contain results
on exterior Dirichlet-to-Neumann operators and some references to further results on the subject.

In this section for simplicity we assume that ∂O = ∂Ω is smooth, without boundary, and Ω =
R
2 \ O is connected.

Let Imλ > 0, and define DtN(λ), the Dirichlet-to-Neumann operator on Ω, to be the operator

that maps H1/2(∂Ω) 3 f 7→ ∂νu ∈ H−1/2(∂Ω) where u ∈ L2(Ω) satisfies (4.1) and ∂ν is the outward
(with respect to Ω) pointing unit normal. Here we use an extended notion of the normal derivative
as described in [McL00, Lemma 4.3]. Then DtN(λ) has a meromorphic continuation to Λ. We
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prove this well-known fact in the course of the proof of our next theorem, which is the analog of
Theorems 1, 2, and 3 for the Dirichlet-to-Neumann operator.

Theorem 4. Let ∂Ω be smooth and Ω be connected. There are operators T2j,k : H1/2(∂Ω) →
H−1/2(∂Ω) such that

DtN(λ) =
∞∑

j=0

j∑

k=−j−1

T2j,kλ
2j(log λ− a)k, (4.2)

with a as in (1.2), and with the series converging absolutely in the space of bounded operators

H1/2(∂Ω) → H−1/2(∂Ω), uniformly on sectors near zero.

In fact, our first proof shows that if (j, k) 6= (0, 0), then T2j,k : H1/2(∂Ω) → H1/2(∂Ω).

We remark that for λ > 0 the function u used in the definition of the Dirichlet-to-Neumann
operator can be uniquely determined by requiring it to satisfy a Sommerfeld radiation condition
rather than be in L2(Ω); this is done in [BSW16], for example.

Proof. We begin by describing a construction of the unique u = u(x, λ) ∈ L2(Ω) satisfying (4.1)

for Imλ > 0 and f ∈ H1/2(∂Ω). Choose ρ > 0 so that O ⊂ Dρ = {x ∈ R
2 : |x| < ρ}. By [McL00,

Theorem 4.10] there is a unique ũ ∈ H1(Ω ∩Dρ) satisfying

−∆ũ = 0 on Ω ∩Dρ

ũ �∂Ω= f

ũ �∂Dρ= 0.

Denote by U the mapping f 7→ ũ; by [McL00, Theorem 4.10] this is a continuous map U :

H1/2(∂Ω) → H1(Ω ∩ Dρ). Choose χ ∈ C∞
0 (Dρ) so that χ is one in a neighborhood of O, and

set

u = χUf −R(λ)(−∆− λ2)(χUf) = χUf +R(λ)([∆, χ]Uf + λ2χUf). (4.3)

Since ([∆, χ]Uf + λ2χUf) ∈ L2
c(Ω), R(λ)([∆, χ]Uf + λ2χUf) has a meromorphic continuation (as

an element of H2
loc(Ω)) to Λ, as does ∂νR(λ)([∆, χ]Uf + λ2χUf) ∈ H1/2(∂Ω). This shows DtN(λ)

has a meromorphic extension to Λ. Moreover, the expansion (4.2) for DtN(λ) follows from the
expansion (1.1) for R(λ) and the expression (4.3). �

We sketch an alternate proof of Theorem 4. This second proof is more similar in approach to our
proof of Proposition 4.1. Moreover, it addresses the mapping properties of R(λ) and B2j,k acting
on distributions with less regularity than L2, which is of independent interest.

Proof. Let E : H1/2(∂Ω) → H1
loc(Ω) be an extension operator, so that Ef �∂Ω= f : see [Gri11,

Theorem 1.5.1.2]. This extension is not uniquely determined, but any such extension will do. Let
χ ∈ C∞

0 (R2) be 1 in a neighborhood of Ω. Then (−∆− λ2)(χEf) ∈ H−1(Ω) := (H1
0 (Ω))

∗ and has
compact support.

For Imλ > 0 the function u = χEf + R(λ)(∆ + λ2)χEf satisfies (4.1) and u ∈ L2(Ω). This is

straightforward if f ∈ H3/2(Ω), but we need some argument that this also holds for f ∈ H1/2(∂Ω).
In addition, we will need that the expansion (1.1) holds as a map H−1

c (Ω) → (H1
0 (Ω))loc. Suppose

−i Im z > 0 and g ∈ H−1(Ω). We consider a weak formulation of the problem (−∆− z2)v = g via
a bilinear form. By the Riesz representation theorem ([Bor20, Theorem 2.28] or the Lax-Milgram
theorem (e.g. [Eva98, Section 6.2.1]) there is a unique v ∈ H1

0 (Ω) so that for all w ∈ H1
0 (Ω),

〈∇v,∇w〉 − z2〈v, w〉 = 〈g, w〉, where the last pairing is the dual pairing of H−1(Ω) and H1
0 (Ω).

Moreover, v depends continuously on g. Hence R(z) : H−1(Ω) → H1
0 (Ω) continuously when
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−iz > 0 (with the norm depending on z). Now we use the notation of the proof of Theorem 1.
Since R0(z) commutes with the Laplacian, for Im z > 0 R0(z) : H−1(R2) → H1(R2) and with
R2j,k from (2.4), R2j,k : H−1

c (R2) → H1
loc(R

2). This and the mapping properties of R(z) show that
F2j,k : H−1

c (Ω) → (H1
0 (Ω))loc. Then since D2j,k : H−1

c (Ω) → H−1
c (Ω), inspection of our proof of

Theorem 1 shows that B2j,k : H−1
c (Ω) → (H1

0 (Ω))loc.

Thus we have, for Imλ > 0

u = χEf +R(λ)(∆ + λ2)(χEf) ∈ H1(Ω). (4.4)

Therefore u has a meromorphic continuation to Λ and has an expansion near 0 in powers of λ and
(log λ−a) just as the resolvent does, (1.1). Hence ∂νu = DtN(λ)u has a meromorphic continuation
to Λ and the expansion (4.2) for DtN(λ) follows from the expansion (1.1) for R(λ) and (4.4). �

For the convenience of the reader, we include brief proofs of two variational formulas for eigen-
values, which we shall use below. The first, (4.5), is known as Hadamard’s variational formula
and as the Feynman–Hellmann Theorem (see [Sim15, Theorem 1.4.7]). Both (4.5) and (4.6) are
essentially special cases of equation (2.36) of Chapter II of [Kat95], which generalizes well-known
perturbation theory formulas from quantum mechanics as in equations (7.9) and (7.15) of [GrSc18].

Lemma 4.1 (Variational formulas). Let H be a Hilbert space with inner product 〈•, •〉H, and let
A(τ) : H → H be a (possibly unbounded) self-adjoint linear operator depending in a C1 fashion on
τ ∈ (α, β) ⊂ R. Let φ1(τ) be an eigenfunction of A(τ), which has ‖φ1(τ)‖H = 1 and which depends
in a C1 fashion on τ ∈ (α, β). Suppose A(τ)φ1(τ) = σ1(τ)φ1(τ). Then σ1 ∈ C1(α, β), and

∂τσ1 = 〈(∂τA)φ1, φ1〉H. (4.5)

For the second variational formula, suppose in addition that A(τ) and φ1(τ) are C2, that H is
separable, and that for τ ∈ (α, β) A(τ) has a complete orthonormal set of eigenfunctions {φj}∞j=1 =

{φj(τ)}∞j=1 with A(τ)φj(τ) = σj(τ)φj(τ). Moreover, assume that σj 6= σ1 if j 6= 1. Then σ1 ∈
C2(α, β), and

∂2τσ1 = 〈(∂2τA)φ1, φ1〉H + 2
∑

j 6=1

1

σ1 − σj
|〈(∂τA)φ1, φj〉H|2 . (4.6)

Proof. Since σ1 = 〈φ1, φ1〉 and the right hand side is differentiable on (α, β), so is σ1. Then

∂τσ1 = ∂τ 〈Aφ1, φ1〉H = 〈(∂τA)φ1, φ1〉H + 〈A∂τφ1, φ1〉H + 〈Aφ1, ∂τφ1〉H.
By the self-adjointness of A, this is

∂τσ1 = 〈(∂τA)φ1, φ1〉H + 〈∂τφ1, Aφ1〉H + 〈Aφ1, ∂τφ1〉H
= 〈(∂τA)φ1, φ1〉H + σ1 (〈∂τφ1, φ1〉H + 〈φ1, ∂τφ1〉H) = 〈(∂τA)φ1, φ1〉H (4.7)

since ∂τ 〈φ1, φ1〉H = 0. This yields the first variational formula, (4.5).

For the second variational formula we use

(∂τA)φ1 +A∂τφ1 = ∂τσ1φ1 + σ1∂τφ1.

Taking the inner product with φj when j 6= 1 yields, after some simplification and rearrangement,

〈∂τφ1, φj〉H =
1

σ1 − σj
〈(∂τA)φ1, φj〉H. (4.8)

Differentiate (4.5) to get

∂2τσ1 = 〈(∂2τA)φ1, φ1〉H + 2Re〈(∂τA)φ1, ∂τφ1〉H.
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Now use (4.8) and Re〈∂τφ1, φ1〉H = 0 to write ∂τφ1 in terms of {φj}, giving the second variational
formula, (4.6). �

We now return to the Dirichlet-to-Neumann operator, and consider the special case of λ = iκ with
κ > 0. For such κ the Dirichlet-to-Neumann operator DtN(iκ) is bijective from H1(∂Ω) to L2(∂Ω):
see Lemma 3.5 of [GMZ07]. Hence (see Proposition 8.3 of Appendix A of [Tay11]) DtN(iκ) is non-
negative and self-adjoint on L2(∂Ω), with domainH1(∂Ω) and with discrete spectrum accumulating
at infinity. Our theorem shows limκ↓0DtN(iκ) exists, and we we denote it DtN(0).

In fact, DtN(0) is self-adjoint and non-negative as well, with discrete spectrum accumulating
only at infinity. To see this, note that for κ > 0 and µ ∈ C

(DtN(0)− µ)(DtN(iκ)− µ)−1 = I + (DtN(0)−DtN(iκ))(DtN(iκ)− µ)−1. (4.9)

Since by the first proof of Theorem 4, DtN(0)−DtN(iκ) : H1/2(∂Ω) → H1/2(∂Ω) and (DtN(iκ)−
µ)−1 : L2(∂Ω) → H1(∂Ω) (for µ 6∈ spec(DtN(iκ))),

(DtN(0)−DtN(iκ))(DtN(iκ)− µ)−1 : L2(∂Ω) → L2(∂Ω)

is compact. Moreover, for µ � 0 the right hand side of (4.9) is invertible. Thus DtN(0) has
compact resolvent, and hence has discrete spectrum accumulating only at infinity. A Green’s
theorem argument shows that DtN(0) is symmetric with one-dimensional null space spanned by
the constant functions. Moreover, we see from this that DtN(0) + i is invertible, so that DtN(0) is
self-adjoint.

For κ ≥ 0, denote the smallest eigenvalue of DtN(iκ) by σ1(iκ). Note that σ1(0) = 0, and 0 has
multiplicity 1 as an eigenvalue of DtN(0). By our discussion above, 0 is an isolated eigenvalue of
DtN(0). Then there is an ε > 0 so that σ1(iκ) is an analytic function of κ ∈ (0, ε) and is continuous
on [0, ε]: see [ReSi78, Theorem XII.8]. Moreover, if φ1(iκ) is the associated eigenfunction of DtN(iκ)
with ‖φ1(iκ)‖L2(∂Ω) = 1, then φ can be chosen to depend smoothly on κ ∈ (0, ε).

Proposition 4.1. For Ω as in Theorem 4 and κ > 0

σ1(iκ) = − 2π

`(∂Ω)

1

log(iκ)− a
+O((log κ)−2) (4.10)

as κ ↓ 0. Here `(∂Ω) is the length of ∂Ω.

In dimension two this answers a question of D. Grebenkov [Gre22, page 11]. Grebenkov computed
this when O is a disk (see equations (62) of [Gre19], and (C.2) of [Gre21]) and has shown that such
quantities are related to the behavior of ‘boundary local time’–see [Gre19].

Proof. Let 〈·, ·〉L2(∂Ω) denote the inner product in L2(∂Ω), and let ‘·’ denote differentiation with

respect to (log(iκ)− a)−1. By (4.5),

σ̇1(iκ) = 〈 ˙DtN(iκ)φ1(iκ), φ1(iκ)〉L2(∂Ω),

for κ ∈ (0, ε). Because φ1 is continuous at 0 with φ1(0) = (`(∂Ω))−1/2 and ˙DtN(iκ) is continuous
at 0, this identity holds in the limit as κ ↓ 0. Now we note that we can find the unique u ∈ L2(Ω)
satisfying (4.1) with λ = iκ and f = 1 by setting u(iκ) = χ−R(iκ)(−∆+κ2)χ where χ ∈ C∞

0 (R2)
is 1 in a neighborhood of O. Our asymptotics of R(iκ) from (1.1) and the formulas (2.32) imply

χu(iκ) = χ(χ+ 1− χ+ (log(iκ)− a)−1G) +O(κ2 log κ).

Thus

DtN(iκ)φ1(0) = (log(iκ)− a)−1(`(∂Ω))−1/2∂νG+O(κ2 log κ),
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and, recalling our expansions hold under differentiation with respect to (log(iκ) − a)−1 as well

gives limκ↓0〈 ˙DtN(κ)φ1(κ), φ1(κ)〉L2(∂Ω) = 〈∂νG, 1〉L2(∂Ω)(`(∂Ω))
−1. A Green’s theorem argument

then shows that
∫
∂Ω ∂νG = −2π. This completes the proof of (4.10) except that it gives an error

o((log κ)−1).

To get an error O((log κ)−2), we use (4.6). For this, we introduce the notation that {φj(iκ)} are
a complete orthonormal set of eigenfunctions of DtN(iκ) satisfying DtN(iκ)φj(iκ) = σj(iκ)φj(iκ)
with σ1 ≤ σ2 ≤ σ3 ≤ · · · . Then (4.6) implies, for κ > 0 sufficiently small

σ̈1(iκ) = 〈 ¨DtN(iκ)φ1(iκ), φ1(iκ)〉L2(∂Ω) + 2

∞∑

j=2

1

σ1(iκ)− σj(iκ)

∣∣∣〈φj(iκ), ˙DtN(iκ)φ1(iκ)〉L2(∂Ω)

∣∣∣
2
.

Using that the right hand side has a finite limit as κ ↓ 0 allows us to improve the error in (4.10) to
O((log κ)−2). �

Appendix A. Polar and nonpolar sets

In this appendix we present some standard material about polar and nonpolar sets. Section A.1
contains the elementary basic facts used in the rest of the paper. Section A.2 has more general
background and context. Throughout, let O ⊂ R

2 be compact, let Ω = R
2 \ O, and recall that O

is polar if C∞
0 (Ω) is dense in H1(R2).

A.1. Basic facts. We begin with a geometric necessary condition for a compact set to be polar.

Lemma A.1. Let O ⊂ R
2 be a compact set. If O is polar, then the projection of O onto any line

in R
2 has measure zero.

Proof. Without loss of generality, we are projecting onto the x2 axis, and x1 > 0 on O. Let

W = {(x1 + t, x2) ∈ R
2 such that (x1, x2) ∈ O and t ≥ 0}.

It is enough to show that W has measure zero in R
2. Let u ∈ C∞

0 (Ω). By integration by parts and
Cauchy–Schwarz (Theorem 181 of [HLP34]), for any s > 0 we have

‖x
−1−s

2

1 u‖2L2(W ) =

∫

W
x−1−s
1 |u|2 = 2

s
Re

∫

W
x−s
1 u∂x1

ū ≤ 2

s
‖x

−1−s
2

1 u‖L2(W )‖x
1−s
2

1 ∂x1
u‖L2(W ),

which implies Hardy’s inequality (Theorem 330 of [HLP34]):

‖x
−1−s

2

1 u‖L2(W ) ≤
2

s
‖x

1−s
2

1 ∂x1
u‖L2(W ). (A.1)

Since O is polar, by density (A.1) holds for all u ∈ H1(R2). Applying (A.1) with s = 3 and

u(x) = e−|x|2/n, and letting n→ ∞, gives
∫
W x−4

1 = 0, which implies that W has measure zero. �

Compact polar sets have many well-known equivalent characterizations, some of which we discuss
in Section A.2. For our main results we need only Lemma A.2, which follows Section 13.2 of [Maz11].

Lemma A.2. Let O ⊂ R
2 be compact, and let Ω = R

2 \ O. The following are equivalent:

(1) O is polar.
(2) The constant function 1 is locally in H1

0 (Ω).
(3) inf{‖u‖H1(R2) : u ∈ C∞

0 (R2), u = 1 near O} = 0.
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Proof. (1) =⇒ (2). This follows from the fact that the constant function 1 is locally in H1(R2).

(2) =⇒ (3). Let vn be a sequence in C∞
0 (Ω) converging to 1 in H1

loc(R
2). Fix χ ∈ C∞

0 (R2) such
that χ = 1 near O. Then infn{‖(1− vn)χ‖H1(R2)} = 0.

(3) =⇒ (1). Let un be a sequence of functions in C∞
0 (R2) which are 1 near O such that

‖un‖H1(R2) → 0. Let ϕ ∈ C∞
0 (R2). For any w ∈ H−1(R2) which vanishes on C∞

0 (Ω), we have

〈w,ϕ〉 = lim
n→∞

〈w, (1− un)ϕ〉 = 0.

By the separating hyperplane version of the Hahn–Banach theorem (see Proposition 4.6 of Appen-
dix A of [Tay11]), it follows that the H1(R2) distance from ϕ to C∞

0 (Ω) is zero. �

A.2. Background and context. If O is nonpolar, then −C(O) is known as Robin’s constant,
because it solves Robin’s problem, which asks for the constant value assumed on O by the potential
of the equilibrium unit charge distribution on O [Rob86]. The quantity eC(O) is known as the
logarithmic capacity of O and it measures the size of O. For example, a disk or circle has logarithmic
capacity equal to its radius. See Sections V.2 and V.3 of [Nev70], and Chapter 5 of [Ran95], for
general introductions, and see [Ran10, BaTr21] for more on computing C(O).

To expand on the above, and to also make contact with the theory of subharmonic functions, let

JA(µ, ν) :=

∫ ∫
log A

|x−y| dµ(x) dν(y),

for A > 0 and µ, ν finite signed Borel measures of compact support in R
2. By Theorem 1.16 of

[Lan72], if µ 6= 0 and the diameter of the support of µ is ≤ A, then 0 < JA(µ, µ) ≤ ∞.

Lemma A.3. Let O ⊂ R
2 be compact. The following are equivalent:

(1) O is polar.
(2) J1(µ, µ) = +∞ for every nonzero finite signed Borel measure µ supported on O.
(3) O = {x ∈ R

2 : u(x) = −∞} for some subharmonic function u on R
2.

In physical terms, if µ and ν are two distributions of some finite quantity of charge, then
JA(µ, µ) − JA(ν, ν) is the difference of their electrostatic potential energies. Thus, a compact
set is polar if and only if it is so small that gathering a finite quantity of charge onto it requires
infinite work.

By Theorems 3.7.6 and 5.2.1 of [Ran95], if O is not polar, then C(O) = −minµ{J1(µ, µ)}, where
the minimum is taken over all Borel probability measures supported in O. If O is the unit circle,
then C(O) = 0. If O is any nonpolar set, then C(O) is the work done moving a unit quantity of
charge from its equilibrium distribution on O to its equilibrium distribution on the unit circle.

Let us also briefly mention some further geometric characterizations and properties of polar sets.
By Theorem 5.5.2 of [Ran95], a compact set is polar if and only if its transfinite diameter is zero,
and thus Lemma A.1 is a special case of Theorem 2 of Section VII.2 of [Gol69]. Polar sets have
Hausdorff dimension zero: see Section 3.2 of [Ran95] and Section V.6 of [Nev70]. By Kakutani’s
Theorem, [MöPe10, Section 8.3], a compact set is polar if and only if Brownian motion hits it with
probability zero.

Proof of Lemma A.3. (1) =⇒ (2). It is enough to prove that, if u ∈ C∞
0 (R2) is 1 near O, then

2π(µ(O))2 ≤ JA(µ, µ)

∫
|∇u|2, (A.2)
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where A is the diameter of the support of u. We follow Lemma 1.1 of Chapter II of [DeLi54]. Let
ψ = −∆u. By Cauchy–Schwarz, we have

JA(ψ, µ)
2 ≤ JA(µ, µ)JA(ψ, ψ). (A.3)

Since −1
2π∆ log A

|x| = δ(x) (see Proposition 4.9 of Chapter 3 of [Tay11]), we have

∫
log A

|x−y|ψ(x) dx = 2πu(y),

which gives

JA(ψ,ψ) = −2π

∫
u∆u = 2π

∫
|∇u|2, (A.4)

and, using also the fact that u = 1 on O,

JA(ψ, µ) = 2π

∫
u dµ = 2π

∫
dµ = 2πµ(O). (A.5)

Inserting (A.4) and (A.5) into (A.3) gives (A.2).

(2) =⇒ (1). This is a special case of equation (2.1) of [Wal64].

(2) ⇐⇒ (3). See Theorem 3.5.1 and Corollary 3.5.4 of [Ran95]. �

Appendix B. Convergence near zero of series with logarithmic terms

To analyze series of the form
∑

j,k cj,k(log λ− a)kλj , where λ ∈ Λ, it is convenient to introduce
a new coordinate ν on Λ, defined by

ν = λe−a, log ν = log λ− a.

Then ∑

j,k

cj,k(log λ− a)kλj =
∑

j,k

cj,ke
aj(log ν)kνj .

In our applications, Im a = π/2, so the physical region 0 < arg λ < π corresponds to −π/2 <
arg ν < π/2.

Lemma B.1. Let N ∈ N0, let (B, ‖ · ‖) be a Banach space, and for each j ∈ N and each k ≤ Nj,
let Vj,k be an element of B. Let ν0 ∈ (0, 1), and suppose the series

∞∑

j=1

Nj∑

k=−∞

‖Vj,k‖| log ν0|kνj0.

converges. Then for any ϕ > 0, there is ν1 > 0 such that the series

∞∑

j=1

Nj∑

k=−∞

Vj,k(log ν)
kνj , (B.1)

and
∞∑

j=2

Nj∑

k=−∞

Vj,k
(
k + j log ν

)
(log ν)k−1νj−1. (B.2)

converge absolutely in B, uniformly on Uν1,ϕ := {ν ∈ Λ: 0 < |ν| < ν1 and | arg ν| < ϕ}.
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Since the terms of (B.1) are holomorphic, it follows that for any ϕ > 0, there is ν1 > 0 such
that the function f(ν) given by (B.1) is holomorphic on Uν1,ϕ, with f

′(ν) given by term-by-term
differentiation of (B.1) (see Theorem 1 of Chapter 5 of [Ahl79]). Moreover, since the series for f ′ is
of the same form as the series for f , by induction these series may be freely differentiated term by
term. Note, however, that convergence is uniform on Uν1,ϕ only if we omit terms whose norm goes
to ∞ as |ν| → 0, and the value of ν1 depends on the number of differentiations as well as on ϕ.

Proof. For (B.1), observe that for ν ∈ Uν1,ϕ we have

| log ν|N |ν| ≤ | log |ν|+ iϕ|N |ν| ≤ | log ν1 + iϕ|Nν1 ≤ | log ν0|Nν0, (B.3)

when ν1 > 0 is small enough. Combining (B.3) with the fact that | log ν|k−Nj ≤ | log ν0|k−Nj when

k ≤ Nj, and with |(log ν)kνj | = | log ν|k−Nj
(
| log ν|N |ν|

)j
, we obtain

∞∑

j=1

Nj∑

k=−∞

‖Vj,k(log ν)kνj‖ ≤
∞∑

j=1

Nj∑

k=−∞

‖Vj,k‖| log ν0|k|ν0|j ,

which implies the absolute convergence of the series (B.1), uniformly on Uν1,ϕ.

For (B.2), it is enough to show that there exist positive constants ν1 and C such that
∣∣k + j log ν

∣∣| log ν|k−1|ν|j−1 ≤ C| log ν0|kνj0, (B.4)

whenever ν ∈ Uν1,ϕ, and k ≤ Nj.

The case k < 0 is easier. It suffices to take ν1 small enough that we have | log ν/ log ν0|k ≤ 2k

and |ν/ν0|j−1 ≤ 21−j , and then put C = sup{|k + j log ν|| log ν|−12k21−j : j ≥ 2, k < 0, ν ∈ Uν1,ϕ}.

For the case k ≥ 0, observe that since |k + j log ν| ≤ j(N + | log ν|) ≤ 2j| log ν| when ν1 ≤ e−N ,
it is enough to obtain

2j| log ν|k|ν|j−1 ≤ C| log ν0|kνj0.
Analogously to (B.3), we have (| log ν|M |ν|)j−1 ≤ (| log ν0|Mν0)j−1 for all ν ∈ U when ν1 > 0 is
small enough, with M ∈ N to be determined later, and so it is enough to obtain

2j| log ν|k−M(j−1) ≤ Cν0| log ν0|k−M(j−1).

Since k −Nj ≤ 0, we have | log ν|k−Nj ≤ | log ν0|k−Nj , and so it is enough to obtain

2j| log ν|Nj−M(j−1) ≤ Cν0| log ν0|Nj−M(j−1).

We now take M = 2N + 1, so that the exponent Nj −M(j − 1) = 2N + 1− (N + 1)j is negative
and decreasing for j ≥ 2. We further require ν1 ≤ ν20 , so that 2| log ν|−1 ≤ | log ν0|−1. It is then
enough to obtain

j2(N+1)(2−j) ≤ Cν0,

which we do by putting C = max{j2(N+1)(2−j)/ν0 : j ≥ 2} = 2/ν0. �

Appendix C. Scattering by a disk

Let O = {x ∈ R
2 : |x| ≤ ρ} for some ρ > 0. Solutions to the Helmholtz equation (−∆−λ2)u = 0

can be written in polar coordinates in terms of the Hankel functions (see [Olv97, Section 7.4.1]) as

u(r, θ) =

∞∑

`=−∞

(
a`H

(1)
` (λr) + b`H

(2)
` (λr)

)
ei`θ,
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and they vanish at ∂O if and only if

a`H
(1)
` (λρ) + b`H

(2)
` (λρ) = 0, for every `.

Consequently, with respect to the basis {ei`θ}`∈Z, the scattering matrix S(λ) is the diagonal matrix
mapping the incoming data (the b`) to the outgoing data (the a`), i.e. its `-th entry is given by

−H(2)
` (λρ)/H

(1)
` (λρ). Hence,

σ(λ) =
1

2πi
log detS(λ) =

1

2πi

∞∑

`=−∞

log
(
− H

(2)
` (λρ)

H
(1)
` (λρ)

)
. (C.1)
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[Rob86] G. Robin. Sur la distribution de l’électricité à la surface des conducteurs fermés et des conducteurs ouverts.
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