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1. Introduction
1.1. Overview

The goal of this paper is to answer some basic open questions concerning a “doubly
critical” family {®q(T)}r>0 of minimization problems on Sobolev functions, which, in
a precise sense to be clarified below, can be interpreted as collectively defining the best
Sobolev inequality on an open set 2 C R™ with C'-boundary. Given an integer n > 2
and p € (1,n), these problems are defined as

o (T) :inf{(/\VuV’)l/p : /|u|p* _1, /\u|p# —7"} (1.1)
Q Q o0

and their minimizers, whenever they exist, satisfy the Euler-Lagrange equation

*
— Apu = AuP L on €,

(1.2)

ou
|Vu|P~2 Z— = our” ! , on 99,

81/Q

for suitable Lagrange multipliers \, o € R. We call [, [u[’" =1 and Jo0 |u\p# =T"" the
“volume” and “trace” constraints of ®q(T"). The critical Sobolev exponents associated
to n and p, p* and p#, are defined by

x np #7(71—1)]9777,—1*
=T, P - —

Their precise values guarantee that ®q is invariant under dilations, as well as clearly
being invariant under translations:

Bpiro(T) =0o(T) VzeR™,r>0,T>0.

When (2 is bounded, the C'-regularity of 9Q guarantees that every u € Li () with
Vu € LP(Q;R™) lies in the competition class of ®q(T) (i.e. class of admissible competi-
tors for the minimization problem)

Epi(®q) = {(I,G) €R*: T >0,G > ®o(T)},

(the epigraph of ®q) collects the best possible information on the range of values
achievable by [|[Vul|L»(q) When [[u[|p+ (q) is fixed: from this peculiar viewpoint, which is
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Fig. 1.1. The state of the art about ®q. The “exclusion zone” for the values of ||[Vu||r(q) (under the con-

straint ||ul| v (o) = 1) is depicted in gray. It always contains the subgraph of ®5(T) on T € [0, ISO(B)I/”#],
see (1.12), but is always smaller than the one of a half-space H, see (1.19). The Sobolev inequality on R™
is equivalent to ®o(0) = S(n,p), the Euclidean isoperimetric inequality to the fact that the only zero
of &g (ie. T = ISO(Q)UP#) is achieved to the right of the only zero of ®p, and the Escobar inequal-
ity (1.6) is equivalent to the linear bound ®y(T") > ET. Both {(T, ®5(T)) : T € [O,ISO(B)I/”#]} and
{(T,®u(T)) : T > 0} can be implicitly parametrized by looking at the explicit families of minimizers given
in (1.11), (1.15), (1.16) and (1.17).

reminiscent of the one adopted in the study of Blaschke—Santalé diagrams, Epi(®q) is
“the best Sobolev inequality on 2”. The following list of results, summarized in Fig. 1.1,
aims to provide a hopefully complete state of the art on ®¢, and illustrates the wealth
of information stored in this family of variational problems. As a disclaimer: here we
are definitely not attempting to exhaustively frame the study of ®q into the incredibly
vast and layered context of the theory of Sobolev-type inequalities (see e.g. [11]), as that
would be a long and delicate exercise, lying well beyond the scope of this introduction.

(1) Sobolev inequality on R™: A scaling and localization argument shows that, for every
open set §2, one has

B (0) = S(n, p) = inf{</|Vu|p>1/p :/|u|p* 1}, (13)
R~ R~

that is, ®q(0) is the best constant in the LP-Sobolev inequality on R™. Minimizers of
(1.3) for 2 = R™ are exactly given by the family {7, [U‘éa)]}:ﬂoeRn ~a>0 generated by

Us(z) = (14 [afr/=0)' =P g e g (1.4)

see [1,17,4], we see that ®(0) is attained if and only if @ = R™. Here and in the following,
we set

Teo [V](2) = v(x — o) , v(a)(:c) =q P v(z/a) (1.5)

whenever zg € R"™ and a > 0.
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(2) Escobar inequality: The Escobar inequality ([7, for p = 2], [16, for p € (1,n)]) states
that if H is an (open) half-space in R™ with outer unit normal vy, then

(/|Vu\1’>1/p > E(n7p)(/|u|p#)1/p# w6)
H dH

with equality if and only if! u = 7, [U](Ea)] for some x5 € R™ \ H, and where
Ug(z) = |z|~(»=P)/ (=1 x € R"\ {0}, (1.7)
is a multiple of the fundamental solution of the p-Laplacian. The quantity
T = 17U M o o) / 1720 lUS o o (1.8)
is independent of o € R™ \ H, and is such that
®4(Te) = E(n,p) Tk - (1.9)

The Escobar inequality (1.6) can be equivalently reformulated in the “®-setting” as a
linear lower bound for @, i.e.

Su(T) > E(n,p) T, vT > 0.
This bound is sharp only if T' = T, and is nearly optimal only if T is close to Tg; but

it largely suboptimal away from Tg, see Fig. 1.1.

(3) Euclidean isoperimetry: It is easily seen that ®q(T") = 0 for some T > 0 if and only
if Q] <ocoand T = ISO(Q)l/p#7 where ISO(Q) = H"~1(99Q)/|Q|~1/" stands for the
isoperimetric ratio of €2. Since the Euclidean isoperimetric inequality states that

ISO(Q?) > ISO(B), (1.10)
(with equality if and only if  is a ball), in the ®-setting, (1.10) is equivalent to saying

that ®p has the left-most zero among all @g,.

(4) Balls have the worst best Sobolev inequalities: In [5,6, p = 2] (by symmetrization
methods and conformal invariance) and in [14, p € (1,n)] (via the mass transporta-
tion method pioneered in [8,13,4]) it is shown that if B is a ball, then for every

T € (0,ISO(B)Y/?") there is a unique a > 0 such that

O5(T) = VU o) [ 1UE o 5 (1.11)

! The “only if” statement for p # 2 was left open in [16], but was proven in [12, Theorem 2.3].
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with Ug defined in (1.4). Further elaborating on the proof of this partial characterization
of ®p, again in [14] the comparison theorem that balls have the worst best Sobolev
inequalities

Do(T) > dp(T), VT € [0,ISO(B)/?"] (1.12)

is proved. This sharp lower bound, combined with (1.11), allows one to infer some sharp
and more traditional-looking Sobolev-type inequalities, like the following sharp interpo-
lation between (1.3) and (1.10)

IVullpey . lullp# o0
> 2% (Q) 5 1.13

and the following sharp Sobolev inequality, additive in the domain of the p-Dirichlet

energy,
Vel Wt on (1.14)
S(n,p)» C(n,p) — 7 7@ .

which was first conjectured by Brezis and Lieb in [2].

(5) Full characterization of ®5: In [5,6, for p = 2] and, again by optimal mass transport
arguments, in [12, for p € (1, n)], it is proven that if H is half-space in R™, then: for each
T € (0,Tg) (Sobolev range) there is a unique t7 € R such that

u(T) = IV (Ttr v Us)l e (o) / Tt v Usll Lo () 5 (1.15)

if T = Tg (Escobar point), then

oy (Te) = E(n,p)Te = |V(1u, U)| Lo () / 170w Ul o= (11 3 (1.16)

for each T > Tg (beyond Escobar range), there is a unique st > 1 s.t.

u(T) = IV(Tsrva Use)llLr ) / 152 v Ul Lo (11 (1.17)

where Upg(z) = (|z|P/®~Y — 1)t=(/p) |z| > 1. (1.18)

Up to the natural dilation and translation invariances, these functions are the unique
minimizers of ®g(T). Moreover, again by [12]: (a): infr>o @u(T) is achieved at T' =
Ty € (0, Tg), where t7, = 0 and ®5(Tp) = S(n, p)/2'/™; (b): by the divergence theorem,
Oy (T) > " /p* for every T > 0, and this lower bound is sharp as T — oo; (c): finally,
®p has the best best Sobolev inequality, i.e.

®6(T) < ®y(T), VT >0. (1.19)
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1.2. Statements of the main results

With this summary on the state of the art for ¢ in mind, there are two fundamental
open questions that form the subject of our paper:

Question 1. When does ®q(T") (T > 0) admit minimizers?
Question 2. Does rigidity hold in the comparison theorem (1.12)?

The main idea of this paper is attacking these two closely related questions by sys-
tematically exploiting the complete characterization of ® 5 obtained in [12].

Concerning Question 1, a classical concentration-compactness argument characterizes
the limit behavior of minimizing sequences of ®(7T) as the superposition of a standard
weak limit plus at most countably many concentration points, located either in the
interior of §2, or on its boundary. By exploiting properties of ® j; we are able to (i): exclude
all interior concentrations and all but at most one boundary concentration, thus proving
existence of minimizers for a suitable “relaxed problem” ®§(7"); and (ii): completely
exclude concentrations, and thus establish the existence of minimizers of ®(T"), as soon
as 0 is of class C? and n > 2p. To give precise statements, it is convenient to let Xq(T)
denote the competition class of ®q(T), and let YVo(T') denote the set of triples (u,v,t)
with either u € Xo(T) and v=1t =0, or u € WHP(Q), v € (0,1], t € (0,77], and

v +/up* =1, 4 /up# =71, (1.20)
Q o0

The relaxed problem associated to ®o(T) is then given by

t
O5(T) = yir%f%) &, where E(u,v,t)? = / |Vu|P + vP @H(;)p, (1.21)
Q

with the convention that vP® g (t/v)? = 0 if (v,t) = (0,0).

Theorem 1.1 (Ezistence of minimizers of ®q). If n > 2, p € (1,n), and Q is a bounded
open set with C*-boundary in R"™, then:

(i): for every T > 0, there is a minimizer (u,v,t) of ®5(T), and
0q(T) = 25(T) ; (1.22)

moreover, if [, uP” >0, then u/||ul| (@) s a minimizer of o (||ull,,# (69)/||u||Lp* )7

(ii): if Q has boundary of class C?, n > 2p, T > 0, and (u,v,t) is a minimizer of ®%(T),
then v =1t =0, and thus u is a minimizer of (7).
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Remark 1.2. Minimizers of ®q(T) solve the Euler-Lagrange equation (1.2). For the
Euler-Lagrange equation satisfied by minimizers (u, v,t) of the relaxed problem ®§ (T,
see Theorem 4.1 below.

Question 2 is motivated by the various rigidity statements associated to comparison
theorems in Riemannian geometry (see, e.g. [3]). In that setting, a certain model space
provides a universal bound on a certain global geometric quantity (comparison theorem),
which is then shown to be saturated by the model space alone (rigidity statement). With
this analogy in mind, we can reformulate more precisely Question 2 as follows:

Question 2 (weak form). Does ®q = &5 on (O,ISO(B)l/p#) imply that €2 is a ball?

Question 2 (strong form). Does ®o(T) = ®5(T) at just one value of T € (0,ISO(B)*/?")
imply that Q is a ball?

Concerning the weak form of Question 2, through a careful use of the properties of
®y we answer affirmatively whenever 2 is bounded and connected. These conditions
are optimal, as shown by unbounded or disconnected non-rigidity examples presented
n [14]. In fact, the argument we propose gives rigidity under the mere assumption that
®n = ®p holds on an open neighborhood of T" = 0. Concerning the strong form of
Question 2, which was originally formulated in [14, Section 1.9], we can answer in the
affirmative as a direct by-product of our existence result for minimizers of ®o(T") (thus,
when Q has C%-boundary and n > 2p) thanks to the following “conditional rigidity”
statement, which is proved in [14] as a direct by-product of the proof of (1.12):

if Q is connected (possibly unbounded),

if ©q(T) = ®5(T) for a value of T € (O,ISO(B)l/p#) , (1.23)
and if ®o(T) is known to admit minimizers (possibly just for that T),

then € is a ball.

(We notice for future use an important consequence of (1.23), namely, we have
®p(T) < ®u(T), VT € (0,1S0(B)/*"); (1.24)

indeed, by [12], ®x(T") admits minimizers for every T' > 0.) With these premises, we
now state our main results concerning Question 2.

Theorem 1.3 (Rigidity of “Balls have the worst best Sobolev inequalities”). Let n > 2,
p € (1,n), Q an open, bounded, connected set with C*-boundary in R™, and assume that
one of the following two conditions holds:

(i): there is Ty > 0 such that ®o(T) = ©p(T) for every T € (0,Ty); or
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(ii): n > 2p, the boundary of Q is of class C2, and there is T € (0,ISO(B)Y/?") such
that ®o(T) = 5(T).

Then, € is a ball.
1.8. Strategy of proof

Concentration-compactness arguments and the use of sharp Sobolev-type inequalities
(like the Sobolev and Escobar inequalities (1.3) and (1.6)) are the standard tools of the
trade in the analysis of variational problems with critical growth. As seen, if interpreted as
assertions about @, (1.3) and (1.6) contain only very partial information (respectively,
“@r(0) = S(n,p)” and “@y(T) > E(n,p) T for every T' > 0”). From this viewpoint, our
arguments provide an interesting example of the potential utility, in the familiar context
of concentration-compactness, of the full characterization of ®5 obtained in [6,12]. We
now explain how this characterization is used in this paper.

We have already mentioned how the mere knowledge of the existence of minimizers in
Oy (T) for every T > 0 allows one to reduce the analysis of concentrations to the simplest
possible case of a single boundary concentration (thus leading to Theorem 1.1-(i)). Finer
properties of ®p are exploited in the proof of Theorem 1.1-(ii), which goes as follows.
We consider the existence of a minimizer (u,v,t) of ®§(7T) with v > 0, and, keeping in
mind that ®q(T) = ®§(T), we aim to obtain a contradiction to v > 0 by constructing a
competitor v of ®q(T') with

t
/|vU|P < /|Vu|p+v” @ (1),
\%
Q Q

We seek v in the form v = u,, for the Ansatz given by

ue(z) = (1 — pe(x)) u(z) + e () (U(a) og)(x) , re. (1.25)

Here x¢ € 09 is a boundary point of Q with positive mean curvature,” i.e. Hog(z0) > 0;
©e is a cut-off function between B.s(xo) and By .s(zo) for § = B(n,p) € (0,1) to be
suitably chosen (the condition n > 2p enters in this choice); g is a boundary flattening
diffeomorphism near zo; and, finally, U = U, + be V,. for 7 = t/v, V; a standard pertur-
bation of U, and b a constant suitably chosen depending on n, p, Hpq(zo) and 7. The
energy, volume and trace expansions for u. as € — 01 are computed to be

/\Vue\p S/\Vu|p+vp<I>H(5>p (1.26)
o) )

2 Qur convention is that the scalar mean curvature of A€ is computed with respect to the outer unit
normal to 2, so that every bounded open set with Cz—boundary has at least one boundary point of positive
mean curvature.
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f{E(UT) — @ A (T) M(UT)} Hyq(xo) vPe + o(e),
P =1+ o(e), u’a’# =7 4 o(e), (1.27)
/ /

where Ay (T) is the volume Lagrange multiplier of Ur (see (3.7) below), and where £
and M are functionals defined on U : H — R by

E(U)z/xn|VU\p—pa:n (@U)? |VUP2, (1.28)
H

MU) = [ 2, U”" . (1.29)
/

Modulo o(e)-perturbations of u. aimed at correcting the volume and trace constraints
to the exact values needed for inclusion in Xq(T), we have constructed the required
competitors, and proved Theorem 1.1-(ii), if we can show the existence of ¢(n,p,T) > 0
such that

L(Ur) — (”;p) A (T) M(Uz) > c(n,p, T), NI >0. (1.30)

Of course, the full characterization of ®p plays a crucial role in our proof of (1.30), see
Lemma 3.1 below.

While Theorem 1.3-(ii) is immediate from Theorem 1.1-(ii) thanks to the rigidity
criterion (1.23), the proof of Theorem 1.3-(i) requires an additional argument, which
once more exploits several fine properties of ®p and ®p: these include (1.23), (1.24),
and information on the signs of the Lagrange multipliers Ay (") and oy (T') for minimizers
Up of ®(T) (see (3.12) and (3.11) below).

1.4. Organization of the paper

After collecting a few preliminary results in section 2, in section 3 we study in detail
various properties of @ and of its minimizers: in particular, we prove the key inequality
(1.30) (see Lemma 3.1), and discuss in detail the Ansatz (1.25) (see Lemma 3.4). Sec-
tions 4 and 5 contain, respectively, the proofs of Theorem 1.1 and Theorem 1.3. Finally,
we collect some auxiliary, routine proofs in an appendix.

Acknowledgments: FM was supported by NSF-DMS RTG 1840314, NSF-DMS FRG
1854344, and NSF-DMS 2000034. RN was supported by NSF-DMS 2200886.

2. Notation and preparations

Some basic notation is presented in section 2.1. We then discuss, in separate subsec-
tions, four useful technical lemmas: a concentration-compactness lemma with boundary
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terms (Lemma 2.1); a second order expansion for the boundary flattening diffeomor-
phisms used in the Ansatz (1.25) (Lemma 2.3); some basic regularity information on
minimizers of ®o(T) (Lemma 2.5); and the basic technique of “volume/trace correcting
variations” (Lemma 2.6). Some proofs are postponed to the appendix.

2.1. Notation

Throughout the paper we always assume that n > 2 and p € (1,n). We denote by £"
and H* the Lebesgue measure and the k-dimensional Hausdorff measure of R™, although
we simply set |E| in place of L"(FE). We denote by B,.(z) the open ball of center z € R™
and radius r > 0, and set B, = B,.(0), while B denotes a ball of unspecified center and
radius.

Following a standard shorthand notation, by “f(z) = g(z) + O4s(|z|) for |z| > R” we
mean that |f(x) — g(z)] < C(a,bd) |z| if |z] > R; by “f(z) = g(z) + 046(|2|) as |z| — 07
we mean that lim, o |f(z) — g(z)|/|z| = 0 at a rate that is uniform with respect to the
parameters a and b.

In general, we will use capital letters (e.g. U, V, ¥) to denote functions defined on the
half space H and lowercase letters (e.g. u,v, ) to denote functions defined on an open
bounded domain (2.

2.2. Concentration-compactness

The following lemma is a version of Lions’ celebrated concentration-compactness
lemma and provides a natural starting point to study minimizing sequences of ®q(T).

Lemma 2.1 (Concentration-compactness). Let n > 2, p € (1,n), and let @ C R™ be open
and bounded with C*-boundary. If {u;}; is a sequence in L{ .(Q), {Vu;}; is bounded in

loc
LP(;R™) and u; — u as distributions in S, then the Radon measures on R™ defined by

wi=|VuglP £, vy =P L, =P H0Q,  (20)

have subsequential weak-star limits p, v and T which satisfy

v=ul L+ Y W (2.2)
el
=l 1 o0+ S 6, (2.3)
el
p> VulPLQ+ Y gl ds,, (24)
el

where {x;}ie; C Q is an at most countable set, v; > 0 and t; > 0 for everyi € I, t; > 0
only if x; € 0, and
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t .
gi sz@H(—), Viel. (25)
Vi
In particular, g; > Sv; whenever x; € §Q.

Proof. See appendix A. O
2.3. Near-boundary coordinates

In this section, we introduce two types of coordinates for a neighborhood of a boundary
point of a domain €2: one that requires minimal regularity of the boundary of €2 and will
suffice in the proofs of Theorem 1.1(i) and Theorem 1.3(i), and a second that requires
C? regularity of the boundary of €2 and will be used in the proof of Theorem 1.1(ii) and
Theorem 1.3(ii).

Given an open set  with C'-boundary, we denote by vq its outer unit normal and by
T, (09) the tangent space to x € 9. When 2 has C*-boundary, we denote by Agq and
Hyq the second fundamental form and the scalar mean curvature of 0f2 defined by vq.
To define coordinates near boundary points of €, for x € R™ we set p(z) =  — x,, €p,
D, ={z:z, =0,|pz| <7}, and C, = {z : |z,| < r,|p(z)| < r}. In particular, if Q is
an open set with C''-boundary such that

009, Ty (02) = {x, = 0}, va(0) = —ey,, (2.6)
then we can find r9 > 0 and £ : D,,, — (=79, 7o) such that £(0) =0, V£(0) = 0, and

QNG ={z+te,:x €Dy 1o >t>{(x)},
(0Q)NCyp, = {z+(z)e, :x €Dy}

We then define the maps F': D,,, = 0, f: C,, = R" and f : G, = R™ by setting

Fz)=xz+L(z)e,, x €D,y , (2.7)
f(x) = F(pz) + znen, x € Cyy . (2.8)

(
(pzr) — 28 v (F(PT)), z €C,y. (2.9)

&H
&
I
o

In this way, for every y € (02) N C,,, if we set y = F(px), then

Vi(z) — e, \Y4

NAESIGOE V1+|VEE?

Notice that the map f need not be of class C! if the boundary of € is only of class

valy) = Hon(y) = div ( )@).

C!, while the map f will be as regular as the boundary of . The following lemma
summarizes basic properties about the map f .
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Lemma 2.2 (Near-boundary coordinates, one). If H = {x, > 0}, Q is an open set with
C'-boundary and (2.6) holds, then there exist ro and Cy positive such that the map f n
(2.8) defines a Ct-diffeomorphism from C,, to its image, taking D,, into OQ and with

f(Crjc,NH) C QN B, C f(Coyr NH)  ¥r<r/Cy. (2.10)

Moreover, letting § = f‘l denote the inverse of f, we have

A

Vf=Tdge +o(1), (Vg of=TIdgn+o0(1), (2.11)
Jf=1+o0(1), 1<JMf<140(1), forzeC,. (2.12)

The orders in (2.11) and (2.12) depend on 92 and on 0 € 9.
Proof. See appendix B. O

The map f defined in (2.9) has the advantage that, when the boundary of 2 is at
least of class C?, curvature quantities appear in expansions of the metric coefficients and
the volume form in these coordinates. These properties are the content of the following
lemma.

Lemma 2.3 (Near-boundary coordinates, two). If H = {x,, > 0}, Q is an open set with
C?-boundary and (2.6) holds, then there exist o and Cy positive such that the map f in
(2.9) defines a Ct-diffeomorphism from C,, to its image, taking D,, into OQ and with

f(Cric, MH) C QN B, C f(CgorNH) Vr <re/Cp. (2.13)

Moreover, for x € C,, and x € D,, respectively, we have
Jf(z) =1 -2, Hpa(0) + O(|z*),  1<Jf(z) <1+0([z]*), (2.14)
and if {ei};:ll is an orthonormal basis of R"™1 C R"™ of eigenvectors of V2£(0) and
{m}?z_ll denote the corresponding eigenvalues (so that, by (2.6), they are the principal

curvatures of 02 with respect to vo computed at 0 € 0, and in particular Hpq(0) =
Z?;ll ki), then, letting g = f~1 denote the inverse of f, we have

n—1
(Vg) o f=Idgr + (VI® €, — e, @ V) + ), Z Kie; @ e; +O(|z|*) . (2.15)

i=1

The orders in (2.14) and (2.15) depend on 02 and on 0 € 0N).

Proof. See appendix B. O
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Remark 2.4. Given zy € 052, we denote by 7, the rigid motion of R™ that maps xo to
0 such that (2.6) holds with 7., (€) in place of Q. Then we set, for f and f defined as in
(2.8) and (2.9) respectively but with 7, (£2) in place of €,

£ -1 -1
fxozﬂ-;voofv fx():ﬂ-q;oof'

Clearly these maps are diffeomorphisms on C,,, mapping H N C,, into a neighborhood
of ¢ in Q and D,, = (0H) N C,, into a neighborhood of z in 012, and satisfies proper
reformulations of the estimates in Lemmas 2.2 and 2.3. Here r¢ and Cjy depend also on
the choice of g, and can of course be assumed uniform across xo € 99 if 9N is bounded.

2.4. Properties of minimizers

The following lemma gathers some fundamental properties of minimizers of & that
will be needed in the sequel.

Lemma 2.5. If n > 2, p € (1,n), T > 0, Q is a bounded open set with C?-boundary, and
u is a minimizer of ®q(T), then u is bounded and Lipschitz continuous in 2, there are
A and o such that the Euler-Lagrange equation (1.2) holds in the weak sense, and the

A /u”*—l +o /up#—l =0, (2.16)
Q

[519)

balance condition

holds.

Proof. By a standard argument, based on similar considerations to the one presented
in Lemma 2.6 below, one sees that a minimizer u of ®o(T) is a WP (Q)-distributional
solution of the Euler-Lagrange equation (1.2) for some A\, o € R. As soon as 2 is bounded
and has Lipschitz boundary, one can exploit (1.2) in conjunction with a Moser iteration
argument to prove that u € L>(Q) (see, e.g. [15, Theorem 3.1]; their result applies to
(1.2) by taking, in the notation of their paper, A(x,u, Vu) = |Vu[P~2Vu, B(x,u, Vu) =
MuP" =1 and C(z,u) = oup#_l). On further assuming that 9 is of class C?, then the
classical result [9, Theorem 1.7] can be applied to deduce that u € C1#(Q) for a suitable
B = B(n,p) € (0,1) (for more details, see [15, Theorem 3.9]). In particular, u is bounded
and Lipschitz continuous on €2, as claimed. O

2.5. Volume/trace correcting variations
At various stages in our arguments we will need to slightly modify certain competitors

so to restore the volume and trace constraints defining Xq(T"). The following lemma
describes the basic mechanism used to this end.
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Lemma 2.6 (Volume/trace correcting variations). If n > 2, p € (1,n), M > 0, Q is an
open set with C'-boundary, v € L () with Vv € LP(Q;R™), and if xzg € R™ and r > 0

loc
are such that

P and o are positive and finite, (2.17)

N\ Br(z0) (OD\Br(wo)

then there exist positive constants n and C, and functions ¢ € C°(R™ \ B, (z¢)) and
P € C(Q\ By(z0)), all depending on n, p, v and M only, and with the following
property.

If {vcYece, C L (Q) is such that, for every e < e,

ve =v on Q\ B.(z0), /|Vv€|p <M, (2.18)
Q
then for every (a,b) with |a|,|b] < n/C, we can find (s,t) with |s|,|t| < n such that

We =0V +Sp+t

satisfies

00 o0 Q Q
‘/|Vw€|p—/\Vv€|p < C(Jal + [b]). (2.20)
Q Q
Proof. By (2.17) there are £ € C°(R™ \ B,.(z)) and ¢ € C>°(2\ B,(z0)) such that

/vp#—lg =1, /UP*—lw =1. (2.21)

o0 Q

Setting ¢ = & — ([, vP" =€) 9, we have ¢ € O (R™ \ B,(x0)) with

/up**@:o, /vp#*lwz 1. (2.22)

Q o0

We now define h. : R? = R2 by

he(s,t) = (/|v€+s¢+tw|p#—/|v5|p#, /\vs+sgo+tw|p*f/|v5|p*>.
o9 50 Q Q

By (2.18) we have h. € C1*(R?;R?) for some a = a(n,p) € (0,1), with
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sup [[hel|crar2;r2) < 005
e<eo

moreover, h.(0,0) = 0 and, by (2.21) and (2.22),

#_ #_
P* Jaq vl e A UM p# 0
Vhe(0,0) = . ( ) ,

el e bt el e v
We can thus apply the inverse function theorem uniformly in €, to find positive constants
n and Cy depending on n, p, and v so that each h. is invertible on E = {(s,t) : |s]|, |t| <
n}, with {(a,b) : |a|,|b] < n/C1} C he(E), and Vh-1(a,b) > Idax2/Cy (in the sense
of positive definite matrices) for every (a,b) € h.(E). In particular, if we let (s,t) =
hZ1(a,b) for a pair (a, b) with |al, |b| < n/C1, then the function w. = v.+s p+1 1 satisfies
(2.19) and |(a,b)| = |hZ1(s,t)] > |(s,t)|/C1. Moreover, by the elementary inequality

IX + V[P — |X]P| <pmax {|X|,[Y|}" ' [Y]  VX,Y €R",

we see that, setting v = max {|Vv.|,|Vel, [Vy[}",
<p [0 (51961 + 117 )

‘/\sz\p—/|Vv€|p
Q Q Q

= C(/ﬂ(p_l)/p (/ (IsI” IVel? + |t|p|v¢|p)>1/” (2.23)

Q Q
< Cl(s, )| < C2|(a;b)],

for a constant Cy depending on n, p, v, and M. Letting C' = max{C7, Cs} concludes the
proof of the lemma. O

3. Boundary concentrations
3.1. Properties of ®g-minimizers

We recall some facts proved in [12] about ®p and its minimizers. Recall that we
denote by Ty the minimum point of @, so that

TO € (07 TE) ) @H(TO) = 2—1/n S(n7p) ’ (31)
where T is the “Escobar trace” defined in (1.8). If we set H = {x,, > 0}, the minimizers

of Uy of @ (T) for T > 0 are characterized (modulo the obvious scaling and translation
invariance of @) as
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Tir e Us(@) = (1+ |z — tr eq|P) = (/P) T € (0,Ts),
Ur(z) = cr { 7o, Up(z) = |z + e,| P~/ =1 T="Tg, (3.2)
Tsr e, Upg(2) = (|x — st en|p/ — 1)1_("/”) , T>Tg,

where the constants cr, t7 and sy are chosen in such a way that
/ U =1, / ur =17 /\VUT\P = &y (T)P. (3.3)
H oH H

It is convenient to keep in mind that the various formulas for Uy listed in (3.2) all share
the same decay behavior at infinity, that is (see (3.20) below), we have

Ur(z) ~ |z|P~™)/ =1 IVUp| ~ |z|t=™/ =D as |z| — oo. (3.4)

(where the rate depends on the specific value of T' under consideration). The constants
tr and st have the following properties: T € (0,7g) — tr is continuous and strictly
decreasing, with ¢t7 > 0 if and only if T' € (0,Tp), and

lim ¢ = +oo, lim tr = —o0, tr, =0, (3.5)
T—0+ t*}(TE)f

while T' € (T, o0) — st is continuous, negative, strictly increasing, with

lim sp=-—o00, lim spr=—1. (3.6)
T—(Tg)* T—+o0

Denoting by Ayv = div (|Vu|P~2Vv) the p-Laplace operator, we have

— AUp = Ag(T)UZ on H,

p72 aUT
61/H

VT >0, (3.7)

VU7 = op(T)UZ™" on OH

where Ay, op : (0,00) — R are continuous and satisfy the relations

Py (T)P~ Yy (T)
Tr#-1 ’

Sy (T = Ag(T) + oy (T)T?" | op(T) = (3.8)

(see [12, Lemma 3.3]%) as well as

3 Notice that in [12, (3.16)] it is incorrectly stated that o5 (T) = ® g (T)? ™ &4 (T)/(p* Tp#fl), where the
extra l/p#—factor is wrongly introduced in the penultimate displayed equation in the proof of Lemma 3.3,
where 7/(0) = T1-r" /p? should be replaced by 7/(0) = T1=P” This error is inconsequential for the
arguments in [12], since this expression for o (T') is only used in equation (3.22) and subsequent displayed
equations, and since, in all these subsequent identities, a generic multiplicative factor c¢(n,p) is used (in
particular, two functions of (n, p) differing by a 1/p#-factor are both ¢(n,p)). It will instead be important
in the proof of (4.3) to work with correct expression for oy (T).
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lim og(T) = —o0 lim og(T)=+o00 .

Tl 0+ H(T) ) T 1 u(T) (3.9)
lim Ay (T) >0 lim Ap(T) = —oo. 3.10
lrf)l+ a(T) >0, im Ag(T) o) ( )

The signs of o and Ay can be easily deduced from (3.2), and satisfy

(O,T()) = {O’H < 0}, (To,OO) = {O'H > 0}, O’H(To) =0, (311)
(0,Tp) = A >0}, (Tmoo)={Aw <0}, Ag(Te)=0. (3.12)

3.2. A key inequality and further properties of Ur

In this section, we prove the key inequality (3.13) for the functions £ and M intro-
duced in (1.28) and (1.29), namely

L(U) = /xn |VUPP = px, (0,U)? |VU|P72,
H

MU) = /a:n ur.

H

Whenever U satisfies the decay properties (3.4) (e.g., when U is a compactly supported
perturbation of some Ur), we have that M(U) < oo; however, L(U) < oo under (3.4) if
and only if n > 2p — 1; see (3.24) and (3.25) below.

Lemma 3.1 (Key inequality). If n > 2, p € (1,n), n >2p—1, and T > 0, then there is a
positive constant c¢(n,p,T) such that

n—p

The following lemma will be useful in proving Lemma 3.1.

Lemma 3.2. If H = {z, > 0}, U : H — R is radially symmetric with respect to te, for
somet € R, and [, x,|VU|P is finite, then

/scn VUP2{(0,0)° — (5,U)%} > 0.

Proof of Lemma 3.2. We have U(z) = n(jlz —ten|), y =2 —te,, r = |y|, and § = y/|yl,
so that

n [VUP72{(00)? = (01U)?*} = (yn + 1) [/ ()P {(G0)* = (1)} ,

and, setting y = r z,
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[an V0P @07 @0y = [ Ol 0P - @)

H {y-,,,>7t}
= [wewdr [ w0 (@2 - @i
0 {yn>—t}NOB,
yi t
:/ PR ‘n/(r)|Pdr / (zn—l—;) {zi—z%}d}[?—l.
0 {zn>—t/r}NOB;
We conclude the proof by showing that
/ (zn+8) {22 — 21} dHI ™' >0 forall s e (—1,1), (3.14)

{zn>—s}NIB1

noting that for each s € [1, o), this integral vanishes by symmetry while for s € (—oo, —1]
the domain of integration is empty. To see (3.14), let p : R® — R"™~2 denote the pro-
jection map p(z) = (z2,...,2n—1) (if n = 2 there is no need to introduce p). The
tangential coarea factor of p along 0By defines a positive function K : 9By — (0, 0]
which is H" l-a.e. finite on dB;, and which is independent of the variables (x1,x,),
ie. K(z,w,z,) = K(w) for every (z1,w,z,) € 0B;. Therefore, setting for brevity
M, ={z, > —s}NIBy,

W acy2
[t -dyae = [ Ee [ G {2 -,
M p(Ms) Msmpil(w)
where
M,np Hw) = {(zl,zn) : zf + zi =1- |w|2,zn > —s}, se(—-1,1).

As before, the inner integral above vanishes when 1 — |w|? < s by symmetry and the
domain of integration is empty when —s > 1 — |w|?. We are thus left to prove that

T+
/ (sin9 +sina) {sin29 - 00529} df >0

—Q
for o € (0,7/2) (corresponding to the case when s > 0) and

T—

/ (sin@—sina) {sin29—cos29}d9 >0
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for a € (0,7/2) (corresponding to the case when s < 0). Direct computation shows that
both of these integrals are equal to the positive quantity (2/3) (cosa)®. O

We now prove Lemma 3.1.

Proof of Lemma 3.1. Testing (3.7) with z, Ur we find

A (T) /mn Ur = —/xn Ur AUz = /|VUT|”‘2 VUr - V(z, Ur).
H H H

Here the integration by parts is justified since xz,, = 0 on H and since by (3.4),

R 1R 1 p-1
p—2 .
‘ / o Ur [VUr [ (v, VUT)‘ < C Rop/e-D (R<n = 1>) — 0

HNOBRr

like R—(»*t1/(P=1) 35 R — co. We thus find that

L(Ur) — =2 Ay (1) M(U7) = /xn [VUZ|P — pay (6:1Ur)? VU7 [P~2
H
—n;p{/xn|VUT|p+/UT|VUT|”‘28nUT}.
H H

Now, since |VUr| is symmetric by reflection with respect to the hyperplanes {z; = 0},
i=1,...,n — 1, we see that

/zn|VUT|P— Z/xn (8;Ur)? VU7 [P~2 + /xn (8,Ur)?|VUp[P~2

H H

(n—1) /xn (01U7)?| VU P2 + /xn (0.Ur)?| VU [P~2
H H

so that continuing from above we have

n—p

L(Ur) — A (T) M(Ur)

-
— % /a:n IVUZ|P — p / 2y (01U7)? VU [P~2 — np /UT|VUT|p‘26nUT
H H H

- % /a: |VUT|”*2{(6,IUT)2 - (81UT)2} v % /UT VU P2 (= 0,Ur) .
H

In particular, the lemma is proved by showing that
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/a:n VU2 {(0,Ur)? — (01U7)*} > 0, (3.15)
H
/UT |VUr[P~2 (- 0,Ur) >0, (3.16)
H

where the first inequality, (3.15), is immediate from Lemma 3.2 (recall that n > 2p — 1
and Uy is radially symmetric with respect to te, for some ¢ € R).

We are thus left to prove (3.16). This is immediate in the case when T > Ty, because
in that case, by (3.5) and (3.6), Ur has center of symmetry at te, for some ¢ < 0,
and thus 9, Ur < 0 on H. By (3.5), if T € (0,7p), then Ur has center of symmetry at
te, for some t > 0. Correspondingly, Ur 0,Ur is odd with respect to {z, = ¢}, with
Ur 0,Ur < 0on {x, >t} and Ur 8, Ur > 0 on {0 < z,, < t}: in particular, if p; denotes
the reflection with respect to {z,, = t}, then

@y Ur (=0,Ur) = / (Pe(2) - en) [Ur (=0nUr)](pe(2)) da

2t>x, >t t>xn, >0
= / (pt(x) - €n) [Ur 0,Ur)|(z) do > / zn Ur 0,Ur,
t>3n >0 t>2n>0

so that

/UT VU P2 (= 0,Ur) > / Ur |VUr [P~ (= 0,Ur) ,

H {z,>2t}

and the latter integral is positive because 9,,Ur < 0 on {x, >t}. O
3.8. Standard variations of ® g -minimizers

We now introduce a “class of standard variations” of minimizers of ®gz. With H =
{z, > 0}, we define ¢ = ¢(r,T) : [0,00) x (0,00) — [0,00), so that, setting Vp(z) =
C(Jx — en],T) for x € R™, we have

Vi € C2(H; [0,00)), / UE v =1, / UE v =0, (3.17)
H OH

Given T > 0 we denote by
Ur (3.18)
the family of functions U : H — R of the form

U=Ur+tVp, |t‘§1
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The following lemma contains some basic properties of functions in Up. We notice that

every U € Uy is symmetric by reflection (3.19)
with respect to the coordinates x1, ..., T,,—1 . .

Lemma 3.3 (Standard variations of Ur). If n > 2, p € (1,n), and T > 0, then there
are positive constants Ry and Cy depending on n, p, T, and Vi such that the following
properties hold:

(i): if U € Up, then for every |x| > Ry we have

! <U(z) < Co

Colz|m—p/G=D = = (2| =n) /D)

3.20)
1 Co (
Comi—o7e = VU@l s s -
and for every R > Ry,
* CO *71 CO
P P
/ N = / e = (3.21)
H\Bgr H\Br
Co C(0
U < pom/on / VUP < oo (322)
Hﬂ(BQR\BR) H\BR
# Co #_ CQ
U" < g/ / s g (3:23)
(0H)\Br (0H)\Br
. Co
/ 2 U” < oime—n - (3.24)
H\Bg
C .
/ |IHVU|I)SW2)/(1)—1)’ ifn>2p—1. (3.25)
H\Br
(ii): for every U € Ur we have
/ IVUP = & (T)P + pAn(T)t +o(t), (3.26)
H
/UP* =1+p“t+ot), (3.27)
H
/Up# =7, (3.28)

OH
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Proof of Lemma 3.3. Since Vr is assumed to be compactly supported, statement (i)
follows immediately from the corresponding properties for Ur. More specifically, we
deduce (3.20) from (3.2), and (3.21)—(3.25) from (3.20). Statement (ii) follows from
(3.7). O

3.4. The Ansatz for boundary concentrations

We next use the standard variations of minimizers of ® g described in Lemma 3.3 to
define certain competitors for ®¢ that provide us with a notion of “standard boundary
concentration.” Recall the notation U®) for dilations introduced in (1.5).

Lemma 3.4. Firn > 2, p € (1,n), T > 0, U € Up. Let Q be an open set with C*-
boundary, xo € 082, and let f = fwo, g= f‘l, f = fu, and g = f~1 be determined as in
Remark 2./ starting from Q and xg. Then the following statements hold:

(i): If v € WhP(Q), B € (0,1), r1 = &P, ro = 267, and ¢. is a cut-off function between
By, (z0) and By, (xq) with |Ve.| < Ce™P, then

ve(x) = (1 — pe(z)) v(x) + e (2) (U(E) 09)(x), x €9, (3.29)
satisfies

lim /\VUEV’:/ |VU|p+/\Vv|p, (3.30)
e—0t

Q H Q
lim [ o? = /UP* +/vp*, (3.31)
e—0+

Q H Q
lim [ o?” = / U 4 / " (3.32)
e—0t

o0 OH o0

(ii): If n > 2p, v € Lip(Q) and Q has C?-boundary, then there exists a choice of B =
B(n,p) € (0,1) (used in the definition of 11 = & and ro = 2€P), such that the function

ve(x) = (1 — pe(z)) v(x) + e (2) (U(E) o g) (2), reN, (3.33)

satisfies (3.30), (3.31), and (3.32) in the more precise form
/|Vv5\p = / [VU|P + / |[VulP — Hpq(z0) L(U) e + o(e) , (3.34)
Q H Q

/vg* = /Up* —l—/vp* — Haq(20) M(U) e +o(¢) , (3.35)
) H )
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/ o’ = / urt 4+ / " +o(e), (3.36)

o0 OH o0

as € — 0%, Here L(U) and M(U) are defined in (1.28) and (1.29) and the orders in
(3.34), (3.35), and (3.36) depend on n, p, T, and v.

Proof. Without loss of generality we assume that g = 0 € 99, Ty (02) = {x,, = 0} and
vq(0) = —e,. We carry out the proof in several steps.

Step one: We start by noticing the following estimates for the energy, volume and trace
of v, in transition region for the cut-off function ¢.. The estimates in this step hold in
identical form with the same proofs for v, defined from f as in (3.29) and for v. defined
from f as in (3.33); we write the proof for (3.33). First, with v € W1HP(Q),

lim max { / [V P, / oP’, / vf#} =0, (3.37)
e—0
QN(B/,\Bry) QMBI \Bry) (0N (Bry\Bry)

and, second, under the additional assumption that v € Lip(€2),

IV0.|P < C max {5(1—6) (n—p)/(p—1>7€5<n—p>} 7 (3.38)
QN(Bry\Bry)
vg’* < C max {5(1*5) "/(pfl),sﬁ”} (3.39)
QN(Byy\Bry)
vf# < C max {5(176) (n=1)/(p=1) ,sﬁ(”*l)} . (3.40)

(0N (Bry\Bry)
Indeed, we have Vv, = a. + b, for
a: = ¢ (V) (VU)o g] + (UD 0g) Vi, bo = (1 - ) Vo —v V..

By (2.13), and thanks to |Vgl|, Jf <2 on C,,, we find

U©) (g)P
al<c [ @eiwo)egp+ TS
QN (Byy\Bry ) QN (Byy\Bry )
(e)\p
@p . TP
<C / VU P + Fr
HO(BCTQ\BT‘I/C)
« UP
_ P np/p* X n
=C / |VUP + ¢ T
HO(BCTz/E\BTI/CE)

&P (B-1)(p*—n)/(p—1)

grBP

<C {5(1—6)(71—17)/(17—1) T } — 0= n=p)/(p-1)
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where in the last inequality we have used (3.22). Concerning b., we notice that if we only
know that v € W1HP(Q) then by v € LP" () and Vv € LP(Q) we find that

p P |v]? P p* p/v’
< [ v+ [ S [ over+ (i)
QN(Byry \Bry) QNB,, QNB, QN By QN By

where the latter quantity converges to 0 at an non-quantified rate as € — 07 (as stated
n (3.37)); while, if v € Lip(Q?), then

bp < C / [of? [Vigel? + Vol < O Lip(p,)? < Ce# P

QN (Bry\Bry) QN (Bry\Bry)

and (3.38) is proved. The other two limits in (3.37) follow similarly (with non-quantified
rates), while if v € Lip(€2), then (3.39) and (3.40) follow from (3.21), (3.23), and

u’s’* <cePr 4 / Ur" < 0P 4+ ¢ U=Pm/=1),

Qﬁ(Brg\Brl) HO(BCTQ/E\BTI/CE)
u?’ < cef ) 4 o / ur”
(BN (Bry\Bry) (OH)N(Bcry /e \Bry jce)

(n—1)

<P L o uy

Step two: We prove statement (i). By (3.37),

[1ver = [ (variv@eap+ [ vl o),

QNB,, Q\B,,

and, similarly,

/\Vv\p > / [Vol? Z/|Vv|p+o(1). (3.41)

O\ B,

Moreover, if we set E. = g(B,,) C H and E. = E. /e C H, then keeping in mind (2.13),
(2.11), (2.12), and (3.22), we have

/ (V9) [(VU) og\pf/| @ gf = <1+o<1>>/|vv<€>|p

QNB,, E.
(14001 /|VU|p / vur} = (1+o(1))/|VU\p.
H

H\E.
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This proves (3.30). Entirely analogous arguments prove (3.31) and (3.32).

Step three: We now start the proof of statement (ii); in particular, from now on, € has
C?-boundary, n > 2p, and v. is defined as in (3.33); moreover, for the sake of brevity,
we set h = Hyq(0). In this step, we discuss the choice of 8 = S(n,p) € (0,1), which
is determined by the rates in (3.38), (3.39) and (3.40), and by the fact that in (3.34),
(3.35) and (3.36) we want errors of size o(e): therefore, by

1
Bmin{n,n—l,n—p}>1 iff 8> ,
n—p
—p n—1 1-2
(1—ﬁ)min{” pn—- 1 }>1 iF g TITEP
p—1 p—-1p-1 n—p
we are led to choose
1 1-2
Be (—,min{l, u}) (3.42)
n—p n—p

(where the interval appearing in (3.42) is non-empty thanks to n > 2p). With this choice
of 8, we have min{8 (n — p), (1 — 8) =%} > 1, and thus deduce from (3.38), (3.39) and
(3.40) that

max{ / V.|, / o / ug#}:o(s). (3.43)

QN (Byy\Bry) QN(Bry\Bry)  (92)N(Bry\Bry)

Step four: We prove (3.34). We first notice that by (3.43) and (3.41) we have

/ V.l = / (V) (VU)o gl|? + / Vul? + ofe). (3.44)

Q QNB.,, Q

Now, by (2.15) we have
V(U eg)o f=[(Vg)o fI" VU

n—1
=VUE 4 0,US VL~ (VE-VU) e + 2 D 5 U € + O(|af*) [VU]

=1

so that, recalling that |V/¢| = O(|z|),

2
V(U© og)o f( — VU@ +2((VL-VUO) e, — 0,0 Vi) - VU

n—1
22, Y ki (QUD)? 4+ O(|z?) VU2
=1
n—1
= [VUEP 422, Y ki (9,U9)? +O(|z*) VU

=1
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Now set a = |[VU®)| and b = [2 Zz 1 ki (0;UE))2]1/2 g0 that 0 < b < Ca for a constant
depending on |Agq(z0)|. Since z +— (1 4 2)P/? is smooth in a neighborhood of z = 0, we
see that if |z| < 1/C for a constant C' depending on |Agq(xo)|, then

(a® + 2, b + O(|z?) a2)p/2 =a” (1+ (b/a)®z, + O(|$|2))p/2
—a? (1 + g(b/a)%n + O(|x|2)) =a?+ 7 ap 202 2,, + O(|z]?)
and thus
p
‘V(U(E) og)of‘ Jf

n—1 (aZU(E))2

= VU (14 pa, Z:: Hiw O(lf) (1 = @ b+ O(Jz*))

= IVUOP —a, (h - pZ WU(E ) WU + 0 [P0

Then, by (2.13),

/ (Vo) (VU)o )PP < / 1(Vg) o £ (VU 7

QNB,, HNB¢

< / VU P —h / z, [VUE) P

HNB¢c r HNB¢ ry

n—1
Sk / 20 (BUE ) VU P2 4 C / 22 [VU©P

=l HMBc,, HNBo
= / |VUIP — he / xn [VUIP (3.45)
HﬂBCrl/s HmBCrl/s

+pe Z K / z, (OU)? [VUP™2 4 C &2 / |z|? |[VUP.

=1 HNBegyy /e HNBgry /e

Now, by the reflection symmetries of U with respect to {z; =0}, i = 1,...,n — 1 (recall
(3.19)), we have
/ z, (QU)? |VUP2 = / z, (LU |VUP2,  Vi=1,.,n—1,YR>0,
HNBRr HNBRr

and therefore
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n—1
> / z, (0;U) |[VUP™2 =h / z, (01U)? |VUP2.

=1 HMBe,, . HNBer, /e

Setting

L(U,Bg) = / z, |VU|P = px, (0,U)* |VU[P~2, (3.46)

HNBpgr

we can thus rewrite (3.45) as

/ (V) (VU)o g)l? < / VUPP — he £L(U. By, o) + O / 22 |VUPP
H

QNB,, HNBG 1y /e

At the same time, €2 |z|?> < Cery |x| for any z € B¢y, /ey 80

g2 / |z|? |[VUP < Cery / |z| [VU|P

HﬁBcn/a HmBC'r‘l/a
< Cetth / 2| VU7 |P + Ce'tP / 2| [VVr|P < C(n,p, T)e*?,
H H

where we have used the facts that Vp is compactly supported and that n > 2p — 1 to
guarantee the convergence of the integrals in the final line. Hence,

/ (Vg) (VU)o glJ? = / VU — h £(U, Beo, o) e +ofe)
QNB,, H

=/|VU|p —hLU)e+o(e),
H

where the o(¢) term depends on n, p, and T, and in the second line we have applied
(3.25). By (3.44) we deduce (3.34).

Step five: We prove (3.35). We first notice that by (3.43), v € Lip(Q), 7§ = ™ = o(e)
and our choice of S we have

/ P = / (U o g)?" + / vP" 4 o(e). (3.47)

Q QNB,, Q

Let E. = g(B,, NQ) C H and E. = E./e C E as in step two. Then keeping in mind
(2.13) and (2.14),
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/ (U@ ogy = /<U<€>>P* h [ 2, (UE) / O(lf?) (U

QﬂBrl E. E.
:/UP* —hs/xn Ur 4+ [ O(jz?) W)
E. E. E.
/Up —heM@)+{ = [ U +he / 2, UP +/ (lof2) )" }
H H\E. H\E. Ee

By (3.21) and (3.24), along with our choice of 5, we see that
- / UP" = o(e), he / 2, UP" = o(e).
H\E. H\E.

Moreover, since U = Ur + tVr with Vi compactly supported in H and [¢| < 1, we have

/|~T|2(U(€))p* SCT1€/|$| ur’ §61+ﬁ/|x|Up*
E. E~s H

< 051+B/|x|U;* +csl+5/|x|vp* = o(e),
H H

with o(e) depending on n, p, and T'. So, the entire term in brackets above can be written
as o(e). Combining this estimate with (3.47), we deduce (3.35).

Step siz: We finally prove (3.36). Notice that, by (3.43), v € Lip(Q), ri~! = #(»=1) =
o(e) (by the choice of 3), we have

/ o’ = / U o g)" + / " +o(e). (3.48)

0 (09Q)NB,, 0

Now, by J?H f > 1, (3.23) and our choice of 3 we have

[ wegt= [ wey

(092)NB,, (8H)NB,, /o
- /U”# - / ur’ > /UP#+o(e).
oH (OH\B,, /ce oH

At the same time, by J?H f <14 C |z|?, we have

#

(U o gy < / (1+Caf?) UO)"

(092)NB,., (OH)NBe 1y
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# #
< / Ur" +Ce? / |z|? U?P
oH (OH)Bery e
where
Cri/e

r2r"2dr

2 2% < 2
y / 270" < Ce (r(n=p) /(=) )*

(OH)NBG vy /e 0
<Ce? (T1/6) 14+n—(n-1)[p/(p—1)]

< Ce2 (7"1/5) (2p—n—1)/(p—1) < C2e(1-P) (n+1-2p)/(p=1) < 2 = o(e),
thanks to n > 2p — 1. This completes the proof. O
4. Existence of minimizers

We first establish the existence of generalized minimizers. Recall that ®§(T) was
defined in (1.21).

Theorem 4.1. Let n > 2, p € (1,n), and let Q be a bounded open set with Ct-boundary
in R™. Then:

(i): for every T > 0, ®o(T) = &&(T);
(ii): there is a minimizer (u,v,t) of ®&(T);

(iii): if (u,v,t) is a minimizer of ®&(T) with [, uP” >0, then Jo0 w” >0,

u/||uHLp* (@) 18 a minimizer of fI’Q(HuHLp# (OQ)/HuHLp* (Q)) , (4.1)

and there exists \,o € R such that

—Apuz)\up*fl, on €,
[VulP—2 % =ou" ! , on0Q. (+2)
In particular, v € Lip(Q). If, in addition, v > 0, then A\ and o are given by
A= VPP Ay (t/v), o=’ o (t/v), (4.3)

and, in particular,

5 € (0,T) U (Tg, o). (4.4)
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Proof. Step one: Since (u,0,0) € Vo(T) if u € Xo(T'), we have ®§(T) < q(T). To
prove the converse inequality it is enough to show that for every (u,v,t) € Yo(T),

Ju; € Xo(T) st lim /|vu]\P—/\vu\P vP<1>H( ) . (4.5)

Looking back at the definition of Yo(T) in the paragraph preceding the statement of
Theorem 1.1, we can assume without loss of generality that v > 0 and t > 0. Moreover,
given (u,v,t) € Yo(T) with v and t positive we can easily find (u;,v;,t;) € Va(T)
with vj, t;, [, uf*, and [, ug»’# positive and such that &(uj,v;,t;) — E(u,v,t). By a
diagonal argument, it is thus sufficient proving (4.5) under the assumption that [, uP”

and [, 50 " are positive. This said, we apply Lemma 3.4(i) with
V= —, U= Ut/v )

to find functions v; with v; = v on Q\ Bac,(2¢) for some ¢ € 0 and ¢; — 0t, and
with

1
/|ij|p = /|Vu\p +Qu(t/V)P+ Gy,

Q

o = */ul’*+1+Vj
V-
Q

<

¥ =7 w” (t/v) ,

o0

e O ©

where G;, Vj, T; — 0 as j — oo at a rate depending on n, p, Q, t/v and v only. By
Lemma 2.6, there exist n and C depending on n, p, Q, t/v and w, but independent from
J, such that for any (a;,b;) with |a;| + |bj| < n, we have functions w; such that

# # * *
/|wj|p Zaj+/|vj|p ; /|wj|p ij+/\vj|p ; (4.6)

o0 o0 Q Q

[ vl = [1900] <€ (ol + 1) (@)
Q Q

For j large enough we can apply this statement with a; = =7} and b; = —V; to find a
sequence {w;}; with

77"
[l = o [ ™ = /|wJ|P -

o0 o0

1
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| [19wsp = o [ 1vulr — ety - (173 + V1) - (1.9)
Q

Q

Setting u; = vw;, we obtain a sequence in Xqo(T') that satisfies (4.5).

Step two: We prove that there is a minimizer for the generalized problem & (7). By
the argument in step one we can find a sequence {u;}; in Xo(T) such that [, [Vu;[P —
®5(T)?. By Lemma 2.1, the measures (15, v; and 7; defined in (2.1) have subsequential
weak-star limits p, v and 7 satisfying (2.2), (2.3) and (2.4) and (2.5). In particular, there
is an at most countable set {x;};er C Q and corresponding v; > 0 and t; > 0 for every
i € I, such that

BTy = lim [[Vu > [V esr S0 e 3 Py, (410)
Q Q iEI\Ibd 1€ 1ba
where u is the subsequential weak limit of u;, and
:/up*_Fva*, Tp#:/up#_|_ Z tf#. (4.11)
Q el 90 i€1hq
Now set
w=Swt et =
icl 1€ 1pa

By an immediate adaptation of the proof of Lemma 3.4 we can easily construct a sequence
{W;}; in Xg(t./v.) with the property that

/|VW|1’—>Z

i€l

( ) Dpr(t;/vi)P.

C

Since W; € Xp(tc/v.) implies [, |[VW;[P > @y (te/ve)?, we deduce from (4.10) that
T)? > / |Vul? + V2 &y (te/ve)?,
Q

while (4.11) gives (u,ve, te) € Yo (T'). This proves that (u, v, tc) is a minimizer of ®&(T').

Step three: We finally prove statement (iii). If (u,v,t) is a minimizer of ®§(T") with
Jo uP” > 0, it is immediate to deduce (4.1), and since ®q(0) does not admit minimizers,
it must also be faQ w’ > 0. By Lemma 2.5, the Euler-Lagrange equation (4.2) for u
holds for some A\,0 € R and u € Lip(Q2). Assuming now that v > 0, we can prove (4.3)
by noticing that, given ¢ € C°(R"™), if we define
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o) = (1- [wrsor)" = s = (17 - [wroor) -

Q o0

then there is g > 0 such that (u+ 0 ¢,v+ a(d),t + (5)) € Ya(T) for every |§] < do. In
particular,

t+6(5))P7

0= d%’a:o /V(u+6<p)|p+(v+a(5))p<I>H<v+a(6>
Q

and exploiting (4.2) as well as

and (3.8) (i.c. ®4(T) = Ag(T) 4+ o (T)T*" and oy (T) TP ~! = & (T)P~ 18/, (T) for
every T > 0), we see that

0= / |VuP=2Vu - Vi +vP~L &y (t/v)P~L & (t/v) B'(0)
Q

+ {vp-l By (t/v)P — VP2 By (t/v)PL @y (t/v)}o/(o)

=\ /up*flcera /up#flgofvpfltlfp# O (t/v)P LD (t/v) /up#*lgp
Q o0 o0
7 Bt = @) St B} [
Q

= (cr—vpfp#oH(t/v)) /up#flgaJr ()\fvp*p*)\H(t/v)) /up**lgo.

o0 Q

Testing with ¢ € C°(Q) we find A = vP~P Ay (t/v), and testing with ¢ = 1 on € then
gives o0 = vp_p#aH(t/v). We finally prove (4.4), i.e. t/v ¢ [Ty, Tg]. Indeed, combining
the balance condition (2.16) with (4.3) we find

VPP Ay (t/V) /up*_1 e o (t/v) /up#_l =0, (4.12)
Q o0

where by (3.11) and (3.12) we have Ay > 0 in [Ty, Tg) and oy > 0 on (Tp, Tg] (with
A (Tg) = o (Ty) = 0 by continuity). If t/v € [Ty, Tg), then (4.12) implies [, u?” =0,
a contradiction; if t/v = Tg, then (4.12) gives u = 0 on 0%, so that, by (4.1), u is
a minimizer of ®(0), and thus u is optimal in the Sobolev inequality on R™, so that
Q = R", contradicting the fact that ) is bounded. O
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Statement (i) is an immediate consequence of Theorem 4.1. We
thus focus on statement (ii), and assume that €2 is of class C? and that n > 2p. We want
to prove that if (u,v,t) is a minimizer of ®&(T), then v =t = 0. We assume by way of
contradiction that either v > 0 or t > 0; recalling the definition of Y (T), this implies
that v > 0 and t > 0. We apply Lemma 3.4 (ii) with the choice (v,T) = (u/v,7) at a
point xg € 9N of positive mean curvature, noting that if v = 1 then v = 0 and that
v is Lipschitz continuous if v € (0,1) thanks to (4.1) and Lemma 2.5. Then, for every
U € U,, we have

/|Vv5\p S/WU|”+/|Vv|p—HaQ(0)£(U)e+o(s), (4.13)
Q

/vé7 —/U” +/v”* —Hpa(0) M(U) e + ofe) , (4.14)

/v” /Up /v” +o(e (4.15)

where £(U) and M(U) are defined in (3.46) and (1.29). We apply this with U € U,
given by

1 Ho(0) M(U,
U=U,+beV,, |€\<m, b:%/w().

The reason for the choice of b will become apparent in a moment. Indeed, thanks to
(3.26), (3.27) and (3.28), we have

/|VU|” =doy(r)? +pb)\H(7){—:+o(s) ,

/U”*zl—i—p*bs-i-o(fs), /Up#:’]'p#
oH

H

which, combined with (4.13), (4.14), (4.15) and

Do (T)P

vP

1 *
:@H(T)p—i—/|Vv|p, o :1—|—/vp , (T/v)p# :Tp#—l-/vp#,

Q Q [5}9)

implies that w. = v v, satisfies

/ IVaw.|P < ®a(T)? + {pb)\H(T) ~ Hyo(0) c(U)} VPe +o(e) (4.16)
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wl =14 {p*b—Haa(0) M(U)} v*"c +o(e) = 1+ oe) (4.17)

— 7Y

w?” =17 1 o(e), (4.18)

QD
=

2

where in (4.16) we have used the choice of b to deduce

M(U) :/\/l(UT)er*/acnUf_’*’1 Vibe+o(e), {p"b—Hoa(0)MU)}e=o(c).
H

In the same spirit, by
lim |L(U; +beV;)— LU,)| =0,
e—0t

we deduce from (4.16) that

/|Vw5|p < (TP — {E(UT) - @ M(U;) )\H(T)} Hpq(0) vPe 4 o(e)
Q

(4.19)
< Oq(T)P — C(n,p,7)Hoq(0) vPe 4+ o(e) ,
where in the second line we apply Lemma 3.1. We thus conclude that
/ VP < / VP + VP By (t/v)P — M e +o(c) . (4.20)
Q Q

It remains to modify the functions w. to obtain w? € Xq(T) also satisfying (4.20),
allowing us to conclude the proof of the theorem by choosing ¢ sufficiently small. We will
distinguish between two cases, applying Lemma 2.6 in different ways in the two cases.

Case one: Suppose first that v . < 1 and thus fQ uw?” > 0. This also implies that
Jo0 u?” > 0 by Theorem 4.1-(iii). Taking into account (4.17) and (4.18), we can thus
apply Lemma 2.6 in an analogous way to step one of the proof of Theorem 4.1 in order
to slightly modify w, into w} € Xo(T') with

vty < [1Vuzp = [ 19up+ @ £ )ele
Q Q
M M
< / |Vul? +vP &gy (t/v)P — > vPe = 0o(T)P - Evps < ®q(T)?,
Q
thus reaching a contradiction.

Case two: Next, suppose that v = 1. So, ®o(T) = ®y(T), u = v = 0 and v, =
ve (U (O g). In this case, we will pull the relevant quantities back to the half space H
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and apply Lemma 2.6 there to correct the volume and trace constraints. More specifically,
for € < g, the support of . is entirely contained in the domain of the diffeomorphism
fxo, and so we can define U, : H — R by U.(y) = ¢-0 f(ey). In this way, we can rewrite

We = Ve = (\IIE U)(E) ©g.

Thanks to (2.13), W, is identically equal to one in B.s-1,c N H and vanishes outside of
Bges—1 N H. Using the area formula, we rewrite (4.17), (4.18), and (4.20) as

/(\Il5 U me = /wg*daj =1+4o0(e),

H Q

/ (U U 1. = / w? = TP + o(e).

OH 99
/|AE V(T D]IPme = / [Vwe|P <@y (T) — Me+ o(e),
H Q

where we have set
me(x) =Jf(ex),  me(z)=J"flex),  Ac(z)=(Vgo f(ex))".

We now repeat the argument used in the proof of Lemma 2.6: exploiting the fact that

B—1
€o

v, U=Ur on (H n BR) \ (SptVT) ) R = Cc

(4.21)

as well as that both [, (V. U)?" m. and [, (V. U)P* 1. are positive and finite, we can
easily find ¢ € C°((H N Bgr) \ (sptVr)) and ¢ € C((R™ N Bg) \ (sptVr)) such that

/(\115 Ur)? Y meip = /(\ps Ur)P" Ve =1, (4.22)
H OH

/(\115 Ur)? me o = /(qfs Ur)?" e = 0.

H OH

Correspondingly, we consider the maps h. : R? — R? by

he(s,t) = (/ (ve +sg0+t¢|p# _ |v€|p#) Me, /(|vs + s+t — |vs|p*) ms) .

OH H

By (4.21), he € C1*(R?;R?) for some a = a(n,p) € (0,1), with

sup ||h8HCL°‘(R2;R2) < 00;
e<ep
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moreover, h.(0,0) = 0 and, by (4.22),

Vhe(0,0) = (pj ;)*)'

We can thus apply the inverse function theorem uniformly in &, to obtain functions
W : H — R with support in Bg.s-1 such that

H OH

(4.23)
] J A[V(L. )] P, — ! A[TW?] P

=o(e).

Finally, for £ < &g, define w? : @ — R by w} = (W) o g. Changing variables once
again, (4.23) tells us that w. € Xo(T) and that

ba(T) < [[VurP = [ 1Vl + o)
Q Q

< @H(T)p — ME+O(8) < @H(T)p — 7 < ‘I)H(T) = (I)Q(T),

giving us a contradiction in this case as well. This completes the proof of the theorem. O
5. Rigidity theorems for best Sobolev inequalities

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. Rigidity under assumption (ii) is immediate by combining The-
orem 1.1-(ii) with (1.23) and (1.24). Let us now consider assumption (i), namely, there
is T% > 0 such that

Bo(T) = dp(T) VI e (0,1.). (5.1)

Without loss of generality we can assume that T, < ISO(B)/ P” _We argue by contra-
diction and assume that €2 is not a ball.

By Theorem 4.1, for every T' > 0 there is (ur, vy, t7) a minimizer of ®(T"). The basic
idea of the proof will be to show that the trace-to-volume ratio of up must be, on one
hand, uniformly positive and, on the other hand, tending to zero as T — 0, giving us a
contradiction. Since €2 is connected and is not a ball by assumption, the rigidity criterion
(1.23) together with (1.24) and (5.1) tell us that a classical minimizer for ®o(7T") cannot
exist for T' € (0,7%), and so we immediately deduce that vy < 1 for all such T'. In other
words, if we set
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v = 1=V =lur| ey, = (T =) = g, -
then vy > 0 for all T € (0,7%). So, Theorem 4.1-(iii) implies that
ur/vr is a minimizer of ®q(rr/vr). (5.2)
In particular, this means that
T>T,  forallTe(0,T.)), (5.3)

vr

since as we noted above, no minimizer of ®o(7) can exist for T = 77 /vy < T.. Since
T > 7, (5.3) tells us that T' /v > Ty; rearranging this inequality gives us the following
lower bound on vg:

V> 1—(T/T.)" VT e(0,T.). (5.4)

From this, an upper bound on the ratio ty /vy follows immediately:

t *\ — *
L<(-@my) T vre(rn). (5.5)
T
In particular tr /vy — 0as T — 07.
On the other hand, we will now use the Euler-Lagrange equation for ur to show that

lim L =0, (5.6)

which is a clear contradiction to (5.3). Indeed, by Theorem 4.1-(iii) and (5.2), ur satisfies
the Euler-Lagrange equation
— Apur = VI Ny (tr /) ub, ! on 2,

(5.7)
|Vur|P~? —;u = vg«_p# og(tr/vr) u%#_l on 090 ;
179

see (4.2), (4.3) and (3.7) (for the definition of Ay (T') and op (7). Testing (5.7) with ur,

we find that
_p* tr * o # tr #
/\VUTV’:V% P )\H<7) /u}% +vhP orH(—) /u’%
VT vT
Q Q
o tr * o # tr #
=vi? )\H(V—)Z/g + VP OH(—>T§Z .
T Vv

i i
After rearranging and multiplying through by v} “Pv,.”" > 0, we arrive at the inequality
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() ) =G G 6

By (3.12) and the continuity of 7' +— Ay (T), there are C' > 0 and T, > 0 such that
Au(T) € (1/C,C) for every T € (0,T..). Moreover, thanks to (5.4), we can ask that
vp > 1/C for T € (0,T,.). In particular, by (5.5) and up to further increasing C, if
T < 1/C, then ty /vy < Ty, and thus (5.8), vp < 1 and vp > 1/C give

() @) <o oo

By (3.11) and the fact that t7/vy — 0 as T — 0, we see that oy (T) — —occ as T — 07,
so that (5.9) implies (5.6). We reach a contradiction to (5.3), completing the proof. O

Appendix A. Proof of Lemma 2.1

We will use the Brezis-Lieb lemma (if (X, p) is a measure space, ¢ > 1, and {f;}, is
bounded in L?(X), then

Jistrdn =t [150rdn= [ 15 = firan, (A1)
X X X

provided f is a p-a.e. limit of {f;}; on X), and the two Sobolev-type inequalities

[ull e @) < C1 (HVulle(Q) + ||U||LP(Q)) : (A.2)
lall % gy < C2 (IVellzoe) + el ooy ) (A.3)

which are valid, with constants C; and C5 depending on n, p and €2 only, as soon as {2
is bounded and has Lipschitz boundary.

Proof of Lemma 2.1. Step one: Since €2 is a bounded open set with Lipschitz boundary,
uj — u as distributions in 2, and {Vu;}; is bounded in L”(12), standard considerations
show that u € W'P(Q), {u;}; is bounded in LP"(Q) and in L (09), and, up to ex-
tracting subsequences, u; — u in L(Q2) for every ¢ € [1,p*), u; — u in L"(0N) for every
r < p#, u; — u pointwise L"-a.e. on £ and H" '-a.e. on 91, and that the sequences of
Radon measures {v;};, {7;}; and {p,}; defined in (2.1) admits weak-* limits v, 7 and
i, with spt v and spt u contained in Q, and spt7 contained in 9.

Step two: We let i denote the weak-* limit of |V (u; — w)|? £L7".Q (which exists up to
possibly extracting a further subsequence), and claim that f({z}) = p({z}) for every
x € R™. Indeed, by the elementary inequality

[+ wP = |wP| <elvf’ + C(p,e) w]”, v,weR™ >0,
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given x € R™ and r > 0 we see that

[ wure [ Ne-or|ze [ V@-orecme [ v,

B, (z) B, (x) B, (x) B, (x)

so that letting first j — oo (for » > 0 such that (9B, (z)) = (8B, (z)) = 0) and then
—a({z})| < e p({z})

r — 0" (along a generic sequence of radii), we find indeed |u({z})
for every € > 0.

Step three: If now pick n € C°(R") and set # = v — |u|P” L"LQ (notice that, by lower
semicontinuity, 7 is a Radon measure), then, by exploiting, in order, v; Sou, (AL,
(A.2), and u; — w in LP(Q), we find

[ o <timint [ s = ) =t [ oG - P’
Jj—o0 Jj—oo
Rn Q Q

_ P
<& lim (90— )l + 0l =0l

j—o0

= O tim IV — )y = CF lim 10V = u) [
. p*/p
<t (furan)”".
R’n,

In particular, for every x € R™ one has
7(B,(z)) < CP ju(Br(x))P" /P forae. r>0. (A.4)

By (A.4), U is absolutely continuous with respect to fi, so that o = f i where f is such
that, for fi-a.e. x € R™,

— lim v Br(x))
@)= I, 2B @)

in particular, again by (A.4), for f-a.e. x € R™ we have

Fz) <O lim G(B, ()P /M= = P p({a})@/PL

r—0t

In particular, as p* > p, if X = {z € R" : p({z}) > 0} = {@;}ier € Q (I at most
countable) denotes the set of atoms of u, then f(z) =0 p-a.e. on R™\ X, and we have
proved that

sptv C {xi}ig. (A5)
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An entirely analogous argument, this time based on (A.3) rather than on (A.2), shows
that, if # = 7 — [u?” H"~1LOQ, then

spt7 C {z; }ier N ON. (A.6)

We have thus proved the validity of (2.2), (2.3) and (2.4) for suitable v;,t; > 0 and g; > 0:
and of course we can discard possible points x; with v; = 0 from these decompositions,
and directly assume that v; > 0 for every i. The fact that g; > Sv; if z; € Q is
immediate by repeating the above argument with arbitrary n € C°(Q) (in which case
Cy can be replaced by 1/5). An analogous argument, this time using Lemma 2.2, shows
that g; > v; @H(ti/vi) ifx; €0Q. O

Appendix B. Proof of Lemmas 2.2 and 2.3

This section is dedicated to the proof of Lemmas 2.2 and 2.3. We recall the standard
Taylor expansions for the inverse and determinant of a matrix that is a perturbation of
the identity:

(Idgn +tA)™t = Idg» — tA + O(t?), (B.1)
det(Idgn + tA) = 1 + t traceA + O(t?); (B.2)

see for instance [10, Lemma 17.4].

Proof of Lemma 2.2. Note that f can equivalently be written as f(z) = 2 + £(p(z))en.
We directly see that f maps C'-diffeomorphically onto its image with inverse §(y) =
y — £(p(y))x, and (2.10) holds because £(0) = |V/£(0)| = 0 and £ is C*. We compute, in
the standard basis for R™, that

A Id 0 0 0
Vip(),zn) = (Vﬁ(p(x)) 1> =Id+ (Vﬁ(p(m)) 0) .

Since £ is C! with V£(0) = 0, this gives the first estimate in (2.11). The second estimate
in (2.11) follows in the same way using the explicit form of g above. The first estimate
in (2.12) follows from (B.2) and the expression for Vf above. The second estimate in
(2.12) follows because f = F on D, (compare with (2.7)), and so

JHF = JHE = \/1+|Ve2.
This completes the proof of the lemma. 0O

Proof of Lemma 2.3. Step one: We compute some geometric quantities for 02 using the
graphical coordinates defined by the map F given in (2.7). We start with first order
quantities. For x € D,, and i = 1,...,n — 1, we set 7; := dFy(e;), i.e.,
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7, = 0;F (z) = e; + 0;4(x)en, (B.3)

so that {r1,...,7,_1} forms a basis for Tp(,)02. Since £ is C? and V/{(z) = 0, we have
9ij = (T3, Tj)Rn = 035 + 0L ;0 = 6;5 + O(|z|?) . (B.4)

In other words, the metric coefficients in graphical coordinates are Euclidean up to second
order in |z|. The volume measure of J{2 is given by

JOHE =\ /detg;; = /1 + |V]?;

this immediately gives the second estimate in (2.14) since f = F for « € D,,. The inverse
metric coefficients are

52 5% 9,0 Ol

g T vee

59 +O(|z*) . (B.5)
Recall that, without loss of generality, we have chosen an orthonormal basis for R»~! C
R™ that diagonalizes the Hessian of £ at 2 = 0. Let {kq, ..., £,_1 } denote the eigenvalues.
The second fundamental form of 9Q at x is defined by A, (v,w) = —(dvq(v),w) for
tangent vectors v,w € T,(99). Using the shorthand v := vg o F : D,, — S"71, the
coefficients of the second fundamental form in the coordinates defined by F are given by
A;; = (0;;F,v)rn. Differentiating (B.3) above, we have 0;;F = 0;7; = 0;j{ ey, and thus
fori,j € {1,...,n— 1} we have

A =(0;;F,v)y = 0;l{en, V) = ———— = —0;;£ + O z|?). B.6
= ) = 0 ) = B =0yt O, (B)
We have

82‘1/ = —A‘ZTJ‘ s (B7)

and from (B.5) and (B.6) we directly compute that A7 = ¢** Ay is given by

, 0,0
A= =2 O(JaP)

V1+|Ve?

—(%je + O(|.’13|2)

—0;;£(0) + O(|z[*) = —r;6] + O(|z?).

Step 2: Next, we use the previous step to compute geometric quantities associated to
the coordinates defined by f. For x € C,; and i = 1,...,n — 1, we note that 0;p(z) = e;
and thus from (B.7). In what follows we will suppress the composition with p in our
notation, writing for instance 7; in place of 7; o p(z). For i = 1,...,n — 1, we have
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9if(x) = 1 — 2, Oiv(p()) (B.8)
=¢; +0ile, + a:nAgTj =e; + Oil e, — Tprie; + O(|z|?),
and  O,f(z) = —v = _enZVE en — VI + O(|z)?). (B.9)

VI+ VR

Together (B.8) and (B.9) can be expressed in consolidated form as

n n n—1
Vf:ZB,»f@ei :Zei®ei+en®V€—V€®en—xn Z Hi(0)6i®€i+0(|$|2)
i=1 i=1 i,5=1
n—1
=Tdg~ + €, @ VL= VL@ ey — 2, Y ki(0)e; @ e; + O(|z]?).
ij=1

In particular, from (B.2) we see that the volume form is given by

Jf=+/detgy; =1- x,Hpq(0) +O(|x‘2)7

giving us the first estimate in (2.14). We see directly from the definition that f is a
C' map, and since we see from the expression for Vf above that Vf(0) = Idg., we
may apply the inverse function theorem to see that, up to decreasing rg, f defines a C*
diffeomorphism onto its image. Letting ¢ = f~! and using the expansion of the inverse
(B.1), we find

n—1
(Vg)of=(Vf) ' =Idgn —e, @ VL + VIR e, + 1, Z ki(0)e; ® e; + O(|:r|2)

ij=1

Finally, (2.13) follows from these expressions for V f and Vg, along with the assumptions
that V£(0) = 0. This completes the proof of the lemma. O
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