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Abstract— We consider risk-averse learning in repeated un-
known games where the goal of the agents is to minimize their
individual risk of incurring significantly high cost. Specifically,
the agents use the conditional value at risk (CVaR) as a risk
measure and rely on bandit feedback in the form of the cost
values of the selected actions at every episode to estimate their
CVaR values and update their actions. A major challenge in
using bandit feedback to estimate CVaR is that the agents can
only access their own cost values, which, however, depend on
the actions of all agents. To address this challenge, we propose a
new risk-averse learning algorithm with momentum that utilizes
the full historical information on the cost values. We show
that this algorithm achieves sub-linear regret and matches the
best known algorithms in the literature. We provide numerical
experiments for a Cournot game that show that our method
outperforms existing methods.

I. INTRODUCTION

In online convex games [1], [2], agents interact with each
other in the same environment in order to minimize their
individual cost functions. Many applications, including traffic
routing [3] and online marketing [4], among many others
[5], can be modeled as online convex games. The individual
cost functions depend on the joint decisions of all agents
and are typically unknown but can be accessed via querying.
Using this information, the agents can sequentially select
the best actions that minimize their expected accumulated
costs. This can be done using online learning algorithms
whose performance is typically measured using the notions
of regret [5] that quantify the gap between the agents’ online
decisions and the best decisions in hindsight. Many such
online learning algorithms have been recently proposed, and
have been shown to achieve sub-linear regret, which indicates
that optimal decisions are eventually selected; see e.g., [1],
[2], [6]. In this paper, here we focus on online convex games
for high-stakes applications, where decisions that minimize
the expected cost functions are not necessarily desirable. For
example, in portfolio management, a selection of assets with
the highest expected return is not necessarily desirable since
it may have high volatility that can lead to catastrophic losses.
To capture unexpected and catastrophic outcomes, risk-averse
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criteria have been widely proposed in place of the expectation,
such as the Sharpe Ratio [7] and Conditional Value at Risk
(CVaR) [8].

In this paper, we consider online convex games with risk-
averse agents that employ CVaR as risk measure. We assume
that only cost function evaluations at selected decisions are
accessible. Despite the practical utility of CVaR as a measure
of risk in high-stakes applications, the theoretical analysis
of risk-averse learning methods that employ the CVaR is
limited, mainly since the CVaR values must be estimated
from the distributions of the unknown cost functions. To
avoid this problem, [9] proposes a variational definition
of CVaR that allows to reformulate the computation of
CVaR values into an optimization problem by introducing
additional variables. Building on this reformulation, many
risk-averse learning methods have been proposed, including
[10], [11], [12], and their convergence rates have been
analysed. Specifically, [10] provides performance guarantees
for stochastic gradient descent-type algorithms in risk-averse
statistical learning problems; [11] addresses risk-averse online
convex optimization problems with bandit feedback; and [12]
proposes an adaptive sampling strategy for CVaR learning,
and transforms the supervised learning problem into a zero-
sum game between the sampler and the learner. However, all
the above works focus on single-agent learning problems.

To the best of our knowledge, multi-agent risk-averse
learning problems have not been analyzed in the literature,
with only a few exceptions [13], [14]. The work in [13] solves
multi-armed bandit problems with finite actions, which are
different from the convex games with continuous actions
considered here. Most closely related to this paper is our
recent work in [14] proposing a new risk-averse learning
algorithm for online convex games, where the agents utilize
the cost evaluations at each time step to update their actions
and achieve no-regret learning with high probability. To
improve the learning rate of this algorithm, [14] also proposes
two variance reduction methods on the CVaR estimates and
gradient estimates, respectively. In this paper, we build on
this work to significantly improve the performance of the
algorithm using a notion of momentum that combines these
variance reduction techniques. Specifically, the proposed new
algorithm reuses samples of the cost functions from the full
history of data while appropriately decreasing the weights of
out-of-date samples. The idea is that, using more samples, the
unknown distribution of the cost functions needed to estimate
the CVaR values can be better estimated. To do so, at each
time step, the proposed algorithm estimates the distribution
of the cost functions using both the immediate empirical



distribution estimate and the distribution estimate from the

previous time step, which summarizes all past cost values.

Then, to construct the gradient estimates, more weight is
allocated to more recent information, similar to momentum
gradient descent methods [15]. To reduce the variance of the
gradient estimate, we employ residual feedback [16], which
uses previous gradient estimates to update the current one.

Although [14] showed that reusing samples from the
last iteration or residual feedback can individually improve
the performance of the algorithm, it also identified that
the combination of sample reuse and residual feedback
is an unexplored and theoretically nontrivial problem. In
this work, we combine sample reuse and residual feedback
by proposing a novel zeroth-order momentum method that
reuses all historical samples, compared to samples from
only the last iteration. An additional important contribution
of this work is that the proposed zeroth-order momentum
method subsumes Algorithm 3 in [14] as a special case
by appropriately choosing the momentum parameter. We
show that our proposed method theoretically matches the
best known result in [14] but empirically outperforms other
existing methods.

The rest of the paper is organized as follows. In Section II,

we formally define the problem and provide some preliminary
results. In Section III, we summarize results in [14] that

are needed to develop our proposed method. In Section IV,

we present our proposed method and analyze its regret. In
Section V, we numerically verify our method using a Cournot
game example. Finally, in Section VI, we conclude the paper.

II. PROBLEM DEFINITION

We consider a repeated game G with N risk-averse agents.
Each agent selects an action z; from the convex set X; C R%:

and then receives a stochastic cost J;(z;,z_;,&) : X X
Z; — R, where x_; represents all agents’ actions except
for agent i, and X = [T} | X; is the joint action space. We
sometimes instead write J;(x, ;) for ease of notation, where

x = (x;,2_;) is the concatenated vector of all agents’ actions.

The cost J;(x;, x—;, ;) is stochastic, as &; € Z; is a stochastic
variable. We assume that the diameter of the convex set X
is bounded by D, for all ¢ =1,..., N. In what follows, we
make the following assumptions on the class of games we
consider in this paper.

Assumption 1. The function J;(z;,x_;,&;) is convex in x;
for every & € Z; and bounded by U, i.e., |J;(z,&)| < U,
foralli=1,... N.

Assumption 2. J;(z,¢&;) is Lo-Lipschitz continuous in x for
every & € 5, forall i =1,...,N.

Assumptions 1 and 2 are common assumptions in the
analysis of online learning in games [17].

The goal of the risk-averse agents is to minimize the risk
of incurring significantly high costs, for possibly different risk
levels. In this work, we utilize CVaR as the risk measure. For
a given risk level a; € [0,1], CVaR is defined as the average
of the o; percent worst-case cost. Specifically, we denote

by FF(y) = P{J;(x,&;) < y} as the cumulative distribution
function (CDF) of the random cost J;(x, &;) for agent ¢; and
by J¢ the cost value at the 1 — «; quantile of the distribution,
also called the Value at Risk (VaR). Then, for a given risk
level «; € [0, 1], CVaR of the cost function J;(z, &;) of agent
1 is defined as

Ci(x) : = CVaRy, [Ji(x, &)]
:=ErlJi(z, &) iz, &) > T

Notice that the CVaR value is determined by the distribution
function F(y) for a given «;, so we sometimes write CVaR
as a function of the distribution function, i.e., CVaR,, [F] :=
CVaRy, [Ji(z, &)]- In addition, we assume that the agents
cannot observe other agents’ actions, but the only information
they can observe is the cost evaluations of the jointly selected
actions at each time step.

Given Assumptions 1 and 2, the following lemma lists
properties of CVaR, that will be important in the analysis
that follows. The proof can be found in [11].

Lemma 1. Given Assumptions 1 and 2, we have that
Ci(zi,x—;) is convex in x; and Lo-Lipschitz continuous in
x, foralli=1,...,N.

The following additional assumption on the variation of
the CDFs is needed for the analysis that follows.

P{Ji(w,&) < y} and
,&) < y}. There exist a constant Cy > 0

Assumption 3. Let FY¥(y) =
FY(y) = P (o
such that

sup 1) = B ()] < Collw ]|

Assumption 3 states that the difference between two CDFs
can be bounded by the difference between the corresponding
two action profiles. It is less restrictive than Assumption 3
in [14] since it does not depend on the algorithm but only
on the cost functions.

A common measure of the ability of the agents to learn
online optimal decisions that minimize their individual risk-
averse objective functions C;(z) is the algorithm regret, which
is defined as the difference between the actual rewards and
best rewards that the agent could have achieved by playing the
single best action in hindsight. Suppose the action sequences
of agent i and the other agents in the team are {Z;;}7_,
and {#_; ,}1_,, respectively. Then, we define the regret of
agent ¢ as

T T
E Cz LUZ t» g xza
t=1 t=1

An algorithm is said to be no-regret if its regret grows
sub-linearly with the number of episodes 7'. In this pa-
per, we propose a no-regret learning algorithm, so that

limg oo 22T =0, i =1,...,N.

IIT1. PRELIMINARY RESULTS

In this section, we summarize some results from [14] that
lay the foundation for the subsequent analysis. Note that the



CVaR values depend on the distributions of the cost functions,
which are generally unknown. To estimate the distribution of
the cost functions, and subsequently the CVaR values with
only a few samples, a sampling strategy is proposed in [14]
that uses a decreasing number of samples with the number
of iterations. Specifically, at episode ¢, the sampling strategy
used by the agents is designed as follows

ng = [WUX(T —t +1)%], (1)

where [-] is the regularized ceiling function, 7" is the number
of episodes, U is the bound of J; as in Assumption 1, and
a,b € (0,1) are parameters to be selected later.

Using the cost evaluations at each episode, zeroth-order
methods can be employed to estimate the CVaR gradients
and then update the agents’ actions. Specifically, at episode
t, the agents calculate the number of samples n, according
to (1). Then, each agent perturbs the current action z;; by
an amount du;;, where u; + € S% is a random perturbation
direction sampled from the unit sphere S% C R% and § is the
size of this perturbation. Next the agents play their perturbed
actions Z; ; = x;; + du; for n, times, and obtain n; cost
evaluations which are utilized to update their actions. To
facilitate the theoretical analysis, we define the §-smoothed
function Cf(l‘) =y, ~B;u_i~S_, [C’l(xz—i-éw“ x_i—s—du_i)],
where S_; = I1;£;S;, and B;, S; denote the unit ball and unit
sphere in R%, respectively. The size of the perturbation § here
is related to a smoothing parameter that controls how well
C?(x) approximates C;(x). As shown in [14], the function
C’f(x) satisfies the following properties.

Lemma 2. Let Assumptions 1 and 2 hold. Then we have that
1) C(x;,x_;) is convex in z;,
2) C(x) is Lo-Lipschitz continuous in z,
3) |C{(x)-Ci(x)| < SLoV/N,
4) E[%Cz‘@t)ui,t] = Vin(fL't).

The last property in Lemma 2 shows that the term
%Cl- (Z¢)u, ¢ is an unbiased estimate of the gradient of the
smoothed function C¢(x). Next we present a lemma that
helps bound the distance between two CVaR values by the
distance between the two corresponding CDFs. The proof
can be found in [14].

Lemma 3. Let F and G be two CDFs of two random
variables and suppose the random variables are bounded by
U. Then we have that

[CVaR, [F] = CVaR, (6] < ¢ sup [F(y) = Glo)l.

IV. A ZEROTH-ORDER MOMENTUM METHOD

In this section, we present a new one-point zeroth-order
momentum method that combines sample reuse as in Algo-
rithm 2 in [14] and residual feedback as in Algorithm 3 in
[14], but unlike Algorithm 2 in [14] that reuses samples only
from the last iteration, it uses all past samples to update the
agents’ actions. The new algorithm is given as Algorithm 1.

Using the sampling strategy in (1), each agent plays the
perturbed action &;; for n; times and obtains n; samples at

Algorithm 1 Risk-averse learning with momentum

Require: Initial value z, step size 1, parameters a, b, J, T,
risk level i, i =1,--- | N.
1: for episodet =1,...,T do

2 Select ny = [bU(T —t +1)]
3:  Each agent samples u;; € S%,i=1,...,N
4:  Eachagent play &;; = ;¢ + 0uis, i =1,..., N
5:. forj=1,...,n do
6: Let all agents play Z; ¢
7 Obtain J; (fi'i.,t; 2%,1'7“ fi)
8: end for
9: foragenti=1,...,N do
10: Build EDF F; ,(y)
11 Estimate CVaR: CVaRy, [F} (]
12: Construct gradient estimate
it = % (CVaRg, [F 4] — CVaRq, [Fi—1]) iy
13: Update x: @411 < Pys (it — 0Git)
14:  end for '
15: end for

episode t. For agent ¢, we denote the CDF of the random
cost J;(Z¢,&;) that is returned by the perturbed action &
as Ff; (y) = P{J;(2+,&) < y}. Since & depends on ¢, we
write F; ; for Ff; for ease of notation. Using bandit feedback
in the form of finitely many cost evaluations, the agents
cannot obtain the accurate CDF Fj ;. Instead, they construct
an empirical distribution function (EDF) Fz’,t of the cost
Ji(Z+,&;) using n; cost evaluations by

. 1 & o
Fialy) = o 2; 1{Ji(#,¢]) <y} )
=
To improve estimate of the CDF, we utilize past samples
for all episodes ¢ > 2, and construct a modified distribution

estimate Fi,t by adding a momentum term:

Fii(y) = BF;—1(y) + (1 — ﬁ)th(y% 3)

where § € [0,1) is the momentum parameter. For ¢ = 1,
we set F (y) = Fy,(y). The agents utilize the distribution
estimate Fi’t to calculate the CVaR estimates and further
construct the gradient estimate using residual feedback as

d; _ _
git = i (CVaRg, [F; 4] — CVaRa, [Fii—1]) wig, (4

where 0 is the size of the perturbation on the action z; ;
defined above. Depending on the size of the perturbation,
the played action &;; may be infeasible, i.e., Z;; ¢ X;. To
handle this issue, we define the projection set X = {z; €
X;|dist(a;, 0X;) > §} that we use in the projected gradient-
descent update

Tit+1 = Pys (@it —NGit)- (5)

Note that the agents are not able to obtain accurate values of
Ci(2¢) using finite samples. In fact, if we use the distribution
estimate F; ; in (3) to calculate the CVaR values, there will



be a CVaR estimation error, which is defined as
Eit = CV&RO” [F‘iﬂg] — CVaRai [Fi,t]-

As a result, the gradient estimate g;; in (4) is biased
since ]E[gzt] = E [%(Cz(fﬁt) +s‘l-7t)ul-7t} = VICf(l't) +
E [%¢&, 1u;.], with the bias captured by the last term. In
what follows, we present a lemma that bounds the sum of
the CVaR estimation errors.

Lemma 4. Suppose that Assumption 3 holds. Then, the sum
of the CVaR estimation errors satisfies

T
Zneztn_ (e T DO

with probability at least 1 — v, where e; ; 1= sup,, |F; i (y) —

Fi,t(y) , Ty = %, and 21 = Oon%U\/N—F
2C40.

Proof. To bound the CVaR estimation error, it suffices to
bound the CDF differences using Lemma 3. Recall the
definition of F}; in (3). Then, we have that

Sup |Fit(y) — Fit(y)|
ZSUP |BF;1—1(y) + (1 — B)Fi4(y) — Fi(y)|
it—1(y) — Fig—1(y)) + B(Fii—1(y)

+ (1= B)(Eie(y) — Fie(y))l
<B Sup |Fie-1(y) — Fiea(y)| + 5821) |Fie—1(y) — Fie(y)|

+(1-8) sup 1Fie(y) — Fie(y). (7

=sup |B(F — Fir(y)

We now bound the latter two terms in the right-hand-side of
(7) separately. Using Assumption 3 and Lemma 2, we have
that

sup | F ¢ (y) — Fit—1(y)]
Yy
<Co||Z¢ — &r—1]| < Co ||ws — x4—1|| +2Co0

d;
<Con ||ge]| + 2Co6 < CongU\/th 2000 :== %1, (8)

where the last inequality holds since |[|g =
Vi llgiel® < “NEC. Then, applying  the

Dvoretzky—Kiefer—Wolfowitz
obtain that

(DKW) inequality, we

In(2/%)

P F; —F; >
sgp| t(y) t(y)| = 2y

<7 O

Define the events in (9) as A; and denote v = 4T Then, the
following inequality holds

In(27'/7)

_ B <
)] <125

Sup|Fi,t(y) vt = 17"'7T7 (10)
with probablhty at least 1 — ~ since 1 — IP’{Ut 1AG >

I—Zt 1 P{A;} > 1-T7 > 1—~. Substituting the bounds

in (8) and (10) into (7), and using the definition of e; ;, we
get that

eir < Peir—1+ X1+ (1—B)ry (11)

Note that (11) holds for all ¢ € {2,---
using this inequality, we have that

,T}. By iteratively

k—2

Zﬁ Te—k + B ter

k=0

e”<iﬂ21+ 1— (12)

1

Taking the sum over t =1,...,
have that

T of both sides of (12), we

ezl+ B

Zelt_ 16T+Zrt’

with probability at least 1 — . Finally, using Lemma 3, we
can obtain the desired result. O

13)

Lemma 4 bounds the CVaR estimation error caused by
using past samples. The next lemma quantifies the error due
to residual feedback in the gradient estimate (4). Specifically,
it bounds the second moment of the gradient estimate.

Lemma 5. Let Assumptions 1, 2 and 3 hold. Suppose that
the action is updated as in (5). Then, the second moment of
the gradient estimate satisfies

T
Z 1. <—Hgl|| +—22T (14)
where §i = (§it,G—it) IS the concatenated vector
s . . _ 4d’LiN7n?
of all agents’ gradient estimates, o = ——F—,
48C2d}U*Nn?B? 1
L2 = 16EN’LY + kg (Tiar) +
19202420232 1 121n(27/~)d? 1
(107[3)2 (Zz 073) + - b52 . (Zz ,772) +
24d2U% %2 )
e P tm 52[3 S D %) and ey, = max;{e; 1}.
Proof. Using the fact that r; < 1ng%5/27) =7 and (12), we
have that
2

< Hlﬁﬂ&—i-r—i—ﬁem

2

s3’1—5ﬁzl + 37 + 3| Benl®,  (15)

where the last mequallty holds since ||la + b + ¢|* < 3||a|>+

316]1* 4 3 ||c||*. Then, applying Lemma 3 to (15), we obtain
that
T 35252 ,
i 3 3 m . (16
leedl® < 5 (2250 4 31iP + 38 fenl®) . )



By the definition of g;; in (4), we have that
2

d;
||9th 55 ((CVaRq [Fy ] — CVaRe, [Fe1)Juie)”

IN

-l- o)‘goq

CVaRo, [Fi4] — CVaRa, [Fip 1)) s

S

CVaR,, [F+-1])?

(
(2 CVaRa, [Fi] —
( 2

€it — Eit— 1) )

s (2L M — o+ dleael? + g P),

d2

< 62

where the last inequality is due to the fact that the CVaR

function is Lipschitz continuous as shown in Lemma 1. We

now bound the term |2, — #;_1||* in (17). Recalling the
update rule x;; = Pys (i -1 — 1:Ji—1), we have that

amn

& — Ze1l® = l|lwe — 2m1 + Sue — Sugy|?
<2y — wor||* + 2672 fluel® + 2 fJus—1 |1*)
2|z — 241 ])* + 8N < 20° |G- ]|* + 8N,
Substituting the above inequality and the inequality in (16)

into the right hand side of (17) and summing both sides over
all agents 1 = 1,..., N, we have that

N
lgel* =" N1giell?
i=1
d2N
52 (4L077 1Ge—1]1? +16L2N52)
8d2 L U? [ 382%2 o o
5 Z_:lajz ((1_5)2+3||7’|| + 387 [leml| )
~ 121In(27'/~)d? 1
2 2AT2 712 7
<o lgial + 168N + ST )
+724d2U252(c LUV +20 523 )

24d2U?%3%e?
+ #

1

<o g1l + Do, (18)

where the last mequallty is due to the fact that (Cond U VN +
2C00)? < 2C2n 2d ;U2N + 8C26%. Summing (18) over all
episode t =1,. T completes the proof. O

Before proving the main theorem, we present a regret
decomposition lemma that links the regret to the errors bounds
on the CVaR estimates and gradient estimates as provided in
Lemmas 4 and 5.

Lemma 6. Let Assumptions 1, 2 and 3 hold. Then, the regret
of Algorithm 1 satisﬁes

T
Ejmm + (VN + Q) LT
T_

—Z €l

R’Ci (T)

(19)

where ) > 0 is a constant that represents the error from
projection P.

Proof. The proof can be adapted from Lemma 5 in [14] and
is omitted due to the space limitations. O

Theorem 1. Let Assumptions 1, 2 and 3 hold and select
n = d’goNT_* 6= DJ” T-%, B = U2T7 . Suppose that
ny is chosen as in (1) wzth a € (0,1), and the EDF and the
gradient estimate are deﬁned as in (2) and (4), respectively.

Then, when T > (8N'3)«, Algorithm 1 achieves regret
Re, (T) = ) In(T/5)T' %),
with probability at least 1 — ~ and where S(a) := Zf\; ﬁ

Proof. Substituting the bounds in Lemmas 4 and 5 into
Lemma 6, we have that

O(DIdzLoNS(Ot

D 1 , 1
Re (T — ||lg —>T
o) <2 + 1 (ol + 25 mar )

4,D,U [ B )
+ - <1—ﬁei’1+1—ﬂT+;rt)

60éi

+ (4VN + Q) LodT. (20)

Substituting §, 1 and S into the above inequality, we can
obtain the desired result. The detailed proof is straightforward
and is omitted due to the space limitations. O

Note that Algorithm 1 in fact achieves the regret R¢, (T) =
O(T 1=%), in which we use the notation O to hide constant
factors and poly-logarithmic factors of 7T'. This result matches
the best result in [14]. Compared to [14], the analysis of
Algorithm 1 that combines historical information and residual
feedback is nontrivial and requires an appropriate selection
of the momentum parameter to show convergence. Note that
Algorithm 3 in [14] is a special case of Algorithm 1 for the
momentum parameter 5 = 0.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the proposed algorithm on
a Cournot game. Specifically, we consider two risk-averse
agents ¢ = 1,2 that compete with each other. Each agent
determines the production level z; and receives an individual
cost feedback which is given by J; =1 — (2 — Zj xj)z; +
0.2x;+&x;, where & ~ U(0,1) is a uniform random variable.
Here we utilize the term &;x; to represent the uncertainty
occurred in the market, which is proportional to the production
level x;. The agents have their own risk levels a; and they
aim to minimize the risk of incurring high costs, i.e., the
CVaR of their cost functions.

Note that the regret for agent ¢ depends on the sequence
of the other agent’s actions {x_;;}7_;, and this sequence
depends on the algorithm. Therefore, it is not appropriate to
compare different algorithms in terms of the regret. Instead,
we use the empirical performance to evaluate the algorithms.
Specifically, we compute the CVaR values at each episode,
and observe how fast the agents can minimize the CVaR
values during the learning process.
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Fig. 2. Comparative results among our proposed zeroth-order momentum
method, and the three algorithms in [14]. Shaded areas represent + one
standard deviation over 20 runs.

To compute the distribution function F‘i,t, we divide the
interval [0, U] into n bins of equal width, and we approximate
the expectation by the sum of finite terms. We compare our
zeroth-order momentum method with the two algorithms in
[14], which we term as the algorithm with sample reuse
and the algorithm with residual feedback, respectively. The
number of samples n; at each episode for Algorithm 1 is
shown in Figure 1. We set the momentum parameter 5 = 0.5.
Each algorithm is run for 20 trials and the parameters of these
algorithms are separately optimally tuned. The CVaR values
of these algorithms are presented in Figure 2. We observe
that all the algorithms finally converge to the same CVaR
values, but the zeroth-order momentum method proposed here
converges faster. This is because our method uses all past
samples to get a better estimate of the CVaR values and thus
allows for a larger step size. Moreover, we also observe that
the standard deviation of both our proposed algorithm and
the algorithm with residual feedback is sufficiently small,
which verifies the variance reduction effect of using residual
feedback.

Moreover, we explore the effect of different momentum
parameters 5. In Figure 3, we present the achieved CVaR
values of our method for various (3 values and all other
parameters unchanged. Recalling the definition of the distri-
bution estimate in (3), large values of 3 place more weight on

1.00 1 —— agent 0, a=0.5, B=0.25
0.98 1 agent 1, @=0.3, B=0.25
—— agent 0, a=0.5, B=0.5

0.96 agent 1, @=0.3, B=0.5
0.94 A

<

& 0.92
0.90 A
0.88 A
0.86
0.84

0 2500 5000 7500 10000 12500 15000 17500 20000
episode t
Fig. 3.  CVaR values achieved by Algorithm 1 with different 3 values.

Shaded areas represent + one standard deviation over 20 runs.

outdated cost values and thus reduce the convergence speed.

VI. CONCLUSION

In this work, we proposed a zeroth-order momentum
method for online convex games with risk-averse agents. The
use of momentum that employs past samples allowed to im-
prove the ability of the algorithm to estimate the CVaR values.
Zeroth-order estimation of the CVaR gradients using residual
feedback allowed us to reduce the variance of the CVaR
gradient estimates. We showed that the proposed algorithm
theoretically achieves no-regret learning with high probability,
matching the best known result in literature. Moreover, we
provided numerical simulations that demonstrated the superior
performance of our method in practice. While sample reuse
and residual feedback had been both separately shown to
improve the performance of online learning, here we showed
that their combination yields yet better performance.
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