
THE INSULATED CONDUCTIVITY PROBLEM,

EFFECTIVE GRADIENT ESTIMATES

AND THE MAXIMUM PRINCIPLE

BEN WEINKOVE

Abstract. We consider the insulated conductivity problem with two unit balls as
insulating inclusions, a distance of order ε apart. The solution u represents the electric
potential. In dimensions n ≥ 3 it is an open problem to find the optimal bound on the
gradient of u, the electric field, in the narrow region between the insulating bodies.
Li-Yang recently proved a bound of order ε−(1−γ)/2 for some γ > 0. In this paper we
use a direct maximum principle argument to sharpen the Li-Yang estimate for n ≥ 4.
Our method gives effective lower bounds on γ, which in particular approach 1 as n
tends to infinity.

1. Introduction

We consider the following problem. Let B+, B− ⊂ Rn, for n ≥ 2, be two closed balls
of radius 1 centered at (0, . . . , 0, 1 + ε) and (0, . . . , 0,−1− ε) respectively. Let Ω ⊂ Rn
be a bounded domain containing the convex hull of B+ and B−. Assume that the
boundary ∂Ω is C1,α, for a fixed 0 < α < 1, Define Ω′ = Ω \ (B+ ∪B−). See Figure 1.

Let u : Ω′ → R be the solution of the insulated conductivity problem :

(1.1)


∆u = 0, in Ω′

∂νu = 0, on ∂B+ ∪ ∂B−

u = ϕ, on ∂Ω,

for a given function ϕ ∈ C1,α(∂Ω). Here ∂ν denotes the normal derivative on ∂B+∪∂B−.
It is well-known that there is a unique such solution u which is smooth on Ω′∪∂B+∪∂B−
and C1,α on Ω′.

The solution u represents the electric potential in the domain Ω′ with insulating in-
clusions B+ and B−. There is interest from the perspective of engineering in estimating
the magnitude of the electric field ∇u in the narrow region between B+ and B− . An
open problem is to find the optimal upper bound on |∇u|L∞(Ω′) in terms of ε. We refer
the reader to [4, 7, 8, 14, 15, 16, 19] and the references therein for background and early
work on this problem.

Ammari-Kang-Lee-Lee-Lim [2] proved in dimension n = 2 an upper bound for |∇u|
of the order ε−1/2, although with the condition u = ϕ on ∂Ω replaced by a condition
of being asymptotic to a harmonic function at infinity. Later, in the context of (1.1),

Research supported in part by NSF grant DMS-2005311. Part of this work was carried out while the
author was visiting the Department of Mathematical Sciences at the University of Memphis whom he
thanks for their kind support and hospitality.

1



Bao-Li-Yin [6] proved the following estimate for n ≥ 2:

(1.2) |∇u|(x) ≤
C‖ϕ‖C1,α(∂Ω)

(ε+ |x′|2)1/2
, for x ∈ Ω′,

where C depends only on n and Ω. Here we are writing

x′ = (x1, . . . , xn−1), |x′| =
√
x2

1 + · · ·+ x2
n−1.

x′

xn

ε

1+ε

-ε

-1-ε

B+

B−

Ω

Figure 1. The domain Ω containing the balls B+ and B−.

Ammari-Kang-Lim [3] showed that for n = 2, an upper bound of order ε−1/2 cannot
be improved, and hence (1.2) is in that sense optimal for n = 2. See also [1, 2, 9, 13, 18]
for work on sharper estimates, asymptotics and discussion in the case n = 2.

However (1.2) is not optimal for n ≥ 3. Indeed, Yun [23] proved an upper bound

for n = 3 of the form |∇u| ≤ Cε
√
2−2
2 on the shortest segment connecting the two

balls, under a condition that u is asymptotic to a harmonic function at infinity. He also
showed that this estimate is optimal for a special choice of harmonic function. For (1.1),
Li-Yang [17] showed that for dimensions n ≥ 3 the estimate (1.2) can be sharpened to

(1.3) |∇u|(x) ≤
C‖ϕ‖C1,α(∂Ω)

(ε+ |x′|2)(1−γ)/2
, for x ∈ Ω′,

for some (non-explicit) γ > 0. The optimal γ remains unknown.
We remark that intuitively one should indeed expect stronger bounds for larger di-

mensions n ≥ 3 compared to n = 2. In dimension two, after taking the limit as ε → 0
so that B+ and B− touch, points in Ω′ with x1 < 0 and x1 > 0 may be close in R2 but
“far away” in Ω′. This is a phenomenon that does not occur for n ≥ 3, where the extra
dimensions allow for u to diffuse around the intersection point.

We prove an effective version of the Li-Yang result in dimension at least four. For
n ≥ 4, let γ∗ = γ∗(n) be the positive solution of the quadratic equation:

(1.4) (n− 2)(γ∗)2 + (n2 − 4n+ 5)γ∗ − (n2 − 5n+ 5) = 0.

One can check that 0 < γ∗ < 1 and γ∗(n) increases to 1 as n→∞. On the other hand,
(1.4) has no positive solutions for n = 2 or 3.
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Our main result shows that (1.3) holds for 0 < γ < γ∗.

Theorem 1.1. Let n ≥ 4 and let u solve (1.1) as above. Let 0 < γ < γ∗(n). Then
there exists a uniform constant C depending only on n, Ω and γ such that

(1.5) |∇u|(x) ≤
C‖ϕ‖C1,α(∂Ω)

(ε+ |x′|2)(1−γ)/2
, for x ∈ Ω′.

In the following table we give the exact and approximate numerical values γ∗ for
n = 4, 5, 6, 7:

n γ∗ approx.

4 1
4(
√

33− 5) 0.186

5 1
3(2
√

10− 5) 0.442

6 1
8(
√

465− 17) 0.570

7 1
5(2
√

66− 13) 0.650

Our method is a direct application of the maximum principle, and can be used to give
another proof of (1.2), which we explain in Section 4 below. Our approach differs from
the works [6, 17] whose techniques involve dividing the domain into a large number of
subdomains.

We have no particular reason to believe that our bounds for γ are optimal. Indeed
since our results do not recover the estimate (1.3) of Li-Yang in dimension three it is
possible that our methods can be further refined.

There are various ways in which the above setup can also be generalized, as in [5, 6,
17, 21, 22]: B+ and B− can be replaced by more general domains, say with strongly
convex boundaries near the origin, and the equation ∆u = 0 can be replaced by a more
general elliptic equation or system. Although we expect our method applies also to
these settings we restrict ourselves to the setup above for the sake of simplicity and to
more cleanly illustrate our technique.

We now briefly describe the idea of our method. We apply the maximum principle to
a specific quantity in the narrow region between the insulators. The quantity suggested
by the estimate (1.3) is (ε+|x′|2)(1−γ)|∇u|2. However to rule out the maximum occurring

at points on ∂B+ or ∂B−, we subtract a term of the form x2−γ
n whose normal derivative

along this boundary has a good sign. Unfortunately, its second derivative blows up to
the order x−γn at an interior maximum, giving a bad term for the maximum principle
near xn = 0. We make an appropriate adjustment, considering the quantity:

(|x′|2−2γ + ε1−γ(1−δ) −A(bx2
n + |x′|4)1−γ/2)|∇u|2,

for a small δ > 0 and constants A, b > 0 which are chosen to optimize the estimate.
In fact, since this quantity is not smooth at points with x′ = 0 we introduce a positive
constant σ > 0 to regularize it, and then later let σ tend to zero. We call this modified
quantity Q (see (3.3) below).

In Section 3 below we show that if Q achieves a local maximum at a boundary point
of B+, say, close to the origin, then at this point,

0 ≤ ∂νQ ≤ F |∇u|2,
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where ν is the inward unit normal to the ball and F is a certain function involving
x,A, b and γ. At an interior maximum of Q, close to the origin, we show that, for a
different function G,

0 ≥ ∆Q ≥ G|∇u|2.
It turns out that with careful choices of A, b and γ we can show that F < 0 and G > 0,
ruling out both of the cases above, but only when

ρ := −(n− 2)γ2 − (n2 − 4n+ 5)γ + (n2 − 5n+ 5) > 0.

This restricts our result to n ≥ 4.
The outline of the paper is as follows. In Section 2 we recall some well-known and

elementary results. In Section 3 we give the proof of Theorem 1.1. Finally, in Section 4
we explain briefly how our methods can give a direct maximum principle proof of (1.2).

Note. Seven months after this paper was completed and posted on the arXiv, Dong-Li-
Yang [10] posted a preprint establishing optimal estimates (in terms of the constant γ)
for the insulated conductivity problem in all dimensions n ≥ 3. The techniques of [10]
are completely different from those introduced here. It would be interesting to know
whether the maximum principle techniques of the current paper can be used to give
another proof of the optimal Dong-Li-Yang estimates.

2. Preliminaries

Let u solve (1.1) as in the introduction. For a small constant c > 0, let Bc be the
closed ball of radius c centered at the origin. Define V = Ω′ ∩Bc (see Figure 2). This
is a narrow region between the inclusions B+ and B− and is the set on which we will
later need to prove estimates for |∇u|.

x′

xn

ε

-ε

B+

B−

c−c

V

Figure 2. The set V = Ω′ ∩Bc, shown as the shaded region.

The L∞ norm of u is bounded on Ω′, and the gradient of u is bounded away from
the region V . More precisely, we have the following result, whose proof is well-known.

Proposition 2.1. We have

(i) ‖u‖L∞(Ω′) ≤ ‖ϕ‖L∞(∂Ω).
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(ii) ‖∇u‖L∞(Ω′\V ) ≤ C‖ϕ‖C1,α(∂Ω), where C depends only on n, ∂Ω and c.

Proof. For (i), since u satisfies ∆u = 0 the maximum of u must be attained at a
boundary point ∂Ω′. As long as u is not constant, the maximum cannot occur at
p ∈ ∂B+∪∂B− by the strong maximum principle and the Hopf Lemma (see for example
[11, p. 347]). Hence u achieves its maximum at a point of ∂Ω so is bounded above by
‖ϕ‖L∞(∂Ω). The lower bound of u is similar.

For part (ii), by the usual interior estimates (see for example [12, Theorem 3.9])
it is sufficient to obtain the bound for |∇u| on neighborhoods of points in ∂Ω and
neighborhoods of those points in ∂B+ ∪ ∂B− not contained in V . To obtain these
boundary estimates, which are local, one can compose with diffeomorphisms to flatten
the boundary, at the expense of replacing the Laplace equation ∆u = 0 by uniformly
elliptic equations of the form

Lu = aijuij + biui = 0,

with smooth coefficients aij , bi such that (aij) ≥ cId, for c > 0. Here and henceforth we
are using subscripts (such as in ui, uij) to denote partial derivatives.

Using the method of freezing coefficients, and after a linear change of coordinates,
we can further reduce to the case of the Poisson equation ∆u = g, where g is a lower
order term. In the case of neighborhoods of points of ∂Ω, we have a Dirichlet boundary
condition u = ϕ on a subset of the hyperplane xn = 0. By standard Schauder estimates,
which can be proved using Newtonian potentials and reflection, we have a local C1,α

estimate for u in terms of the L∞ norm of u and the C1,α norm of ϕ. See [12, Corollary
8.36], for example, for more details. This gives the required gradient estimate of u in
these neighborhoods.

A similar argument, with a suitable modification of the Newtonian potential, gives
the boundary estimate in neighborhoods of points in ∂B+ ∪ ∂B− not contained in V ,
with the Dirichlet condition replaced by a Neumann boundary condition. We refer the
reader to [12, Theorem 6.30] (which although stated as a global estimate, is proved
locally). For an approach using Sobolev norms, see [20, p.217]. �

Next we prove an elementary lemma on the normal derivative of |∇u|2 on the bound-
ary of B+ (of course the case of B− is similar). The unit normal vector to B+, pointing
towards the center of B+ is given by

(2.1) ν = −(x1, . . . , xn−1, xn − 1− ε).
We have:

Lemma 2.1. At any point of ∂B+ we have

∂ν |∇u|2 = 2|∇u|2,
where ν is the unit normal vector given by (2.1).

Proof. The proof uses only the Neumann boundary condition ∂νu = 0. Without loss
of generality, translate the center of B+ to the origin, and compute at the point p =
(0, . . . , 0,−1). Then ν(x) = −x and ∂νu = 0 becomes

(2.2)

n∑
i=1

xiui = 0,
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and in particular un = 0 at p. Write

xn = xn(x′) = −
√

1− x2
1 − · · · − x2

n−1.

Differentiating (2.2) with respect to xj for j = 1, . . . , n− 1 and noting that ∂jxn = 0 at
p we have

uj − unj = 0.

Hence, at p,

∂ν |∇u|2 = 2

n∑
i=1

uiuin = 2

n−1∑
i=1

u2
i = 2|∇u|2,

as required. �

We end this section by remarking that although Lemma 2.1 makes use of the spherical
shape of the inclusion, a similar result holds for more general inclusions which are
strongly convex near the origin. Indeed, suppose that we replace B+ by a domain D+

whose lower boundary near x′ = 0 is given by the graph xn = f(x′) where f is a smooth
function with f1(0) = · · · = fn−1(0) = 0 and fij(0) = Pij for (Pij)

n−1
i,j=1 a positive definite

symmetric matrix. Then at a point on ∂D+ near the origin we have

(2.3) ∂ν |∇u|2 = 2
n−1∑
i,j=1

 fij√
1 +

∑n−1
k=1 f

2
k

− fifj

uiuj + 2u2
n.

In particular, for |x′| small,

(2.4) ∂ν |∇u|2 = 2
n−1∑
i,j=1

(Pij + Eij)uiuj + 2u2
n, for |Eij | = O(|x′|2).

The eigenvalues of the matrix Pij are the principal curvatures of ∂D+ at (0, f(0)). The
equation (2.4) can be regarded as a generalized version of Lemma 2.1.

To prove (2.3), observe that the inward pointing unit normal is given by

ν =
1√

1 +
∑n−1

i=1 f
2
i

(−f1, . . . ,−fn−1, 1),

and so the Neumann condition ∂νu = 0 is equivalent to

−
n−1∑
i=1

fiui + un = 0.

Differentiating this with respect to xj for j = 1, . . . , n− 1 gives

−
n−1∑
i=1

fijui −
n−1∑
i=1

fiuij −
n−1∑
i=1

fiuinfj + unj + unnfj = 0,

and then (2.3) follows from a straightforward computation of ∂ν |∇u|2, substituting from
the two equalities above.
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3. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. We recall that γ∗ is by definition the positive solution of the
quadratic equation (1.4). Moreover, (1.4) has a negative solution. Then the assumption
0 < γ < γ∗ means that ρ = ρ(γ) defined by

(3.1) ρ := −(n− 2)γ2 − (n2 − 4n+ 5)γ + (n2 − 5n+ 5)

is strictly positive. Choose b > 0 sufficiently small such that

4γ

(
1 +

b

4

)γ/2
< 4γ +

ρ

n− 1
,

and then define A > 0 by

A =
4γ + ρ

n−1

b(2− γ)
.

Then A, b are fixed constants depending only on γ and n satisfying the inequalities

(3.2) 4γ

(
1 +

b

4

)γ/2
< Ab(2− γ) < 4γ +

2ρ

n− 1
,

which we will make use of later.
Let ε0, c, δ > 0 be small uniform constants, which later we may shrink if necessary.

For 0 < ε < ε0, define

(3.3) Q = ((|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2)|∇u|2,

on

V = Ω′ ∩Bc,

for a small constant σ > 0 with σ1−γ < ε3. The constant σ is only inserted so that Q
is a smooth function. Later we will let σ tend to zero.

We will use C to denote a large positive constant which may differ from line to line
and is uniform in the sense that it will depend only on n, ∂Ω, c, γ, δ and ε0. In particular
C will be independent of ε, x and σ.

The upper boundary ∂B+ ∩Bc of V is given by xn = f(x′) where

f(x′) = 1 + ε− (1− |x′|2)1/2,

which has f(0) = ε, fj(0) = 0 and fjk(0) = δjk giving

(3.4) xn = ε+
|x′|2

2
+O(|x′|3), on ∂B+ ∩Bc.

Similarly, the lower boundary of V is given by xn = −f(x′) = −ε− |x
′|2
2 +O(|x′|3) and

hence in V we have

(3.5) |xn| ≤ ε+
|x′|2

2
+O(|x′|3).
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The quantity Q achieves a maximum at a point p in V . If p is in ∂Bc then from
Proposition 2.1 we have |∇u|2(p) ≤ C‖ϕ‖2C1,α(∂Ω) and hence Q(p) ≤ C‖ϕ‖2C1,α(∂Ω),

giving

(3.6)
(

(|x′|2 + σ)1−γ + ε1−γ(1−δ)
)
|∇u|2 ≤ C‖ϕ‖2C1,α(∂Ω), on V.

Here we used (3.5) which implies that

(3.7) A(bx2
n + |x′|4 + σ)1−γ/2 ≤ C(ε2−γ + |x′|4−2γ) << (|x′|2 + σ)1−γ + ε1−γ(1−δ).

We will rule out the cases where Q achieves a maximum at a point on the upper or
lower boundaries of V (on ∂B+ or ∂B−) or at an interior point of V .

First assume that Q achieves a maximum at a point p ∈ ∂B+. Recalling that ν is
given by (2.1) we have

∂ν |x′|2 = − (x1, . . . , xn−1, xn − 1− ε) · (2x1, . . . , 2xn−1, 0) = −2|x′|2

∂νxn = − (x1, . . . , xn−1, xn − 1− ε) · (0, . . . , 0, 1) = 1 + ε− xn.
(3.8)

Using this and Lemma 2.1, we have, after shrinking ε0 and c if necessary, writing
η = 1/C for a uniform large C,

0 ≤ ∂νQ

=

(
− (2− 2γ)(|x′|2 + σ)−γ |x′|2

−A(2− γ)(bx2
n + |x′|4 + σ)−γ/2(bxn∂νxn − 2|x′|4)

)
|∇u|2

+ 2
(

(|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2

)
|∇u|2

≤
(

2γ(|x′|2 + σ)1−γ + (2− 2γ)(|x′|2 + σ)−γσ

−A(2− γ)(bx2
n + |x′|4 + σ)−γ/2(bxn(1 + ε− xn)− 2|x′|4)

+ 2ε1−γ(1−δ)
)
|∇u|2

≤
(

2γ(|x′|2 + σ)1−γ −Ab(2− γ)(bx2
n + |x′|4 + σ)−γ/2(1− η)xn

+ 3ε1−γ(1−δ)
)
|∇u|2,

(3.9)

where for the last line we used the inequalities

(2− 2γ)(|x′|2 + σ)−γσ ≤ 2σ1−γ ≤ 2ε3 ≤ ε1−γ(1−δ)

bxn(1 + ε− xn)− 2|x′|4 ≥ b(1− η)xn.

Here and henceforth, we will use η = 1/C to denote a small positive constant which
may differ from line to line, and which can be shrunk at the expense of shrinking ε0 or
c.
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Note that we may neglect the term 3ε1−γ(1−δ) on the right hand side of (3.9). This
is because from (3.4),

bx2
n + |x′|4 + σ ≤ Cx2

n

and hence

(bx2
n + |x′|4 + σ)−γ/2xn ≥

x1−γ
n

C
≥ ε1−γ

C
>> ε1−γ(1−δ).

Then from (3.9) we obtain

0 ≤ ∂νQ ≤
(

2γ|x′|2−2γ −Ab(2− γ)(bx2
n + |x′|4)−γ/2(1− η)xn

)
|∇u|2,(3.10)

after possibly changing η, and noting that the contribution of σ can also absorbed by
the good negative term.

We claim that

(3.11) (bx2
n + |x′|4)−γ/2xn ≥

1

2

(
1 +

b

4

)−γ/2
(1− η)|x′|2−2γ .

To prove the claim we first note the elementary inequality

(3.12)

(
b
(
ε+

y

2

)2
+ y2

)−γ/2 (
ε+

y

2

)
≥ 1

2

(
1 +

b

4

)−γ/2
y1−γ , for any y, ε ≥ 0.

Indeed to see (3.12) note that equality holds at ε = 0 and the left hand side of the
equation is an increasing function of ε. But then (3.11) is an immediate consequence of
(3.12) once we recall (3.4).

But from (3.2) we have

1

2
Ab(2− γ)

(
1 +

b

4

)−γ/2
> 2γ.

Hence shrinking η > 0 if necessary we can ensure that the right hand side of (3.10) is
negative, contradicting the assumption that Q achieves a maximum at a point p ∈ ∂B+.
The case of p ∈ ∂B− is similar.

It remains to rule out the case when Q achieves a maximum at a point p in the
interior of V . Compute at p,

0 ≥ ∆Q =

{
2(1− γ)(n− 1− 2γ)(|x′|2 + σ)−γ + 4γ(1− γ)(|x′|2 + σ)−1−γσ

+A(1− γ/2)(γ/2)(bx2
n + |x′|4 + σ)−1−γ/2|∇(bx2

n + |x′|4)|2

−A(1− γ/2)(bx2
n + |x′|4 + σ)−γ/2∆(bx2

n + |x′|4)

}
|∇u|2

+ 2((|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2)|∇∇u|2

+ 2∇((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2) · ∇|∇u|2.

(3.13)

We wish to show that the right hand side is strictly positive, giving a contradiction.
For the negative term in the coefficient of |∇u|2 we note that ∆(bx2

n+|x′|4) ≤ 2b(1+η)
and so

(3.14) A(1− γ/2)(bx2
n + |x′|4 + σ)−γ/2∆(bx2

n + |x′|4) ≤ Ab(2− γ)(1 + η)(|x′|2 + σ)−γ .
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In the above we used:

(3.15) bx2
n + |x′|4 + σ ≥ |x′|4 + σ ≥ (|x′|2 + σ)2,

since we may assume that |x′| and σ are less than 1/2.
We can essentially ignore the negative term in the coefficient of |∇∇u|2 since, recalling

(3.7), we have

A(bx2
n + |x′|4 + σ)1−γ/2 ≤ η

(
(|x′|2 + σ)1−γ + ε1−γ(1−δ)

)
.(3.16)

Combining (3.13), (3.14), (3.16) and discarding some nonnegative terms we have

∆Q ≥
(

2(1− γ)(n− 1− 2γ)−Ab(2− γ)(1 + η)

)
(|x′|2 + σ)−γ |∇u|2

+ 2(1− η)

(
(|x′|2 + σ)1−γ + ε1−γ(1−δ)

)
|∇∇u|2

+ 2∇((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2) · ∇|∇u|2.

(3.17)

It remains to control the term

(3.18) (∗) = 2∇((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2) · ∇|∇u|2.

First observe that

∇|x′|2 = (2x1, . . . , 2xn−1, 0) ,

and we may make a change of coordinates so that x2 = · · · = xn−1 = 0 and x1 ≥ 0 and
hence

∇|x′|2 =
(
2|x′|, 0, . . . , 0

)
.

Next, we use the fact that at the maximum of Q we have

0 = Q1 = |∇u|2∇1((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2)

+ ((|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2)∇1|∇u|2.

Hence

2∇1((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2)∇1|∇u|2

= − 2((|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2)

(
∇1|∇u|2

)2
|∇u|2

= − 8((|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2)

(∑
j ujuj1

)2

|∇u|2

≥ − 8(1 + η)

(
(|x′|2 + σ)1−γ + ε1−γ(1−δ)

)∑
j

u2
j1,

(3.19)

where for the last line we used (3.16) and the Cauchy-Schwarz inequality. Note that we
may assume without loss of generality that |∇u|2 6= 0. We can replace

∑
j u

2
j1 above by
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n−1
n |∇∇u|

2 using the fact that u is harmonic:

n∑
j=1

u2
j1 =

n− 1

n
u2

11 +
1

n
u2

11 +
n∑
j=2

u2
j1

≤ n− 1

n
u2

11 +
1

n
(u22 + · · ·+ unn)2 +

1

2

n∑
i 6=j

u2
ij

≤ n− 1

n
u2

11 +
n− 1

n

n∑
j=2

u2
jj +

n− 1

n

n∑
i 6=j

u2
ij ,

=
n− 1

n

n∑
i,j=1

u2
ij =

n− 1

n
|∇∇u|2,

(3.20)

where for the third line we used the elementary inequality that for real numbers a1, . . . , an−1

we have (
n−1∑
`=1

a`

)2

≤ (n− 1)

n−1∑
`=1

a2
` .

On the other hand we can estimate the same quantity as in (3.19) in a different way:

2∇1((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2)∇1|∇u|2

= − 2|∇u|2

(
∇1((|x′|2 + σ)1−γ −A(bx2

n + |x′|4 + σ)1−γ/2)

)2

(|x′|2 + σ)1−γ + ε1−γ(1−δ) −A(bx2
n + |x′|4 + σ)1−γ/2

≥ − 2(1 + η)(2− 2γ)2 (|x′|2 + σ)−2γ |x′|2

(|x′|2 + σ)1−γ |∇u|2

≥ − 8(1 + η)(1− γ)2(|x′|2 + σ)−γ |∇u|2,

(3.21)

for any small η > 0 where for the third line we used (3.16) and the bounds

∇1(|x′|2 + σ)1−γ = (2− 2γ)(|x′|2 + σ)−γ |x′|

and

A|∇1(bx2
n + |x′|4 + σ)1−γ/2| ≤ η∇1(|x′|2 + σ)1−γ .

Next, we note that

2∇n((|x′|2 + σ)1−γ −A(bx2
n + |x′|4 + σ)1−γ/2)∇n|∇u|2

= − 4Ab(2− γ)(bx2
n + |x′|4 + σ)−γ/2xn

∑
j

ujujn

≥ − η(bx2
n + |x′|4 + σ)−γ/2|∇u|2 − C

η
|xn|2(bx2

n + |x′|4 + σ)−γ/2|∇∇u|2

≥ − η(|x′|2 + σ)−γ |∇u|2 − η
(

(|x′|2 + σ)1−γ + ε1−γ(1−δ)
)
|∇∇u|2,

(3.22)

11



where for the last line we used (3.15) and

|xn|2(bx2
n + |x′|4 + σ)−γ/2 ≤ b−γ/2|xn|2−γ

≤ 2b−γ/2
(
ε+
|x′|2

2

)2−γ

≤ η2

C

(
(|x′|2 + σ)1−γ + ε1−γ(1−δ)

)
.

Then combining (3.18), (3.19), (3.20), (3.21), (3.22) we obtain for 0 < α < 1 to be
determined:

(∗) ≥ − 8(1− α+ η)(1− γ)2(|x′|2 + σ)−γ |∇u|2

− (8α+ η)((|x′|2 + σ)1−γ + ε1−γ(1−δ))
n− 1

n
|∇∇u|2.

Then pick α so that 8αn−1
n < 2, in order for the second term on the right hand side to

be absorbed by the |∇∇u|2 term in (3.17). Namely we choose

α =
n

4(n− 1)
− η.

Hence from (3.17) we obtain at the maximum of Q, recalling (3.1),

0 ≥ ∆Q

≥
(

2(1− γ)(n− 1− 2γ)−Ab(2− γ)

− 8(1− γ)2

(
1− n

4(n− 1)

)
− η
)

(|x′|2 + σ)−γ |∇u|2

=
2

n− 1

(
ρ− (n− 1)(Ab(2− γ)− 4γ)

2
− (n− 1)η

2

)
(|x′|2 + σ)−γ |∇u|2 > 0,

a contradiction. For the last inequality we used (3.2) and chose η > 0 sufficiently small.
Hence we have ruled out the possibility that Q obtains a maximum at an interior

point of V or at a boundary point intersecting with ∂B+ or ∂B−. Hence Q achieves a
maximum at a point on ∂Bc and (3.6) holds. Let σ → 0 and observe that δ > 0 can be
made arbitrarily small. Theorem 1.1 follows. �

4. A proof of the estimate of Bao-Li-Yin

In this section we briefly explain how a simplified version of our method gives a
different proof of the estimate (1.2) of Bao-Li-Yin [6] for the case of spherical inclusions
of the same radii.

Theorem 4.1. For u solving (1.1) as in the introduction,

(4.1) |∇u|(x) ≤
C‖ϕ‖C1,α(∂Ω)

(ε+ |x′|2)1/2
, for x ∈ Ω′,

for C depending only on n and Ω.
12



Proof. Since the result is a simpler version of Theorem 1.1, we provide here just a sketch
of the proof. We use V , Bc as above. Define

Q = (|x′|2 + ε− 2x2
n)|∇u|2 +Au2,

for a uniform constant A to be determined. Recalling (3.5), an upper bound Q ≤
C‖ϕ‖2C1,α(∂Ω) implies (4.1), after shrinking c if necessary.

First assume Q achieves its maximum on V at a point p in ∂B+ ∩ int(Bc). Then
using Lemma 2.1, (3.8) and (3.4) we have, after possibly shrinking c,

0 ≤ ∂νQ = (−4xn(1 + ε− xn) + 2ε− 4x2
n)|∇u|2 < 0,(4.2)

a contradiction. The case when p is in ∂B− ∩ int(Bc) is similar.
Next suppose that p is an interior point of V . Then computing at p we have

0 ≥ ∆Q = 2(n− 3)|∇u|2 + 2(|x′|2 + ε− 2x2
n)|∇∇u|2

+ 2∇(|x′|2 − 2x2
n) · ∇|∇u|2 + 2A|∇u|2.

(4.3)

But

2∇|x′|2 · ∇|∇u|2 ≥ −8|x′||∇u||∇∇u| ≥ −|x′|2|∇∇u|2 − 16|∇u|2,
and

−4∇x2
n · ∇|∇u|2 ≥ −8x2

n|∇∇u|2 − 8|∇u|2.
In (4.3) we obtain at p,

0 ≥ ∆Q ≥ 2(A+ n− 15)|∇u|2 + (|x′|2 + 2ε− 12x2
n)|∇∇u|2 > 0,

as long as we choose A > 15− n, since we may assume that 12x2
n ≤ |x′|2 + 2ε. This is

a contradiction.
It follows that Q achieves its maximum on V at a boundary point on ∂Bc, and the

result follows from Proposition 2.1. �

We end by observing that an immediate consequence of (4.1) is a uniform bound on
the derivative of u in the xn direction.

Corollary 4.1. Let u solve (1.1) as in the introduction. For x ∈ B1/2 ∩Ω′ where B1/2

is the ball of radius 1/2 centered at 0, we have

(4.4) |un(x)| ≤ C‖ϕ‖C1,α(∂Ω),

for a constant C depending only on n and Ω.

Proof. Since un is harmonic, |un| does not achieve a maximum in the interior of Ω′

unless it is constant. Hence, applying Proposition 2.1, we only need to bound un on
∂B+ near the origin (the case ∂B− is similar). Recalling (2.1), the Neumann boundary
condition gives

0 = uν = −
n−1∑
i=1

xiui − (xn − 1− ε)un.

But from (3.5) we have |xn − 1− ε| ≥ 1/2 so using (4.1),

|un| ≤ 2|x′||∇u| ≤ C‖ϕ‖C1,α(∂Ω),

completing the proof. �
13
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