

INSTANTANEOUS CONVEXITY BREAKING FOR THE QUASI-STATIC DROPLET MODEL

ALBERT CHAU AND BEN WEINKOVE

ABSTRACT. We consider a well-known quasi-static model for the shape of a liquid droplet. The solution can be described in terms of time-evolving domains in \mathbb{R}^n . We give an example to show that convexity of the domain can be instantaneously broken.

1. INTRODUCTION

We consider the following system of equations for a function $u(x, t)$ and domains $\Omega_t \subset \mathbb{R}^n$, for $t \geq 0$. This system is used to model the quasi-static shape evolution of a liquid droplet of height $u(x, t)$ occupying the region Ω_t :

$$\begin{aligned}
 -\Delta u &= \lambda_t, & \text{on } \Omega_t \\
 u &= 0, & \text{on } \partial\Omega_t \\
 (1.1) \quad V &= F(|Du|), & \text{on } \partial\Omega_t \\
 \int_{\Omega_t} u \, dx &= 1.
 \end{aligned}$$

In the above, V is the velocity of the free boundary $\partial\Omega_t$ in the direction of the outward unit normal and $F : (0, \infty) \rightarrow \mathbb{R}$ is an analytic function with $F'(r) > 0$ for $r > 0$. The constant $\lambda_t > 0$ is determined by the integral condition on u .

The initial data is given by a domain Ω_0 which we assume is bounded with smooth boundary $\partial\Omega_0$. Note that the domains Ω_t (assuming they are bounded with sufficiently regular boundary $\partial\Omega_t$) determine uniquely the solution $x \mapsto u(x, t)$. Thus we may denote a solution of (1.1) by a family of evolving domains Ω_t . In Section 2 we will explain what is meant by a *classical solution* to this problem.

The system of equations (1.1) has long been accepted as a model for droplet evolution in the physical literature [1, 5, 7, 10, 11]. There have been results on weak formulations of this equation by Glasner-Kim [6] and Grunewald-Kim [8]. Feldman-Kim [3] gave some conditions for global existence and convergence to an equilibrium. Escher-Guidotti [2] proved a short time existence result for classical solutions, which we describe in Section 2 below.

In this note we address the following natural question:

Question 1.1. *Is the convexity of Ω_t preserved by the system (1.1)?*

Research supported in part by NSERC grant #327637-06 and NSF grant DMS-2005311.

This question is implicit in the work of Glasner-Kim [6]. It was raised explicitly by Feldman-Kim [3, p.822], “Let us point out that, in particular, it is unknown whether the convexity of the drop is preserved in the system [(1.1)].”

In this note, we answer Question 1.1 by showing that convexity is *not* generally preserved. We make an assumption on F , namely that

$$(1.2) \quad \lim_{r \rightarrow 0^+} \frac{F''(r)}{F'(r)} \geq \gamma, \quad \text{for some } \gamma > 0.$$

This includes the important cases $F(r) = r^3 - 1$ and $F(r) = r^2 - 1$ considered in [6] and [3, 8] respectively.

We construct an example where Ω_t is convex for $t = 0$, but not convex for $t \in (0, \delta]$ for some $\delta > 0$.

Theorem 1.1. *Assume that F satisfies assumption (1.2). There exists $\delta > 0$ and a bounded convex domain $\Omega_0 \subset \mathbb{R}^2$ with smooth boundary such that the solution Ω_t to (1.1) with this initial data is not convex for any $t \in (0, \delta]$.*

Escher-Guidotti [2] showed that as long as Ω_0 is a bounded domain with sufficiently smooth boundary, there always exists a unique classical solution for a short time, and this is what is meant by “the solution Ω_t ” in the statement of Theorem 1.1. In Section 2, we describe more precisely the results of [2].

In Section 3 we give the proof of Theorem 1.1. The starting point is an explicit solution of the equation $-\Delta u = \lambda_0$ on an equilateral triangle [9]. We smooth out the corners to obtain our convex domain Ω_0 , and show that it immediately breaks convexity.

2. SHORT TIME EXISTENCE

In this section, we recall the short time existence result of Escher-Guidotti [2].

We first give a definition of a solution of (1.1), following [2]. Note that the domains Ω_t determine uniquely the functions u , so we will describe the solution of (1.1) in terms of varying domains - given as graphs over the original boundary.

Fix $\alpha \in (0, 1)$. Assume that Ω_0 is a bounded domain in \mathbb{R}^n whose boundary $\Gamma_0 := \partial\Omega_0$ is a smooth hypersurface. Let $\nu(x)$ denote the unit outward normal to Γ_0 at x . Then there exists a maximal constant $\sigma(\Omega_0) > 0$ such that for any given function $\rho \in C^{2+\alpha}(\Gamma_0)$ with $\|\rho\|_{C^1(\Gamma_0)} \leq \sigma$, the set

$$\Gamma_\rho = \{x + \rho(x)\nu(x) \mid x \in \Gamma_0\},$$

is a $C^{2+\alpha}$ hypersurface in \mathbb{R}^n which is the boundary of a bounded domain $\Omega = \Omega(\rho)$.

We can now describe a solution of (1.1) in terms of a time-varying family $\rho(x, t)$. Namely, given

$$\rho \in C([0, T], C^{2+\alpha}(\Gamma_0)) \cap C^1([0, T], C^{1+\alpha}(\Gamma_0)),$$

with $\sup_{t \in [0, T]} \|\rho(\cdot, t)\|_{C^1(\Gamma_0)} < \sigma(\Omega_0)$, write Ω_t , for $t \in [0, T]$ for the corresponding family of domains, with boundaries $\Gamma_t := \Gamma_{\rho(t)}$. The velocity V of the boundary in the direction of the outward normal, at a point $y = x + \rho(x, t)\nu(x) \in \Gamma_t$ is given by

$$V = \frac{\partial \rho}{\partial t}(x, t)\nu(x) \cdot n(y, t),$$

where $n(y, t)$ is the outward unit normal to Γ_t at the point y .

Since the domains Ω_t have $C^{2+\alpha}$ boundaries, there exists for each t a unique solution $u(\cdot, t) \in C^{2+\alpha}(\overline{\Omega}_t)$ and $\lambda_t \in \mathbb{R}$ of

$$-\Delta u = \lambda_t, \quad \text{on } \Omega_t, \quad u|_{\Gamma_t} = 0, \quad \int_{\Omega_t} u \, dx = 1,$$

(see for example [4, Theorem 6.14]).

Then we say that such a ρ is a *classical solution* of (1.1) with initial domain Ω_0 if the velocity $V(y)$ at each $y \in \Gamma_t$, for $t \in [0, T]$ satisfies

$$V = F(|Du|).$$

The main theorem of Escher-Guidotti [2] implies in particular the following:

Theorem 2.1. *There exists a $T > 0$ and a unique classical solution*

$$\rho \in C([0, T], C^{2+\alpha}(\Gamma_0)) \cap C^1([0, T], C^{1+\alpha}(\Gamma_0))$$

of the quasi-static droplet model (1.1) with initial domain Ω_0 whose boundary Γ_0 is smooth.

In fact they prove more: they also allow their initial domain to have boundary in $C^{2+\alpha}$. Note that this result does not require the assumption (1.2).

3. PROOF OF THEOREM 1.1

In this section we give a proof of Theorem 1.1. We work in \mathbb{R}^2 , using x and y as coordinates. The heart of the proof is the following lemma, which makes use of the assumption (1.2).

Lemma 3.1. *There exists a bounded convex domain Ω_0 with smooth boundary Γ_0 , and real numbers $0 < x_0 < x_1$ with the following properties:*

- (i) Ω_0 is contained in $\{y \geq 0\}$.
- (ii) $(x, 0) \in \partial\Omega_0$ for $x_0 \leq x \leq x_1$.

(iii) Let $u(x, y)$ solve

$$-\Delta u = \lambda_0, \quad \text{on } \Omega_0, \quad u|_{\Gamma_0} = 0, \quad \int_{\Omega_0} u \, dx \, dy = 1,$$

for a constant λ_0 . Then $V(x) := F(|Du(x, 0)|)$ satisfies

$$\frac{V(x_0) + V(x_1)}{2} > V\left(\frac{x_0 + x_1}{2}\right).$$

Proof. We begin with the following explicit solution of the “torsion problem,” $-\Delta v = \text{const}$, on the equilateral triangle [9]. Let D be the equilateral triangle of side length $2a$ given by

$$0 < y < \sqrt{3}(a - |x|).$$

The function

$$v = cy((y - a\sqrt{3})^2 - 3x^2), \quad \text{for } c := \frac{5}{3a^5},$$

satisfies

$$-\Delta v = 4ac\sqrt{3},$$

vanishes on the boundary of D and satisfies

$$\int_D v \, dx \, dy = 1.$$

On the bottom edge of the triangle

$$E_1 = \{(x, 0) \in \mathbb{R}^2 \mid -a \leq x \leq a\},$$

we have

$$v_y(x, 0) = 3c(a^2 - x^2).$$

Hence

$$V(x) = F(3c(a^2 - x^2)),$$

and

$$(3.1) \quad V''(x) = 36c^2x^2F''(3c(a^2 - x^2)) - 6cF'(3c(a^2 - x^2)).$$

Recalling that $c = 5/(3a^5)$, then we may choose $a > 0$ sufficiently small so that

$$(3.2) \quad 36c^2x^2 \geq 2\frac{6c}{\gamma}, \quad \text{for } |x| \geq a/2,$$

where $\gamma > 0$ is given by our assumption (1.2). From now on we fix this a (and hence c).

It follows from (3.1), (3.2) and (1.2) that $V''(x) > 0$ for $|x|$ sufficiently close to a . In particular there exists $0 < x_0 < x_1 < a$ with

$$(3.3) \quad \frac{V(x_0) + V(x_1)}{2} > V\left(\frac{x_0 + x_1}{2}\right).$$

The above example readily implies the existence of a smooth domain Ω_0 satisfying the conditions in the Lemma. Indeed, we only have to “smooth the corners” of the triangle domain D .

Denote the vertices of D by p_1, p_2, p_3 . Let $\{D_k\}_{k=1}^\infty$ be a sequence of bounded convex domains with smooth boundaries such that for each $k \geq 1$:

- (1) $D_k \subset D_{k+1} \subset D$ (the sequence is nested and increasing).
- (2) $D \setminus D_k \subset \bigcup_{i=1}^3 B_{k^{-1}}(p_i)$, where $B_r(p)$ denotes the ball of radius r centered at p .

Such a sequence $\{D_k\}$ can be constructed by “rounding out the corners” of the triangle D in a ball of radius k^{-1} centered at each corner.

For each $k \geq 1$ let u_k on D_k be the solutions of

$$-\Delta u_k = 4ac\sqrt{3}, \quad \text{on } D_k, \quad u|_{\partial D_k} = 0,$$

where we recall that a and c are fixed constants.

It follows from property (1) above and the maximum principle that for each $k \geq 1$

$$(3.4) \quad 0 < u_k \leq u_{k+1} \leq v, \quad \text{on } D_k,$$

from which we conclude a pointwise limit on the triangle D

$$(3.5) \quad 0 \leq u_\infty(x) := \lim_{k \rightarrow \infty} u_k(x) \leq v(x), \quad \text{for } x \in D,$$

and define $u_\infty(x)$ to be zero on ∂D .

By standard elliptic estimates (see for example [4, Theorem 6.19] and the remark after it), the convergence above will hold in $C^\ell(K)$ for any compact set $K \subset \subset (\overline{D} \setminus \{p_1, p_2, p_3\})$ and any $\ell \geq 0$. Hence $u_\infty \in C^\infty(\overline{D} \setminus \{p_1, p_2, p_3\})$ and $-\Delta u_\infty = 4ac\sqrt{3}$ on D . Moreover, by (3.4) and the continuity of v it is easily verified that u_∞ is also continuous at the corners p_1, p_2, p_3 and thus on all of \overline{D} . By the maximum principle, $u_\infty = v$. Note also that

$$\int_{D_k} u_k \, dx \, dy \rightarrow 1, \quad \text{as } k \rightarrow \infty.$$

Then for sufficiently large k the domain $\Omega_0 := D_k$ will satisfy conditions (i), (ii), (iii), with

$$u := \frac{u_k}{\int_{D_k} u_k \, dx \, dy}, \quad \lambda_0 := \frac{4ac\sqrt{3}}{\int_{D_k} u_k \, dx \, dy}.$$

Here we are using (3.3) and the fact that $x \mapsto F(|Du_k(x, 0)|)$ will converge uniformly to $x \mapsto F(|Dv(x, 0)|)$ on $[x_0, x_1]$ as $k \rightarrow \infty$. This completes the proof of the lemma. \square

Proof of Theorem 1.1. Let Ω_0 and u be given as in Lemma 3.1. By Theorem 2.1, there exists a unique classical solution of (1.1) for a short time interval $[0, T]$ with $T > 0$.

The boundary Γ_t of Ω_t can be written as a graph over $\Gamma_0 := \partial\Omega_0$. In particular, using x as a coordinate, part of Γ_t is given by a graph $y = g(x, t)$ for $x_0 \leq x \leq x_1$, with $g(x, 0) = 0$ for $x_0 \leq x \leq x_1$, with the unit normal to Ω_0 being in the negative y direction.

We may assume that

$$g \in C([0, T], C^{2+\alpha}([x_0, x_1])) \cap C^1([0, T], C^{1+\alpha}([x_0, x_1])).$$

Moreover, $(\partial g / \partial t)(x, 0)$ represents the *negative* of the velocity in the normal direction at time $t = 0$. Hence by (iii) of Lemma 3.1,

$$\frac{1}{2} \left(\frac{\partial g}{\partial t}(x_0, 0) + \frac{\partial g}{\partial t}(x_1, 0) \right) < \frac{\partial g}{\partial t} \left(\frac{x_0 + x_1}{2}, 0 \right).$$

Then for $t \in (0, \delta]$ for $\delta > 0$ sufficiently small, we have

$$\frac{1}{2} (g(x_0, t) + g(x_1, t)) < g \left(\frac{x_0 + x_1}{2}, t \right).$$

In particular, $x \mapsto g(x, t)$ is not convex for $(x, t) \in [x_0, x_1] \times (0, \delta]$. Hence Ω_t is not a convex domain for $t \in (0, \delta]$. \square

REFERENCES

1. Cox, R.G. *The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous Flow.*, J. Fluid Mech. 168 (1986), 169–194
2. Escher, J., Guidotti, P. *Local well-posedness for a quasi-stationary droplet model*, Calc. Var. Partial Differential Equations (2015) 54:1147–1160
3. Feldman, W.M., Kim, I.C. *Dynamic stability of equilibrium capillary drops*, Arch. Ration. Mech. Anal. 211 (2014), no. 3, 819–878
4. Gilbarg, D., Trudinger, N.S., *Elliptic partial differential equations of second order*, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
5. Glasner, K.B. *A boundary integral formulation of quasi-steady fluid wetting*, J. Comput. Phys. 207 (2005), no. 2, 529–541
6. Glasner, K.B., Kim, I.C. *Viscosity solutions for a model of contact line motion*, Interfaces Free Bound. 11 (2009), no. 1, 37–60
7. Greenspan, H.P. *On the motion of a small viscous droplet that wets a surface*, J. Fluid Mech. 84 (1978), 125–143
8. Grunewald, N., Kim, I.C. *A variational approach to a quasi-static droplet model*, Calc. Var. Partial Differential Equations 41 (2011), no. 1-2, 1–19
9. Keady, G., McNabb, A. *The elastic torsion problem: solutions in convex domains*, New Zealand J. Math. 22 (1993), no. 2, 43–64
10. Tanner, L. *The spreading of silicone oil drops on horizontal surfaces*, J. Phys. D 12 (1979), 1473–1484
11. Voinov, O.V. *Hydrodynamics of wetting*, Fluid Dyn. 11 (1976), 714–721

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, 1984 MATHEMATICS ROAD, VANCOUVER, B.C., CANADA V6T 1Z2. EMAIL: CHAU@MATH.UBC.CA.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, 2033 SHERIDAN ROAD, EVANSTON, IL 60208, USA. EMAIL: WEINKOVE@MATH.NORTHWESTERN.EDU.