THE PERFECT CONDUCTIVITY PROBLEM
WITH ARBITRARY VANISHING ORDERS
AND NON-TRIVIAL TOPOLOGY

MORGAN SHERMAN AND BEN WEINKOVE

ABSTRACT. The perfect conductivity problem concerns optimal bounds for
the magnitude of an electric field in the presence of almost touching perfect
conductors. This reduces to obtaining gradient estimates for harmonic func-
tions with Dirichlet boundary conditions in the narrow region between the
conductors. In this paper we extend estimates of Bao-Li-Yin to deal with the
case when the boundaries of the conductors are given by graphs with arbitrary
vanishing orders. Our estimates allow us to deal with globally defined narrow
regions with possibly non-trivial topology.

We also prove the sharpness of our estimates in terms of the distance be-
tween the perfect conductors. The precise optimality statement we give is new
even in the setting of Bao-Li-Yin.

1. INTRODUCTION

Let © C R™ be a bounded open domain with smooth boundary. Let Di, Dy be
disjoint domains in 2 with smooth boundaries which are a distance £ > 0 apart,
and a distance at least d >> ¢ from Q. We write Q = Q\ (D; U Dy).

Fix a smooth function ¢ on 90€2. The setup of the perfect conductivity problem
is the following PDE:

Au=0 in{

Uy =u_ on dD;UOD,

Vu=0 OHD1UD2
=0 1=1,2

[
oD; 8V+

u=¢@ on 0.

Here u4 and u_ refer to the limits of u from outside and inside (respectively) the
sets Dy, Dy. The third equation implies that ©v = C7 on Dy and u = Cs on Ds, for
constants C1, Co. The function $%|; in the fourth line of (1) is the derivative of u
in the direction v, the unit outward normal vector on 0D;. Namely, at xo € 0D, it
is the limiting value of Vu(z) - v(xo) as & — o through values within €.

The question is: what happens to |Vu| as ¢ — 07

This problem has a physical interpretation in terms of electrical conductivity.
The domains D1 and Ds represent perfect conductors and u represents the electric
potential. The question is then how the magnitude of the electric field Vu may
blow up as the perfect conductors approach each other. When n = 2, there is
also a physical interpretation in terms of composite materials in which €2 represents
the cross-section of a fiber-reinforced composite (here D; and D, represent the
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embedded fibers). In this case, the electric potential and field are replaced by the
out-of-plane elastic displacement and the stress tensor respectively. For background
and more details, we refer the reader to [4, 8, 17, 18] and the references therein.
The standard setting in the literature is that D; and D5 are strictly convex
sets a distance £ > 0 apart (see figure 1). In this case there is a single “narrow
region” of ) between the two sets Dy, Dy. After translation, this region is given by

points x = (2',x,,) with f(z') <z, < g(2’) for |z1|,...,|Tpn_1| < r, for a uniform
r > 0, where f and g are smooth functions with (g — f)(0') = ¢, g — f > ¢ and
D% > 0 > D?f. Here we use the usual notation 2’ = (x1,...,2,_1). Points

outside this narrow region can be characterized by the fact that they are contained
in a ball of uniform radius lying completely inside €.

In

F1GURE 1. The case when D and D5 are convex sets a distance € apart.

It has been known for some time that in general the gradient |Vu| may blow
up as € — 0 [9, 20]. Tt was shown in [9] that sup |Vu| blows up at a rate e~1/2
for a special solution in R2. More general solutions in the case when D;, D, are
disks with comparable radii in R? were dealt with by Ammari-Kang-Lim [3] (who
gave the lower bound of sup |Vu|) and Ammari-Kang-Lee-Lee-Lim [1] (the upper
bound). Yun [21] extended [3] to more general convex subdomains in R? which are
positively curved at the closest point.

Bao-Li-Yin [5] then proved a much more general result which allows any dimen-
sion n > 2 and the case when the domains do not necessarily have positively curved
boundaries. We now describe their main result. If there is a single narrow region
as above with

(e+12')*) < g(a') — f(2) < Cle + [2']*),

Ql=

(2)
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for a uniform C and a constant o > 1 then |Vu| is bounded on  as follows:

Sl, ifn—1<2a
£ 2a
(3) sup|Vul < ¢ € g —9
Q e|loge|
¢ ifn—1>2a.

3

Bao-Li-Yin [5] also proved the optimality of their estimates under some symmetry
assumptions on the domains. They made use of a linear functional Q. (y) which we
will describe later (see Section 4).

Since then, there have been many further results, refining and extending the
estimates (3) and giving detailed asymptotics, see [2, 6, 7, 10, 11, 12, 14, 15, 16,
19, 22], for example (this is far from a complete list).

In this paper we give a broad extension of the Bao-Li-Yin estimates in a different
direction, allowing for more complicated geometry and topology of the sets D and
Dy. We will allow the vanishing orders of the boundaries of D; and Dy to be
different in each of the m — 1 directions z1,...,z,_1. Namely, we replace the
quantity |2/|?® in (2) by

n—1
2 .
Z xja], for constants aq,...,a,—1 > 1.
=1
We refer to the constants aq,...,a,—_1 as the vanishing orders of the boundary,

and a key point of this paper is that the «; need not all be equal. Crucially, we
also allow any number of the «; to take the value 4+-co, which we take to mean that
x?aj doesn’t appear in the sum (we may assume that that |z;| < 1).

We also deal with the case when the narrow region is defined by a finite union of
sets, each of which is given by the set of points between graphs f and g. This allows
the possibility that D; and D- are “close together” in several regions throughout
Q (but far away from 02). For example there may be a curve (or even higher-
dimensional set) of points on dD; that are at a distance on the order of & from
0Ds.

Such situations may arise for example when the conductors have non-trivial
topology, such as the case of encircled tori, which may be closely touching along a
circle of points (see, for example, figure 5).

Our approach will be to cover the narrow region between D, Dy with small open
sets where we do individually get a simple picture, and then to piece this together
to a global statement. See figure 2.

Statement of the main results. The region 2 is fixed, independent of €.
It is convenient to regard D; and D, as elements of a smoothly varying family
of domains. We fix a compact set K in €, and domains DY, DY with smooth
boundaries contained in K. For a small constant g > 0 we consider smooth families
of domains {Df}.cjo,c,] and {D5}.c0,c,], also contained in K and with smooth
boundaries. To make the notion of “smooth family” more precise, for ¢ = 1,2,
write Mf = 0D5 for € € [0,e0]. These are smooth closed embedded hypersurfaces
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in R™. Then there are smooth maps F; : M? x [0,g9] — K for i = 1,2 such that
x + Fj(x,¢) is a diffeomorphism from M? onto Mf and the identity when ¢ = 0.

We assume that D N D§ = 0 for every € € (0,£0], but the intersection may be
nonempty at ¢ = 0. We also make an additional assumption:

() There is a smooth path from Q to DY that does not intersect DY, and
another smooth path from 9 to DI that does not intersect DY.

This rules out the case when one of the domains DY, DY completely envelops the
other. See the beginning of Section 3 for more discussion of assumption (x).

Our goal is to obtain optimal bounds, in terms of ¢, for the gradient of u solving
(1) for D; = D§ and Dy = D§. For simplicity of notation, in what follows
we will drop the superscript ¢ and write D; and D, instead of Dj and
Ds.

We assume there is a constant ¢y > 0 and an open subset V C Q such that V
satisfies an interior ball condition of radius ¢y. Specifically we mean by this that
for all p € OV there is a ball B of radius ¢y such that p € 0B and B C V. Thus V'
consists of points that are “far away” from the narrow region between D; and Ds.
Next we assume that Q\V can be covered by open boxes U; = Ui(r) fori=1,...,k,
of a fixed size r > 0, where for each ¢ = 1,...,k, after possibly translating and
rotating the coordinates, U; = {(z1,...,2,) | max; |z;| < r}. Further, we assume
that for each ¢ = 1,..., k there are functions f;, g; on the set

i G el <} cRY

such that
U;=U;nQ={(z,y) |z € Qr and fi(z') < 2, < gil)}.

See figure 3. Moreover we assume that the boxes U; overlap sufficiently so that the
union of boxes U ) of size r/2 still covers the region Q\ V.

Here the graphs of the functions f; and g; will describe the portions of the
boundaries of D; and Dy which lie within U;. We assume that the boxes U; are
chosen centered near points where Dy and Dy are closest together. Specifically
we assume that there is a constant C' > 0, independent of €, such that for all
i =1,...,k there are positive numbers (or infinities, see below) af,...,al ; such
that

n—1 )
(4) = €+Zx ) < gi(z )—fi(x’)<C(€+inaj) for all 2’ € Q,.
j=1

Q

?)O‘;, so that, for example, 222 = |z|. We allow

the possibility aé = 00, in which case we interpret the above expression containing

20
We interpret the quantity x jaj as (x

2% to mean this term does not appear. We set o’ == (af,...,al, ;).

Here and throughout this article we use C' to denote a positive constant that is
independent of ¢, and it may change from line to line.

We assume that the boxes Uy, ..., Uy are fixed independent of € but that f;, g;
may depend on €. Nevertheless, it follows from our assumptions that these functions
and their derivatives are uniformly bounded independent of ¢, and in particular

| (@), |gi (2], [V fi(2")], [Vgi(2")] < C for all 2’ € Q.
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FIGURE 2. A possible configuration of the inclusions D and Ds.

FIGURE 3. The neighborhood U; in the narrow region

To state our main theorem we define, for each i = 1,...,k,
n—1 1
Yi ::Zﬁ’ i:17...,k
j=1 J
(where, if a;- = 00, then 21i = 0), and set
a5
5 = i ;.
(5) v = min

youe

The main result is:
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Theorem 1.1. With assumptions as above, let u solve (1) for D1 = D and Dy =
D5. Given any smooth boundary data @ on 0S) there exists a constant C independent
of € > 0 such that

C ‘
&‘77 Zf’y <1

swplVul <§ _C ey

Q e|loge|
C
—, if v > 1.
€
One can check that the exponents match with the Bao-Li-Yin estimate (3) in
the case of a single coordinate patch with a :=al =--- =al ;.

Our next result shows that these estimates are optimal in terms of ¢.

Theorem 1.2. With the assumptions as above, there exists smooth boundary data
© on I such that the following holds. If u solves (1) for Dy = D5 and Dy = D§
then there exists a constant C > 0 such that for € > 0 sufficiently small,

1 .
@, 'Lf’y <1
1

sup [Vul| > ¢ = =1
Q Ce|loge|’ it

1

—, ify > 1.

o if

The statement and proof of Theorem 1.2 appear to be new even in the case when
D, and Dy are strictly convex, since the optimality results of [6] made symmetry
assumptions on the sets Dy, Dy and €.

We have assumed smoothness of 92, 0D1, dD2 and ¢ for the sake of simplicity.
As in [6] the regularity can be relaxed to C**# for the boundaries (for some 0 <
B < 1), and C? for ¢.

The outline of this paper is as follows. In Section 2 we recall some preliminary
results from [6] which we will need to make use of. In Sections 3 and 4 we prove
Theorems 1.1 and 1.2 respectively. Finally, in Section 5 we illustrate our results
with some examples.

2. PRELIMINARIES

In this section, we gather some preliminary results whose proofs follow from the
corresponding arguments of Bao-Li-Yin [6]. First, the bound on |Vu]| reduces to an
estimate on |Cy — Cs|, where we recall that w = Cy on Dy and u = C3 on Ds.

Lemma 2.1. There exists a constant C independent of € such that
c,—C C

G =G <sup |Vu| < —=|Cy — Ca| + C.
9 19 9

Proof. See the proof of [6, Proposition 2.1]. For the reader’s convenience, we sketch
the idea here.
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The lower bound of sup |[Vu| follows from the Mean Value Theorem. For the
upper bound, we write u = v + w + Cy where v and w are the unique solutions of

Av:OinQ, v=C1—CyondDy, v=0o0ndDyUOdN
Aw:OinQ, w=0ondD; UIDy, w=p—C5on Jf).

Since |v| < |Cy — C3] we can apply standard gradient estimates for harmonic func-
tions to obtain |Vv| < C|C; — Cq|/e. On the other hand |Vw| < C on dD; by
comparison with a harmonic function on 2 \El which vanishes on 9D and has
uniformly large absolute value on 9. Similarly |Vw| is bounded on 9D, and
hence |Vw| < C on Q. The upper bound of |Vu| follows. O

For the second result of this section, we need some definitions. Define functions
v1 and vy by

Av; =0 in Q, vi =00n D, U9, vy =1ondD,
Avg =0 in Q, vo =0o0on 0D, UIQ, vy =1o0n 9Dy
As in [6], define the linear functional
B Jui Ovg Ova o
_/asz /E;\QE_/Q v 895.
The following gives an estimate for |C; — Ca|.

Lemma 2.2. Assume there is a uniform constant ¢ > 0 such that

(6) — %207 — %>C
oq OV

Q- (p (/ Vv1|2) <01 — Col < C|Q:(p (/ |W12>

Proof. The proof is contained in [6, Section 2], but again for the sake of convenience
we include here a brief outline of the argument. Define

81)1 87}2
ay] ‘= — 87 = / |V’01|2, agy ‘= — / |V'U2|
ap, OV Q Dy

0vy 3111
a2 ‘= —/ 78 = [ Vm . V'UQ = — 76 =:10a21,
oD, OV Q op, OV

where we have used integration by parts. Define another function vs by

Avs=0inQ, wv3 =0 on 8Dy UdDs, vg =  on 0,

and for i = 1,2,
Ovs Ov;
bz:_/ 7:/V’UZV’U:/ .
aD; ov 9) ’ a0 v v

Since u = Cyv1 + Cavg + v3, the fourth line of (1) gives
a11C1 + a12Cq + b1 = 0, a21C1 + a92Coy + by = 0.

o0 OV
Then

Hence

a11 + a21)by — (as2 + a12)b
(7) Cy—Cy = (a11 + az1)b2 _( 222 12)b1 _ Qe(f) .
a11a22 — A9 a11022 — A7y
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where we have used the fact that
8111 8112

a11 +ag = — -, Q2+ a2 =—

o0 o’ a0 ov’

and assuming that aj1a90 — a%z 2 0, which we will shortly prove.
From the assumption (6) and standard derivative estimates for harmonic func-
tions vy, v9 in a neighborhood of the boundary €2, we have

c<aii+an <C, c<ap+tanp<C
Next
2 _
a0z — ajy = aii(ag + aiz) — aiz(ayr + az1),
and hence, since a3 < 0, so in particular, |ais| < a11 (using a1 + a12 > 0),
2
(8) cair < anrage —ajy < Capg.

The result follows from (7) and (8). O

3. PROOF OF THEOREM 1.1

In this section we complete the proof of the main theorem.

First we note that the assumption (%) in the introduction implies that there
exists a connected domain Wy in Q \ (DY U DY) with smooth boundary dW; such
that OW; has an open portion on 9 and another open portion on DY. Moreover,
we may assume that W and DY are disjoint. Similarly there exists another domain
W, interchanging the roles of D{ and DY. See figure 4 for an example illustrating
this.

Wi

FIGURE 4. Example configuration satisfying (k).

In order to apply Lemma 2.2 we need to establish the estimates (6).

Lemma 3.1. There is a uniform constant ¢ > 0 such that

9) _ vy vy >

C
893V?7 6981/7
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Proof. Note that by the definitions of v; and v, we have %, % < 0 on 02. We

will show that ‘%| and |%| must be bounded uniformly away from zero on a
portion of the boundary 0f2.

We make use of a basic fact (see for example [13, Ex. 2.2]) that if a function
w is harmonic on a connected domain D and has w =0 = ‘3—’;’ on an open smooth
portion of the boundary 0D then w vanishes identically on D.

Let IT be an open portion of 02 which is contained in 0W;. We recall that v; = v§
depends on €. We claim that for e > 0 sufficiently small, sup,cp \%(p)\ > ¢ for
some constant ¢ > 0. Indeed if not then we can find a sequence ¢; — 0 with
&

(10) sup | 2L (p)' <1/j =0, as j — oo

pell

The functions v}’ are not necessarily defined on W since Df is changing with e.
However, after composing with diffeomorphisms which converge to the identity, and
are equal to the identity in a neighborhood of 0W7 N 0f), and after passing to a
subsequence, the functions vij converge smoothly on Wy to a harmonic function v
on Wi which is equal to 0 on 9Q N OW; and equal to 1 on 9DY N W;.

In particular the function v{ cannot be identically zero on Wi. But from (10)

0
we obtain % = 0 on an open portion of the boundary of W7, a contradiction by
the basic fact. i
Hence we have shown that sup,,cp |%(p)| > ¢ for € > 0 sufficiently small and it
follows by standard derivative estimates for v§ that |%—1f(p)| > ¢/2 on a small open
portion of 9. This establishes the required estimate for v;. The argument for v,

is similar. O

Note that without assumption () the estimates (9) may fail. Indeed, if Dy
completely surrounds D; (for example if D is a solid ball and D is a solid spherical
shell enclosing D1) then v; = 0 on the region outside the outer boundary of Dy and
hence % = 0 on 992. We wish to exclude this case, which is not very interesting
from the point of view of estimating |Vu|. Physically, if u represents an electric
potential and Dy, Dy are perfect conductors then u will take a constant value Cy =
Cy throughout Dy, D and the region between the two. In this case sup [Vu| does
not blow up as € — 0.

The proof of Theorem 1.1 will now be an almost immediate consequence of the
following lemma, whose proof uses the same basic strategy as in [6]. A key difference
from [6] is that we use a patching argument to deal with multiple coordinate boxes,
rather than working in a single one. Also, the fact that the exponents af, ..., al
are not necessarily equal gives rise to a more complicated integral.

Lemma 3.2. Let vy satisfy
Avy =0 infl, v1 =0 0n 9D UIN, wvi =1 ondDy.

Then )
—</|Vv1|2<C, ify > 1
¢ Ja
1 1 1
—10g7</|Vv1|2<Clogf, ify=1
C € 5 €

11 ) 1 .
55‘17_7</Q|vv1| <Cg17_’)’7 ’Lf’}/<].,
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where we recall that v is defined by (5).

Proof. Recall that for each ¢ = 1,...,k the boundaries of Dy, Ds are described in
the box U; as the graphs of the functions f;(z’) and g;(z'), with f; < g;.
For each i define the function
gi (LE/) — Tn
11 wilz) = JT) ~ Tn_
(1 (@) gi(2') — fi(z")

which is defined on all of U; N €.

For the lower bound of [; [Vu1]?, we fix an index i and work in U;. For z’ € Q,
the function x,, — w;(2’,x,) is of the form z, — a(a’)z, + b(z') and has the
property that wily, —f, ) = 1 = Vila,=f,(2) a0d Wiz, —g,2) = 0 = V1|a, =g, (27
In particular, for any fixed 2’ € Q,,

’

gi(z") gi(z") gi(z")
/ |8znwi|2dxn < / |895nv1|2 dx, < / |Vv1|2 dxy,,
fi(z") fi(z") fi(z")

where the first inequality follows from the fact that linear functions of one variable
minimize the Dirichlet energy among functions with the same endpoints. Therefore

/|Vv1|22/ [Vou?
a U;nQ
91:(95,)
=/ / |V |? da, da’
' eQ, J fi(x')

911(7:,)
(12) > / / 0, wn[? ey da’
' €Qr J fi(z')

k3

_ / o dr
' €Q, gi(x/) - fl(z/)

< 1 dx’
el 6 2 €0, " anl 2(17]-‘_ 9
TET 2u=1 7

recalling (4). Define
dx’
(13) I(e) ::/m —

"eQr n—l 29
€ + Z]:l x]

Then we see that [ [Voi]|? > & max; I;(). Below we will bound the term ;(e).
Before then we consider the upper bound.

Note that by standard estimates and the definition of V' C € we may assume
that |[Vo1|? < C at all points of V' C Q. In particular fy IVui? < C.

Recall that the region Q \ V is covered by the “half sized” boxes Ui(r/ 2 of size
r/2. We denote by Ui(sr/‘l) the “three-quarter sized” boxes of size 3r/4. Let {o;}%_;
be a partition of unity such that: (1) each o; : |J; U; — [0, 1] is a smooth function

with compact support in U; = Ui(T); and (2) Y ,0; =1on Y, UZ-(‘%M). The function

k
w = E o;W;,
i=1
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is a well-defined smooth function on Ule U; which is equal to 1 on D1 N{J; Ui(37'/ 4
and equal to 0 on 9D, N J; Ui(3r/4).

Next let p : Q@ — [0,1] be a smooth cut-off function which is identically equal
to 1 on the union of half-sized boxes J; Ui(T/Q) and is supported on the union of

three-quarter sized boxes J; Ui(BT/ 4,
Then the function W = pw + (1 — p)v; has the following properties.

(i) W is a well-defined continuous function on 6, smooth on Q.
(if) W is equal to 1 on 9D; and equal to 0 on 9Dy U OS2

For (ii), we observe that at points in (J; Ui(gr/ * the functions w and vy are both

equal to 1 on dD; and equal to 0 on 9D5, whereas outside this union, W = v,
which is equal to 1 on D7 and vanishes on 90Ds U 9€2.

Note also that 0 < vy, w,w;, 05, p < 1 at all points of Q that each is defined, and
that Vo], |Vp| < C.

Since v is harmonic on €2, conditions (i) and (ii) imply that [; |Vvi[2 < [5 [VIV[?
and hence

’U12_ w — 1)12
/QIV |</Q|V<p (1)l

= [ |wVp + pVw —v1Vp + (1 — p) Vo |2
Q

4
14 < C(l—ﬁ-/Uk U,mg‘vw‘z)

1+Z/ |Vw;|?)

where for the third line we used the fact that |Vv;| is uniformly bounded on the
set V and hence on Q\ U, Ui(r/Q). From (11) we estimate on U; N Q,

c
(gi(z) = fila))?’

Vi (2) <

and hence for each i = 1,... k,

gl(:L’
/ |V, |* < / / C’d:rn da’
vinG €Qr J fu(a) — fi(a))?

/zeQr gz( ) fZ( )
< Cli(e).

(15)

Combining (14) and (15) we find
(16) / Vo |2 < C <1+ max I;(e )) .

The lemma is then a consequence of (12), (16) and the following elementary
claim.
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n—1
Claim. Fori=1,...,k, writing v; = _we h
aim. For ,. .., k, writing ~ ; 5o e have
1 .
6<L~(5)<C, if v, >1
(17) llog1 < Ii(e) < Clogl, ify, =1
C € €
1 1 1 .
67&‘1_’“ < IZ(E) < 0751_7“ if v < 1,

where we recall that I;(¢) is defined by (13).

To prove the claim, we drop the index ¢ and write « = (a1,...,@,-1). Re-
arranging the components if necessary we assume that 1 < aq,...,0y < oo and
Qg1 = ... = ap_1 = 00. Then we need to compute the integral

d’ .
(18) 1(5):/ %:nlnle/ / day e day
zGQTE'FZJ 1% 7 0 5+Z] LT a;

Note that ¢ = 0 if and only if @ = (00,...,00). In this case the above integral
evaluates exactly to 2"~ 1r"~1 /e, giving (17) in the case v = 7; = 0. Henceforth we
assume ¢ > 1.

We first reduce the claim to estimating an integral of one variable. Namely, we
will show that

Ry 2'y 14 Ry 2v-14
(19) o[ Esrase [ 2
e+p? o E&tp

where Ry = min; r*, Ry = \/Zmaxj r® (for j ranging from 1 to £) and C' > 0
depends only on «, r and n.
Making the substitution u; = l’?j we find

1
1
aq ) s
/ / e = / Il dug - duyg
0 = g
0 8—1—2] yxy oo o 0 e+ U3

1
|
L
_ 1 Hjuj’ duy -+ duy
Z bl
T S S S

where BEI denotes the portion of the ball of radius R; = Vi max; 7, centered at
the origin in R*, where all the coordinates are positive. Similarly we find

L1
(21) / / dey -+ d 2@ S 1 Hj“jJ deul"'due,
0 e—i—zj LT aJ Qe St 5+Zj:1u?
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where Ry = min; r®. In spherical coordinates (p, ¢1,...,¢¢—1) we have
uj = p(cosgoj)(H singg) forj=1,...,0—1
q<j
Up = p(H sin gpq)
q<t

=2
du = p" " [[(sing,;) " Vdpdpy --- des1,

j=1

and we find for any R > 0 that

L1
Hj uj] dU1 d’LLg _ A/R p2~/71 dp
0

(22) 5
B}, e+ Z§:1 u3 e+ p?
where v =}, 7 and
-1 .z ) 14 §:q+1 L —14+-L
(23) A= H (sin ) i(cospy) 2 dep,.
q=170

Combining (18), (20), (21), (22) and (23) proves (19) as required.
We can now finish the proof of the claim. If v > 1 then

Ry 2y—1 Ry
/ p dp < / P 3dp = C,
0 0

e+ p?

and Ry 2y—1 Ry 2y—1
0 Y= 0 Y= 1
p p
dp > / dp = —
/0 e+ p? Ro/2 1+ p? C

for all € < 1, which establishes this case.
Next, if v =1, then

Ry 2v—1 1 R2 1
P 1

dp==log(l4+ —) < Clog—

/0 P 5 og( + - ) ogs

e+ p?
and R ot ,
0 pT 1 R, 1 1
p 0
dp = =log(l+ — — log —.
/0 e p 20g(+(€)>00g(E

Finally if 0 < v < 1 let 8 = 2y — 1 and note that —1 < 8 < 1. Then by setting
v = p/e'/? we see that for all R > 0 we have

/R pPdp 1 /R/El/2 P dv
o e+pt ey 1+v2

But since —1 < 8 < 1 we see that

Ry/el/? B4 1 o
/ Y 1)2</ v’de—i—/ WP 2dv =C
0 1+U 0 1

/RO/EI/2 U’de>1/1 Bd 1
——— > | Vdv=—
0 1+U2 2 0 O’

for all € < RZ. This completes the proof of the claim and hence the lemma. O

and

Finally we complete the proof of the main theorem.
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Proof of Theorem 1.1. This is an immediate consequence of Lemmas 2.1, 2.2, 3.1
and 3.2 and the fact that |Q.(¢)| < C. O

4. OPTIMALITY OF THE BOUNDS

In this section we prove Theorem 1.2 on the optimality of the bounds of Theorem
1.1. From Lemmas 2.1, 2.2, 3.1 and 3.2 we have

Qe ()] ,
W, lf’}/ <1
Q Celloge|’ a
Q= ()| :
—_— f 1.
Ce iy >

Hence to prove Theorem 1.2 it suffices to show the existence of ¢ so that |Q:(¢)| > ¢
for a constant ¢ > 0 independent of €.

Note that in general, it is not the case that Q.(¢) will be nonzero for all choices
of ¢ (one could take ¢ = 0, for example).

Proof of Theorem 1.2. First we note that there exists an open portion P of 02 such
that

g 13
ov§  0vs

>
ov ov ¢

- )

(24) |

for all € > 0 sufficiently small.

Indeed, to see this define v = v§ — v§, which is harmonic on  \ (Dj U Dj),
vanishes on 012, is equal to 1 on DS and equal to —1 on D§. We apply the same
argument as in Lemma 3.1 above. Let W; be as defined there, and let II be an
open portion of 9 which is contained in O0W;. For € > 0 sufficiently small, we
claim that sup,cq |%L:(p)| > c for some constant ¢ > 0. If not then we can find
a sequence £; — 0 such that v® converges (after diffeomorphisms) to a harmonic
function v° on W; which is equal to 0 on 9Q N dW7, equal to 1 on DY N OW; and
%—'f = 0 on an open portion of the boundary of 9W;. This is a contradiction which
proves (24).

To complete the proof of the theorem, we note that for any sequence ¢; — 0,
the harmonic functions v}?, vy’ and their derivatives are uniformly bounded in a
neighborhood of the boundary 0f2. In particular, we can pass to a subsequence €,
such that

ik Eik
(25) —/ v, —a, —/ 0%, — ag, as k — 00,
le) ov a0 ov

for bounded constants aj, as with a1,as > 0 (by Lemma 3.1).
Recalling (24), we may assume without loss of generality that on the open portion

P of 99) we have:
RIS
ov ov

If as > aq, let ¢ be a smooth nonnegative function supported on P with ¢ > 1 on
an open set S C P. Then

>c>0.

ov§ ovs
Tapy, 2 Ty

+caz, on S,
v
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and
ov§ S ovs
—a —a ,
2¢ ov — 1 ov

on 0,

and using (25) it follows that for k sufficiently large, Q.; () < —¢’ for a uniform
constant ¢’ > 0.

The argument in the case when as < a; is similar except that we take ¢ to have
the opposite sign and obtain Q.;, () > (.

We have shown that for any sequence €; — 0 there is a subsequence ¢;, such
that |Qc;, (¢)| = ¢ > 0. Arguing by contradiction, this implies that [Q: ()| > ¢ >0
for all € > 0 sufficiently small, after possibly shrinking ¢ > 0. O

We end with a remark on the argument for optimality of estimates in [6, Section
3]. Bao-Li-Yin assume that  has a reflective symmetry and that the strictly convex
set DY is a reflection of DY, and, using a different argument, obtain examples for
a large class of boundary data ¢. They also consider the case of Q@ = R™ (see [6,
Proposition 3.2]).

5. EXAMPLES

We illustrate the above results in some special configurations in R3, using coor-
dinates x,y, z. We indicate briefly how Theorem 1.1 can be applied in each case.

5.1. A parabolic cylinder and a quartic cylinder. Consider an example in R?
where D1 and Dy are only close to each other near the origin, and near there 0D5
is given locally as the graph of the parabolic cylinder z = ¢ := ¢ + x? and 0D, is
the graph of the quartic cylinder z = f := —y*. Then g — f = ¢ + 2 — y*, so that
a=(1,2) and y = 3 + 1 = 2. Then in this configuration we find

Q= ()]
Ce3/4

C
< < —.
< Slép|Vu| < S

5.2. Encircled tori. Consider two tori, with one tightly ringed around the other.
See figure 5.

)
< | Vi

FIGURE 5. Encircled tori.
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Specifically, let Dy be the open solid torus in R? bounded by

(VT T —a) 422 = A2,
for constants a > A > 0. The boundary torus is the result of revolving the circle
(r —a)? + 22 = A2 in the xz-plane about the z-axis.
Let Dy be the region bounded by

(V@ —a)+ 22 —b)" +y* = B,

for constants b > B > 0, which is the circle 42 + (2 — b)?> = B? in the x = a plane,
revolved about the line through (a,0,0) which is parallel to the y-axis.

If we assume that a > b and that b = A + ¢ + B, then D; is wrapped around
D5 with only € of distance between the two.

As e — 0 the two boundaries intersect in a circle. The narrow region, which is a
neighborhood of this circle, can be covered with open boxes U; with o = (1, 00) and
vi = 1/2. We illustrate this in the case of a neighborhood of the point (a — A, 0, 0).

Near the point (a— A4, 0,0), we can describe the boundaries of Dy, D5 as functions
of y,z. Solving for z in the equation for Dy we find that the boundary of D5 is
given locally as a graph

Y2 22
= = —_ A _——_—_— — — ...
r=9lyz) =a 2a—4) 24"
D; is given locally as a graph
2 2

y z
- —a—baeB_Y L~ ...
z=f(y,2) =a—b+ 2B+2(b—B) +

Compute
a—A—-B ,

my +O0(elz[*) + O(lyl*),

g—f=e+
so that

é(5+y2)<g—f<0(5+y2).

Hence the o’ and ~; corresponding to the box are given by (1, 00) and % respectively.
The estimate we obtain for sup |Vu| is
|Q:(p)] ¢

<sup |Vu| £ —.

C¢E—'§” ‘_VE

5.3. A torus and a sphere. Consider the region in R? inside the torus obtained

by revolving a planar disk of radius A about an axis a distance a > A from the
disk’s center. For example let D; be the region

Dy ={(wy,2) ER" | (V2 +2 —a)® +2* < A7},

Now suppose D> is the region inside a sphere of radius R in R3, which is a distance
¢ from D;. The optimal estimate for |Vu| will depend on where the sphere is
centered.

Most configurations are already covered by the result of Bao-Li-Yin [5]. For
example, if the sphere were centered at (a + A + R + £,0,0), then near the point
(a + A,0,0) the boundary of D; can be described to second order by

ra+ A—Cry? — Cy2?
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and the boundary of Dy is given, again to second order, by

rra+ A+e+ Cyy? 4 Cy22

where C1, ..., Cy are positive constants. Hence we find v = 1 in this configuration,
giving
Cel|loge| o e|loge|

On the other hand, a special configuration is when the sphere has radius R =
a — A — ¢, centered at the origin (namely, the sphere is “in the donut hole”). See
figure 6. Then we have an entire circle of close proximity between the two regions.
In this case one can calculate v = % and thus

Qe()

——— <sup|Vu| <
Q

Cye

as in the case of encircled tori above.

<
\/E’

FIGURE 6. Sphere closely surrounded by a torus.
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