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a b s t r a c t

This paper presents a counterexample-guided iterative algorithm to compute convex, piecewise linear
(polyhedral) Lyapunov functions for continuous-time piecewise linear systems. Polyhedral Lyapunov
functions provide an alternative to commonly used polynomial Lyapunov functions. Our approach
first characterizes intrinsic properties of a polyhedral Lyapunov function including its ‘‘eccentricity’’
and ‘‘robustness’’ to perturbations. We then derive an algorithm that either computes a polyhedral
Lyapunov function proving that the system is asymptotically stable, or concludes that no polyhedral
Lyapunov function exists whose eccentricity and robustness parameters satisfy some user-provided
limits. Significantly, our approach places no a-priori bound on the number of linear pieces that
make up the desired polyhedral Lyapunov function. The algorithm alternates between a learning step
and a verification step, always maintaining a finite set of witness states. The learning step solves a
linear program to compute a candidate Lyapunov function compatible with a finite set of witness
states. In the verification step, our approach verifies whether the candidate Lyapunov function is a
valid Lyapunov function for the system. If verification fails, we obtain a new witness. We prove a
theoretical bound on the maximum number of iterations needed by our algorithm. We demonstrate
the applicability of the algorithm on numerical examples.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

We study the problem of synthesizing Lyapunov functions
for continuous-time, possibly uncertain, piecewise linear systems.
These systems appear naturally in a wide range of applications
(e.g., electrical circuits, mechanical systems with impact) or as
approximations of more complex dynamical systems (Christo-
phersen, 2007; Xu & Xie, 2014). The existence of a Lyapunov
function guarantees global convergence of the system toward the
origin. However, finding such a Lyapunov function can be very
challenging (Blondel & Tsitsiklis, 1999).

In this paper, we focus on Lyapunov functions that are convex
and piecewise linear, also called polyhedral functions. Polyhedral
functions are interesting because they can approximate convex,
positively homogeneous functions arbitrarily well. In fact, for a
large class of hybrid systems, including switched linear systems,
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there exist converse results showing that if the system is asymp-
totically stable, then a polyhedral Lyapunov function exists (Sun
& Ge, 2011). However, the computation of a polyhedral Lyapunov
function with a given number of linear pieces is known to be
difficult, even for linear systems (Blanchini & Miani, 2015). Fur-
thermore, there are in general no a-priori bounds on the number
of pieces that the function must have in order to be a Lyapunov
function for a given class of systems (Ahmadi & Jungers, 2016).

In this paper, we present an iterative approach that searches
for polyhedral Lyapunov functions for piecewise linear systems.
At each iteration, the number of linear pieces for the desired
polyhedral Lyapunov function is increased and the conditions
that must be satisfied by these linear pieces are checked in an
efficient manner (Section 6). The latter is achieved by providing a
convex approximation of the Lyapunov constraints, obtained by
enforcing the Lyapunov constraints only at a finite set of points
in the state space. By associating a linear piece to each of these
points, the computation of the polyhedral function can be formu-
lated as a convex optimization program. The process terminates
successfully, yielding a polyhedral Lyapunov function, or fails to
find a Lyapunov function which lies within a class described
by a single parameter, called the eccentricity (analogous to the
eccentricity of an ellipsoid). Due to the convex approximation
of the Lyapunov constraints, failure does not necessarily imply
that no polyhedral Lyapunov function in this class exists for the
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system. However, one can conclude that the system does not
admit a polyhedral Lyapunov function in this class that satisfies a
robustness property specified by two parameters, called the time
step and the contraction rate (Section 5). We further show that a
failure also provides information about the stability of the system
when subject to perturbations of the linear modes, and by adjust-
ing the parameters, we can reduce the conservativeness of the
approach to zero. The update of the parameters can be made in
an systematic way, thereby providing a semi-complete algorithm
for checking the existence of polyhedral Lyapunov functions for
piecewise linear systems.

The finite set of points for which the Lyapunov constraints are
enforced is obtained in a counterexample-guided fashion. More
precisely, at each step of the process, a candidate polyhedral
Lyapunov function is computed based on the constraints given by
the current set of points. Then, the algorithm checks whether the
candidate Lyapunov function is a valid Lyapunov function for the
system, and if not, outputs a point, called a counterexample, at
which the Lyapunov conditions are violated. This point is added
to the set of points at which the constraints are enforced, thereby
preventing the candidate to be re-visited by our algorithm.

A desirable property of our approach is that the steps de-
scribed above are implemented by solving a series of convex
optimization problems whose sizes are bounded by the dimen-
sion of the system and the number of counterexamples so far.
At the same time, we prove that the number of iterations of the
process is bounded and derive upper bounds on it (Section 7).
We evaluate our approach on a series of numerical examples
ranging from challenging instances that have been considered in
other works, and a family of piecewise linear systems known
to be stable and with dimension from 2 to 9 and number of
modes up to 8 (Section 8). We show that our approach terminates
faster than the conservative upper bounds established by our
theoretical analysis.

2. Comparison with other works

2.1. Polyhedral Lyapunov functions

Compared to Johansson (2003), Lazar and Doban (2011) and
Pola´ski (2000), our approach does not fix a priori the domain
of the linear pieces or the directions of the vertices of the poly-
hedral Lyapunov function. One can iteratively solve the prob-
lem with increasingly expressive templates, but this might result
in overly complex templates if the update of the template is
not based on previous computations. Furthermore, unlike Am-
brosino et al. (2012), Berger and Sankaranarayanan (2022) and
Kousoulidis and Forni (2021), our approach does not set a-priori
bounds on the number of linear pieces or vertices of the Lyapunov
function. Finding a polyhedral Lyapunov function with fixed num-
ber of linear pieces or vertices for linear systems amounts to
solve a nonconvex optimization problem. Ambrosino et al. (2012)
and Kousoulidis and Forni (2021) propose convex tightenings or
approximate methods to make the computation tractable. One
drawback is that, in case of failure, this provides little insight on
the stability of the system, whereas our approach allows us to
conclude that the system is not stable under small perturbations
of the system with predefined bounds. Note that most of the
above approaches are restricted to switched linear systems.

Set-theoretic methods (e.g., Blanchini & Miani, 2015; Guglielmi
& Protasov, 2013; Miani & Savorgnan, 2005) aim to find an
invariant set for (piecewise) linear systems in discrete time by
recursively computing the image of an initial polyhedral set by
the system until a fixed point is reached. Like our approach,
these methods do not place a-priori bounds on the number of
linear pieces of the function. However, a clear complexity analysis

remains elusive, mainly because of the difficulty of bounding
the complexity of the image of polyhedral sets by piecewise
linear systems. Guglielmi et al. (2017) extend Guglielmi and
Protasov (2013) to continuous-time switched linear systems by
using a time discretization of the system to provide lower bounds
on the convergence rate of the trajectories. We use a similar
approach for piecewise linear systems and show that the time
discretization provides a lower bound on the convergence rate of
the trajectories under bounded perturbations of the linear modes
of the system (Section 5).

2.2. Piecewise polynomial Lyapunov functions

Quadratic Lyapunov functions provide a universal template
to study the stability of linear systems (Antsaklis & Michel,
2006). However, they are conservative for switched or piece-
wise linear systems (Jungers, 2009). This limitation can be al-
leviated by considering polynomial functions of higher degree
(Papachristodoulou & Prajna, 2002) or piecewise quadratic func-
tions (Hassibi & Boyd, 1998; Johansson & Rantzer, 1998; Legat
et al., 2020). However, the computational complexity of the
polynomial Lyapunov functions grows rapidly with increasing
dimension of the system and degree of the polynomial. On the
other hand, for piecewise quadratic functions we need to define
the domain of the quadratic pieces which may result in a lot
of hyper-parameters. Therefore, these techniques are generally
restricted to systems of low dimension, although these systems
are not necessarily piecewise linear.

2.3. Data-based Lyapunov analysis

The idea of learning Lyapunov functions from data and veri-
fying the result has received a lot of attention from the control
community in recent years. As an early example, Topcu et al.
(2008) propose to learn a candidate Lyapunov function from sam-
pled trajectories and verify the result. Our approach falls more
specifically into the category of Counterexample-Guided Induc-
tive Synthesis (CeGIS), which consists in iteratively adding coun-
terexamples from a verification (aka. falsification) step. CeGIS
has been used in a wide range of contexts (e.g., Abate et al.,
2021; Ahmed et al., 2020; Chang et al., 2019; Dai et al., 2021;
Kapinski et al., 2014; Poonawala, 2021; Prabhakar & Soto, 2016;
Ravanbakhsh & Sankaranarayanan, 2019). Particularly relevant to
our work, Dai et al. (2021) search for neural-network Lyapunov
functions with ReLU activation functions, using Mixed-Integer
Linear Programming for the falsification; and Pola´ski (2000)
and Poonawala (2021) search for polyhedral Lyapunov functions,
using Linear Programming for the verification and updating the
domain of the linear pieces from the counterexamples. However,
both approaches lack guarantees of convergence or complexity.
Our work focuses on piecewise linear systems and polyhedral
Lyapunov functions. This allows us to avoid the use of SOS re-
laxations in favor of Linear Programming that lend themselves to
precise and efficient solvers. Furthermore, we introduce a ‘‘gap’’
(find a polyhedral Lyapunov function vs conclude that the system
is not robustly stable) in our formulation in order to provide
formal guarantees of termination. This approach was first intro-
duced in computer science, under the name of �-completeness,
to provide practical solutions to problems that are known to be
undecidable or intractable (Gao et al., 2012).

In a recent work (Berger & Sankaranarayanan, 2022), we pro-
vided a counterexample-guided method to compute polyhedral
Lyapunov functions with fixed number of linear pieces. In the
present work, we do not place a-priori bounds on the number
of linear pieces. This allows us to associate a linear piece to
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Fig. 1. Piecewise linear dynamics and candidate polyhedral Lyapunov function.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

each of the counterexamples, and thereby formulate the prob-
lem of candidate learning as a convex optimization problem.
This differs from the approach in the previous work, in which
we have to solve a Mixed-Integer Program (addressed with a
counterexample-guided branch-and-bound approach). Further-
more, the method presented here provides guarantees that if
it fails then no polyhedral Lyapunov function satisfying user-
specified limits on robustness exists for the underlying system.

3. Notation

k · k denotes a vector norm in Rd (e.g., the L1 norm), and
S = {x 2 Rd : kxk =} is the associated unit sphere. By extension,
k·k also denotes the matrix norm induced by k·k in Rd⇥d, defined
by kAk = max {kAxk : x 2 S}. k ·k⇤ denotes the dual norm of k ·k,
defined by kck⇤ = max {c>x : x 2 S} (e.g., if k · k is the L1 norm,
then k ·k⇤ is the L1 norm). B⇤ = {c 2 Rd : kck⇤  1} denotes the
unit ball associated to k · k.

All proofs can be found in the Appendix.

4. Problem statement

4.1. Piecewise linear systems

We study piecewise linear dynamical systems in continuous
time:

Definition 1. A (continuous-time) piecewise linear dynamical
systems is a system described by a finite set of modes Q , wherein
each mode q 2 Q is associated with a region Hq ✓ Rd that is a
closed polyhedral cone,1 and a transition matrix Aq 2 Rd⇥d. The
dynamics is given by the differential inclusion

⇠ 0(t) 2 F(⇠ (t)),

wherein F(x) = {Aqx : q 2 Q , x 2 Hq}.

The regions Hq are assumed to form a cover of the state
space Rd. However, they may overlap arbitrarily (i.e., they are
not required to have an intersection of measure 0); if they do
not overlap, then the system is deterministic, otherwise, it is
uncertain (i.e., trajectories starting from a given point might not
be unique).

Note that the set-valued function F in Definition 1 completely
describes the dynamics of the system. Therefore, in the following,
we will refer to this system as System F; the parameters Q , and
Hq and Aq for each q 2 Q , being implicit in the definition of F .

1 That is, Hq = {x 2 Rd : Mqx � 0} for some Mq 2 Rmq⇥d and mq 2 N.

Definition 2. An absolutely continuous function ⇠ : R�0 ! Rd

is a trajectory of System F if ⇠ 0(t) 2 F(⇠ (t)) for almost all t 2
R�0. The system is asymptotically stable if all trajectories converge
toward the origin.

Example 3 (Running Illustrative Example). Consider the piecewise
linear system described by Q = {1, 2}, H1 = R2, H2 = R⇥ R0,

A1 =


�0.2 1.0
�1.0 �0.2

�
and A2 =


0.01 1.0
�1.0 0.01

�
.

The vector field of the system is represented in Fig. 1-left. Note
that this system is uncertain. Throughout the paper, we will
prove that this system is asymptotically stable by computing a
polyhedral Lyapunov function for it.

4.2. Polyhedral Lyapunov functions

We aim to study the stability of System F using Lyapunov
analysis. Let us recall that a continuous function V : Rd ! R�0
is a Lyapunov function for System F if (i) V (x) = 0 , x = 0,
(ii) V is radially unbounded, and (iii) for every trajectory ⇠ with
⇠ (0) 6= 0, V decreases along ⇠ , i.e., 8 t > 0, V (⇠ (t)) < V (⇠ (0)). It
is well known that if System F admits a Lyapunov function, then
it is asymptotically stable (Khalil, 2002, Theorem 4.2).

In this paper, we look for positively homogeneous convex func-
tions, also called gauges, as Lyapunov functions.

Definition 4. A gauge is defined as the pointwise maximum of
a (possibly infinite) compact set of linear functions, i.e., V (x) =

maxc2V c>x, wherein V ✓ Rd is a compact set of coefficient
vectors.

With a small abuse of notation, given a gauge V , we let V

be the compact set of its coefficient vectors (note that V is not
uniquely defined, but this will not be an issue in this paper).
We also let Vmax = maxc2V kck⇤, and for all x 2 Rd, we let
V(x) = {c 2 V : V (x) = c>x} be the set of coefficient vectors
that are maximal at x.

Definition 5. A gauge V for which V is finite is called a polyhedral
function.

A sufficient condition for a gauge to be a Lyapunov function for
System F is as follows:

Proposition 6. A gauge V is a Lyapunov function for System F if
the following conditions hold:

(C1) 8 x 6= 0, V (x) > 0.
(C2) 8 x 6= 0, 8 v 2 F(x), 8 c 2 V(x), c>v < 0.

Although the conditions in Proposition 6 are not necessary for
a gauge V to be a Lyapunov function for System F , they become
necessary if we further require that V remains a Lyapunov func-
tion for small perturbations of System F , where perturbations of
the regions Hq and the matrices Aq are considered. This will be
formalized in the next section.

5. Properties of Lyapunov gauges

5.1. Eccentricity and robustness

We recast the conditions in Proposition 6 in a form that makes
explicit two features of Lyapunov gauges (LGs): the eccentricity
and the robustness to system perturbations.

3
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Proposition 7. A gauge V with Vmax > 0 satisfies the conditions
of Proposition 6 if and only if there are constants ✏ � 1 (called the
eccentricity), ⌧ > 0 (called the time step) and � 2 (0, 1) (called
the contraction rate) such that the following conditions hold:

(D1) 8 x 2 Rd, V (x) � 1
✏
Vmaxkxk.

(D2) 8 x 2 Rd, 8 v 2 F(x), V (x + ⌧v)  �V (x).

Remark 8. The smallest value of ✏ satisfying (D1) is equal to
the ratio of the largest radius of the 1-level set of V (max {kxk :

V (x) = 1}) by its smallest radius (min {kxk : V (x) = 1}), hence
the name eccentricity.2

Combined together, the parameters (✏, ⌧ , � ) give a measure
of the robustness of V as a Lyapunov function with respect to
perturbations of the vector field F , as defined below.

Definition 9 (Perturbed System). Given �1, �2 � 0, a (�1, �2)-
perturbation of System F is a piecewise linear system F

0 with set
of modes Q 0 = Q , regions H 0q satisfying H 0q ✓ {x0 : kx0 � xk 
�1kx0k, x 2 Hq} for each q 2 Q , and matrices A0q satisfying
kA0q � Aqk  �2 for each q 2 Q .

Let � = max {kAqk : q 2 Q }.

Theorem 10 (Sufficient Condition for Robust LG). Let V be a gauge
satisfying the conditions in Proposition 7. Let �1, �2 � 0 be such that
(2+ ⌧� )�1 + ⌧�2 < 1��

✏
(1� �1). Then, V is a Lyapunov function for

any (�1, �2)-perturbation of System F .

Theorem 11 (Necessary Condition for Robust LG). Let �1, �2 > 0.
Let V be a gauge. Assume that V is a Lyapunov function for any
(�1, �2)-perturbation of System F . Then, (D2) in Proposition 7 holds
with all ⌧ 2 (0, 1

�
) and � 2 (0, 1) that satisfy ⌧�

1�⌧�
< �1 and

� log(1� ⌧� )� ⌧� � log(� )  ⌧�2.

Remark 12. Note that the relations between ✏, ⌧ , � , �1 and �2
are independent of the dimension of the system and the number
of modes. Also, we observe that the parameters ✏, ⌧ and � are
invariant with respect to positive scaling of V . That is, if V satisfies
Proposition 7 with ✏, ⌧ and � , then so does the function 1

�
V for

any � > 0. Therefore, in the following, we restrict our attention
to gauges with Vmax  1, i.e., with V ✓ B⇤.

The relation between the parameters (⌧ , � ) and the robust-
ness of the Lyapunov function with respect to perturbations of
the system being established, we focus in the following of the
paper on finding Lyapunov gauges for System F with robustness
parameters (⌧ , � ).

5.2. Detection of non-robustness

Given a finite set of points X ✓ Rd and parameters ✏, ⌧ and
� , one can verify whether the conditions in Proposition 7 are
satisfied at the points in X by some gauge V . If this is not the case,
then one concludes that the system does not admit a Lyapunov
gauge with eccentricity ✏ and robustness parameters (⌧ , � ).

Proposition 13. Let X ✓ Rd be a finite set of points. Consider the
problem of finding a set of coefficient vectors VX = {cx : x 2 X} ✓ B⇤
(one coefficient vector for each point in X) such that 8 x 2 X,
8 v 2 F(x), 8 c 2 VX , c>x x � 1

✏
kxk, c>(x + ⌧v)  � c>x x and

2 Notions similar to the eccentricity, but without a proper name, have been
used in the literature on quadratic Lyapunov functions to refer to various ratios
of the eigenvalues of positive semidefinite matrices (e.g., Berger et al., 2022;
Kenanian et al., 2019).

kx + ⌧vk  � ✏c>x x. If the exists no such set of coefficient vectors,
then one concludes that the system does not satisfy the conditions
in Proposition 7 with ✏, ⌧ and � for any gauge.

Remark 14. The problem in Proposition 13 can be formulated as
a convex optimization problem with decision variables {cx : x 2
X} ✓ B⇤ (in fact, all constraints are linear, except possibly the
constraints cx 2 B⇤, depending on k · k). This optimization prob-
lem can be solved efficiently and accurately using for instance
interior-point algorithms (Boyd & Vandenberghe, 2004).

If the problem in Proposition 13 has a feasible solution VX ,
then the associated gauge VX will be called a candidate Lya-
punov gauge for System F , in the sense that it satisfies the
sufficient conditions of Proposition 6 at all points in X , but needs
to be verified for other points in Rd. Note that VX is a poly-
hedral function since VX is finite. This procedure of detecting
non-robustness and computing a candidate polyhedral Lyapunov
function, followed by verifying the candidate, will form the basis
of a counterexample-guided iterative process to compute polyhe-
dral Lyapunov functions for piecewise linear systems, described
in the next section.

Example 3 (Continued). Consider the system of Example 3, whose
vector field is represented in Fig. 1-left, and consider the set X
consisting in the black dots in Fig. 1-right. For ⌧ = 0.25 and each
x 2 X and v 2 F(x), the points x+⌧v are represented by blue dots
in Fig. 1-right. The yellow region represents the 1-sublevel set of a
candidate polyhedral Lyapunov function satisfying the conditions
of Proposition 13 with � = 0.9: indeed, we see that the blue
dots are inside the � -sublevel set of V , represented by the orange
curve.

6. Algorithm to compute polyhedral Lyapunov functions

The algorithm takes as input three parameters: an eccentricity
✏ > 0, a time step ⌧ > 0 and a contraction rate � > 0. The
algorithm returns a polyhedral Lyapunov function for the system,
or concludes that no Lyapunov gauge satisfying the conditions in
Proposition 7 with ✏, ⌧ and � exists for the system.

The algorithm is an iterative process that maintains a finite set
of points, called witnesses: X = {x1, . . . , xN} ✓ Rd. The witness set
is initialized to ;. Each step iterates between two algorithms in
succession:

• Detecting non-robustness and finding a candidate polyhe-
dral Lyapunov function, as explained in Section 5.2.

• Verifying the candidate polyhedral Lyapunov function, i.e.,
verifying whether the conditions in Proposition 6 are satis-
fied at all points. If the verification succeeds, we have our
desired polyhedral Lyapunov function. Otherwise, we get a
point (called a counterexample) where the candidate fails to
satisfy the Lyapunov conditions.

Thus, at the end of each step, there are three possible outcomes:
(a) no Lyapunov gauge satisfying the conditions in Proposition 7
with ✏, ⌧ and � exists for the system, and the algorithm stops
(or update the parameters); (b) the candidate polyhedral function
verifies the Lyapunov conditions, and the algorithm stops; or
(c) a new witness point is added to X . This process eventually
terminates, and we provide upper bounds on the total number of
iterations to termination.

In Section 5.2, we explained how to efficiently detect non-
robustness or compute a candidate polyhedral Lyapunov function.
In the next subsection, we explain how to verify this candidate
and compute a counterexample if the verification fails.

4
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6.1. Verification and falsification

This step relies on the following proposition, whose proof
follows directly from Proposition 6.

Proposition 15. Let V be a polyhedral Lyapunov function such that
8 x 6= 0, V (x) > 0. Consider the problem of finding a mode q 2 Q ,
a point x 2 Hq \ {0} and a coefficient vector c 2 V(x) such that
c>Aqx � 0. If there exist no such mode, point and coefficient vector,
then one concludes that V is a Lyapunov function for the system.

The above can be addressed as follows: given q 2 Q and c 2 V ,
consider the following optimization problem:

max c>Aqx
s.t. x 2 Hq ^ c>x = 1 ^ (8 c 0 2 V) c 0>x  1. (1)

The problem in Proposition 15 has a solution if and only if there
is c and q for which (1) has an optimal solution xc,q satisfying
c>Aqxc,q � 0. In this case, we choose as counterexample the point
xc,q for which c>Aqxc,q is the largest among all c and q.

Remark 16. Solving (1) amounts to solve a linear programs with
d variables and |V| + mq constraints (where mq is the number of
linear constraints describing Hq). This can be done very efficiently
and reliably using Linear Programming solvers.

It remains to explain how we ensure that the polyhedral
function V that is verified satisfies 8 x 6= 0, V (x) > 0. To do
this, we fix ⌘ 2 (0, ✏), and let V� ✓

1
✏
B⇤ be a finite set of

coefficient vectors such that 8 x 2 Rd, V�(x) � ⌘kxk. Then, given a
candidate polyhedral Lyapunov function VX , we let V be defined
by V = VX [ V�. This ensures that 8 x 2 Rd, V (x) � V�(x) � ⌘kxk.

Remark 17. Depending on the norm k · k and the ratio ⌘/✏,
the cardinality of V� may vary3; but in any case, this set is fixed
through all iterations of the algorithm.

Example 3 (Continued). Consider the system of Example 3, whose
vector field is represented in Fig. 1-left, and the candidate poly-
hedral Lyapunov function whose 1-sublevel set is represented in
Fig. 1-right. The red dot in Fig. 1-right is a counterexample found
by solving (1): indeed, we see that the flow direction according
to mode 2 is toward the exterior of the sublevel set.

6.2. Overall algorithm

The overall algorithm is described in Algorithm 1. The process
starts with an empty set of witnesses. Then, it enters a loop,
in which, at each iteration, the steps described in Sections 5.2
and 6.1 are performed sequentially: (i) from the current set
of witnesses, it tries to find a candidate polyhedral Lyapunov
function for the system with given eccentricity and robustness
parameters. If this is not feasible, the algorithm stops and outputs
fail; (ii) it checks whether the candidate function provides a
valid Lyapunov function for the system. If it is the case, then the
algorithm stops and outputs the candidate function. Otherwise,
it produces a counterexample, which is added to the witness set.
The algorithm then proceeds with the next iteration of the loop.

3 When k · k is the L1-norm, we can choose ⌘ = ✏ and V� with cardinality
2d.

Algorithm 1: Learning a polyhedral Lyapunov function.
Data: System F , eccentricity ✏ > 0, time step ⌧ > 0 and

contraction rate � .
Result: Polyhedral Lyapunov function V , or fail.
Let X0  ;

for k = 0, 1, . . . do
Compute a candidate polyhedral Lyapunov function Vk by
solving the problem in Proposition 13 with X = Xk

if infeasible then return fail
Find a counterexample xk for the candidate Vk by solving
the problem in Proposition 15 with V = Vk [ V�.

if infeasible then return Vk
Let Xk+1  Xk [ {xk}

7. Analysis of the algorithm

7.1. Termination and complexity

The algorithm is sound in the sense that if it terminates and
outputs a polyhedral function, then this function is a Lyapunov
function for the system (Proposition 15); otherwise, if it outputs
fail, then the system does not admit a Lyapunov gauge with
eccentricity ✏ and robustness parameters (⌧ , � ) (Proposition 13).

We show that the algorithm terminates and we bound the
number of steps to termination. The proof of termination exploits
the gap between the constraints that are enforced during the
candidate generation phase and the constraints that are checked
during the verification phase: namely, at the witness points,
the constraints enforced during the generation phase are stricter
(robust Lyapunov constraints) than the constraints checked at
these points during the verification phase. This implies that the
produced counterexample cannot be part of the current witness
set, and furthermore, its distance to the witness set, after nor-
malization, is bounded from below by a positive constant that
depends on the system and the parameters ✏, ⌧ and � .

Definition 18. Let X ✓ X 0 ✓ Rd \{0} and r � 0. We say that X 0 is
an r-inflation of X if 8 q 2 Q and 8 x0 2 X 0 \Hq, there is x 2 X \Hq
such that

�� x
kxk �

x0
kx0k

�� < r .

Let r =
1��

(2+⌧� )✏ , where � = max {kAqk : q 2 Q }.

Proposition 19. Let X ✓ Rd \ {0}. Let VX be a solution to the
problem in Proposition 13 and V = VX [ V�. Let X 0 ✓ Rd \ {0}
be an r-inflation of X. Then, 8 x0 2 X 0, 8 v0 2 F(x0) and 8 c 0 2 V(x0),
c 0>v0 < 0.

Corollary 20. Let Xk ✓ Xk+1 be two consecutive witness sets
generated during the execution of Algorithm 1. Then, Xk+1 is not an
r-inflation of Xk.

The proof is direct from Proposition 19 and the definition of
Xk+1 = Xk [ {xk}, wherein the counterexample xk violates the
condition of Proposition 15.

From Corollary 20, we derive the following upper bound on
the number of iterations of the algorithm. For every s > 0,
let Pack(s; S) denote the s-packing number of S, i.e., the largest
cardinality of a subset S ✓ S such that 8 x 2 S, 8 y 2 S, x 6= y
implies kx� yk � s.

Theorem 21 (Termination). Algorithm 1 terminates in at most
|Q | Pack(r; S) steps.

5
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The overall arithmetic complexity of Algorithm 1 is thus in
O(d↵(|Q | Pack(r; S))↵+2�+1), when using a convex optimization
solver whose complexity is in O(n↵m� ) with n the number of
variables and m the number of constraints.4 Note that Pack(r; S)
grows as O(r1�d).5 This is an upper bound on the worst-case
complexity; as we will see in the next section, the algorithm per-
forms much more efficiently than this bound on several practical
examples.

7.2. Choice of the parameters

The choice of the eccentricity ✏ can be driven by safety con-
siderations: e.g., one may want to ensure that if the system starts
in a state of norm 1, then the trajectories do not diverge to a
state of norm larger than ✏ before converging toward the origin.
The choice of the robustness parameters (⌧ , � ) are driven by
robustness considerations with respect to system perturbations:
e.g., if one believes that the system is stable under (�1, �2)-
perturbations, this provides lower bounds on the value of (⌧ , � )
according to Theorem 11. If the value of (�1, �2) is unknown, one
can use the following strategy to update (⌧ , � ) starting from some
initial guess (⌧0, �0): (⌧`+1, �`+1) = (⌧`/

p
↵, 1 � (1 � �`)/↵),

where ↵ > 1. One can check that, with this strategy, (⌧`, �`)
will eventually satisfy the conditions in Theorem 11, provided
�1, �2 > 0. Per Theorem 21, the number of iterations of the
algorithm increases by a factor ↵d�1 at each update of (⌧`, �`).
If ✏ is not fixed a priori neither, one can update it as ✏`+1 = ↵✏`,
thereby increasing the number of iterations of the algorithm by a
factor ↵2(d�1) at each update of (✏`, ⌧`, �`). Finally, note that, after
an update of the parameters, we do not need to reset the witness
set; however, it is not clear whether reusing the previous witness
set results in a significant speed-up of the algorithm.

8. Numerical experiments

We use the L1-norm for k ·k. The problems in Propositions 13
and 15 can then be formulated as Linear Programs. All computa-
tions were made on a laptop with processor Intel Core i7-7600u
and 16 GB RAM running Windows. We used GurobiTM 10.0, under
academic license, as linear optimization solver.

8.1. Example 3 (Finished)

Consider the system of Example 3. We want to show that the
system is asymptotically stable and that the trajectories starting
with norm ⇢ � 0 never reach a state with norm larger than 3⇢.
Therefore, we fix ✏ = 3. Then, to find parameters (⌧ , � ) that
allows us to prove stability of the system, we use the strategy
described in Section 7.2 with (⌧0, �0) = (1, 1) and ↵ = 4. After
two updates of the parameters, i.e., with ⌧2 = 1/4 and �2 = 1,
Algorithm 1 finds a polyhedral Lyapunov function for the system
in 32 steps (the steps are illustrated in Fig. 2).

In the process of updating (⌧ , � ), we also learn that the system
does not admit a polyhedral Lyapunov function with parameters
(✏, ⌧ , � ) = (3, 1/2, 1) (otherwise, the algorithm would have
found a polyhedral Lyapunov function after one update of the
parameters). Per Theorem 11, this implies that there exists a
(�1, �2)-perturbation of the system, with �1 < 1.5 and �2 < 0.633
for which there is a trajectory starting with norm 1 that reaches
a state with norm larger than 3.

4 For Linear Programs, ↵ = 2 and � = 1.5 using interior-point
methods (Ben-Tal & Nemirovski, 2001, p. 422).
5 For the L1-norm, Pack(r; S)  (2r�1 + 1)d�12d.

Fig. 2. Steps of the construction of a polyhedral Lyapunov function for the
system of Example 3, with ✏ = 3, ⌧ = 1/4 and � = 1. At each step
k = 1, . . . , 32, a polyhedral function Vk (yellow region), satisfying the conditions
of Proposition 13 at the witness set Xk (black dots), is computed. Then, the
algorithm checks whether it can find a counterexample xk (red dots). After 32
steps, the process has computed a polyhedral Lyapunov function for the system
(last plot). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

8.2. Benchmark: 2D uncertain linear system

This system, introduced by Zelentsovsky (1994), is described
by F(x) = {Apx : p 2 {0, ↵}} where

Ap :


0 1
�2 �1

�
+ p


0 0
�1 0

�
.

Zelentsovsky (1994) shows that the system with ↵ = 3.82
admits a quadratic Lyapunov function. Blanchini and Miani (1996)
provide a polyhedral Lyapunov function for the system with ↵ =

6. Xie et al. (1997) provide a piecewise quadratic function for the
system with ↵ = 6.2. Chesi et al. (2009) provide a polynomial
Lyapunov function of degree 20 for the system with ↵ = 6.8649.
Ambrosino et al. (2012) provide a polyhedral Lyapunov function
with 9694 vertices for the system with ↵ = 6.87.

Using Algorithm 1, we computed a polyhedral Lyapunov func-
tion for the system with ↵ = 6. For that, we fixed ✏ = 50 and
updated the parameters (⌧ , � ) using the strategy described in
Section 7.2 with (⌧0, �0) = (1, 1) and ↵ = 4. This led to the
feasible parameters ⌧6 = 1/64 and �6 = 1. The computation took
about 4 min (224 iterations), and found a polyhedral Lyapunov
functions with 228 linear pieces (see Fig. 3 (Left)). Finally, we
also applied our algorithm on the system with ↵ = 6.87. The
computation reached the time-out limit, set to 4 h, without
finding a polyhedral Lyapunov. Nevertheless, we found that the
system does not admit a polyhedral Lyapunov function with
parameters (✏, ⌧ , � ) = (50, 1/64, 1). From this, we can deduce
information about the stability of the system under perturbations
of the matrices by using Theorem 11.

Remark 22. Let us mention that the algorithms in the above
papers focus on uncertain linear systems, while our algorithm
also tackles piecewise linear systems. Another difference, e.g.,

6
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Fig. 3. Left. Polyhedral Lyapunov function for the system in Section 8.2. Right.
Polyhedral Lyapunov function for the system in Section 8.3. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Block-diagram of the mass–spring system in Section 8.3 actuated by a
ReLU-saturated PID controller. When the actuation force is saturated, an anti-
windup mechanism (in blue) counterbalances the accumulation of the error.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

with Ambrosino et al. (2012), is that the hyper-parameters in
our algorithm are directly related to meaningful properties of
the system, namely the existence of a Lyapunov gauge robust to
system perturbations.

8.3. Controlled mass–spring system

We consider a mass–spring system whose dynamics is de-
scribed by ẍ = �20x + u. We control this system with a PID
controller defined by u(t) = �Kiy(t) � Kpx(t) � Kdẋ(t), wherein
y(t) =

R t
0 x(s) ds, Ki = 440, Kp = 240 and Kd = 32. The force that

is applied on the mass can only be nonnegative. To counterbalance
the accumulation of the error when the input is negative, we add
an anti-windup mechanism to the system. The block-diagram of
the resulting system is depicted in Fig. 4. The dynamics of the
system is described by the following piecewise linear system:

ẏ = x, ẍ + Kdẋ + (20 + Kp)x + Kiy = 0, (2)
if Kdẋ + Kpx + Kiy  0;

ẏ = �10y + x, ẍ + 20x = 0, (3)
if Kdẋ + Kpx + Kiy � 0.

Remark 23. Since (3) is not stable, the system does not admit
a Lyapunov function symmetric around the origin (including any
polynomial Lyapunov function).

Using Algorithm 1, we computed a polyhedral Lyapunov func-
tion for this system. We used the parameters ✏ = 50, ⌧ =

1/32 and � = 1 (obtained by using the strategy described in
Section 7.2). The computation took 15 s (130 iterations) and
found a polyhedral Lyapunov function with 136 linear pieces (see
Fig. 3 (Right)).

8.4. Performance evaluation

We evaluate the performance of the process, in terms of
computation time and complexity of the outputted Lyapunov
function, as a function of the dimension of the system and the
stability margin of the linear modes.

Therefore, for d 2 {4, 5, . . . , 9}, we let U 2 Rd⇥d be a randomly
generated orthogonal matrix and define

⇧ = U11
>U>, 1 = [1, . . . , 1]> 2 Rd.

Then, for each ⌘ 2 {0.5, 0.05} and m 2 {1, 2, 4}, we define a
system with 2m modes as follows. For each i 2 {1, . . . ,m}, we
generate a random vector a 2 S and define the mode q = 2i� 1
by Hq = {x 2 Rd : a>x � 0} and Aq = ⇧ � (d + 1)I , and
define the mode q = 2i by Hq = {x 2 Rd : a>x  0} and
Aq = ⇧ � (d + ⌘)I . We fixed ✏ = 10, ⌧ = 1/8 and � = 1. We
used Algorithm 1 to compute a polyhedral Lyapunov function for
the system with these parameters. For each value of (d,m, ⌘), we
generated 10 different systems and measured the computation
time and number of iterations of the algorithm. The results are
reported in Fig. 5.

9. Extensions and future work

The approach can be readily extended to discrete-time piece-
wise linear systems. The differences are that a time step param-
eter ⌧ would not be needed and the verification part (Proposi-
tion 15) would account for the conditions of being a Lyapunov
function for discrete-time systems. Extension to hybrid linear
systems is also possible but the conditions that we impose on the
function to be a Lyapunov function might be conservative (e.g., if
the discrete transitions include the identity map, do we impose
a strict decrease of the Lyapunov function with respect to this
map?). One way to tackle this is to add dwell-time assumptions
on the system; this is an approach that we will consider in future
work, along with extensions to multiple Lyapunov functions. We
also plan to extend the approach to piecewise affine systems
and problems of safety verification, using invariant polytopes.
There are two main differences with the current approach to be
addressed: first, we can no longer assume that the counterexam-
ples are on the unit sphere; second, the property of decrease is
replaced by a property of invariance, in which only the points on
the boundary of the polytope must be pushed toward the interior
of the polytope.
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Appendix. Proofs

Proof of Proposition 6. (C1) implies that V (x) = 0 , x = 0.
Furthermore, since V is positively homogeneous, it follows that
V is radially unbounded. To prove that V decreases along the
trajectories of the system, we need the following:

Main result: There is ↵ > 0 such that 8 x 6= 0, 8 v 2 F(x), 8 c 2 V ,
if c>x � V (x)� ↵kxk, then c>v < 0.

Proof of the main result. For a proof by contradiction, assume that
it is not the case. Then, there is a sequence {(xk, ck, qk)}1k=0 ✓

S ⇥ V ⇥ Q such that 8 k 2 N, c>k x � V (xk) � 2�k, xk 2 Hqk and
c>k Aqkxk � 0. By compactness of S ⇥ V and finiteness of Q , and
taking a subsequence if necessary, there is (x, c, q) 2 S ⇥ V ⇥ Q
such that (xk, ck) ! (x, c) and 8 k 2 N, qk = q. Since Hq is

7
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Fig. 5. Average computation time and number of iterations over 10 samples with randomly generated systems, as described in Section 8.4. The vertical bars represent
the standard deviation over the 10 samples.

closed, it holds that x = limk xk 2 Hq. By continuity, it holds that
c>x� V (x) = limk c>k xk � V (xk) � 0, so c 2 V(x). Finally, it holds
that c>Aqx = limk c>k Aqxk � 0. This is a contradiction with (C2),
concluding the proof of the main result.

Let ⇠ be a trajectory of the system with ⇠ (0) 6= 0. We show
that V decreases along ⇠ . For that, let ↵ > 0 be as in the main
result above. Then, using the continuity of ⇠ , let T > 0 be such
that 8 t 2 [0, T ], 8 c 2 V(⇠ (T )), c>⇠ (t) � V (⇠ (t)) � ↵k⇠ (t)k. We
show that V (⇠ (T )) < V (⇠ (0)). Therefore, fix c 2 V(⇠ (T )). Then,
from the main result, it follows that 8 t 2 [0, T ], 8 v 2 F(⇠ (t)),
c>v < 0. Hence,

R T
0 c>⇠ 0(t) dt < 0, so that c>⇠ (T ) < c>⇠ (0).

Since c>⇠ (T ) = V (⇠ (T )) and c>⇠ (0)  V (⇠ (0)), we get that
V (⇠ (T )) < V (⇠ (0)). Note that T > 0 can be chosen independently
of ⇠ (0). Hence, the same argument can be applied for a trajectory
starting at ⇠ (T ). We conclude that 8 t > 0, V (⇠ (t)) < V (⇠ (0)). ⇤

Proof of Proposition 7. For the ‘‘if’’ direction, it is straightfor-
ward to see that (D1)–(D2) implies (C1)–(C2) in Proposition 6.

To prove the ‘‘only if’’ direction, assume that V satisfies (C1)–
(C2) in Proposition 6. Note that V is continuous since V is
bounded.

First, we show that there is ✏ � 1 such that (D1) holds. By
(C1) and V being continuous, there is ✏ � 1 such that 8 x 2 S,
V (x) � Vmax

✏
. Since V is positively homogeneous of degree 1, it

follows that 8 x 2 Rd, V (x) � Vmax
✏
kxk.

It remains to show that there are constants ⌧ > 0 and � 2
(0, 1) such that (D2) holds. For a proof by contradiction, assume
that it is not the case. Then, there is a sequence {(xk, ck, qk)}1k=0 ✓

S ⇥ V ⇥ Q such that 8 k 2 N, xk 2 Hqk and c>k (xk + 2�kAqkxk) �
(1� 4�k)V (xk). By compactness of S⇥ V and finiteness of Q , and
taking a subsequence if necessary, there is (x, c, q) 2 S ⇥ V ⇥ Q
such that (xk, ck) ! (x, c) and 8 k 2 N, qk = q. Since Hq is
closed, it holds that x = limk xk 2 Hq. By continuity, it holds that
c>x�V (x) = limk c>k xk�V (xk) � limk�4�kV (xk)�c>k 2�kAqxk = 0,
so c 2 V(x). Furthermore, 8 k 2 N, c>k Aqxk � �2�kV (xk), since
c>k xk  V (xk). Hence, by continuity, c>Aqx = limk c>k Aqxk �

limk�2�kV (xk) = 0. This is a contradiction with (C2), since c 2
V(x), concluding the proof. ⇤

Proof of Theorem 10. Let F 0 be a (�1, �2)-perturbation. Fix q 2 Q ,
x0 2 H 0q \ S and c 2 V(x0). Let x 2 Hq be such that kx0 � xk  �1.
Denote v0 = A0qx0 and v = Aqv. It holds that kv0 � vk  kAq(x0 �
x)k + k(A0q � Aq)x0k  ��1 + �2. Also, |c>(x0 � x)|  Vmax�1 and
|V (x0) � V (x)|  Vmax�1. Finally, kxk � 1 � �1. Thus, c>⌧v0 =

c>(x0+⌧v0)�V (x0)  c>(x+⌧v)�V (x)+Vmax(2�1+⌧��1+⌧�2) <
c>(x + ⌧v) � V (x) +

1��
✏

(1 � �1)Vmax  0, where the before-
last inequality comes from the assumption on (�1, �2) and the last
inequality from (D1)–(D2). Thus, (C2) in Proposition 6 is satisfied
for x0, q and c. Since x0, q and c were arbitrary, this concludes the
proof. ⇤

The following lemma will be used in the proof of Theorem 11
below.

Lemma 24. Let B 2 Rd⇥d be such that kB� Ik  ↵ < 1. Then, (i)
log(B) =

P
1

k=1(�1)
k+1 (B�I)k

k is well defined and satisfies elog(B) = B;
(ii) 8 t 2 [0, 1], ket log(B) � Ik  ↵

1�↵
; and (iii) k log(B) � B + Ik 

� log(1� ↵)� ↵.

Proof. (i) See Golub and Van Loan (2013, p. 541). (ii) From
eA�I =

P
1

k=1
Ak
k! , we get that keA�Ik  ekAk�1. Similarly, we get

that k log(B)k  � log(1�↵). Thus, ket log(B)� Ik  etk log(B)k �1 
ek log(B)k � 1  1

1�↵
� 1. (iii) Similar to (ii). ⇤

Proof of Theorem 11. Let (⌧ , � ) be as in the theorem. Fix q 2 Q
and x 2 Hq \ S. Denote A = Aq and ↵ = k⌧Ak  ⌧� . Let
A0 =

1
⌧
log(I + ⌧A) which exists since ↵ < 1 (Lemma 24i and

assumption on ⌧ ) and satisfies kA0 � Ak  1
⌧
(� log(1 � ↵) � ↵)

(Lemma 24iii). Let R(x) = {etA0x : t 2 [0, ⌧ ]}. By Lemma 24ii, it
holds that 8 y 2 R(x), ky�xk  ↵

1�↵
. Hence, there exists a (�1, �2)-

perturbation F
0 of F for which R(x) ✓ H 0q and A0q = A0 + � log(� )

⌧
I .

Since V is a Lyapunov function for the perturbed system, it holds

8
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that V ( 1
�
e⌧A0x) < V (x), that is, V (x + ⌧Ax) < �V (x), concluding

the proof. ⇤

Proof of Proposition 13. Let V satisfy the conditions in Proposi-
tion 7. Without loss of generality, assume that Vmax = 1. Hence,
V ✓ B⇤. For each x 2 X , let cx 2 V be such that c>x = V (x).
Then, by (D1)–(D2), it holds that 8 x 2 X , c>x x � 1

✏
kxk and

V (x + ⌧v)  � c>x x. Since VX ✓ V and 1
✏
kx + ⌧vk  V (x + ⌧v), it

follows that 8 x 2 X , 8 v 2 F(x), 8 c 2 VX , c>(x + ⌧v)  � c>x (x)
and kx + ⌧vk  � ✏c>x x. ⇤

Proof of Proposition 19. Let q 2 Q and x0 2 X 0\Hq. Let x 2 X\Hq
be such that kx̂ � x̂0k < r , wherein x̂ =

x
kxk and x̂0 =

x0
kx0k . Let

c 2 V(x0). Let v = Aqx̂ and v0 = Aqx̂0. We show that c>v0 < 0.
Note that kv � v0k = kAq(x̂ � x̂0)k  � r , |c>(x̂ � x̂0)|  r
and |V (x̂) � V (x̂0)|  r . Hence, c>⌧ x̂0 = c>(x̂0 + ⌧ x̂0) � V (x̂0) 
c>(x̂ + ⌧v) � V (x) + 2r + ⌧� r < c>(x̂ + ⌧v) � V (x) +

1��
✏
 0,

where the before-last inequality comes from the assumption on r
and the last inequality from the assumption on X and V� ✓

1
✏
B⇤.

Since x0, q and c were arbitrary, this concludes the proof. ⇤

Proof of Theorem 21. Assume that Algorithm 1 produces at least
K + 1 counterexamples x0, . . . , xK . For each k 2 {0, . . . , K }, let
qk 2 Q be such that xk 2 Hqk and minx2Xk\Hqk

�� x
kxk �

xk
kxkk

�� � r
(by Corollary 20, such a qk always exists). For each q 2 Q , let
XK # q = {xk : qk = q}. By the pigeonhole principle, there is q 2 Q
such that |XK # q| � (K +1)/|Q |. Fix such a q. It holds that for all
x, y 2 XK # q, if x 6= y then kx � yk � r . Thus, |XK # q| is upper
bounded by Pack(r; S). This proves that K+1  |Q | Pack(r; S). ⇤
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