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Abstract
Instrumental variable methods are among the most commonly used causal inference approaches to deal with 
unmeasured confounders in observational studies. The presence of invalid instruments is the primary concern 
for practical applications, and a fast-growing area of research is inference for the causal effect with possibly 
invalid instruments. This paper illustrates that the existing confidence intervals may undercover when the 
valid and invalid instruments are hard to separate in a data-dependent way. To address this, we construct 
uniformly valid confidence intervals that are robust to the mistakes in separating valid and invalid 
instruments. We propose to search for a range of treatment effect values that lead to sufficiently many 
valid instruments. We further devise a novel sampling method, which, together with searching, leads to a 
more precise confidence interval. Our proposed searching and sampling confidence intervals are uniformly 
valid and achieve the parametric length under the finite-sample majority and plurality rules. We apply our 
proposal to examine the effect of education on earnings. The proposed method is implemented in the R 
package RobustIV available from CRAN.
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1 Introduction
Unmeasured confounders are a major concern for causal inference with observational studies. The 
instrumental variable (IV) method is one of the most commonly used causal inference approaches 
to deal with unmeasured confounders. The IVs are required to satisfy three identi!cation condi-
tions: conditioning on the baseline covariates, 

(A1) the IVs are associated with the treatment;
(A2) the IVs are independent of the unmeasured confounders;
(A3) the IVs have no direct effect on the outcome.

The main challenge of IV-based methods is identifying instruments satisfying (A1), (A2), and (A3) 
simultaneously. Assumptions (A2) and (A3) are crucial for identifying the causal effect as they as-
sume that the IVs can only affect the outcome through the treatment. However, assumptions (A2) 
and (A3) may be violated in applications and cannot even be tested in a data-dependent way. We 
de!ne an IV as ‘invalid’ if it violates assumptions (A2) or (A3). If an invalid IV is mistakenly taken 
as valid, it generally leads to a biased estimator of the causal effect. A fast-growing literature is to 
conduct causal inference with possibly invalid IVs (e.g., Bowden et al., 2015, 2016; Fan & Wu, 
2020; Guo et al., 2018; Kang et al., 2020, 2016; Kolesár et al., 2015; Tchetgen et al., 2021; 
Windmeijer et al., 2019). Many of these works are motivated by Mendelian Randomization stud-
ies using genetic variants as IVs (Burgess et al., 2017). The adopted genetic variants can be invalid 
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since they may affect both treatment and outcome due to the pleiotropy effect (Davey Smith & 
Ebrahim, 2003).

The current paper focuses on the linear outcome model with heteroscedastic errors and multiple 
possibly invalid IVs. Under this multiple IV framework, the effect identi!cation requires extra condi-
tions, such as the majority rule (Kang et al., 2016) and plurality rule (Guo et al., 2018), assuming that a 
suf!cient proportion of IVs are valid, but the validity of any IV is unknown a priori. The existing 
works (e.g., Guo et al., 2018; Kang et al., 2016; Windmeijer et al., 2019, 2021) leveraged the majority 
and plurality rules to select valid IVs in a data-dependent way. The selected valid IVs were used for the 
following-up causal inference, with the invalid IVs being included as the baseline covariates. However, 
there are chances that we make mistakes in separating valid and invalid IVs. Certain invalid IVs can be 
hard to detect in applications with the given amount of data. We refer to such invalid IVs as ‘locally 
invalid IVs’ and provide a formal de!nition in De!nition 1. In Section 3, we demonstrate that, when 
there exist locally invalid IVs, the existing inference methods TSHT (Guo et al., 2018) and CIIV
(Windmeijer et al., 2021) may produce unreliable con!dence intervals, where TSHT is shorthanded 
for two stage hard thresholding and CIIV is shorthanded for con!dence interval method for selecting 
valid IVs.

The current paper proposes uniformly valid con!dence intervals (CIs) robust to IV selection er-
ror. To better accommodate !nite-sample inferential properties, we introduce the !nite-sample 
majority and plurality rule in Conditions 3 and 4, respectively. We start with the !nite-sample ma-
jority rule and explain the searching idea under this setting. For every value of the treatment effect, 
we implement a hard thresholding step to decide which candidate IVs are valid. We propose to 
search for a range of treatment effect values such that the majority of candidate IVs can be taken 
as valid. We further propose a novel sampling method to improve the precision of the searching CI. 
For the plurality rule setting, we !rst construct an initial estimator V̂ of the set of valid IVs and then 
apply the searching and sampling method over V̂. Our proposed searching CI works even if V̂ does 
not correctly recover the set of valid IVs.

Our proposed searching and sampling CIs are shown to achieve the desired coverage under the 
!nite-sample majority or plurality rule. The CIs are uniformly valid in the sense that the coverage is 
guaranteed even in the presence of locally invalid IVs. We also establish that the searching and 
sampling CIs achieve the 1/

ÅÅ
n
p

length. The proposed CIs are computationally ef!cient as the 
searching method searches over one-dimension space, and we only resample the reduced-form es-
timators instead of the entire data.

We discuss other related works on invalid IVs in the following. Kang et al. (2020) proposed the 
union CI, which takes a union of intervals being constructed by a given number of valid IVs and 
passing the Sargan test (Sargan, 1958). The union CI requires an upper bound for the number of 
invalid IVs, while our proposed CI does not rely on such information. Our proposed searching 
and sampling CIs are typically much shorter and computationally more ef!cient than the union
CI. Different identi!ability conditions have been proposed to identify the causal effect when the 
IV assumptions (A2) and (A3) fail to hold. Bowden et al. (2015) and Kolesár et al. (2015) assumed 
that the IVs’ direct effect on the outcome and the IVs’ association with the treatment are nearly or-
thogonal. In addition, there has been progress in identifying the treatment effect when all IVs are 
invalid; for instance, Lewbel (2012), Tchetgen et al. (2021), and Liu et al. (2020) leveraged hetero-
scedastic covariance of regression errors, while Guo and Bühlmann (2022) relied on identifying non-
linear treatment models with machine learning methods. Goh and Yu (2022) emphasized the 
importance of accounting for the uncertainty of choosing valid IVs by the penalized methods 
(Kang et al., 2016) and proposed a Bayesian approach to construct a credible interval with possibly 
invalid IVs. However, no theoretical justi!cation exists for this credible interval being a valid CI. In 
Mendelian Randomization studies, much progress has been made in inference with summary statis-
tics, which is not the main focus of the current paper; see Bowden et al. (2015, 2016) and Zhao et al. 
(2020) for examples. In the  Generalized Method of Moments setting, Liao (2013), Cheng and Liao 
(2015), and Caner et al. (2018) leveraged a set of prespeci!ed valid moment conditions for the model 
identi!cation and further tested the validity of another set of moment conditions. The current paper 
is entirely different in the sense that there is no prior knowledge of the validity of any given IV.

The construction of uniformly valid CIs after model selection is a major focus in statistics under 
the name of post-selection inference. Many methods (Berk et al., 2013; Cai & Guo, 2017; 
Chernozhukov et al., 2015; Javanmard & Montanari, 2014; Lee et al., 2016; Leeb & Pötscher, 
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2005; van de Geer et al., 2014; Xie & Wang, 2022; Zhang & Zhang, 2014) have been proposed, 
and the focus is on (but not limited to) inference for regression coef!cients after some variables or 
submodels are selected. This paper considers a different problem, post-selection inference for 
causal effect with possibly invalid instruments. To our best knowledge, this problem has not 
been carefully investigated in the post-selection inference literature. Furthermore, our proposed 
sampling method differs from other existing post-selection inference methods.

Notations. For a set S and a vector x ∈ R p, Sc denotes the complement of S, |S| denotes the car-
dinality of S, and xS is the subvector of x with indices in S. For sets B ⊂ A, we de!ne A\B = A ∩ Bc. 
The ̀ q norm of a vector x is de!ned as kxkq = (

P p
l=1 |xl|q)

1
q for q ≥ 0 with kxk0 = |{1 ≤ l ≤ p : xl ≠ 

0}| and kxk∞ = max1≤l≤p |xl|. We use 0q and 1q to denote the q-dimension vector with all entries 
equal to 0 and 1, respectively. For a matrix X, Xi·, X·j, and Xij are used to denote its i-th row, j-th 
column, and (i, j) entry, respectively. For a sequence of random variables Xn indexed by n, we use 
Xn!dX to denote that Xn converges to X in distribution. We use c and C to denote generic positive 
constants that may vary from place to place. For two positive sequences an and bn, an ≲ bn means 
that 9C > 0 such that an ≤ Cbn for all n; an ≍ bn if an ≲ bn and bn ≲ an, and an ≪ bn if 
lim supn!∞an/bn = 0. For a matrix A, we use kAk2 and kAk∞ to denote its spectral and element- 
wise maximum norm, respectively. For a symmetric matrix A, we use Ȝmax(A) and Ȝmin(A) to de-
note its maximum and minimum eigenvalues, respectively.

2 Models and reduced-form estimators
We consider the i.i.d. data {Yi, Di, Xi·, Zi·}1≤i≤n, where Yi ∈ R, Di ∈ R, Xi· ∈ Rpx , and Zi· ∈ Rpz 

denote the outcome, the treatment, the baseline covariates, and candidate IVs, respectively. We 
consider the following outcome model with possibly invalid IVs (Kang et al., 2016; Small, 2007),

Yi = Diȕ⇤ + Z⊤
i·ʌ
⇤ + X⊤

i·׋
⇤ + ei with E(eiZi·) = 0 and E(eiXi·) = 0, (1) 

where ȕ⇤ ∈ R denotes the treatment effect, ʌ⇤ ∈ Rpz , and ׋⇤ ∈ Rpx . We set the !rst element of Xi· as 
the constant 1. If the IVs satisfy (A2) and (A3), this leads to ʌ⇤ = 0 in (1). A nonzero vector ʌ⇤ indicates 
that the IVs violate the classical IV assumptions (A2) and (A3); see Figure 1 for an illustration.

We consider the association model for the treatment Di,

Di = Z⊤
i· Ȗ
⇤ + X⊤

i·ȥ
⇤ + įi with E(įiZi·) = 0 and E(įiXi·) = 0. (2) 

The model (2) can be viewed as the best linear approximation of Di by Zi· and Xi· instead of a cas-
ual model. In (2), Ȗ⇤j ≠ 0 indicates that the j-th IV satis!es assumption (A1). Due to unmeasured 
confounders, ei and įi can be correlated, and the treatment Di is endogeneous with E(Diei) ≠ 0.

Following Kang et al. (2016), we discuss the causal interpretation of the model (1) and explain 
why ʌ⇤ ≠ 0 represents the violation of assumptions (A2) and (A3). For two treatment values 
d, d0 ∈ R and two realizations of IVs z, z0 ∈ Rpz , de!ne the following potential outcome model:

Y(d0,z0)
i − Y(d,z)

i = (d0 − d)ȕ⇤ + (z0 − z)⊤ț⇤ and E(Y(0,0)
i ∣ Zi·, Xi·) = Z⊤

i·Ș
⇤ + X⊤

i·׋
⇤, 

where ȕ⇤ ∈ R is the treatment effect, ț⇤, Ș⇤ ∈ Rpz , and ׋⇤ ∈ Rpx . As illustrated in Figure 1, ț⇤j ≠ 0 
indicates that the j-th candidate IV has a direct effect on the outcome, which violates the assump-
tion (A3); Șj ≠ 0 indicates that the j-th candidate IV is associated with the unmeasured confounder, 

which violates assumption (A2). Under the consistency condition Yi = Y(Di,Zi·)
i , the above potential 

outcome model implies (1) with the invalidity vector ʌ⇤ = ț⇤ + Ș⇤ and 
ei = Y(0,0)

i − E(Y(0,0)
i ∣ Zi·, Xi·).

We de!ne the set S of relevant instruments and the set V of valid instruments as

S = {1 ≤ j ≤ pz : Ȗ⇤j ≠ 0} and V = {j ∈ S : ʌ⇤j = 0}. (3) 

The IVs belonging to S satisfy the IV assumption (A1). The set V is a subset of S and the IVs be-
longing to V satisfy the classical IV assumptions (A1)–(A3) simultaneously.
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We now review the identi!cation strategy under models (1) and (2). We plug in the treatment 
model (2) into the outcome model (1) and obtain the reduced-form model,

Yi = Z⊤
i·ī
⇤ + X⊤

i·Ȍ
⇤ + i׫ with E(Zi·׫i) = 0, E(Xi·׫i) = 0,

Di = Z⊤
i· Ȗ⇤ + X⊤

i·ȥ⇤ + įi with E(Zi·įi) = 0, E(Xi·įi) = 0,
(4) 

where ī⇤ = ȕ⇤Ȗ⇤ + ʌ⇤ ∈ Rpz , Ȍ⇤ = ȕ⇤ȥ⇤ + ⇤׋ ∈ Rpx , and ׫i = ȕ⇤įi + ei. We shall devise our methods 
under the model (4), which is induced by the models (1) and (2).

Since Zi· and Xi· are uncorrelated with ׫i and įi, we can identify the reduced-form parameters ī⇤
and Ȗ⇤ in (4). However, since ʌ⇤ ≠ 0, the identi!cation of ȕ⇤ through solving the equation ī⇤ = 
ȕ⇤Ȗ⇤ + ʌ⇤ ∈ Rpz requires extra assumptions. Kang et al. (2016) and Bowden et al. (2016) proposed 
the following majority rule to identify ȕ�for ʌ⇤ ≠ 0.

Condition 1 (Population Majority Rule). More than half of the relevant IVs are valid; 
that is, |V| > |S|/2, where V and S are de!ned in (3).

Condition 1 requires that more than half of the relevant IVs are valid but does not directly re-
quire the knowledge of V. For the j-th IV, we may identify the effect as ȕ[j] = ī⇤j /Ȗ⇤j . If the j-th IV is 
valid, ȕ[j] = ȕ⇤; otherwise, ȕ[j] ≠ ȕ⇤. Under Condition 1, ȕ⇤ can be identi!ed using the majority of 
{ȕ[j]} j∈S. Guo et al. (2018) and Hartwig et al. (2017) proposed the following plurality rule as a 
weaker identi!cation condition.

Condition 2 (Population Plurality Rule). The number of valid IVs is larger than the num-
ber of invalid IVs with any given invalidity level Ȟ ≠ 0, that is,

|V| > max
Ȟ≠0

I Ȟ| | with I Ȟ = j ∈ S : ʌ⇤j /Ȗ
⇤
j = Ȟ

n o
, 

where the set V of valid IVs is de!ned in (3).

The term ʌ⇤j /Ȗ⇤j represents the invalidity level: ʌ⇤j /Ȗ⇤j ≠ 0 indicates that the j-th IV violates as-
sumptions (A2) and (A3). I Ȟ� denotes the set of all IVs with the same invalidity level Ȟ. Note 
that V = I0. Under the plurality rule, ȕ⇤ can be identi!ed using the largest cluster of {ȕ[j]} j∈S . 
We refer to Conditions 1 and 2 as population identi!cation conditions since they are used to iden-
tify ȕ⇤ with an in!nite amount of data. We will propose !nite-sample versions of Conditions 1 and 
2 in Conditions 3 and 4, respectively.

We now present the data-dependent estimators of Ȗ⇤ and ī⇤ in the model (4). De!ne p = px + pz, 
W = (Z, X) ∈ Rn×p, and Ȉ̂ = 1

n

Pn
i=1 Wi·(Wi·)⊤. We estimate Ȗ⇤ and ī⇤ by the Ordinary Least 

Squares (OLS) estimators, de!ned as

(ī̂⊤, Ȍ̂⊤)⊤ = (W⊤W)−1W⊤Y and (Ȗ̂⊤, ȥ̂⊤)⊤ = (W⊤W)−1W⊤D. (5) 

Figure 1. Illustration of (A2) and (A3) being violated in the model (1) with ʌ⇤ = ț⇤ + Ș⇤.
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Under regularity conditions, as n!∞, the OLS estimators satisfy

ÅÅ
n
p ī̂ − ī⇤

Ȗ̂ − Ȗ⇤

✓ ◆
!d N 0, Cov

ˇ �
with Cov = Vī C

C⊤ VȖ

✓ ◆
, (6) 

where Vī ∈ Rpz×pz , VȖ ∈ Rpz×pz , and C ∈ Rpz×pz are explicitly de!ned in Online Supplementary 
Material, Lemma 1 in the supplement. De!ne the residues ̂׫i = Yi − Z⊤

i· ī̂ − X⊤
i· Ȍ̂�and į̂i = Di − 

Z⊤
i· Ȗ̂ − X⊤

i· ȥ̂�for 1 ≤ i ≤ n. We estimate Vī, VȖ, and C in (6) by

V̂ī = Ȉ̂−1 1
n

Xn

i=1

2̂׫
i Wi·W⊤

i·

 !

Ȉ̂−1

" #

1:pz,1:pz

, V̂Ȗ = Ȉ̂−1 1
n

Xn

i=1

į̂2
i Wi·W⊤

i·

 !

Ȉ̂−1

" #

1:pz,1:pz

,

Ĉ = Ȉ̂−1 1
n

Xn

i=1

⊤iį̂iWi·Ŵ׫
i·

 !

Ȉ̂−1

" #

1:pz,1:pz

,

(7) 

where for a matrix A ∈ Rp×p, we use A1:pz,1:pz to denote the pz × pz submatrix containing the !rst 
pz rows and columns of A. The variance estimators in (7) are robust to the heteroskedastic errors 
and referred to as the sandwich estimators (Eicker, 1967; Huber, 1967); see Chapter 4.2.3 of 
Wooldridge (2010) for details. We use the OLS estimators in (5) and the sandwich estimators 
in (7) as a prototype to discuss our proposed methods. Our proposed methods are effective for 
any reduced-form estimators satisfying (6). In Online Supplementary Material, Section A.3 in 
the supplement, we consider the high-dimensional setting with p > n and construct the debiased 
Lasso estimators ī̂�and Ȗ̂�satisfying (6).

3 IV selection errors and nonuniform inference
In this section, we demonstrate that even if the majority rule (Condition 1) or plurality rule 
(Condition 2) holds, the CIs by TSHT (Guo et al., 2018) and CIIV (Windmeijer et al., 2021) may 
be unreliable. The main idea of Guo et al. (2018) and Windmeijer et al. (2021) is to estimate V by a 
set estimator V̂ and then identify ȕ⇤ through the following expression or its weighted version:

ȕ(V̂) =
X

j∈V̂
ī⇤jȖ
⇤
j/
X

j∈V̂
(Ȗ⇤j )

2. (8) 

When there are no selection errors (i.e., V̂ = V), we have ȕ(V̂) = ȕ⇤. The validity of the CIs by TSHT
and CIIV requires V̂ to recover V correctly. However, there are chances to make mistakes in esti-
mating V in !nite samples, and the CIs by TSHT and CIIV are unreliable when invalid IVs are in-
cluded in V̂. The IV selection error leads to a bias in identifying ȕ⇤ with ȕ(V̂). Even if V̂ used in (8) is 
selected in a data-dependent way, the target causal effect ȕ⇤ is !xed, which is a main difference 
from the post-selection inference literature (e.g., Berk et al., 2013; Lee et al., 2016; Leeb & 
Pötscher, 2005). We provide more detailed discussions in Online Supplementary Material, 
Section A.1 in the supplement.

In the following, we de!ne ‘locally invalid IVs’ as invalid IVs that are hard to be separated from 
valid IVs with a given amount of data. For j, k ∈ S, de!ne

T j,k := min {T0
j,k, T0

k,j} with T0
j,k =

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1
n

R[j]
k,k/[Ȗ⇤k]2 + R[j]

j,j/[Ȗ⇤j ]2 − 2R[j]
j,k/[Ȗ⇤kȖ

⇤
j ]

⇣ ⌘r
, (9) 

where R[j] = Vī + (ȕ[j])2VȖ − 2ȕ[j]C and ȕ[j] = ī⇤j /Ȗ⇤j . As shown in Proposition 2, if the absolute dif-

ference between ʌ⇤j /Ȗ⇤j and ʌ⇤k/Ȗ
⇤
k for j, k ∈ S is above 2

ÅÅÅÅÅÅ
log n

p
· T j,k, then we can tell that the j-th 

and k-th IVs have different invalidity levels. Particularly, the term Ȗ⇤kT0
j,k represents the standard 
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error of estimating ʌ⇤k by ī̂k − Ȗ̂kȕ̂
[j], where ȕ̂[j] = ī̂j/Ȗ̂j denotes the causal effect estimator by assum-

ing the j-th IV to be valid. By symmetry, Ȗ⇤j T0
k,j denotes the standard error of estimating ʌ⇤j by 

ī̂j − Ȗ̂jȕ̂
[k]. We now formally de!ne locally invalid IVs.

De!nition 1 (Locally invalid IV). For j ∈ S, the j-th IV is locally invalid if

0 < |ʌ⇤j /Ȗ⇤j | < sj(n) with sj(n) := 2
ÅÅÅÅÅÅ
log n

p
· max

k∈V
|T j,k|.

where T j,k is de!ned in (9).

The de!nition of locally invalid IVs depends on the invalidity level ʌ⇤j /Ȗ⇤j and the separation level 
sj(n), which stands for the uncertainty level in separating the j-th IV and valid IVs. We show in 
Proposition 2 that the j-th IV, if invalid, can be separated from valid IVs if |ʌ⇤j /Ȗ⇤j | ≥ sj(n). The sep-
aration level sj(n) is of the order 

ÅÅÅÅÅÅÅÅÅ
log n/n

p
if all of {Ȗ⇤j } j∈S are constants. The large sample size en-

hances the power of detecting invalid IVs. For a suf!ciently large n, the set of locally invalid IVs 
becomes empty since sj(n)! 0. De!nition 1 is related to the local violation of IV exogeneity as-
sumptions and valid moment conditions studied in Caner et al. (2018), Berkowitz et al. (2012), 
Guggenberger (2012), and Hahn and Hausman (2005).

The theoretical results of TSHT (Guo et al., 2018) or CIIV (Windmeijer et al., 2021) essentially 
assume that there are no locally invalid IVs; see Assumption 8 in Guo et al. (2018). However, the 
absence of locally invalid IVs may not properly accommodate real data analysis with a !nite sam-
ple. For a given sample size n, there are chances that an invalid IV with |ʌ⇤j /Ȗ⇤j | < sj(n) is taken as 
valid by mistake. We now consider a numerical example and demonstrate that the coverage levels 
of CIs by TSHT and CIIV may be below the nominal level when locally invalid IVs exist.

Example 1 (Setting S2 in Section 7). For the models (1) and (2), set Ȗ⇤ = 0.5 · 110 and 
ʌ⇤ = (0⊤

4 , Ĳ/2, Ĳ/2, − 1/3, − 2/3, − 1, − 4/3)⊤. The plurality rule is satis!ed 
with |V| = 4 > maxv≠0 |Iv| = 2. We vary Ĳ� across {0.025, 0.05, 0.075, 
0.1, 0.2, 0.3, 0.4, 0.5}. sj(n) for j = 5, 6 in De!nition 1 takes the value 0.96 
for n = 500 and 0.53 for n = 2,000.

In this example, the !fth and sixth IVs (with a small Ĳ) are locally invalid IVs, which are hard to 
detect for n = 500, 2,000. The empirical coverage is reported in Figure 2. For a small n and Ĳ, the 
estimated sets V̂ by TSHT and CIIV often contain locally invalid IVs, and the coverage levels of 
TSHT and CIIV are below 95%. There are nearly no locally invalid IVs for n = 2,000 and 
Ĳ = 0.5, and the CIs by TSHT and CIIV achieve the nominal level 95%. For Ĳ = 0.1, with n increas-
ing from 500 to 2,000, the !fth and sixth IVs may still be included in V̂. Consequently, the bias 
due to the locally invalid IVs remains unchanged, and the empirical coverage levels of TSHT and 
CIIV decrease since the standard errors get smaller with a larger n. In contrast, our proposed 
sampling CI in Algorithm 3 and the Union interval in Kang et al. (2020) achieve the desired 
coverage at the expense of wider intervals. Our proposed sampling CIs are signi!cantly shorter 
than the Union intervals.

We introduce an oracle bias-aware CI as the benchmark when IV selection errors exist. The or-
acle bias-aware CI serves as a better benchmark than the oracle CI assuming the knowledge of V
since it accounts for the IV selection error. For the TSHT estimator ȕ̂�and its standard error SE(ȕ̂), 
we assume (ȕ̂ − ȕ⇤)/SE(ȕ̂)!dN(b, 1) with b denoting the asymptotic bias. Following (7) in 
Armstrong et al. (2020), we leverage the oracle knowledge of |Eȕ̂ − ȕ⇤| and form the oracle 
bias-aware CI as

ȕ̂ − Ȥ, ȕ̂ + Ȥ
ˇ �

with Ȥ = ŜE(ȕ̂) ·
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
cvĮ(|Eȕ̂ − ȕ⇤|2/ŜE2(ȕ̂))

q
, (10) 

where ŜE(ȕ̂) is the empirical standard error computed over 500 simulations and cvĮ(B2) is the 1 − Į�
quantile of the Ȥ2 distribution with 1 degree of freedom and noncentrality parameter B2. In 
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Figure 2, the oracle bias-aware CI achieves the desired coverage, and the sampling CI has a com-
parable length to the oracle bias-aware CI.

4 Searching and sampling: robust inference methods under majority rule
In this section, we focus on the majority rule setting and generalize the proposed methods to the 
plurality rule in Section 5. Our proposed procedure consists of two stages as an analogy to TSLS. 
We !t the treatment model in the !rst stage and select strong IVs; see Section 4.1. In the second 
stage, we propose novel searching and sampling CIs in Sections 4.2–4.4, which are robust to 
the mistakes in separating valid and invalid IVs.

4.1 First-stage selection and the finite-sample majority rule
Following Guo et al. (2018), we estimate S by applying the !rst-stage hard thresholding (Donoho 
& Johnstone, 1994) to the reduced-form estimator Ȗ̂�de!ned in (5),

Ŝ = 1 ≤ j ≤ pz : |Ȗ̂j| ≥
ÅÅÅÅÅÅ
log n

p
·

ÅÅÅÅÅÅÅ
V̂Ȗ

jj/n
q⇢ �

, (11) 

with V̂Ȗ�de!ned in (7). The main purpose of (11) is to estimate the set of relevant IVs and screen out 
IVs weakly associated with the treatment. The term 

ÅÅÅÅÅÅ
log n

p
is introduced to adjust for the multi-

plicity of testing pz hypothesis; see more discussions in Remark 1. The screening step in (11) guar-
antees the robustness of our proposal when some IVs are weakly associated with the treatment. 
With a high probability, our estimated set Ŝ in (11) belongs to S and contains the set Sstr of 

Figure 2. Empirical coverage and average lengths for Example 1 with Ĳ�varying across 
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}. TSHT, CIIV, and Union stand for the CIs by Guo et al. (2018), Windmeijer 
et al. (2021), and Kang et al. (2020), respectively. OracleBA stands for the oracle bias-aware CI in (10). Sampling
represents our proposed sampling CI in Algorithm 3.
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strongly relevant IVs, de!ned as

Sstr = 1 ≤ j ≤ pz : Ȗ⇤j
���

��� ≥ 2
ÅÅÅÅÅÅ
log n

p
·

ÅÅÅÅÅÅÅ
VȖ

jj/n
qn o

with VȖ defined in (6). (12) 

The set Sstr contains the j-th IV if its individual strength |Ȗ⇤j | is well above its estimation accuracy 
ÅÅÅÅÅÅÅ
VȖ

jj/n
q

. The factor 2 in (12) ensures that the individual IV strength is suf!ciently large such that 

the j-th IV can be included in the set Ŝ de!ned in (11); see more detailed discussion in Online 
Supplementary Material, Section A.2 in the supplement.

We now modify Condition 1 to accommodate the !nite-sample uncertainty.

Condition 3 (Finite-sample Majority Rule). More than half of the relevant IVs are 
strongly relevant and valid, that is, |V ∩ Sstr| > |S|/2, where S and V are de-
!ned in (3) and Sstr is de!ned in (12).

When the sample size n is small, Condition 3 is slightly stronger than Condition 1. When n!∞ 
and the IV strengths {Ȗ⇤j }1≤j≤pz 

do not change with n, the set Sstr converges to S and Condition 3 is 
asymptotically the same as Condition 1.

Remark 1 There are other choices of the threshold level in (11). We can replace 
ÅÅÅÅÅÅ
log n

p
in 

(11) and (12) by any f (n) satisfying f (n)!∞ with n!∞ and 
f (n) >

ÅÅÅÅÅÅÅÅÅ
2 log pz

p
. Guo et al. (2018) used f (n) =

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2.01 log max {n, pz}

p
, which 

is applicable in both low and high dimensions. In Online Supplementary 
Material, Section B.1 in the supplement, we consider the settings with weak 
IVs and demonstrate that our proposed methods have nearly the same per-
formance with both the thresholds in (11) and that in Guo et al. (2018).

4.2 The searching confidence interval
In the following, we restrict our attention to the estimated set Ŝ of relevant IVs and leverage 
Condition 3 to devise the searching CI for ȕ⇤. The main idea is to search for ȕ�values that lead 
to the majority of the instruments being detected as valid. The searching idea is highly relevant 
to the Anderson–Rubin test (Anderson & Rubin, 1949) for the weak IV problem, which searches 
for a range of ȕ�values leading to a suf!ciently small Ȥ2 test statistic; see Remark 2 for more 
discussions.

For any given ȕ ∈ R, we apply the relation ī⇤j = ȕ⇤Ȗ⇤j + ʌ⇤j and construct the initial estimator of ʌ⇤j 
as ī̂j − ȕ Ȗ̂j. The estimation error of ī̂j − ȕ Ȗ̂j is decomposed as

(ī̂j − ȕ Ȗ̂j) − ʌ⇤j = ī̂j − ī⇤j − ȕ( Ȗ̂j − Ȗ⇤j ) + (ȕ⇤ − ȕ)Ȗ⇤j . (13) 

When ȕ = ȕ⇤, the above estimation error is further simpli!ed as ī̂j − ī⇤j − ȕ(Ȗ̂j − Ȗ⇤j ). We quantify 
the uncertainty of {ī̂j − ī⇤j − ȕ(Ȗ̂j − Ȗ⇤j )} j∈Ŝ by the following union bound,

lim inf
n!∞

P max
j∈Ŝ

|ī̂j − ī⇤j − ȕ(Ȗ̂j − Ȗ⇤j )|
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(V̂ī

jj + ȕ2V̂Ȗ
jj − 2ȕĈ jj)/n

q ≤ ĭ−1 1 − Į
2|Ŝ|

✓ ◆
2

64

3

75 ≥ 1 − Į, (14) 

where Į ∈ (0, 1) and ĭ−1 is the inverse CDF of the standard normal distribution. By rescaling (14), 
we construct the following threshold for ī̂j − ī⇤j − ȕ(Ȗ̂j − Ȗ⇤j ) with j ∈ Ŝ,

ȡ̂j(ȕ) := ĭ−1 1 − Į
2|Ŝ|

✓ ◆
·

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(V̂ī

jj + ȕ2V̂Ȗ
jj − 2ȕĈ jj)/n

q
. (15) 
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We further apply the hard thresholding to {ī̂j − ȕ Ȗ̂j} j∈Ŝ and estimate ʌ⇤j by

ʌ̂j(ȕ) = ī̂ j − ȕ Ȗ̂j
⇣ ⌘

· 1 ī̂ j − ȕ Ȗ̂j
���

��� ≥ ȡ̂j(ȕ)
⇣ ⌘

for j ∈ Ŝ. (16) 

If ȕ = ȕ⇤, the hard thresholding in (16) guarantees ʌ̂j(ȕ⇤) = 0 for j ∈ V with probability larger than 
1 − Į. For any ȕ ∈ R, we can construct the vector ʌ̂Ŝ(ȕ) = (ʌ̂ j(ȕ)) j∈Ŝ and calculate the number of 
nonzero entries in ʌ̂Ŝ(ȕ), denoted as kʌ̂Ŝ(ȕ)k0. Due to the hard thresholding, ʌ̂Ŝ(ȕ) can be a sparse 
vector and kʌ̂Ŝ(ȕ)k0 stands for the number of invalid IVs corresponding to the given ȕ�value.

We search for a range of ȕ�such that the number of invalid IVs is below |Ŝ|/2,

CIsear := ȕ ∈ R : kʌ̂Ŝ(ȕ)k0 < |Ŝ|/2
�  

. (17) 

The above searching CI is valid since Condition 3 implies that kʌ̂Ŝ(ȕ⇤)k0 < |Ŝ|/2 with probability 
1 − Į; see Online Supplementary Material, equation (56) in the supplement. We consider the fol-
lowing example and illustrate the construction of CIsear in Figure 3.

Example 2 Generate the models (1) and (2) with no baseline covariates, set ȕ⇤ = 1, 
n = 2,000, Ȗ⇤j = 0.5 · 110 and ʌ⇤ = (0⊤

6 , 0.05, 0.05, − 0.5, − 1)⊤. In Figure 3, 
we plot |Ŝ| − kʌ̂Ŝ(ȕ)k0 over different ȕ�and the red interval (0.914, 1.112) cov-
ers ȕ⇤ = 1.

Remark 2 The proposed searching idea is related to but different from the Anderson– 
Rubin test (Anderson & Rubin, 1949) for the weak IV problem. In (17), we 
use the sparsity as the test statistic and invert the sparsity level to determine 
the con!dence region for ȕ⇤. Our inverted test statistics kʌ̂Ŝ(ȕ)k0 is a discrete 
function of ȕ, and its limiting distribution is not standard, which is fundamen-
tally different from the Ȥ2 statistics used in AR test; see Figure 3. Due to the dis-
creteness of the test statistics, the searching interval in (17) can be a union of 
disjoint intervals.

Figure 3. The x-axis plots a range of ȕ�values, and the y-axis plots the number of valid IVs (i.e., |Ŝ| − kʌ̂Ŝ (ȕ)k0) for 
every given ȕ. The red interval (0.914, 1.112) denotes CIsear in (17).
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4.3 Efficient implementation of the searching CI
We propose a computationally ef!cient implementation of CIsear in (17). To implement (17), we 
can enumerate all values of ȕ�and calculate kʌ̂Ŝ(ȕ)k0. However, the enumeration method for con-
structing CIsear can be time-consuming if there is a huge amount of ȕ�values. To improve the com-
putational ef!ciency, we construct an initial set [L, U] such that P(ȕ⇤ ∈ [L, U])! 1 and 
construct a grid set with the grid size n−a for a > 1/2. Then, we discretize [L, U] into the follow-
ing grid set,

B = {ȕ1, ȕ2, . . . , ȕK} with ȕ1 = L, ȕK = U, |ȕ j+1 − ȕj| = n−a for 1 ≤ j ≤ K − 2, (18) 

and |ȕK − ȕK−1| ≤ n−a. The reason for requiring a > 1/2 is to ensure that the approximation error 
due to interval discretization is smaller than the parametric rate n−1/2. Importantly, the con-
structed con!dence interval is almost invariant to the choices of [L, U] and the grid size n−a as 
long as [L, U] contains ȕ⇤ and a > 1/2.

Throughout the paper, we choose the default grid size n−0.6 and present the following default 
construction of the initial range [L, U]. For j ∈ Ŝ, we estimate ȕ⇤ by the ratio ī̂j/Ȗ̂j and estimate 
its variance by dVar(bīj/ Ȗ̂j) = 1

n (V̂ ī
jj/ Ȗ̂ 2

j + V̂Ȗ
jjī̂

2
j / Ȗ̂ 4

j − 2Ĉ jjī̂j/ Ȗ̂ 3
j ). We then construct L and U as

L = min
j∈Ŝ

ī̂j/ Ȗ̂j −
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log n · dVar ī̂j/ Ȗ̂j

⇣ ⌘r⇢ �
, U = max

j∈Ŝ
ī̂j/ Ȗ̂j +

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log n · dVar ī̂j/ Ȗ̂j

⇣ ⌘r⇢ �
, (19) 

where 
ÅÅÅÅÅÅ
log n

p
is used to adjust for multiplicity. This initial range has been discussed in Section 3 of 

Windmeijer et al. (2021).
With the grid set de!ned in (18), we modify (17) and propose the following computationally 

ef!cient implementation,

ĈIsear = min
{ȕ∈B :kʌ̂Ŝ (ȕ)k0<|Ŝ|/2}

ȕ, max
{ȕ∈B :kʌ̂Ŝ (ȕ)k0<|Ŝ|/2}

ȕ

" #

. (20) 

Instead of searching over the real line as in (17), we restrict to the grid set B de!ned in (18) and (19) 
and search for the smallest and largest grid value such that more than half of the relevant IVs are 
valid. In contrast to CIsear in (17), ĈIsear is guaranteed to be an interval. In Online Supplementary 
Material, Section A.6 in the supplement, we compare ĈIsear and CIsear and !nd that both intervals 
guarantee the coverage properties and achieve similar lengths.

We summarize the construction of searching CI in Algorithm 1.
When the majority rule is violated, there is no ȕ�such that kʌ̂Ŝ(ȕ)k0 < |Ŝ|/2 and ĈIsear in (20) are 

empty. This indicates that the majority rule is violated, which can be used as a partial check of the 
majority rule. Moreover, Algorithm 1 can be implemented with the summary statistics ī̂, Ȗ̂�and 
V̂ī, V̂Ȗ, Ĉ, which are the inputs for steps 2–6 of Algorithm 1.

Algorithm 1 Searching CI (Uniform Inference under Majority Rule)

Input: Outcome Y ∈ Rn; Treatment D ∈ Rn; IVs Z ∈ Rn×pz ; Covariates X ∈ Rn×px ; Signi!cance level Į ∈ (0, 1).

Output: Con!dence interval ĈIsear; Majority rule check R ∈ {0, 1}.

1: Construct ī̂ ∈ Rpz , Ȗ̂ ∈ R pz as in (5) and V̂ī, V̂Ȗ� and Ĉ as in (7);

2: Construct Ŝ as in (11);                                                                                              ⊳ First-stage selection

3: Construct L and U as in (19);

4: Construct the grid set B as in (18) with a = 0.6;

5: Construct {ʌ̂j(ȕ)} j∈Ŝ,ȕ∈B as in (16);

6: Construct ĈIsear as in (20) and set R = 1(ĈIsear ≠ ;).                                                            ⊳ Searching CI

968                                                                                                                                                              Guo

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/article/85/3/959/7174915 by R

utgers U
niversity Libraries user on 15 N

ovem
ber 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad049%23supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad049%23supplementary-data


4.4 The sampling CI
In this subsection, we devise a novel sampling method to improve the precision of the searching CI. 
Conditioning on the observed data, we resample {ī̂[m], Ȗ̂ [m]}1≤m≤M as

ī̂[m]

Ȗ̂[m]

✓ ◆
∼i.i.d. N ī̂

Ȗ̂

✓ ◆
, V̂ī/n Ĉ/n

Ĉ⊤/n V̂Ȗ/n

✓ ◆ �
for 1 ≤ m ≤ M, (21) 

where M denotes the resampling size (with the default value 1,000), Ȗ̂�and ī̂�are de!ned in (5), and 
V̂ī, Ĉ, and V̂Ȗ� are de!ned in (7).

For 1 ≤ m ≤ M, we use {ī̂[m], Ȗ̂ [m]} to replace {ī̂, Ȗ̂ } and implement Algorithm 1 to construct a 
searching CI. We refer to this CI as the m-th sampled searching CI. In implementing Algorithm 1, 
we decrease the thresholding level used in the hard thresholding step of estimating ʌ⇤. 
Consequently, each sampled searching CI can be much shorter than the original searching CI; 
see Figure 4. Our proposal of decreasing the threshold relies on the following observation: there 
exists 1 ≤ m⇤ ≤ M such that

max
j∈Ŝ

|ī̂[m⇤]
j − ī⇤j − ȕ(Ȗ̂ [m⇤]

j − Ȗ⇤j )|
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(V̂ī

jj + ȕ2V̂Ȗ
jj − 2ȕĈ jj)/n

q ≤ Ȝ · ĭ−1 1 − Į
2|Ŝ|

✓ ◆
with Ȝ ≍ log n

M

✓ ◆ 1
2|Ŝ|

. (22) 

The rigorous statement is provided in Proposition 1. Compared with (14), the upper bound in 
(22) is shrunk by a factor Ȝ, which is close to zero with a large M (e.g., M = 1,000). If we had 
access to {ī̂[m⇤], Ȗ̂[m⇤]}, we could use a much smaller threshold level in constructing the searching 
CI.

We now provide the complete details about constructing the sampling CI. We !rstly consider that 
the tuning parameter Ȝ� in (22) is given and will present a data-dependent way of choosing Ȝ� in 
Remark 3. Motivated by (22), we multiply the threshold level by Ȝ�and implement Algorithm 1
for each of {ī̂[m], Ȗ̂ [m]}1≤m≤M. That is, for 1 ≤ m ≤ M, we modify (16) and estimate ʌ⇤Ŝ by

ʌ̂[m]
j (ȕ, Ȝ) = ī̂[m]

j − ȕ Ȗ̂ [m]
j

⇣ ⌘
· 1 ī̂[m]

j − ȕ Ȗ̂ [m]
j

���
��� ≥ Ȝ · ȡ̂j(ȕ)

⇣ ⌘
for j ∈ Ŝ, (23) 

Figure 4. The axis corresponds to sampling indexes {1, 2, . . . , 102} (after re-ordering), and the y-axis reports the 
sampled CIs. The red interval is CIsamp = (0.955, 1.060), the blue interval is ĈIsear = (0.914, 1.112), and the blue 
dashed interval is the oracle CI (0.983, 1.052) with prior information on valid IVs.
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with ȡ̂j(ȕ) de!ned in (15). We apply (20) and construct the m-th sampled searching CI as 

[ȕ[m]
min(Ȝ), ȕ[m]

max(Ȝ)] with

ȕ[m]
min(Ȝ) = min

{ȕ∈B :kʌ̂[m]
Ŝ

(ȕ,Ȝ)k0<|Ŝ|/2}
ȕ and ȕ[m]

max(Ȝ) = max
{ȕ∈B :kʌ̂[m]

Ŝ
(ȕ,Ȝ)k0<|Ŝ|/2}

ȕ. (24) 

Similarly to (20), we set [ȕ[m]
min(Ȝ), ȕ[m]

max(Ȝ)] = ; if there is no ȕ�such that kʌ̂[m](ȕ, Ȝ)k0 < |Ŝ|/2. We ag-
gregate the M searching CIs and propose the following sampling CI:

CIsamp = min
m∈M

ȕ[m]
min(Ȝ), max

m∈M
ȕ[m]

max(Ȝ)
 �

, (25) 

where the index set M = {1 ≤ m ≤ M : [ȕ[m]
min(Ȝ), ȕ[m]

max(Ȝ)] ≠ ;} contains all indexes m corresponding 
to nonempty [ȕ[m]

min(Ȝ), ȕ[m]
max(Ȝ)]. In Figure 4, we demonstrate the sampling CI in (25) using Example 2. 

Many of the M sampled searching CIs are empty, and the nonempty ones can be much shorter than 
the searching CI. Consequently, the sampling CI (in red) is much shorter than the searching CI (in 
blue).

An important reason for the sampling method improving the precision is that the test statistics 
kʌ̂Ŝ(ȕ)k0 used for constructing the searching CI in (20) is a discrete function of ȕ, and the limiting 
distribution of the test statistics is not standard.

We summarize the sampling CI in Algorithm 2 and will provide two remarks about the imple-
mentation of Algorithm 2.

Remark 3 (Tuning parameter selection for sampling). We demonstrate in Online 
Supplementary Material, Section B.2 in the supplement that the sampling 
CIs in Algorithm 2 do not materially change with different choices of 
L, U, a, and the resampling number M. Theorem 2 suggests the form of the 
tuning parameter Ȝ�as c⇤(log n/M)1/(2|Ŝ|). We present a data-dependent way 
to specify the constant c⇤. If the Ȝ�value is too small, very few of the resampled 
reduced-form estimators will pass the majority rule and most of the M = 
1,000 sampled intervals will be empty. Hence, the proportion of the non-
empty intervals indicates whether Ȝ�is large enough. We start with a small val-
ue Ȝ = 1/6 · (log n/M)1/(2|Ŝ|) and increase the value of Ȝ�by a factor of 1.25 
until more than prop = 10% of the M = 1,000 intervals are nonempty. We 
choose the smallest Ȝ�value achieving this and use this Ȝ�value to implement 
Algorithm 2.

Algorithm 2 Sampling CI (Uniform Inference under Majority Rule)

Input: Outcome Y ∈ Rn; Treatment D ∈ Rn; IVs Z ∈ Rn×pz ; Covariates X ∈ Rn×px ; Sampling number M = 1,000; 
Ȝ = c⇤(log n/M)1/(2|Ŝ|); Signi!cance level Į ∈ (0, 1)

Output: Con!dence interval CIsamp

1: Implement steps 1 to 4 as in Algorithm 1;

2: for m 1 to M do

3:   Sample ī̂[m] and Ȗ̂[m] as in (21);

4:   Compute {ʌ̂[m]
j (ȕ, Ȝ)} j∈Ŝ,ȕ∈B as in (23);

5:   Compute ȕ[m]
min(Ȝ) and ȕ[m]

max(Ȝ) in (24);

6: end for

7: Construct CIsamp as in (25)                                                                                                   ⊳ Sampling CI
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Remark 4 (Alternative aggregation). We may combine the sampled CIs as 
CIsamp

0 = ∪M
m=1 [ȕ[m]

min(Ȝ), ȕ[m]
max(Ȝ)]. Since CIsamp

0 may not be an interval due to 
its de!nition, we focus on CIsamp de!ned in (25). In addition, we may !lter 
out {Ȗ̂[m], ī̂[m]}1≤m≤M near the boundary of the sampling distribution in 
(21). Particularly, de!ne

M0 = 1 ≤ m ≤ M : max
j∈Ŝ

max Ȗ̂ [m]
j − Ȗ̂ j

���
���/

ÅÅÅÅÅÅÅ
V̂Ȗ

jj/n
q

, ī̂[m]
j − ī̂j

���
���/

ÅÅÅÅÅÅÅ
V̂ī

jj/n
q⇢ �

≤ 1.1ĭ−1 1 − Į0

4|Ŝ|

✓ ◆( )

with Į0 = 0.05. We modify (25) and construct the sampling CI as

CIsamp(M0) = min
m∈M0

ȕ[m]
min(Ȝ), max

m∈M0
ȕ[m]

max(Ȝ)
 �

, (26) 

with the index set M0 = {m ∈ M0 : [ȕ[m]
min(Ȝ), ȕ[m]

max(Ȝ)] ≠ ;}. In Online 
Supplementary Material, Table B.6 in the supplement, we show that 
CIsamp(M0) is nearly the same as CIsamp in (25).

4.5 Robustness to the existence of weak IVs
The validity of our proposed CIs in Sections 4.2–4.4 relies on Condition 3, which requires more than 
half of the IVs to be strongly relevant and valid but allows the remaining IVs to be arbitrarily weak and 
invalid. In the following, we make two important remarks about weak IVs. Firstly, our focused setting 
is completely different from the classical weak IV framework (e.g., Staiger & Stock, 1997), where all 
IVs as a total are weak. The F test for the treatment model and the concentration parameters can pro-
vide evidence on whether the IVs are weak (e.g., Stock et al., 2002). Similarly, the estimated set Ŝ in 
(11) can also be used to check whether the given data set falls into the classical weak IV framework. 
This paper focuses on the regime with nonempty Ŝ, indicating the existence of strong IVs. Secondly, the 
challenge due to weak IVs is fundamentally different from locally invalid IVs. In the !rst-stage selec-
tion, the set of relatively weak IVs S\Sstr is not guaranteed to be selected by Ŝ in (11). The uncertainty 
of selecting IVs inside S\Sstr is of a different nature from the uncertainty of detecting locally invalid 
IVs. In Online Supplementary Material, Section B.1 in the supplement, we demonstrate that both 
TSHT and CIIV perform well even if there exists uncertainty of selecting IVs belonging to S\Sstr.

5 Uniform inference methods under plurality rule
This section considers the more challenging setting with the plurality rule. We introduce the !nite- 
sample plurality rule and then generalize the method proposed in Section 4. For a given invalidity 
level v ∈ R, we de!ne the set of IVs,

I (v, Ĳ) = j ∈ S : ʌ⇤j /Ȗ
⇤
j − v

���
��� ≤ Ĳ

n o
with Ĳ ∈ R. (27) 

When Ĳ�is small, I (v, Ĳ) denotes the set of IVs with the invalidity level around v. With T j,k de!ned in 
(9), we de!ne the separation level as

sep(n) := 2
ÅÅÅÅÅÅ
log n

p
max
j,k∈Ŝ

T j,k. (28) 

Note that ȕ[j] = ī⇤j /Ȗ⇤j = ȕ⇤ + ʌ⇤j /Ȗ⇤j . If the pairwise difference ȕ[j] − ȕ[k] for j, k ∈ Ŝ is above sep(n), 
the j-th and k-th IVs can be separated based on their invalidity levels. Particularly, the term 
max j,k∈Ŝ T j,k denotes the largest error of estimating the pairwise difference {ȕ[j] − ȕ[k]} j,k∈Ŝ and 
ÅÅÅÅÅÅ
log n

p
is used to adjust for the multiplicity of hypothesis testing; see more discussion after 

Proposition 2. When {Ȗ⇤j } j∈Ŝ are nonzero constants, sep(n) is of order 
ÅÅÅÅÅÅÅÅÅ
log n/n

p
.
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With the separation level sep(n), we introduce the !nite-sample plurality rule.

Condition 4 (Finite-sample Plurality Rule). For Ĳn = 3sep(n),

|V ∩ Sstr| > max
v∈R

|I (v, Ĳn)\V|, (29) 

where sep(n), V, Sstr, and I (v, Ĳn) are de!ned in (28), (3), (12), and (27), 
respectively.

The set V ∩ Sstr consists of the strongly relevant and valid IVs, which we rely on to make infer-
ences for ȕ⇤. Since Ĳn ! 0 as n!∞, the set I (v, Ĳn)\V contains all invalid IVs with invalidity lev-
els ʌ⇤j /Ȗ⇤j ≈ v. Condition 4 requires that the cardinality of V ∩ Sstr is larger than that of invalid IVs 
with ʌ⇤j /Ȗ⇤j ≈ v. When v = 0, the set I (0, Ĳn)\V is the set of invalid IVs with invalidity levels below 
Ĳn. Condition 4 also requires that there are more IVs in V ∩ Sstr than the locally invalid IVs with 
invalidity levels below Ĳn.

In comparison to Condition 2, Condition 4 accommodates for the !nite-sample approximation 
error by grouping together invalid IVs with similar invalidity levels. For a large sample size, 
Condition 4 is the same as Condition 2. Speci!cally, if n!∞ and {ʌ⇤j }1≤j≤pz 

and {Ȗ⇤j }1≤j≤pz 
do 

not change with n, then

lim
n!∞

|V ∩ Sstr| = |V|, lim
n!∞

|I (v, Ĳn)\V| = |I Ȟ\V| = 0 if Ȟ = 0
|I Ȟ| if Ȟ ≠ 0

⇢

with I Ȟ�de!ned in Condition 2. We shall emphasize that sep(n) de!ned in (28) is not required in the 
following con!dence interval construction.

We propose a two-step inference procedure for ȕ⇤ under Condition 4. In the !rst step, we con-
struct an initial set V̂ satisfying

V ∩ Sstr ⊂ V̂ ⊂ I (0, Ĳn) with Ĳn = 3sep(n). (30) 

Since Condition 4 implies that V ∩ Sstr is the majority of the set I (0, Ĳn), we apply (30) and estab-
lish that the set V ∩ Sstr becomes the majority of the initial set V̂. In the second step, we restrict our 
attention to V̂ and generalize the methods in Section 4. Importantly, the initial set V̂ is allowed to 
contain locally invalid IVs.

We now construct an initial set V̂ satisfying (30) by modifying TSHT (Guo et al., 2018). Without 
loss of generality, we set Ŝ = {1, 2, . . . , |Ŝ|}. For any j ∈ Ŝ, we construct an estimator of ȕ⇤ and ʌ⇤ as

ȕ̂[j] = ī̂j/Ȗ̂ j and ʌ̂[j]
k = ī̂k − ȕ̂[j]Ȗ̂ k for k ∈ Ŝ, (31) 

where the super index j stands for the model identi!cation by assuming the j-th IV to be valid. We 
de!ne R̂[j] = V̂ī + (ȕ̂[j])2V̂Ȗ − 2ȕ̂[j]Ĉ and further estimate the standard error of ʌ̂[j]

k with k ∈ Ŝ by

ŜE(ʌ̂[j]
k ) =

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

R̂[j]
k,k + Ȗ̂ k/Ȗ̂ j

⇣ ⌘2
R̂[j]

j,j − 2Ȗ̂ k/Ȗ̂ jR̂
[j]
k,j

✓ ◆
/n

s

. (32) 

For 1 ≤ k, j ≤ |Ŝ|, we apply the following hard thresholding and construct the (k, j) entry of the vot-
ing matrix Ȇ̂ ∈ R|Ŝ|×|Ŝ| as

Ȇ̂k,j = 1 |ʌ̂[j]
k | ≤ ŜE(ʌ̂[j]

k ) ·
ÅÅÅÅÅÅ
log n

p
and |ʌ̂[k]

j | ≤ ŜE(ʌ̂[k]
j ) ·

ÅÅÅÅÅÅ
log n

p⇣ ⌘
, (33) 

with ʌ̂[j]
k and ʌ̂[k]

j de!ned in (31), ŜE(ʌ̂[j]
k ) and ŜE(ʌ̂[k]

j ) de!ned in (32), and 
ÅÅÅÅÅÅ
log n

p
used to adjust for 

multiplicity. In (33), Ȇ̂k,j = 1 represents that the k-th and j-th IVs support each other to be valid while 
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Ȇ̂k,j = 0 represents that they do not. The voting matrix in (33) is a symmetric version of the voting 
matrix proposed in Guo et al. (2018).

We now construct the initial set by leveraging the voting matrix in (33). De!ne Ŵ = 
arg max1≤j≤|Ŝ|kȆ̂ j·k0 as the set of IVs receiving the largest number of votes. We construct the fol-
lowing initial set,

V̂TSHT := {1 ≤ l ≤ |Ŝ| : there exist 1 ≤ k ≤ |Ŝ| and j ∈ Ŵ such that Ȇ̂ j,kȆ̂k,l = 1}. (34) 

In words, if the l-th IV from Ŝ and the j-th IV from Ŵ are claimed to be valid by any IV from Ŝ, then 
the l-th IV is also included in V̂TSHT. We show in Proposition 2 that V̂TSHT is guaranteed to satisfy 
(30). Together with Condition 4, V ∩ Sstr becomes the majority of the initial set V̂TSHT. Then, we 
restrict to the set V̂TSHT and apply Algorithms 1 and 2 with Ŝ replaced by V̂TSHT.

We summarize our proposed searching and sampling CIs in Algorithm 3, with the tuning pa-
rameters selected in the same way as that in Remark 3. Algorithm 3 can be implemented without 
requiring the raw data, but with ī̂, Ȗ̂�and V̂ī, V̂Ȗ, Ĉ as the inputs. We have demonstrated our meth-
od by constructing V̂ = V̂TSHT as in (34), but Algorithm 3 can be applied with any V̂ satisfying (30).

Comparison with the CIIV method. The idea of searching has been developed in Windmeijer 
et al. (2021) to select valid IVs. We now follow Windmeijer et al. (2021) and sketch the intuitive 
idea of the CIIV method. For any grid value įg ∈ [L, U], de!ne the set

V̂(įg) = j ∈ S :ī⇤j /Ȗ
⇤
j = įg is not rejected

n o
.

Here, V̂(įg) denotes a subset of IVs such that the corresponding hypothesis ī⇤j /Ȗ⇤j = įg is not re-
jected. As explained in Section 3 of Windmeijer et al. (2021), the CIIV method examines all values 
of įg and selects the largest set V̂(įg) as the set of valid IVs, that is,

V̂CIIV = V̂(į̂g) with į̂g = arg max
įg∈[L,U]

|V̂(įg)|. (35) 

Our proposed searching CI differs from Windmeijer et al. (2021) since we directly construct CIs by 
searching for a range of suitable ȕ�values, while the CIIVmethod applies the searching idea to select 
the set of valid IVs.

We provide some intuitions on why our proposal is more robust to the IV selection error. We 
!rst screen out the strongly invalid IVs and construct an initial set estimator V̂ = V̂TSHT; then, we 
restrict to the set V̂ and apply searching and sampling CIs developed under the majority rule. 
The majority rule in the second step explains the robustness: we compare the number of votes 
to |V̂|/2, which is !xed after computing V̂. However, the optimization in (35) chooses įg, giving 
the largest number of votes, which can be more vulnerable to selection/testing errors. The validity 
of the CIIV method requires that V̂CIIV does not contain any invalid IVs; in contrast, our method is 
still effective even if the initial set V̂ contains the invalid IVs but satis!es (30).

6 Theoretical justification
We focus on the low-dimensional setting with heteroscedastic errors and introduce the following 
regularity conditions. We always consider the asymptotic expressions in the limit with n!∞. 

(C1) For 1 ≤ i ≤ n, Wi· = (X⊤
i· , Z⊤

i· )
⊤ ∈ Rp are i.i.d. Sub-Gaussian random vectors with Ȉ = 

E(Wi·(Wi·)⊤) satisfying c0 ≤ Ȝmin(Ȉ) ≤ Ȝmax(Ȉ) ≤ C0 for some positive constants 
C0 ≥ c0 > 0.

(C2) For 1 ≤ i ≤ n, the errors (׫i, įi)⊤ in (4) are i.i.d. Sub-Gaussian random vectors; the condi-
tional covariance matrix satisfying c1 ≤ Ȝmin(E[(׫i, įi)⊤(׫i, įi) ∣ Wi·]) ≤ 
Ȝmax(E[(׫i, įi)⊤(׫i, įi) ∣ Wi·]) ≤ C1 for some positive constants C1 ≥ c1 > 0.
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Conditions (C1) and (C2) are imposed on the reduced-form model (4), which includes the out-
come model (1) and the treatment model (2) as a special case. We assume that the covariance 
matrix of Wi· is well conditioned and also the covariance matrix of the errors is well conditioned. 
Condition (C2) in general holds if ei in (1) and įi in (2) are not perfectly correlated. Our setting 
allows for the heteroscedastic errors. If we further assume (׫i, įi)⊤ to be independent of Wi·, 
Condition (C2) assumes the covariance matrix of (׫i, įi)⊤ to be well conditioned. As a remark, 
the Sub-Gaussian conditions on both Wi· and the errors might be relaxed to the moment condi-
tions in low dimensions.

We start with the majority rule setting and will move to the plurality rule. The following the-
orem justi!es the searching CI under the majority rule.

Theorem 1 Consider the model (4). Suppose that Condition 3, Conditions (C1) and (C2) 
hold, and Į ∈ (0, 1/4) is the signi!cance level. Then, CIsear de!ned in (17) and 
ĈIsear de!ned in (20) satisfy

lim inf
n!∞

P ȕ⇤ ∈ CIsearˇ �
≥ 1 − Į and lim inf

n!∞
P ȕ⇤ ∈ ĈIsear
⇣ ⌘

≥ 1 − Į.

There exists a positive constant C > 0 such that

lim inf
n!∞

P max {L(CIsear), L(ĈIsear)} ≤ C
min j∈Ŝ∩V |Ȗ⇤j | ·

ÅÅ
n
p

 !

≥ 1 − Į, 

where L(·) denotes the interval length.

If min j∈Ŝ∩V |Ȗ⇤j | is of a constant order, Theorem 1 implies that the length of the searching CI is 
of the parametric rate 1/

ÅÅ
n
p

. The searching CI achieves the desired coverage level without rely-
ing on a perfection separation of valid and invalid IVs, which brings in a sharp contrast to the 
well-separation conditions required in TSHT (Guo et al., 2018) and CIIV (Windmeijer et al., 
2021).

Algorithm 3 Uniform Inference with Searching and Sampling (Plurality Rule)

Input: Outcome Y ∈ Rn; Treatment D ∈ Rn; IVs Z ∈ Rn×pz ; Covariates X ∈ Rn×px ; Sampling number M = 1,000; 
Ȝ = c⇤(log n/M)1/(2|Ŝ|); Signi!cance level Į ∈ (0, 1).

Output: Con!dence intervals ĈIsear and CIsamp; Plurality rule check R.

1: Construct ī̂ ∈ Rpz , Ȗ̂ ∈ R pz as in (5) and V̂ī, V̂Ȗ� and Ĉ as in (7);

2: Construct Ŝ as in (11);

3: Construct the voting matrix Ȇ̂ ∈ R|Ŝ|×|Ŝ| as in (33);

4: Construct V̂ = V̂TSHT as in (34);                                                                                       ⊳ Construction of V̂
5: Construct L and U as in (19) with Ŝ = V̂;

6: Construct the grid set B ⊂ [L, U] as in (18) with the grid size n−0.6;

7: Compute {ȡ̂j(ȕ)} j∈V̂,ȕ∈B as in (15) with Ŝ = V̂;

8: Compute {ʌ̂j(ȕ)} j∈V̂,ȕ∈B as in (16) with Ŝ = V̂;

9: Construct ĈIsear as in (20) with Ŝ = V̂ and set R = 1(ĈIsear ≠ ;);                                            ⊳ Searching CI

10: for m 1 to M do

11:   Sample ī̂[m] and Ȗ̂[m] as in (21);

12:   Compute {ʌ̂[m]
j (ȕ, Ȝ)} j∈V̂,ȕ∈B as in (23) with Ŝ = V̂;

13:   Construct ȕ[m]
min(Ȝ) and ȕ[m]

max(Ȝ) as in (24) with Ŝ = V̂;

14: end for

15: Construct CIsamp as in (25).                                                                                                    ⊳ Sampling CI
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We now turn to the sampling CI. Before presenting the theory for the sampling CI, we justify in 
Proposition 1 why we are able to decrease the thresholding level in constructing the sampling CI. 
For Į0 ∈ (0, 1/4), de!ne the positive constant

c⇤(Į0) = 1

3ʌ · Ȝmin(Cov)[ ]|Ŝ|
exp − |Ŝ| · 3Ȝmax(Cov)

Ȝmin(Cov)
· ĭ−1 1 − Į0

4|Ŝ|

✓ ◆ �2
 !

, (36) 

with Cov de!ned in (6) and ĭ−1 denoting the inverse CDF of the standard normal distribution. For 
a !xed pz and Į0 ∈ (0, 1), we have c1/C0 ≤ Ȝmin(Cov) ≤ Ȝmax(Cov) ≤ C1/c0 and c⇤(Į0) is a positive 
constant independent of n. With c⇤(Į0) de!ned in (36), we introduce the following term quantify-
ing the resampling property,

errn(M, Į0) = 2 log n
c⇤(Į0)M

 � 1
2|Ŝ|

, (37) 

where errn(M, Į0) converges to 0 with M!∞ and M being much larger than log n.

Proposition 1 Suppose Conditions (C1) and (C2) hold and Į0 ∈ (0, 1/4). If errn(M, Į0) ≤ 
c for a small positive constant c > 0, then there exists a positive constant 
C > 0 such that

lim inf
n!∞

P min
1≤m≤M

max
ȕ∈U(a)

max
j∈Ŝ

|ī̂[m]
j − ī⇤j − ȕ(Ȗ̂ [m]

j − Ȗ⇤j )|
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(V̂ī

jj + ȕ2V̂Ȗ
jj − 2ȕĈ jj)/n

q

2

64

3

75 ≤ Cerrn(M, Į0)

0

B@

1

CA

≥ 1 − Į0,

(38) 

with errn(M, Į0) de!ned in (37) and U(a) := {ȕ ∈ R : |ȕ − ȕ⇤| ≤ n−a} for any 
a > 1/2.

Since c⇤(Į0) is of a constant order, the condition errn(M, Į0) ≤ c holds for a suf!ciently large re-
sampling size M. The above proposition states that, with a high probability, there exists 1 ≤ m⇤ ≤ 
M such that

max
ȕ∈U(a)

max
j∈Ŝ

|ī̂[m⇤]
j − ī⇤j − ȕ(Ȗ̂ [m⇤]

j − Ȗ⇤j )|
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
(V̂ī

jj + ȕ2V̂Ȗ
jj − 2ȕĈ jj)/n

q ≤ Cerrn(M, Į0).

In comparison to (14), the threshold decreases from ĭ−1(1 − Į
2|Ŝ| ) to Cerrn(M, Į0). A related sam-

pling property was established in Guo (2020) to address a different nonstandard inference 
problem.

We now apply Proposition 1 to justify the sampling CI under the majority rule.

Theorem 2 Suppose that the conditions of Proposition 1 hold, Į0 ∈ (0, 1/4), and Ȝ�used in 
(24) satis!es Ȝ ≥ 2Cerrn(M, Į0)/ĭ−1[1 − Į/(2|Ŝ|)] and Ȝ ≫ n1/2−a with the 
constant C used in (38), Į ∈ (0, 1/4) and a > 1/2. Then, CIsamp de!ned in 
(25) and CIsamp(M0) de!ned in (26) satisfy

lim inf
n!∞

P ȕ⇤ ∈ CIsampˇ �
≥ lim inf

n!∞
P ȕ⇤ ∈ CIsamp(M0)
ˇ �

≥ 1 − Į0.
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There exists a positive constant C > 0 such that

lim inf
n!∞

P max
L(CIsamp)ÅÅÅÅÅÅÅÅÅ

log |M|
p , L(CIsamp(M0))

( )

≤ C
min j∈Ŝ∩V |Ȗ⇤j | ·

ÅÅ
n
p

 !

≥ 1 − Į0.

Note that 2Cerrn(M, Į0)/ĭ−1[1 − Į/(2|Ŝ|)] = c( log n/M)1/(2|Ŝ|) for some positive constant 
c > 0. Motivated by the condition Ȝ ≥ 2Cerrn(M, Į0)/ĭ−1[1 − Į/(2|Ŝ|)], we choose the tuning par-
ameter Ȝ�in the form Ȝ = c⇤( log n/M)1/(2|Ŝ|) in Remark 3. Similar to Theorem 1, Theorem 2 shows 
that our proposed searching CI does not require the well-separation condition on the invalidity 
levels. If the IV strengths {Ȗ⇤j } j∈S are assumed to be of a constant order, then the length of 

CIsamp(M0) de!ned in (26) is 1/
ÅÅ
n
p

. We can only establish the upper bound 
ÅÅÅÅÅÅÅÅÅÅÅÅ
log |M|/n

p
for the 

length of CIsamp de!ned in (25). However, we believe that this is mainly a technical artifact since 
CIsamp(M0) and CIsamp are nearly the same in the numerical studies; see Online Supplementary 
Material, Section B.2 in the supplement.

We now switch to the more challenging setting only assuming the !nite-sample plurality rule 
(Condition 4). The main extra step is to show that our constructed initial set V̂ = V̂TSHT satis!es (30). 
To establish this, we provide a careful !nite-sample analysis of the voting scheme described in (33) 
and V̂TSHT de!ned in (34).

Proposition 2 Suppose that Conditions (C1) and (C2) hold. Consider the indexes j ∈ Ŝ and 
k ∈ Ŝ. (a) If ʌ⇤k/Ȗ

⇤
k = ʌ⇤j /Ȗ⇤j , then lim infn!∞P(Ȇ̂k,j = Ȇ̂ j,k = 1) = 1. (b)If 

|ʌ⇤k/Ȗ⇤k − ʌ⇤j /Ȗ⇤j | ≥ 2
ÅÅÅÅÅÅ
log n

p
· T j,k, then lim infn!∞P(Ȇ̂k,j = Ȇ̂ j,k = 0) = 1, 

where T j,k is de!ned in (9). Under the additional Condition 4, the constructed 
V̂ = V̂TSHT in (34) satis!es lim infn!∞P(V ∩ Sstr ⊂ V̂ ⊂ I (0, 3sep(n))) = 1, 
with sep(n) de!ned in (28).

The above proposition shows that if two IVs are of the same invalidity level, then they 
vote for each other with a high probability. If two IVs are well-separated (i.e., 
|ʌ⇤k/Ȗ

⇤
k − ʌ⇤j /Ȗ⇤j | ≥ 2

ÅÅÅÅÅÅ
log n

p
· T j,k), then they vote against each other with a high probability. If 

0 < |ʌ⇤k/Ȗ⇤k − ʌ⇤j /Ȗ⇤j | < 2
ÅÅÅÅÅÅ
log n

p
· T j,k, there is no theoretical guarantee on how the two IVs will 

vote. The above proposition explains why we are likely to make a mistake in detecting some locally 
invalid IVs de!ned in De!nition 1.

With Proposition 2, we connect the !nite-sample plurality rule to the !nite-sample majority 
rule. We apply the voting algorithm to remove all strongly invalid IVs and the set V̂TSHT only con-
sists of valid IVs and the locally invalid IVs. Under Condition 4, V ∩ Sstr becomes the majority of 
V̂TSHT. We then establish the following theorem by applying the theoretical analysis of the majority 
rule by replacing Ŝ with V̂TSHT.

Theorem 3 Consider the model (4). Suppose that Condition 4, Conditions (C1) and (C2) hold. 
Then with Ŝ replaced by V̂TSHT, the coverage and precision properties in Theorem 1
hold for the searching interval in Algorithm 3 and the coverage and precision prop-
erties in Theorem 2 hold for the sampling interval in Algorithm 3.

7 Simulation studies
Throughout the numerical studies, we implement our proposed ĈIsear and CIsamp detailed in 
Algorithm 3. We illustrate the robustness of Algorithm 3 to different initial estimators of V by con-
sidering two choices of V̂ : V̂TSHT de!ned in (34) and the set of valid IVs V̂CIIV outputted by CIIV
(Windmeijer et al., 2021). We focus on the low-dimensional setting in the current section and 
will present the high-dimensional results in Online Supplementary Material, Section A.3 in the 
supplement. The code for replicating all numerical results in the current paper is available at 
https://github.com/zijguo/Searching-Sampling-Replication.
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We compare with three existing CIs allowing for invalid IVs: TSHT (Guo et al., 2018), CIIV
(Windmeijer et al., 2021), and the Union method (Kang et al., 2020). TSHT and CIIV are imple-
mented with the codes on the Github websites1 while the Union method is implemented with 
the code shared by the authors of Kang et al. (2020). The Union method takes a union of intervals 
that are constructed by a given number of candidate IVs and are not rejected by the Sargan test. An 
upper bound �s for the number of invalid IVs is required for the implementation. We consider two 
speci!c upper bounds: �s = pz − 1 corresponds to the existence of two valid IVs, and �s = dpz/2e cor-
responds to the majority rule being satis!ed. We conduct 500 replications of simulations and com-
pare different CIs in terms of empirical coverage and average lengths.

We implement two oracle methods as the benchmark. Firstly, we implement the oracle TSLS 
assuming the prior knowledge of V. This method serves as a benchmark when the set V of valid 
IVs is correctly recovered. Secondly, we implement the oracle bias-aware con!dence interval in 
(10) assuming the oracle knowledge of the bias of TSHT estimator. We argue that the oracle 
bias-aware con!dence interval serves as a better benchmark, especially when V might not be cor-
rectly recovered in !nite samples.

We generate the i.i.d. data {Yi, Di, Zi·, Xi·}1≤i≤n using the outcome model (1) and the treatment 
model (2). We generate Ȗ⇤ ∈ Rpz and ʌ⇤ ∈ Rpz as follows: 

S1 (Majority rule): set Ȗ⇤ = Ȗ0 · 110 and ʌ⇤ = (06, Ĳ · Ȗ0, Ĳ · Ȗ0, − 0.5, − 1)⊤;
S2 (Plurality rule): set Ȗ⇤ = Ȗ0 · 110 and ʌ⇤ = (04, Ĳ · Ȗ0, Ĳ · Ȗ0, − 1

3 , − 2
3 , − 1, − 4

3 )⊤;
S3 (Plurality rule): set Ȗ⇤ = Ȗ0 · 110 and ʌ⇤ = (04, Ĳ · Ȗ0, Ĳ · Ȗ0, − 1

6 , − 1
3 , − 1

2 , − 2
3 )⊤;

S4 (Plurality rule): set Ȗ⇤ = Ȗ0 · 16 and ʌ⇤ = (02, − 0.8, − 0.4, Ĳ · Ȗ0, 0.6)⊤;
S5 (Plurality rule): set Ȗ⇤ = Ȗ0 · 16 and ʌ⇤ = (02, − 0.8, − 0.4, Ĳ · Ȗ0, Ĳ · Ȗ0 + 0.1)⊤.

The parameter Ȗ0 denotes the IV strength and is set as 0.5. The parameter Ĳ�denotes the invalidity 
level and is varied across {0.2, 0.4}. The setting S1 satis!es the population majority rule while the 
settings S2–S5 only satisfy the population plurality rule. Settings S4 and S5 represent the challen-
ging settings where there are only two valid IVs. We introduce settings S3 and S5 to test the robust-
ness of our proposed method when the !nite-sample plurality rule might be violated. For example, 
for the setting S5 with small n (e.g., n = 500), the invalid IVs with ʌ⇤j values Ĳ · Ȗ0, Ĳ · Ȗ0 + 0.1 have 
similar invalidity levels and may violate Condition 4.

We now specify the remaining details for the generating models (1) and (2). Set px = ⇤׋ ,10 = 
(0.6, 0.7, . . . , 1.5)⊤ ∈ R10 in (2) and ȥ⇤ = (1.1, 1.2, . . . , 2)⊤ ∈ R10 in (1). We vary n across 
{500, 1,000, 2,000, 5,000}. For 1 ≤ i ≤ n, generate the covariates Wi· = (Z⊤

i· , X⊤
i· )

⊤ ∈ Rp follow-
ing a multivariate normal distribution with zero mean and covariance Ȉ ∈ Rp×p where Ȉ jl = 
0.5|j−l| for 1 ≤ j, l ≤ p; generate the errors (ei, įi)⊤ following bivariate normal with zero mean, 
unit variance and Cov(ei, įi) = 0.8.

In Table 1, we report the empirical coverage and interval length for Ĳ = 0.2. The CIs by TSHT and 
CIIV undercover for n = 500, 1,000, and 2,000 and only achieve the 95% coverage level for a 
large sample size n = 5,000. Our proposed searching and sampling CIs achieve the desired cover-
age levels in most settings. For settings S1–S4, both initial estimates of set of valid IVs V̂TSHT and 
V̂CIIV lead to CIs achieving the 95% coverage level. For the more challenging settings S5, the em-
pirical coverage level of our proposed searching and sampling CIs achieve the desired coverage 
with sample sizes above 2,000. For n = 500 and n = 1,000, our proposed searching and sampling 
methods improve the coverage of TSHT and CIIV. The undercoverage happens mainly due to the 
fact that the !nite-sample plurality rule might fail for setting S5 with a relatively small sample size. 
The CIs by the Unionmethod (Kang et al., 2020) with �s = pz − 1 (assuming there are two valid IVs) 
achieve the desired coverage level while those with �s = dpz/2e (assuming the majority rule) do not 
achieve the desired coverage level for settings S2–S5.

We now compare the CI lengths. When the CIs by TSHT and CIIV are valid, their lengths are 
similar to the length of the CI by oracle TSLS, which match with the theory in Guo et al. 
(2018) and Windmeijer et al. (2021). For the CIs achieving valid coverage, our proposed sampling 

1 The code for TSHT is obtained from https://github.com/hyunseungkang/invalidIV and for CIIV is obtained from 
https://github.com/xlbristol/CIIV.
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Table 1. Empirical coverage and average lengths for S1 to S5 with Ĳ = 0.2

Oracle Searching Sampling Union

Set n TSLS BA TSHT CIIV V̂TSHT V̂CIIV V̂TSHT V̂CIIV Check pz − 1 dpz/2e

Empirical coverage of con!dence intervals for Ĳ = 0.2

500 0.95 0.97 0.53 0.61 1.00 1.00 1.00 1.00 1.00 1.00 0.99

1,000 0.94 0.97 0.45 0.69 1.00 1.00 1.00 1.00 1.00 1.00 0.98

2,000 0.96 0.95 0.63 0.79 1.00 1.00 1.00 1.00 1.00 1.00 0.96

S1 5,000 0.94 0.95 0.89 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.96

500 0.95 0.96 0.56 0.51 1.00 1.00 1.00 0.99 1.00 1.00 0.27

1,000 0.94 0.95 0.45 0.58 0.99 0.99 1.00 0.97 1.00 1.00 0.03

2,000 0.94 0.93 0.51 0.74 0.98 0.98 0.98 0.97 1.00 1.00 0.00

S2 5,000 0.96 0.93 0.85 0.95 0.99 1.00 1.00 1.00 1.00 1.00 0.00

500 0.95 0.95 0.63 0.63 0.99 0.99 0.99 0.99 1.00 1.00 0.62

1,000 0.94 0.97 0.62 0.60 0.99 0.99 0.99 0.97 1.00 1.00 0.18

2,000 0.94 0.93 0.62 0.73 0.97 0.98 0.97 0.96 1.00 1.00 0.01

S3 5,000 0.96 0.93 0.85 0.95 0.99 1.00 0.99 1.00 1.00 1.00 0.00

500 0.95 0.96 0.72 0.66 0.94 0.95 0.94 0.93 0.98 0.98 0.00

1,000 0.94 0.95 0.65 0.58 1.00 0.97 0.99 0.96 0.95 0.98 0.00

2,000 0.93 0.99 0.68 0.58 0.98 0.97 0.97 0.93 0.99 0.95 0.00

S4 5,000 0.95 0.95 0.91 0.88 0.98 0.95 0.98 0.95 1.00 0.94 0.00

500 0.95 0.97 0.49 0.51 0.81 0.89 0.88 0.86 0.98 0.97 0.14

1,000 0.94 0.96 0.31 0.50 0.68 0.89 0.76 0.86 0.91 0.98 0.00

2,000 0.93 0.98 0.46 0.57 0.86 0.96 0.86 0.92 0.84 0.95 0.00

S5 5,000 0.95 0.95 0.90 0.88 0.98 0.95 0.97 0.94 0.98 0.94 0.00

Average lengths of con!dence intervals for Ĳ = 0.2

500 0.10 0.16 0.08 0.08 0.59 0.61 0.34 0.34 – 1.16 0.25

1,000 0.07 0.14 0.06 0.06 0.39 0.43 0.24 0.24 – 0.63 0.16

2,000 0.05 0.10 0.05 0.05 0.27 0.30 0.17 0.17 – 0.42 0.09

S1 5,000 0.03 0.04 0.03 0.03 0.17 0.18 0.10 0.10 – 0.27 0.04

500 0.13 0.24 0.13 0.10 0.58 0.59 0.37 0.36 – 2.46 0.07

1,000 0.09 0.24 0.13 0.08 0.37 0.41 0.26 0.26 – 1.45 0.02

2,000 0.06 0.26 0.14 0.06 0.25 0.29 0.19 0.18 – 0.76 0.00

S2 5,000 0.04 0.13 0.08 0.04 0.16 0.17 0.10 0.10 – 0.28 0.00

500 0.13 0.22 0.10 0.10 0.62 0.62 0.45 0.38 – 1.77 0.13

1,000 0.09 0.21 0.10 0.08 0.38 0.41 0.29 0.27 – 1.36 0.03

2,000 0.06 0.25 0.13 0.06 0.26 0.29 0.19 0.18 – 0.86 0.00

S3 5,000 0.04 0.13 0.08 0.04 0.16 0.17 0.10 0.10 – 0.35 0.00

500 0.23 0.62 0.24 0.18 0.56 0.56 0.48 0.44 – 0.87 0.00

1,000 0.16 0.56 0.17 0.13 0.44 0.36 0.38 0.29 – 0.42 0.00

2,000 0.11 0.32 0.14 0.10 0.27 0.24 0.22 0.18 – 0.20 0.00

S4 5,000 0.07 0.13 0.08 0.07 0.14 0.13 0.11 0.10 – 0.09 0.00

500 0.23 0.63 0.27 0.17 0.42 0.51 0.41 0.42 – 1.01 0.05

1,000 0.16 0.61 0.18 0.13 0.32 0.36 0.30 0.29 – 0.50 0.00

2,000 0.11 0.38 0.12 0.10 0.28 0.24 0.25 0.18 – 0.22 0.00

(continued) 
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CI is, in general, shorter than the searching CI and the Union CI with pz − 1. We shall point out 
that our proposed sampling CI can be even shorter than the oracle bias-aware CI (the benchmark). 
As an important remark, the oracle bias-aware CI, the sampling CI, the searching CI, and the 
Union CI are, in general, longer than the CI by the oracle TSLS, which is a price to pay for con-
structing uniformly valid CIs. In Online Supplementary Material, Section E.1 in the supplement, 
we consider the settings with Ĳ = 0.4 and heteroscedastic errors. In Online Supplementary 
Material, Section E.3 in the supplement, we further explore the settings considered in 
Windmeijer et al. (2021). The results for these settings are similar to those in Table 1.

Varying violation strength. In Figure 5, we focus on the setting S2 and vary Ĳ� across 
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}. We follow Bekker and Crudu (2015) and generate 
heteroscedastic errors as follows: for 1 ≤ i ≤ n, generate įi ∼ N(0, 1) and ei = 0.3įi + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

[1 − 0.32]/[0.864 + 1.382]
p

(1.38 · Ĳ1,i + 0.862 · Ĳ2,i), where conditioning on Zi, 
Ĳ1,i ∼ N(0, [0.5 · Z2

i,1 + 0.25]2), Ĳ2,i ∼ N(0, 1), and Ĳ1,i and Ĳ2,i are independent of įi.
As reported in Figure 5, our proposed searching and sampling CIs achieve the desired coverage 

(95%) while TSHT and CIIV only achieve the desire coverage for Ĳ = 0.5 with n = 2,000 and Ĳ ≥ 0.3 
with n = 5,000. In terms of length, we observe that the sampling CI is shorter than the searching 
CI. The sampling CI can be even shorter than the oracle bias-aware CI (the benchmark). We do not 
plot the length of the Union CI, which is three to six times longer than our proposed sampling CI; 
see Figure 2 for details. An interesting observation is that the empirical coverage of TSHT and CIIV
is around 90% for Ĳ = 0.025. This happens since the invalidity levels of the IVs are small, and even 
the inclusion of such invalid IVs does not signi!cantly worsen the empirical coverage.

We present the results for homoscedastic errors in Online Supplementary Material, Figure E.1 in 
the supplement. In Online Supplementary Material, Section E.2 in the supplement, we explore the 
performance of different methods for settings with the locally invalid IVs where the violation levels 
are scaled to 

ÅÅÅÅÅÅÅÅÅ
log n/n

p
.

Tuning parameter selection. We investigate the robustness of Algorithm 3 to different choices of 
tuning parameters. For the searching CI, we observe in Table 2 that the empirical coverage and the 
average lengths are almost invariant to different choices of L, U, and a. For two intervals (a1, b1) 
and (a2, b2), we de!ne its difference as |a1 − a2| + |b1 − b2|. In Table 2, we report the difference 
between the searching CI constructed with the default choice of L, U, a in Algorithm 3 and search-
ing CIs with other choices of L, U, a. The average interval difference is smaller than twice the de-
fault grid size n−0.6.

In Online Supplementary Material, Section B.2 in the supplement, we demonstrate that the sampling 
CIs have nearly the same empirical coverage and length for different choices of L, U, a, and the resam-
pling size M. The choice of the shrinkage parameter Ȝ > 0 has a more obvious effect on the sampling CI. 
As explained in Remark 3, we choose the smallest Ȝ�such that more than a prespeci!ed proportion (de-
noted as prop) of the M = 1,000 intervals are nonempty. In Figure 6, we compare the coverage and 
length properties of the sampling CIs by varying prop across {1%, 5%, 10%, 20%, 30%}. If 
prop ≥ 5%, the empirical coverage reaches the nominal level and vary slightly with prop. In terms 
of length, the intervals get slightly longer with a larger value of prop. The empirical coverage and aver-
age lengths of the sampling CIs are robust to a wide range of Ȝ�values, as long as the corresponding Ȝ�
guarantees a suf!cient proportion of nonempty sampled searching CIs.

Table 1. Continued  

Oracle Searching Sampling Union

Set n TSLS BA TSHT CIIV V̂TSHT V̂CIIV V̂TSHT V̂CIIV Check pz − 1 dpz/2e

S5 5,000 0.07 0.15 0.08 0.07 0.15 0.13 0.12 0.10 – 0.09 0.00

Note. The columns indexed with TSLS, BA, TSHT, and CIIV represent the oracle TSLS CI with the knowledge of V, the 
oracle bias-aware CI in (10), the CI by Guo et al. (2018), and the CI by Windmeijer et al. (2021), respectively. Under the 
columns indexed with ‘Searching’ (or ‘Sampling’), the columns indexed with V̂TSHT and V̂CIIV represent our proposed 
searching (or sampling) CI in Algorithm 3 with V̂TSHT and V̂CIIV, respectively. The column indexed with ‘Check reports the 
proportion of simulations passing the plurality rule check in Algorithm 3. The columns indexed with Union represent the 
method by Kang et al. (2020). The columns indexed with pz − 1 and dpz/2e correspond to the Union methods assuming 
two valid IVs and the majority rule, respectively.
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8 Real data analysis
We study the effect of education on earnings by analyzing the 2018 survey of China Family Panel 
Studies (Xie, 2012). The outcome is the logarithm transformation of salary in the past 12 
months, and the treatment is the years of education. We include three binary baseline covariates: 
gender, urban (whether the subject lives in the urban area), and hukou (whether the subject’s 
hukou is agricultural or nonagricultural). Following the literature, we have induced the follow-
ing nine IVs: 

(a) Family background variables (e.g., Behrman et al., 2012; Blackburn & Neumark, 1993; 
Trostel et al., 2002): the father’s education level, the mother’s education level, the spouse’s 
education level, the family size, and the log transformation of the education expenditure in 
the past 12 months;

(b) The group-level years of education where the groups are formulated by age, gender, and 
region;

(c) Personal traits (Behrman et al., 2012): the statement on the fair competition, the statement 
on the talent pay-off, and whether the subject reads some books or not in the past 12 months.

Figure 5. Empirical coverage and average lengths for the setting S2 with Ĳ ∈ 
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and heteroscedastic errors. Oracleˇ BA, TSHT, and CIIV represent the 
oracle bias-aware CI in (10), the CI by Guo et al. (2018), and the CI by Windmeijer et al. (2021), respectively. The 
searching and sampling CIs are implemented as in Algorithm 3.
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The statement on fair competition measures an individual’s willingness to compete through abil-
ity. The statement on the talent pay-off is about an individual’s viewpoint on whether their edu-
cational endeavors will pay off. After removing the missing values, the data consists of 3,758 
observations. In the supplement, we report the summary statistics of all IVs and baseline covariates 
in Online Supplementary Material, Table E.8.

In Table 3, we compare our proposed searching and sampling CIs with existing methods. By ap-
plying TSHT, we identi!ed six relevant instruments: the father’s education level, the mother’s edu-
cation level, the spouse’s education level, the group-level years of education, the family size, 
whether to read some books or not in the past 12 months. Out of these IVs, the family size is de-
tected as the invalid IV. CIIV outputs the same set of valid IVs. When we include all nine IVs, the 
concentration parameter is 2,906.36. If we only include the !ve IVs selected by TSHT and CIIV, the 
concentration parameter is 2,850.57. This indicates that the whole set of IVs are strongly associ-
ated with the treatment, but some IVs (e.g., the family size) are possibly invalid.

As reported in Table 3, CIs by TSHT and CIIV are relatively short, but they may undercover due 
to the IV selection error. We compare the lengths of Union method and our proposed searching 
and sampling CIs, which are all robust to the IV selection error. The sampling CI is the shortest 
among these CIs. We further plot the searching and sampling CIs in Online Supplementary 
Material, Figure E.4 in the supplement. The validity of the Union CI with �s = dpz/2e requires 
half of the candidate IVs to be valid; if we can only assume that two of candidate IVs are valid, 
then the CI by Union with �s = dpz/2emay not be valid but the CI by Union with �s = pz − 1 is valid.

9 Conclusion and discussion
Causal inference from observational studies is a challenging task. Typically, stringent identi!ca-
tion conditions are required to facilitate various causal inference approaches. The valid IV as-
sumption is one of such assumptions to handle unmeasured confounders. In the current paper, 
we devise uniformly valid con!dence intervals for the causal effect when the candidate IVs are pos-
sibly invalid. Our proposed searching and sampling con!dence intervals add to the fast-growing 
literature on robust inference with possibly invalid IVs. The proposed method has the advantage of 

Figure 6. Comparison of the sampling CIs with different Ȝ�for Ĳ = 0.4 and M = 1,000. We choose the smallest value 
of Ȝ�such that 1,000 · prop sampled intervals are nonempty. For example, for prop = 10%, we choose the smallest Ȝ�
leading to 100 nonempty sampled intervals.
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being more robust to the mistakes in separating the valid and invalid IVs at the expense of a wider 
con!dence interval. The proposed intervals are computationally ef!cient and less conservative 
than existing uniformly valid con!dence intervals.
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