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Abstract

Instrumental variable methods are among the most commonly used causal inference approaches to deal with
unmeasured confounders in observational studies. The presence of invalid instruments is the primary concern
for practical applications, and a fast-growing area of research is inference for the causal effect with possibly
invalid instruments. This paper illustrates that the existing confidence intervals may undercover when the
valid and invalid instruments are hard to separate in a data-dependent way. To address this, we construct
uniformly valid confidence intervals that are robust to the mistakes in separating valid and invalid
instruments. We propose to search for a range of treatment effect values that lead to sufficiently many
valid instruments. We further devise a novel sampling method, which, together with searching, leads to a
more precise confidence interval. Our proposed searching and sampling confidence intervals are uniformly
valid and achieve the parametric length under the finite-sample majority and plurality rules. We apply our
proposal to examine the effect of education on earnings. The proposed method is implemented in the R
package RobustIV available from CRAN.
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1 Introduction

Unmeasured confounders are a major concern for causal inference with observational studies. The
instrumental variable (IV) method is one of the most commonly used causal inference approaches
to deal with unmeasured confounders. The IVs are required to satisfy three identification condi-
tions: conditioning on the baseline covariates,

(A1) the IVs are associated with the treatment;
(A2) the IVs are independent of the unmeasured confounders;
(A3) the IVs have no direct effect on the outcome.

The main challenge of IV-based methods is identifying instruments satisfying (A1), (A2), and (A3)
simultaneously. Assumptions (A2) and (A3) are crucial for identifying the causal effect as they as-
sume that the IVs can only affect the outcome through the treatment. However, assumptions (A2)
and (A3) may be violated in applications and cannot even be tested in a data-dependent way. We
define an IV as ‘invalid’ if it violates assumptions (A2) or (A3). If an invalid IV is mistakenly taken
as valid, it generally leads to a biased estimator of the causal effect. A fast-growing literature is to
conduct causal inference with possibly invalid IVs (e.g., Bowden et al., 2015, 2016; Fan & Wu,
2020; Guo et al., 2018; Kang et al., 2020, 2016; Kolesér et al., 2015; Tchetgen et al., 2021;
Windmeijer et al., 2019). Many of these works are motivated by Mendelian Randomization stud-
ies using genetic variants as [Vs (Burgess et al., 2017). The adopted genetic variants can be invalid
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since they may affect both treatment and outcome due to the pleiotropy effect (Davey Smith &
Ebrahim, 2003).

The current paper focuses on the linear outcome model with heteroscedastic errors and multiple
possibly invalid IVs. Under this multiple IV framework, the effect identification requires extra condi-
tions, such as the majority rule (Kang et al., 2016) and plurality rule (Guo et al., 2018), assuming thata
sufficient proportion of IVs are valid, but the validity of any IV is unknown a priori. The existing
works (e.g., Guo et al., 2018; Kang et al., 2016; Windmesijer et al., 2019, 2021) leveraged the majority
and plurality rules to select valid [Vs in a data-dependent way. The selected valid IVs were used for the
following-up causal inference, with the invalid IVs being included as the baseline covariates. However,
there are chances that we make mistakes in separating valid and invalid IVs. Certain invalid IVs can be
hard to detect in applications with the given amount of data. We refer to such invalid IVs as ‘locally
invalid Vs’ and provide a formal definition in Definition 1. In Section 3, we demonstrate that, when
there exist locally invalid IVs, the existing inference methods TSHT (Guo et al., 2018) and CIIV
(Windmeijer et al., 2021) may produce unreliable confidence intervals, where TSHT is shorthanded
for two stage hard thresholding and CIIV is shorthanded for confidence interval method for selecting
valid IVs.

The current paper proposes uniformly valid confidence intervals (Cls) robust to IV selection er-
ror. To better accommodate finite-sample inferential properties, we introduce the finite-sample
majority and plurality rule in Conditions 3 and 4, respectively. We start with the finite-sample ma-
jority rule and explain the searching idea under this setting. For every value of the treatment effect,
we implement a hard thresholding step to decide which candidate IVs are valid. We propose to
search for a range of treatment effect values such that the majority of candidate IVs can be taken
as valid. We further propose a novel sampling method to improve the precision of the searching CI.
For the plurality rule setting, we first construct an initial estimator V of the set of valid IVs and then
apply the searching and sampling method over V. Our proposed searching CI works even if V does
not correctly recover the set of valid I'Vs.

Our proposed searching and sampling Cls are shown to achieve the desired coverage under the
finite-sample majority or plurality rule. The CIs are uniformly valid in the sense that the coverage is
guaranteed even in the presence of locally invalid IVs. We also establish that the searching and
sampling CIs achieve the 1/./n length. The proposed Cls are computationally efficient as the
searching method searches over one-dimension space, and we only resample the reduced-form es-
timators instead of the entire data.

We discuss other related works on invalid IVs in the following. Kang et al. (2020) proposed the
union CI, which takes a union of intervals being constructed by a given number of valid IVs and
passing the Sargan test (Sargan, 1958). The union CI requires an upper bound for the number of
invalid IVs, while our proposed CI does not rely on such information. Our proposed searching
and sampling Cls are typically much shorter and computationally more efficient than the union
CL Different identifiability conditions have been proposed to identify the causal effect when the
IV assumptions (A2) and (A3) fail to hold. Bowden et al. (2015) and Kolesér et al. (2015) assumed
that the IVs’ direct effect on the outcome and the IVs’ association with the treatment are nearly or-
thogonal. In addition, there has been progress in identifying the treatment effect when all IVs are
invalid; for instance, Lewbel (2012), Tchetgen et al. (2021), and Liu et al. (2020) leveraged hetero-
scedastic covariance of regression errors, while Guo and Bithlmann (2022) relied on identifying non-
linear treatment models with machine learning methods. Goh and Yu (2022) emphasized the
importance of accounting for the uncertainty of choosing valid IVs by the penalized methods
(Kang et al., 2016) and proposed a Bayesian approach to construct a credible interval with possibly
invalid IVs. However, no theoretical justification exists for this credible interval being a valid CI. In
Mendelian Randomization studies, much progress has been made in inference with summary statis-
tics, which is not the main focus of the current paper; see Bowden et al. (2015, 2016) and Zhao et al.
(2020) for examples. In the Generalized Method of Moments setting, Liao (2013), Cheng and Liao
(2015), and Caner et al. (2018) leveraged a set of prespecified valid moment conditions for the model
identification and further tested the validity of another set of moment conditions. The current paper
is entirely different in the sense that there is no prior knowledge of the validity of any given IV.

The construction of uniformly valid Cls after model selection is a major focus in statistics under
the name of post-selection inference. Many methods (Berk et al., 2013; Cai & Guo, 2017;
Chernozhukov et al., 2015; Javanmard & Montanari, 2014; Lee et al., 2016; Leeb & Potscher,
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20035; van de Geer et al., 2014; Xie & Wang, 2022; Zhang & Zhang, 2014) have been proposed,
and the focus is on (but not limited to) inference for regression coefficients after some variables or
submodels are selected. This paper considers a different problem, post-selection inference for
causal effect with possibly invalid instruments. To our best knowledge, this problem has not
been carefully investigated in the post-selection inference literature. Furthermore, our proposed
sampling method differs from other existing post-selection inference methods.

Notations. For a set § and a vector x € R?, §¢ denotes the complement of S, |S| denotes the car-
dinality of S, and x; is the subvector of x with indices in S. Forsets B C A, we define A\B=A n B°.
The £, norm of a vector x is defined as ||x||, = ( le:] |x;|7)a for g > O with ||x|lg= {1 << p:x; #
0}| and ||x|l, = max; <<y, |x;]. We use 04 and 1, to denote the g-dimension vector with all entries
equal to 0 and 1, respectively. For a matrix X, X;., X, and Xj; are used to denote its i-th row, j-th
column, and (7, j) entry, respectively. For a sequence of random variables X,, indexed by 7, we use
X,,— %X to denote that X,, converges to X in distribution. We use ¢ and C to denote generic positive
constants that may vary from place to place. For two positive sequences a, and b,,, a, < b,, means
that 3C > 0 such that a4, < Cb, for all n; a,=<b, if a,<b, and b, Sa,, and a, < b, if
lim sup,,_, . .@x/b, = 0. For a matrix A, we use ||A|l, and ||A ||, to denote its spectral and element-
wise maximum norm, respectively. For a symmetric matrix A, we use Anax(A) and Amin(A) to de-
note its maximum and minimum eigenvalues, respectively.

2 Models and reduced-form estimators

We consider the i.i.d. data {Y;, Dj, Xi,, Zi} <i<,, Where Y; € R, D; € R, X;. € R, and Z; € R
denote the outcome, the treatment, the baseline covariates, and candidate IVs, respectively. We
consider the following outcome model with possibly invalid IVs (Kang et al., 2016; Small, 2007),

Y, =D+ Z[n* + X[ ¢* +¢; with E(e;Z;)=0 and E(e;X;)=0, (1)

where f* € R denotes the treatment effect, 7* € R?7, and ¢* € R”x. We set the first element of X;. as
the constant 1. If the IVs satisfy (A2) and (A3), this leads to z* = 0 in (1). A nonzero vector z* indicates
that the IVs violate the classical IV assumptions (A2) and (A3); see Figure 1 for an illustration.

We consider the association model for the treatment D;,

D;=Z]y+X[y*+06; with E(6;Z;)=0 and E(5X;)=0. (2)

The model (2) can be viewed as the best linear approximation of D; by Z;. and X;. instead of a cas-
ual model. In (2), y # 0 indicates that the j-th IV satisfies assumption (A1). Due to unmeasured
confounders, ¢; and d; can be correlated, and the treatment D; is endogeneous with E(D;e;) # 0.

Following Kang et al. (2016), we discuss the causal interpretation of the model (1) and explain
why 7* # 0 represents the violation of assumptions (A2) and (A3). For two treatment values
d, d' € R and two realizations of IVs z, z € R?-, define the following potential outcome model:

Y Y\ —(d —dypt 4 (2 —2) " and E(Y'Y | Zo, Xo) = 2]t + X 4,

where f* € R is the treatment effect, k%, #* € R, and ¢* € R"*. As illustrated in Figure 1, x # 0

indicates that the j-th candidate IV has a direct effect on the outcome, which violates the assump-
tion (A3); #; # 0 indicates that the j-th candidate IV is associated with the unmeasured confounder,

which violates assumption (A2). Under the consistency condition Y; = YfD”Z"), the above potential

outcome model implies (1) with the invalidity vector #*=«*+7* and
0,0 0,0
ei=Y "V —EY" | Z;, X;).
We define the set S of relevant instruments and the set V of valid instruments as

S={1<j<p,:y;#0} and V={jeS:z =0} (3)

The IVs belonging to S satisfy the IV assumption (A1). The set V is a subset of S and the IVs be-
longing to V satisfy the classical IV assumptions (A1)—(A3) simultaneously.
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Figure 1. lllustration of (A2) and (A3) being violated in the model (1) with z* = «* + »*.

We now review the identification strategy under models (1) and (2). We plug in the treatment
model (2) into the outcome model (1) and obtain the reduced-form model,

Y, =ZIT" + X[W* +¢;, with E(Z.;)=0, E(X;.c;) =0, @
D;=ZIy"+XIy*+d; with E(Z.0;)=0, E(X.5,)=0,

where T'* = *y* + n* € RP%, ¥* = B*y* + ¢* € RP, and ¢; = f*6; + e;. We shall devise our methods
under the model (4), which is induced by the models (1) and (2).

Since Z;. and X;. are uncorrelated with ¢; and J;, we can identify the reduced-form parameters I'*
and y* in (4). However, since 7* # 0, the identification of g* through solving the equation I'* =
By* + n* € R requires extra assumptions. Kang et al. (2016) and Bowden et al. (2016) proposed
the following majority rule to identify f for z* # 0.

Condition 1  (Population Majority Rule). More than half of the relevant IVs are valid;
that is, |V| > |S|/2, where V and S are defined in (3).

Condition 1 requires that more than half of the relevant IVs are valid but does not directly re-
quire the knowledge of V. For the j-th IV, we may identify the effect as gV = L7 /7. If the j-th IV is
valid, Ul = *; otherwise, /! # g*. Under Condition 1, #* can be identified using the majority of
{ﬁm}/es- Guo et al. (2018) and Hartwig et al. (2017) proposed the following plurality rule as a
weaker identification condition.

Condition2  (Population Plurality Rule). The number of valid IVs is larger than the num-
ber of invalid IVs with any given invalidity level v # 0, that is,

V| > r?joxllv| with Z,= {/' € S:n;‘/y;‘ =v],

where the set V of valid IVs is defined in (3).

The term 7 /y} represents the invalidity level: z7/y7 # 0 indicates that the j-th IV violates as-
sumptions (A2) and (A3). Z, denotes the set of all IVs with the same invalidity level v. Note
that V=7Z,. Under the plurality rule, 8* can be identified using the largest cluster of {,b’m}/-es.
We refer to Conditions 1 and 2 as population identification conditions since they are used to iden-
tify £* with an infinite amount of data. We will propose finite-sample versions of Conditions 1 and
2 in Conditions 3 and 4, respectively.

We now present the data-dependent estimators of y* and IT'* in the model (4). Define p = py + p,
W=(Z,X) e R, and ZA‘,:%Z:; W,.(W;.)". We estimate y* and I'* by the Ordinary Least
Squares (OLS) estimators, defined as

TN =(WTW)'WTY and 67, 9" =(W W)"'WTD. (5)
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Under regularity conditions, as 7 — oo, the OLS estimators satisfy

-1\ d . vl C
ﬁ(f}_y*)aN(O,Cov) with COV=<C-|— VV)’ (6)

where VI € RP>P: V7 € R?>: and C € R?>- are explicitly defined in Online Supplementary
Material, Lemma 1 in the supplement. Define the residues & =Y; — Zin - Xz‘i’ and 6;=D, —
ZI9— X7 for 1 <i < n. We estimate V', V7, and C in (6) by

V= [2—1 (123\% WT>21} V= [ﬁ—l (123,.2\)(/,-_ WT>21] :
i Lip,,1ip, i Lipy, Lip,
A A 1A A A
C= [2—1 (Z VA WT) 2—1} ,
i 1:pa,Lips

where for a matrix A € R”*?, we use Ay, 1, to denote the p, X p, submatrix containing the first
p. rows and columns of A. The variance estimators in (7) are robust to the heteroskedastic errors
and referred to as the sandwich estimators (Eicker, 1967; Huber, 1967); see Chapter 4.2.3 of
Wooldridge (2010) for details. We use the OLS estimators in (5) and the sandwich estimators
in (7) as a prototype to discuss our proposed methods. Our proposed methods are effective for
any reduced-form estimators satisfying (6). In Online Supplementary Material, Section A.3 in
the supplement, we consider the high-dimensional setting with p >z and construct the debiased
Lasso estimators I" and 7 satisfying (6).

3 1V selection errors and nonuniform inference

In this section, we demonstrate that even if the majority rule (Condition 1) or plurality rule
(Condition 2) holds, the CIs by TSHT (Guo et al., 2018) and CIIV (Windmeijer et al., 2021) may
be unreliable. The main idea of Guo et al. (2018) and Windmeijer et al. (2021) is to estimate V) by a
set estimator 1 and then identify * through the following expression or its weighted version:

BV =D T/ > ()% (8)

jev jeb

When there are no selection errors (i.e., V = V), we have (V) = *. The validity of the CIs by TSHT
and CIIV requires V to recover V correctly. However, there are chances to make mistakes in esti-
mating V in finite samples, and the CIs by TSHT and CIIV are unreliable when invalid IVs are in-
cluded in V. The IV selection error leads to a bias in identifying * with #(V). Even if V used in (8) is
selected in a data-dependent way, the target causal effect f* is fixed, which is a main difference
from the post-selection inference literature (e.g., Berk et al., 2013; Lee et al., 2016; Leeb &
Potscher, 2005). We provide more detailed discussions in Online Supplementary Material,
Section A.1 in the supplement.

In the following, we define ‘locally invalid IVs’ as invalid IVs that are hard to be separated from
valid IVs with a given amount of data. For j, k € S, define

) ) 1 . . .
Tjx:=min{T),, T}} with T, = \/ - (RE /0 + R/ = 2RW ), (9)

where RV = V' + (812 V7 — 28V1C and pV! = I7/yf. As shown in Proposition 2, if the absolute dif-
ference between 7 /y; and 7 /y}, for j, k € Sis above 2\/logn - T 1, then we can tell that the j-th
and k-th IVs have different invalidity levels. Particularly, the term yZT(;,k represents the standard
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error of estimating 7}, by [ — 9B, where gVl =T/ 7; denotes the causal effect estimator by assum-
ing the j-th IV to be valid. By symmetry, y;‘Tz’i denotes the standard error of estimating 7 by
[ - )*),-,Z’[k]. We now formally define locally invalid IVs.

Definition 1  (Locally invalid IV). Forj € S, the j-th IV is locally invalid if
0<lzi/y]| <sj(n) with s;(n):=2/logn- max IT el
€

where T is defined in (9).

The definition of locally invalid IVs depends on the invalidity level 77 /y* and the separation level
sj(n), which stands for the uncertainty level in separating the j-th IV and valid IVs. We show in
Proposition 2 that the j-th IV, if invalid, can be separated from valid IVs if |7} /7}| = sj(n). The sep-
aration level s;(r) is of the order \/logn/n if all of {y}} ;.5 are constants. The large sample size en-
hances the power of detecting invalid IVs. For a sutjﬁciently large #, the set of locally invalid TVs
becomes empty since s;j(#) — 0. Definition 1 is related to the local violation of IV exogeneity as-
sumptions and valid moment conditions studied in Caner et al. (2018), Berkowitz et al. (2012),
Guggenberger (2012), and Hahn and Hausman (2005).

The theoretical results of TSHT (Guo et al., 2018) or CIIV (Windmeijer et al., 2021) essentially
assume that there are no locally invalid IVs; see Assumption 8 in Guo et al. (2018). However, the
absence of locally invalid IVs may not properly accommodate real data analysis with a finite sam-
ple. For a given sample size 7, there are chances that an invalid IV with |z /yf| <s;j(n) is taken as
valid by mistake. We now consider a numerical example and demonstrate that the coverage levels
of Cls by TSHT and CIIV may be below the nominal level when locally invalid IVs exist.

Example 1  (Setting S2 in Section 7). For the models (1) and (2), set y*=10.5-14p and
7 =(0],7/2,7/2, =1/3, =2/3, =1, —4/3)". The plurality rule is satisfied
with  |V|=4> max,z0|Z,/=2. We vary 7 across {0.025,0.05, 0.075,
0.1,0.2,0.3,0.4, 0.5}. sj(n) for j=35, 6 in Definition 1 takes the value 0.96
for n =500 and 0.53 for » = 2,000.

In this example, the fifth and sixth IVs (with a small ) are locally invalid IVs, which are hard to
detect for n =500, 2,000. The empirical coverage is reported in Figure 2. For a small 7z and 1, the
estimated sets V by TSHT and CIIV often contain locally invalid IVs, and the coverage levels of
TSHT and CIIV are below 95%. There are nearly no locally invalid IVs for »=2,000 and
7=0.5, and the CIs by TSHT and CIIV achieve the nominal level 95%. For = 0.1, with # increas-
ing from 500 to 2,000, the fifth and sixth IVs may still be included in V. Consequently, the bias
due to the locally invalid IVs remains unchanged, and the empirical coverage levels of TSHT and
CIIV decrease since the standard errors get smaller with a larger #. In contrast, our proposed
sampling CI in Algorithm 3 and the Union interval in Kang et al. (2020) achieve the desired
coverage at the expense of wider intervals. Our proposed sampling Cls are significantly shorter
than the Union intervals.

We introduce an oracle bias-aware CI as the benchmark when IV selection errors exist. The or-
acle bias-aware CI serves as a better benchmark than the oracle CI assuming the knowledge of V
since it accounts for the IV selection error. For the TSHT estimator j and its standard error SE(B),
we assume (B — f£*)/SE(B)—9N(b, 1) with b denoting the asymptotic bias. Following (7) in
Armstrong et al. (2020), we leverage the oracle knowledge of [Ef — g*| and form the oracle
bias-aware CI as

B-rf+r) with y=SER) -\/evu(lBS — 12 /SE2(B)), (10)

where SE(B) is the empirical standard error computed over 500 simulations and cv,(B?) is the 1 — a
quantile of the y? distribution with 1 degree of freedom and noncentrality parameter B2. In
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Figure 2. Empirical coverage and average lengths for Example 1 with z varying across

{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}. TSHT, CIIV, and Union stand for the Cls by Guo et al. (2018), Windmeijer
et al. (2021), and Kang et al. (2020), respectively. OracleBA stands for the oracle bias-aware Cl in (10). Sampling
represents our proposed sampling Cl in Algorithm 3.

Figure 2, the oracle bias-aware CI achieves the desired coverage, and the sampling CI has a com-
parable length to the oracle bias-aware CI.

4 Searching and sampling: robust inference methods under majority rule

In this section, we focus on the majority rule setting and generalize the proposed methods to the
plurality rule in Section 5. Our proposed procedure consists of two stages as an analogy to TSLS.
We fit the treatment model in the first stage and select strong IVs; see Section 4.1. In the second
stage, we propose novel searching and sampling Cls in Sections 4.2—4.4, which are robust to
the mistakes in separating valid and invalid IVs.

4.1 First-stage selection and the finite-sample majority rule

Following Guo et al. (2018), we estimate S by applying the first-stage hard thresholding (Donoho
& Johnstone, 1994) to the reduced-form estimator  defined in (5),

S={1 <i <Pl 2 Viogn- \”ﬂ,-,-/n}, (11)

with V” defined in (7). The main purpose of (11) is to estimate the set of relevant IVs and screen out
IVs weakly associated with the treatment. The term /log# is introduced to adjust for the multi-
plicity of testing p, hypothesis; see more discussions in Remark 1. The screening step in (11) guar-
antees the robustness of our proposal when some IVs are weakly associated with the treatment.
With a high probability, our estimated set S in (11) belongs to S and contains the set Sy, of
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strongly relevant IVs, defined as

Sw={1<i<p.:

> 2,/logn - /VV,././n] with V7 defined in (6). (12)

%

The set Sy contains the j-th IV if its individual strength lyfl is well above its estimation accuracy
/Vyﬁ /n. The factor 2 in (12) ensures that the individual IV strength is sufficiently large such that

the j-th IV can be included in the set S defined in (11); see more detailed discussion in Online
Supplementary Material, Section A.2 in the supplement.
We now modify Condition 1 to accommodate the finite-sample uncertainty.

Condition 3  (Finite-sample Majority Rule). More than half of the relevant IVs are
strongly relevant and valid, that is, |V N Sy | > |S|/2, where S and V are de-
fined in (3) and Sy is defined in (12).

When the sample size 7 is small, Condition 3 is slightly stronger than Condition 1. When# — oo
and the IV strengths {7}, <, do not change with 7, the set Sy converges to S and Condition 3 is
asymptotically the same as Condition 1.

Remark 1  There are other choices of the threshold level in (11). We can replace /log# in
(11) and (12) by any f(n) satisfying f(n) > oo with #n—> o and
f(n)>/2logp,. Guo et al. (2018) used f(n) = /2.01log max {n, p.}, which
is applicable in both low and high dimensions. In Online Supplementary
Material, Section B.1 in the supplement, we consider the settings with weak

IVs and demonstrate that our proposed methods have nearly the same per-
formance with both the thresholds in (11) and that in Guo et al. (2018).

4.2 The searching confidence interval

In the following, we restrict our attention to the estimated set S of relevant IVs and leverage
Condition 3 to devise the searching CI for f*. The main idea is to search for # values that lead
to the majority of the instruments being detected as valid. The searching idea is highly relevant
to the Anderson—-Rubin test (Anderson & Rubin, 1949) for the weak IV problem, which searches
for a range of £ values leading to a sufficiently small y? test statistic; see Remark 2 for more
discussions.

For any given f € R, we apply the relationT"; = *y% + 77 and construct the initial estimator of z
as I'; — #7;. The estimation error of I'; — 47, is decomposed as

(U= B3) —af =T = T7 = B3 = )) + (B" = Bl (13)

When f = f*, the above estimation error is further simplified as I'; — T’ © = B(9; — 7). We quantify
the uncertainty of {[; — = B0 — v} s by the following union bound,

=T =BG, — 9t
liminf P | max |A’ ’Aﬁ(y’ f’)l scp-l(l— ‘ﬁ) >1-a, (14)
n— oo jes \/(V?j"'ﬁzV;}/—ZﬁCii)/” 28]

where a € (0, 1) and @ is the inverse CDF of the standard normal distribution. By rescaling (14),
we construct the following threshold for I — I7 =B —yf) withj € S,

a

218

pi(B) = c1>—1<1 >.\/(V§i+ﬁ2</3./ —28Cj)/n. (15)
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We further apply the hard thresholding to {I'; — B} es and estimate ' by
wB) = (8- 3) 1(|Fi =83 2 5p) for je. (16)

If = p*, the hard thresholding in (16) guarantees #;(f*) = 0 for j € V with probability larger than

1 —a. For any € R, we can construct the vector #5(f) = (i(B) jes and calculate the number of

nonzero entries in Z3(f), denoted as [|#5(8)llo. Due to the hard thresholding, #5(8) can be a sparse

vector and | 73(f)llo stands for the number of invalid IVs corresponding to the given f value.
We search for a range of  such that the number of invalid IVs is below |S|/2,

creear . — {ﬁe R||7’i'5(ﬁ)||0<|3|/2} (17)

The above searching Cl is valid since Condition 3 implies that ||Z5(5")llo < |S|/2 with probability
1 — a; see Online Supplementary Material, equation (56) in the supplement. We consider the fol-
lowing example and illustrate the construction of CI***" in Figure 3.

Example 2  Generate the models (1) and (2) with no baseline covariates, set =1,
n=2,000, Y= 0.5-1yp and 7* = (Og, 0.05,0.05, —0.5, = 1)". In Figure 3,
we plot |S| — [|z5(8) | over different p and the red interval (0.914, 1.112) cov-
ers ff =1.

Remark 2 The proposed searching idea is related to but different from the Anderson—
Rubin test (Anderson & Rubin, 1949) for the weak IV problem. In (17), we
use the sparsity as the test statistic and invert the sparsity level to determine
the confidence region for #*. Our inverted test statistics [|#5(8)llo is a discrete
function of B, and its limiting distribution is not standard, which is fundamen-
tally different from the y? statistics used in AR test; see Figure 3. Due to the dis-
creteness of the test statistics, the searching interval in (17) can be a union of
disjoint intervals.

The Searching Method

6_ ................................................................... s s s s a e

Valid IV Number

-1.0 -0.5 0.0 0.5 1.0 1.5

Figure 3. The x-axis plots a range of 4 values, and the y-axis plots the number of valid IVs (i.e., |S| — llz5(B)lo) for
every given 8. The red interval (0.914, 1.112) denotes CI*** in (17).
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4.3 Efficient implementation of the searching ClI

We propose a computationally efficient implementation of CI***" in (17). To implement (17), we
can enumerate all values of # and calculate || 75(5)llo. However, the enumeration method for con-
structing CI***" can be time-consuming if there is a huge amount of # values. To improve the com-
putational efficiency, we construct an initial set [L, U] such that P(8* € [L, U]) - 1 and
construct a grid set with the grid size n? for a > 1/2. Then, we discretize [L, U] into the follow-
ing grid set,

B={p, Br ---» Bk} withpy =L, py=U, |1 =fl=n"" for 1<j<K-2, (18)

and |fx — Bx_1| < n7@. The reason for requiring a > 1/2 is to ensure that the approximation error
due to interval discretization is smaller than the parametric rate #~'/2, Importantly, the con-
structed confidence interval is almost invariant to the choices of [L, U] and the grid size #7 as
long as [L, U] contains f* and a > 1/2.

Throughout the paper, we choose the default grid size #~%¢ and present the following default
construction of the initial range [L, U]. For j € S, we estimate /" by the ratio fi/f’j and estimate

its variance by Var(Ij/§,) =1 (\7;/ i+ vaiff/ﬁ;‘ -2C;Ty/ 77). We then construct L and U as

L=mip{f,~/)‘)i— /1ogn.\7§r(f,~/9i)}, U=mag({fj/fzi+ /logn-\/fa\r(f,'/f)j)}, (19)
jeS jeS

where /log 7 is used to adjust for multiplicity. This initial range has been discussed in Section 3 of
Windmeijer et al. (2021).

With the grid set defined in (18), we modify (17) and propose the following computationally
efficient implementation,

Cre = min B, max  f|. (20)
{BeB:lI75(B)lo<ISI/2} {peB:laz(Pllo<ISI/2}

Instead of searching over the real line as in (17), we restrict to the grid set Bdefined in (18) and (19)
and search for the smallest and largest grid value such that more than half of the relevant IVs are

A

valid. In contrast to CI***" in (17), CI***" is guaranteed to be an interval. In Online Supplementary

Material, Section A.6 in the supplement, we compare CI** and CI** and find that both intervals
guarantee the coverage properties and achieve similar lengths.

We summarize the construction of searching CI in Algorithm 1. R

When the majority rule is violated, there is no § such that || z5(8)lly < 18]/2 and CI**" in (20) are
empty. This indicates that the majority rule is violated, which can be used as a partial check of the
majority rule. Moreover, Algorithm 1 can be implemented with the summary statistics I,  and

VI, V7, C, which are the inputs for steps 2-6 of Algorithm 1.

Algorithm 1 Searching Cl (Uniform Inference under Majority Rule)

Input: Outcome Y € R”; Treatment D € R"; [Vs Z € R™"2; Covariates X € R™"x; Significance level a € (0, 1).
Output: Confidence interval CI**; Majority rule check R € {0, 1}.
1: Construct I € R?, 5 € R? asin (5) and V', V’ and C as in (7);
: Construct S as in (11); > First-stage selection
: Construct L and U as in (19);
: Construct the grid set B as in (18) with a = 0.6;
: Construct {ﬁf(/’})}/es,/xes as in (16);
: Construct CI***" as in (20) and set R = 1(CI***" # ). > Searching CI

AN L AW N
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4.4 The sampling ClI

In this subsection, we devise a novel sampling method to improve the precision of the searching CI.
Conditioning on the observed data, we resample {I'"), 5[]} .,y as

Fm iid Y\ (Vin C/n
YA ] e

where M denotes the resampling size (with the default value 1,000), 7 and I" are defined in (5), and
VI, C, and V7 are defined in (7).

For 1 <m < M, we use {1, $1"1} to replace {I’, 7} and implement Algorithm 1 to construct a
searching CI. We refer to this CI as the #-th sampled searching CI. In implementing Algorithm 1,
we decrease the thresholding level used in the hard thresholding step of estimating z*.
Consequently, each sampled searching CI can be much shorter than the original searching CI;
see Figure 4. Our proposal of decreasing the threshold relies on the following observation: there
exists 1 < m* < M such that

Pl _ e _ ol .
ma_x| L Aﬂ(y’ i y’)lsz.q>—1<1— “A) with /Ix(lolan) " (22)
S (V4 g — 2G5 215

The rigorous statement is provided in Proposition 1. Compared with (14), the upper bound in
(22) is shrunk by a factor A, which is close to zero with a large M (e.g., M = 1,000). If we had
access to {I'1, 51”1} we could use a much smaller threshold level in constructing the searching
CL

We now provide the complete details about constructing the sampling CI. We firstly consider that
the tuning parameter 4 in (22) is given and will present a data-dependent way of choosing 4 in
Remark 3. Motivated by (22), we multiply the threshold level by A and implement Algorithm 1
for each of {11, 511}, _ /. That is, for 1 < m < M, we modify (16) and estimate g8 by

g, = (T = pap) A (|E = g5 22,8 for e, (23)

The Sampling Method

1.10-
_ 1.05- ; I |
| IR i O A e B |
® ! | | 'I.|III . N ||
5 ! |..II. e I | I|| I
g100- f[, ! I : I | II| I
8 i ! . |
0.95 SRR} CUSIIRTl RIRUTCUEL EUTUULIR: SUGLI At I ChtAlck SCGUEIEL] CUELEUTUt ettt CRal
0 25 50 75 100
Sampling Index
Figure 4. The axis corresponds to sampling indexes {1, 2, ..., 102} (after re-ordering), and the y-axis reports the

sampled Cls. The red interval is CI®™ = (0.955, 1.060), the blue interval is CI*** = (0.914, 1.112), and the blue
dashed interval is the oracle CI (0.983, 1.052) with prior information on valid IVs.
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with f;(f) defined in (15). We apply (20) and construct the m-th sampled searching CI as
[ﬁLﬂ (4), ﬁ,[ﬁ]x( )] with

B (2) = min B and A7 (2)= max S (24)
(BeBHNRL (B.A)10<181/2) 1BeB:1AL (8,410 <151/2)

Similarly to (20), we set [/)’Z:i( , B (1)] = @ if there is no A such that |271(8, )|y < |SI/2. We ag-

gregate the M searching Cls and propose the following sampling CI:

max

CImp = [mm B (), max 1 (3 )], (25)

where the indexset M ={1 <m < M: [ﬁgﬂ ), B (4)] # ¥} contains all indexes 7 corresponding

max
to nonempty [ﬂgﬂ( ), ﬁL’,’;JX( )]. In Figure 4, we demonstrate the sampling Cl in (25) using Example 2.
Many of the M sampled searching Cls are empty, and the nonempty ones can be much shorter than
the searching CI. Consequently, the sampling CI (in red) is much shorter than the searching CI (in
blue).

An important reason for the sampling method improving the precision is that the test statistics
I75(B)lo used for constructing the searching CI in (20) is a discrete function of f, and the limiting
distribution of the test statistics is not standard.

We summarize the sampling CI in Algorithm 2 and will provide two remarks about the imple-
mentation of Algorithm 2.

Algorithm 2 Sampling CI (Uniform Inference under Majority Rule)

Input: Outcome Y € R”; Treatment D € R"; IVs Z € R™?7; Covariates X € R”x; Sampling number M = 1,000;
1= ¢, (logn/M)Y25); Significance level a € (0, 1)

Output: Confidence interval CI**™
1: Implement steps 1 to 4 as in Algorithm 1;
2: for m < 1 to M do
3 Sample [ and 3" as in (21);
4: Compute {”[’”‘(/;, M)} jes pes @S in (23);
5 (2) and AU (1) in (24);
6
7

mm max

Compute ﬁ
: end for

: Construct CI**™ as in (25) > Sampling CI

Remark 3 (Tuning parameter selection for sampling). We demonstrate in Online
Supplementary Material, Section B.2 in the supplement that the sampling
CIs in Algorithm 2 do not materially change with different choices of
L, U, a, and the resampling number M. Theorem 2 suggests the form of the
tuning parameter 4 as c,(logn/M)Y S We present a data-dependent way
to specify the constant c,. If the A value is too small, very few of the resampled
reduced-form estimators will pass the majority rule and most of the M =
1,000 sampled intervals will be empty. Hence, the proportion of the non-
empty intervals indicates whether 1 is large enough. We start with a small val-
ue A=1/6- (logn/M)"?°) and increase the value of A by a factor of 1.25
until more than prop = 10% of the M = 1,000 intervals are nonempty. We
choose the smallest 1 value achieving this and use this 4 value to implement
Algorithm 2.
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Remark 4 (Alternative aggregation). We may combine the sampled CIs as
CIy™=uM_, nﬂ(i), B (2)]. Since CI™ may not be an interval due to
its definition, we focus on CI**™P defined in (235). In addition, we may filter
out (1 T}, _ .\ near the boundary of the sampling distribution in

(21). Particularly, define

Mo = 1Sm§M:mag<max{|ﬁ}mJ—;3i|/ \A/‘;f/n,
jesS

il A - _ o
y J—F,‘/‘/Vl;f/n} <110 1(1 -ﬁﬂ)}
with ag = 0.05. We modify (25) and construct the sampling CI as
Q1™ (M) = | i A2, mas Az ] 26)
meM’ meM’

with the index set M’ ={me& Mo:[f" (1), A7) ()] #@). In Online
Supplementary Material, Table B.6 in the supplement, we show that
CI**™P(M,) is nearly the same as CI**™P in (25).

4.5 Robustness to the existence of weak IVs

The validity of our proposed Cls in Sections 4.2—4.4 relies on Condition 3, which requires more than
half of the IVs to be strongly relevant and valid but allows the remaining IVs to be arbitrarily weak and
invalid. In the following, we make two important remarks about weak IVs. Firstly, our focused setting
is completely different from the classical weak IV framework (e.g., Staiger & Stock, 1997), where all
IVs as a total are weak. The F test for the treatment model and the concentration parameters can pro-
vide evidence on whether the IVs are weak (e.g., Stock et al., 2002). Similarly, the estimated set S in
(11) can also be used to check whether the given data set falls into the classical weak IV framework.
This paper focuses on the regime with nonempty S, indicating the existence of strong IVs. Secondly, the
challenge due to weak IVs is fundamentally different from locally invalid IVs. In the first-stage selec-
tion, the set of relatively weak IVs S\ Sy is not guaranteed to be selected by & in (11). The uncertainty
of selecting IVs inside S\Sy; is of a different nature from the uncertainty of detecting locally invalid
IVs. In Online Supplementary Material, Section B.1 in the supplement, we demonstrate that both
TSHT and CIIV perform well even if there exists uncertainty of selecting IVs belonging to S\Sq;-

5 Uniform inference methods under plurality rule

This section considers the more challenging setting with the plurality rule. We introduce the finite-
sample plurality rule and then generalize the method proposed in Section 4. For a given invalidity
level v € R, we define the set of IVs,

ﬂmﬂ=hes:

iy -v <} with ceRr (27)

When zis small, Z(v, 7) denotes the set of IVs with the invalidity level around v. With T} ;, defined in
(9), we define the separation level as

sep(n) :=2y/lognmaxT . (28)
j,RkES

Note that g/l = I7/yt = p* +x/yf. If the pairwise difference B — pR for j, k € & is above sep(n),
the j-th and k-th IVs can be separated based on their invalidity levels. Particularly, the term

max;, s T, denotes the largest error of estimating the pairwise difference (V) — g1y ikes and

V0ogn is used to adjust for the multiplicity of hypothesis testing; see more discussion after
Proposition 2. When {y}} .5 are nonzero constants, sep() is of order /logn/n.
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With the separation level sep(#), we introduce the finite-sample plurality rule.

Condition 4  (Finite-sample Plurality Rule). For 7, = 3sep(n),

IV N Seeel > max [Z{v, 7u)\ VI, (29)
ve

where sep(n), V, Sgr, and Z(v, 7,,) are defined in (28), (3), (12), and (27),
respectively.

The set V N Sy, consists of the strongly relevant and valid IVs, which we rely on to make infer-
ences for . Since 7, — 0 as n — oo, the set Z(v, 7,,)\V contains all invalid IVs with invalidity lev-
els 77 /y; ~ v. Condition 4 requires that the cardinality of V N S is larger than that of invalid IVs
with zf/yf ~ v. When v =0, the set Z(0, 7,,)\V is the set of invalid IVs with invalidity levels below
7,. Condition 4 also requires that there are more IVs in V N Sy, than the locally invalid IVs with
invalidity levels below z,,.

In comparison to Condition 2, Condition 4 accommodates for the finite-sample approximation
error by grouping together invalid IVs with similar invalidity levels. For a large sample size,
Condition 4 is the same as Condition 2. Specifically, if # — oo and {z}},<,, and {y/}1<p, do
not change with #, then

. . ifv=0
with Z, defined in Condition 2. We shall emphasize that sep(#) defined in (28) is not required in the
following confidence interval construction.
We propose a two-step inference procedure for * under Condition 4. In the first step, we con-
struct an initial set V satisfying

VN Sq CVCI0,1,) with 1,=23sep(n). (30)

Since Condition 4 implies that V n Sy is the majority of the set Z(0, z,,), we apply (30) and estab-
lish that the set V N Sy, becomes the majority of the initial set V. In the second step, we restrict our
attention to ¥ and generalize the methods in Section 4. Importantly, the initial set V' is allowed to
contain locally invalid IVs.

We now construct an initial set V satlsfylng (30) by modifying TSHT (Guo et al., 2018). Without
loss of generality, we set S= (1,2, ..., IS |}. Forany;j € S we construct an estimator of 8 and z* as

Bl = fi/ﬁ/‘ and ﬁg =T —p%5, for kes, (31)

where the super index j stands for the model identification by assuming the j-th IV to be valid. We
define RV = V' + (3U1)2V7 — 2U1C and further estimate the standard error of fr,[g] with k € S by

SE(]) = \/ (Rg}k 4 (7/;) R = 29,/ R0 )/n. (32)

For 1 < k, j < |8|, we apply the following hard thresholding and construct the (k, j) entry of the vot-
ing matrix IT € RIS a5

iy, =1(| A < SE@E) - logn  and |ir[jk]|§SAE(7Ar[/-k])-\/logn), (33)

with fzg] and fr[/-k] defined in (31), S]E(ﬁg]) and SAE(frlij) defined in (32), and /log# used to adjust for
multiplicity. In (33), [Ty ; = 1 represents that the k-th and j-th IVs support each other to be valid while

€202 J18qWBAON G| UO Jasn saueiqi] AlsiaAiun siebiny Aq SLevY. L L/6S6/S/S8/8101U./gsSsl/woo dno olwapeoe)/:sdjy Wol) papeojuMo(]



J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 3 973

I:Ik,,' = 0 represents that they do not. The voting matrix in (33) is a symmetric version of the voting
matrix proposed in Guo et al. (2018).

We now construct the initial set by leveraging the voting matrix in (33). Define W=
argmax; s ITT; |y as the set of IVs receiving the largest number of votes. We construct the fol-
lowing initial set,

VIS = {1 < 1 < |8 : there exist 1 < k < |S] and j € W such that f[,-,kf[k,l =1}. (34)

In words, if the I-th IV from & and the j-th IV from W are claimed to be valid by any IV from S, then
the I-th IV is also included in V™#T. We show in Proposition 2 that V™' is guaranteed to satisfy
(30). Together with Condition 4, V N Sy becomes the majority of the initial set V™, Then, we
restrict to the set V™ and apply Algorithms 1 and 2 with & replaced by D™'T.

We summarize our proposed searching and sampling Cls in Algorithm 3, with the tuning pa-
rameters selected in the same way as that in Remark 3. Algorithm 3 can be implemented without
requiring the raw data, but with I', and V', V7, C as the inputs. We have demonstrated our meth-
od by constructing V = V™ a5 in (34), but Algorithm 3 can be applied with any V satisfying (30).

Comparison with the CIIV method. The idea of searching has been developed in Windmeijer
et al. (2021) to select valid IVs. We now follow Windmeijer et al. (2021) and sketch the intuitive
idea of the CIIV method. For any grid value d; € [L, U], define the set

V(d,) = [/E S:I7/y; =0, is not rejected}.

Here, V(J,) denotes a subset of IVs such that the corresponding hypothesis 7 /y; = d; is not re-
jected. As explained in Section 3 of Windmeijer et al. (2021), the CIIV method examines all values
of §, and selects the largest set ]A/(ég) as the set of valid IVs, that is,

VI = D(5,)  with = arg max [V(d,)]. (35)
Se€lL,U]

Our proposed searching CI differs from Windmeijer et al. (2021) since we directly construct Cls by
searching for a range of suitable S values, while the CIIV method applies the searching idea to select
the set of valid IVs.

We provide some intuitions on why our proposal is more robust to the IV selection error. We
first screen out the strongly invalid IVs and construct an initial set estimator V = V™%; then, we
restrict to the set 1 and apply searching and sampling Cls developed under the majority rule.
The majority rule in the second step explains the robustness: we compare the number of votes
to [V|/2, which is fixed after computing V. However, the optimization in (35) chooses g, giving
the largest number of votes, which can be more vulnerable to selection/testing errors. The validity
of the CIIV method requires that V™V does not contain any invalid IVs; in contrast, our method is
still effective even if the initial set ¥ contains the invalid IVs but satisfies (30).

6 Theoretical justification

We focus on the low-dimensional setting with heteroscedastic errors and introduce the following
regularity conditions. We always consider the asymptotic expressions in the limit with 7 — oo.

(C1) For 1 <i<n, Wi =(X],Z])" € R” are i.i.d. Sub-Gaussian random vectors with T =
E(W,.(W,;)T) satisfying ¢o < Amin(Z) < Amax(Z) < Co  for some positive constants
Co>co>0.

(C2) For 1 < i < n, the errors (¢, 5;)" in (4) are i.i.d. Sub-Gaussian random vectors; the condi-
tional covariance matrix satisfying c1 < Amin(El(€i, 8 (€i, 8;) | Wi]) <
Amax (E[ (€55 5,‘)T(€,‘, d;) | W.]) £ C; for some positive constants C; > ¢1 > 0.
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Algorithm 3 Uniform Inference with Searching and Sampling (Plurality Rule)

Input: Outcome Y € R”; Treatment D € R”; [Vs Z € R™?7; Covariates X € R™"~; Sampling number M = 1,000;
2= ci(logn/ M)V, Significance level a € (0, 1).

Output: Confidence intervals CI*** and CI®™?; Plurality rule check R.

1: Construct I' € R”, 5 € R? as in (5) and V', V7 and € as in (7);
2: Construct & as in (11);
3: Construct the voting matrix I1 € RISXIS a5 in (33);
4: Construct V= V™7 a5 in (34); > Construction of ¥
5: Construct L and U as in (19) with S =V
6: Construct the grid set B C [L, U] as in (18) with the grid size 770,
7: Compute {ﬁ;(ﬂ)}/evﬁes as in (15) with S =
8: Compute {ﬁf(ﬂ)}ief},ﬂeB as in (16) with S=V;
9: Construct CI* as in (20) with & =V and set R = 1(CI***" # ¢)); > Searching CI
10: for m < 1 to M do
11: Sample [ and 5! as in (21);
12: Compute {fr][-mj(ﬁ, A} jeppes as in (23) with S=;
13: Construct g1 (2) and "] (1) as in (24) with §=D;
14: end for
15: Construct CI**™ as in (25). > Sampling CI

Conditions (C1) and (C2) are imposed on the reduced-form model (4), which includes the out-
come model (1) and the treatment model (2) as a special case. We assume that the covariance
matrix of W;. is well conditioned and also the covariance matrix of the errors is well conditioned.
Condition (C2) in general holds if ¢; in (1) and J; in (2) are not perfectly correlated. Our setting
allows for the heteroscedastic errors. If we further assume (¢;, 6;)" to be independent of W;.,
Condition (C2) assumes the covariance matrix of (¢, 5;)" to be well conditioned. As a remark,
the Sub-Gaussian conditions on both W, and the errors might be relaxed to the moment condi-
tions in low dimensions.

We start with the majority rule setting and will move to the plurality rule. The following the-
orem justifies the searching CI under the majority rule.

Theorem 1  Consider the model (4). Suppose that Condition 3, Conditions (C1) and (C2)
hold, and a € (0, 1/4) is the significance level. Then, CI** defined in (17) and
CI***" defined in (20) satisfy

liminfP(5" € CI") 2 1-a and liminfP(g" € Cr) > 1 -0,

There exists a positive constant C > 0 such that

hmmﬂbmuﬂﬂf“%ﬂdmm<4———g————zl—m
Jn

n=e ~ min jesny |y;k| :

where L(-) denotes the interval length.

If min g, [/]is of a constant order, Theorem 1 implies that the length of the searching Clis
of the parametric rate 1/,/7. The searching CI achieves the desired coverage level without rely-
ing on a perfection separation of valid and invalid IVs, which brings in a sharp contrast to the
well-separation conditions required in TSHT (Guo et al., 2018) and CIIV (Windmeijer et al.,
2021).
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We now turn to the sampling CI. Before presenting the theory for the sampling CI, we justify in
Proposition 1 why we are able to decrease the thresholding level in constructing the sampling CI.
For ag € (0, 1/4), define the positive constant

e 1 S| - 3Amax(Cov) _1< a0 >]2
= — - e o (1 - —= 36
“loo) [37 - Amin(Cov)]'S! P ( Jmin(Cov) [ 48 ’ (36)

with Cov defined in (6) and ®~! denoting the inverse CDF of the standard normal distribution. For
a fixed p, and ap € (0, 1), we have ¢1/Co < Amin(Cov) < Jmax(Cov) < Cy/co and c*(ap) is a positive
constant independent of 7. With ¢*(a) defined in (36), we introduce the following term quantify-
ing the resampling property,

N
err,(M, ag) |: 2logn i|2|b\’ (37)

c*(ao)M

where err,(M, ag) converges to 0 with M — oo and M being much larger than logn.

Proposition 1~ Suppose Conditions (C1) and (C2) hold and agy € (0, 1/4). If err,(M, ap) <
¢ for a small positive constant ¢ > 0, then there exists a positive constant
C > 0 such that

- . I =17 = B " =)l
liminf P| min | max max—Z / ! / < Cerr,(M, ap)

e 1M IR eSSV 4 V- 25C)

>1- @0,
(38)

with err,(M, o) defined in (37) and U(a) :={f € R:|f — f*| < n™?} for any
a>1/2.

Since c*(ap) is of a constant order, the condition err,(M, ag) < ¢ holds for a sufficiently large re-
sampling size M. The above proposition states that, with a high probability, there exists 1 < m* <
M such that

] * A~ [m*] *
7 =17 =BG =)l
max max — / / '~ < Cerr,(M, ag).

petiia) jeb \/(\75/, + V7, = 28C;) /n

In comparison to (14), the threshold decreases from ®~'(1 — ﬁ) to Cerr,(M, ap). A related sam-
pling property was established in Guo (2020) to address a different nonstandard inference
problem.

We now apply Proposition 1 to justify the sampling CI under the majority rule.

Theorem 2  Suppose that the conditions of Proposition 1 hold, ay € (0, 1/4),and A used in
(24) satisfies A > 2Cerr,(M, ag)/®'[1 — a/(2|8])] and A >> n/>~* with the
constant C used in (38), a € (0, 1/4) and a > 1/2. Then, CI**™ defined in
(25) and CI**™ (M) defined in (26) satisfy

liminf P(#* € CI*™) > liminf P(8* € CI*"™(Mo)) = 1 - .

n— oo
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There exists a positive constant C > 0 such that

lim inf P| max L) L(CI**™P(My)) <; >1-a
e JiogIM|” VT min s Vi) T

Note that 2Cerr,(M, ao)/® '[1 - a/(2|S])] = ¢(log n/M)l/(z‘S” for some positive constant
¢> 0. Motivated by the condition 4 > 2Cerr,, (M, ao)/®~'[1 — a/(2|S])], we choose the tuning par-
ameter A in the form 4 = ¢, (log7/M)"?S!) in Remark 3. Similar to Theorem 1, Theorem 2 shows
that our proposed searching CI does not require the well-separation condition on the invalidity
levels. If the IV strengths {)7};cs are assumed to be of a constant order, then the length of

CI**™P( M) defined in (26) is 1/4/n. We can only establish the upper bound /log | M|/n for the
length of CI**™ defined in (25). However, we believe that this is mainly a technical artifact since
CI*™P(My) and CI**™ are nearly the same in the numerical studies; see Online Supplementary
Material, Section B.2 in the supplement.

We now switch to the more challenging setting only assuming the finite-sample plurality rule
(Condition 4). The main extra step is to show that our constructed initial set V = V™ satisfies (30).
To establish this, we provide a careful finite-sample analysis of the voting scheme described in (33)
and V™ defined in (34).

Proposition 2 Suppose that Conditions (C1) and (C2) hold. Consider the indexes j € S and
keS. (a) If zf/y;=x/y;, then lim inf, o P(f; =M, =1)=1. (b)If
|7t /vy — 7f/yfl =2 2y/logn - Ty, then lim infn%oolp(ﬁk’f = ﬁj,k =0)=1,
where T , is defined in (9). Under the additional Condition 4, the constructed
V=V in (34) satisfies lim inf,_ P(V N See € V € Z(0, 3sep(n))) =1,
with sep(n) defined in (28).

The above proposition shows that if two IVs are of the same invalidity level, then they
vote for each other with a high probability. If two IVs are well-separated (i.e.,
|7t /vy — 7f /il 2 2y/logn - T 1), then they vote against each other with a high probability. If
0 <lzi/y; — =7 /7;| <2/logn - Ty, there is no theoretical guarantee on how the two IVs will
vote. The above proposition explains why we are likely to make a mistake in detecting some locally
invalid IVs defined in Definition 1.

With Proposition 2, we connect the finite-sample plurality rule to the finite-sample majority
rule. We apply the voting algorithm to remove all strongly invalid IVs and the set V™" only con-
sists of valid IVs and the locally invalid IVs. Under Condition 4, V N S, becomes the majority of
VISET We then establish the following theorem by applying the theoretical analysis of the majority
rule by replacing 8 with D™,

Theorem 3  Consider the model (4). Suppose that Condition 4, Conditions (C1) and (C2) hold.

Then with S replaced by V™, the coverage and precision properties in Theorem 1
hold for the searching interval in Algorithm 3 and the coverage and precision prop-
erties in Theorem 2 hold for the sampling interval in Algorithm 3.

7 Simulation studies

Throughout the numerical studies, we implement our proposed CI** and CI®*™ detailed in
Algorithm 3. We illustrate the robustness of Algorithm 3 to different initial estimators of V by con-
sidering two choices of V' : V™ defined in (34) and the set of valid IVs V°'*V outputted by CIIV
(Windmeijer et al., 2021). We focus on the low-dimensional setting in the current section and
will present the high-dimensional results in Online Supplementary Material, Section A.3 in the
supplement. The code for replicating all numerical results in the current paper is available at
https:/github.com/zijguo/Searching-Sampling-Replication.
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We compare with three existing Cls allowing for invalid IVs: TSHT (Guo et al., 2018), CIIV
(Windmeijer et al., 2021), and the Union method (Kang et al., 2020). TSHT and CIIV are imple-
mented with the codes on the Github websites' while the Union method is implemented with
the code shared by the authors of Kang et al. (2020). The Union method takes a union of intervals
that are constructed by a given number of candidate IVs and are not rejected by the Sargan test. An
upper bound s for the number of invalid IVs is required for the implementation. We consider two
specific upper bounds: s = p, — 1 corresponds to the existence of two valid IVs, and s = [p, /2] cor-
responds to the majority rule being satisfied. We conduct 500 replications of simulations and com-
pare different Cls in terms of empirical coverage and average lengths.

We implement two oracle methods as the benchmark. Firstly, we implement the oracle TSLS
assuming the prior knowledge of V. This method serves as a benchmark when the set V of valid
IVs is correctly recovered. Secondly, we implement the oracle bias-aware confidence interval in
(10) assuming the oracle knowledge of the bias of TSHT estimator. We argue that the oracle
bias-aware confidence interval serves as a better benchmark, especially when V might not be cor-
rectly recovered in finite samples.

We generate the i.i.d. data {Y}, D;, Z;., X;.};<;<, using the outcome model (1) and the treatment
model (2). We generate y* € R”: and 7+ € R”* as follows:

S1 (Majority rule): set y* =y, - 110 and 7* = (04, 7- 79, T+ 79, — 0.5, = 1)7;
S2 (Plurality rule):

S3 (Plurality rule): set y* =7y, - 110 and 7* = (04, 7 - 7, T Y0,

S4 (Plurality rule): set y* =y, - 15 and 7* = (02, — 0.8, — 0.4, 7- 7, 0.6)";
S5 ( ): set y* =y, - 16 and 7* = (02, — 0.8, — 0.4, -7y, 77, +0.1)".

—_

2
Sety*:yO'llo andﬁ*=(04,f'])0,f'))0, T35 T 3> _1 -
1 1
T6 T3 T2

Plurality rule

The parameter y, denotes the IV strength and is set as 0.5. The parameter t denotes the invalidity
level and is varied across {0.2, 0.4}. The setting S1 satisfies the population majority rule while the
settings $2-S5 only satisfy the population plurality rule. Settings S4 and S5 represent the challen-
ging settings where there are only two valid IVs. We introduce settings S3 and S35 to test the robust-
ness of our proposed method when the finite-sample plurality rule might be violated. For example,
for the setting S5 with small 7 (e.g., 7 = 500), the invalid IVs with ¥ values 7 -y, 7- 7 + 0.1 have
similar invalidity levels and may violate Condition 4.

We now specify the remaining details for the generating models (1) and (2). Set pyx = 10, ¢* =
(0.6,0.7, ...,1.5)" € R in (2) and y*=(1.1,1.2, ...,2)T € R' in (1). We vary # across
{500, 1,000, 2,000, 5,000}. For 1 < i < n, generate the covariates W;. = (Z], X7)T € R? follow-
ing a multivariate normal distribution with zero mean and covariance T € R”? where ;=
0.5Vl for 1 <j, I < p; generate the errors (e;, d;) following bivariate normal with zero mean,
unit variance and Cov(e;, ;) = 0.8.

In Table 1, we report the empirical coverage and interval length for = 0.2. The CIs by TSHT and
CIIV undercover for n =500, 1,000, and 2,000 and only achieve the 95% coverage level for a
large sample size 7 = 5,000. Our proposed searching and sampling Cls achieve the desired cover-
age levels in most settings. For settings $1-S4, both initial estimates of set of valid IVs V™ and
VOV Jead to Cls achieving the 95% coverage level. For the more challenging settings S5, the em-
pirical coverage level of our proposed searching and sampling Cls achieve the desired coverage
with sample sizes above 2,000. For #» = 500 and 7 = 1,000, our proposed searching and sampling
methods improve the coverage of TSHT and CIIV. The undercoverage happens mainly due to the
fact that the finite-sample plurality rule might fail for setting S5 with a relatively small sample size.
The CIs by the Union method (Kang et al., 2020) with s = p, — 1 (assuming there are two valid [Vs)
achieve the desired coverage level while those with s = [p,/27 (assuming the majority rule) do not
achieve the desired coverage level for settings S2-S5.

We now compare the CI lengths. When the CIs by TSHT and CIIV are valid, their lengths are
similar to the length of the CI by oracle TSLS, which match with the theory in Guo et al.
(2018) and Windmeijer et al. (2021). For the CIs achieving valid coverage, our proposed sampling

! The code for TSHT is obtained from https:/github.com/hyunseungkang/invalidIV and for CIIV is obtained from

https:/github.com/xlbristol/CIIV.
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Table 1. Empirical coverage and average lengths for 81 to 85 with r=10.2

Oracle Searching Sampling Union

Set n TSLS BA  TSHT CIIV VPWHT POV PISHT IV Check  p,—1  [p/2]

Empirical coverage of confidence intervals for =0.2
500 095 097 0.53 0.61 1.00 1.00 1.00 1.00 1.00 1.00 0.99
1,000 094 097 045 0.69 1.00 1.00 1.00 1.00 1.00 1.00 0.98
2,000 096 095 063 0.79 1.00 1.00 1.00 1.00 1.00 1.00 0.96
S1 5,000 094 095 0.89 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.96
500 0.95 096 0.56 0.51 1.00 1.00 1.00 0.99 1.00 1.00 0.27
1,000 094 095 045 058 099 099 1.00 097 1.00 1.00 0.03
2,000 094 093 051 074 098 0.98 0.98 0.97 1.00 1.00 0.00
S2 5,000 096 093 085 095 0.99 1.00 1.00 1.00 1.00 1.00 0.00
500 095 095 0.63 063 0.99 0.99 0.99 0.99 1.00 1.00 0.62
1,000 0.94 097 062 0.60 099 0.99 0.99 0.97 1.00 1.00 0.18
2,000 094 093 062 0.73 097 098 0.97  0.96 1.00 1.00 0.01
S3 5,000 096 093 085 095 0.99 1.00 0.99 1.00 1.00 1.00 0.00
500 095 096 0.72 066 094  0.95 0.94 0.93 0.98 0.98 0.00
1,000 094 095 0.65 0.58 1.00 0.97  0.99 0.96 0.95 0.98 0.00
2,000 093 099 0.68 0.58 098 0.97 097 093 0.99 0.95 0.00
S4 5,000 095 095 091 0.88 0.98 0.95 0.98 0.95 1.00 0.94 0.00
500 095 097 049 051 0.81 0.89 0.88 0.86 0.98 0.97 0.14
1,000 094 096 0.31 050 0.68 0.89 0.76 0.86 0.91 0.98 0.00
2,000 093 098 046 0.57 0.86 0.96 0.86 0.92 0.84 0.95 0.00
S5 5,000 095 095 090 0.88 0.98 0.95 0.97 094 0.98 0.94 0.00

Average lengths of confidence intervals for r=10.2

500 0.10 0.16 0.08 0.08 059 0.61 0.34 0.34 - 1.16 0.25

1,000 0.07 0.14 0.06 0.06 0.39 043 024 0.24 - 0.63 0.16

2,000 0.05 0.10 0.05 0.05 027 030 017 0.17 - 0.42 0.09

§1 5,000 0.03 0.04 0.03 0.03 017 018 0.10 0.10 - 0.27 0.04
500 0.13 0.24 0.13 0.10 058 0.59 037 0.36 - 2.46 0.07

1,000 0.09 024 0.13 0.08 037 041 0.26 0.26 - 1.45 0.02

2,000 0.06 026 014 0.06 025 029 019 0.18 - 0.76 0.00

§2 5,000 0.04 0.13 0.08 0.04 016 017 010 0.10 - 0.28 0.00
500 0.3 022 0.0 010 0.62 062 045 0.38 - 1.77 0.13

1,000 0.09 0.21 0.10 0.08 0.38 041 0.29  0.27 - 1.36 0.03

2,000 0.06 025 013 0.06 026 029 019 0.18 - 0.86 0.00

$3 5,000 0.04 0.13 0.08 0.04 016 0.17 010 0.10 - 0.35 0.00
500 023 062 024 018 056 0.56 048 0.44 - 0.87 0.00

1,000 0.16 0.5¢ 0.17 0.13 0.44 036 038 0.29 - 0.42 0.00
2,000 0.11 032 014 010 027 024 022 0.18 - 0.20 0.00

S4 5,000 0.07 0.13 008 0.07 014 013 0.11 0.10 - 0.09 0.00
500 0.23 0.63 027 017 042 0.51 0.41 0.42 - 1.01 0.05

1,000 0.16 0.61 0.18 0.13 032 036 030 0.29 - 0.50 0.00

2,000 0.11 038 0.12 0.10 028 024 025 0.18 - 0.22 0.00

(continued)
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Table 1. Continued

Oracle Searching Sampling Union

Set n TSLS BA  TSHT CIIV PWHT PV PISHT  §CIV Check  p,—1  [pg/2]

§5 5,000 0.07 015 0.08 0.07 015 013 0.12 0.10 - 0.09 0.00

Note. The columns indexed with TSLS, BA, TSHT, and CIIV represent the oracle TSLS CI with the knowledge of V), the
oracle bias-aware Cl in (10), the CI by Guo et al. (2018), and the CI by Wmdmelger etal. (2021), respectively. Under the
columns indexed with ‘Searching’ (or ‘Sampling’), the columns indexed with VBT and VOV represent our proposed
searching (or sampling) Clin Algorithm 3 with VIS and VIV respectively. The column indexed with ‘Check reports the
proportion of simulations passing the plurality rule check in Algorlthm 3. The columns indexed with Union represent the
method by Kang et al. (2020). The columns indexed with p, — 1 and [p,/2] correspond to the Union methods assuming
two valid IVs and the majority rule, respectively.

Cl is, in general, shorter than the searching CI and the Union CI with p, — 1. We shall point out
that our proposed sampling CI can be even shorter than the oracle bias-aware CI (the benchmark).
As an important remark, the oracle bias-aware CI, the sampling CI, the searching CI, and the
Union CI are, in general, longer than the CI by the oracle TSLS, which is a price to pay for con-
structing uniformly valid CIs. In Online Supplementary Material, Section E.1 in the supplement,
we consider the settings with 7=0.4 and heteroscedastic errors. In Online Supplementary
Material, Section E.3 in the supplement, we further explore the settings considered in
Windmeijer et al. (2021). The results for these settings are similar to those in Table 1.

Varying violation strength. In Figure 5, we focus on the setting S2 and vary 7 across
{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}. We follow Bekker and Crudu (2015) and generate
heteroscedastic errors as follows: for 1 <i<mn, generate J; ~N(0,1) and ¢;=0.35;,+
V[1-0.32]/[0.86* + 1. 382](1 3871, +0.86% - 12,), where conditioning on Z;,
71, ~ N(0, [0.5 - Z2 +0.251%), 72 ~ N(0, 1), and 7, and 7, are independent of 4.

As reported in Flgure S, our proposed searching and sampling CIs achieve the desired coverage
(95%) while TSHT and CIIV only achieve the desire coverage for r= 0.5 withn=2,000 andr > 0.3
with 7 = 5,000. In terms of length, we observe that the sampling CI is shorter than the searching
CI. The sampling CI can be even shorter than the oracle bias-aware CI (the benchmark). We do not
plot the length of the Union CI, which is three to six times longer than our proposed sampling CI;
see Figure 2 for details. An interesting observation is that the empirical coverage of TSHT and CIIV
is around 90% for z=0.025. This happens since the invalidity levels of the IVs are small, and even
the inclusion of such invalid IVs does not significantly worsen the empirical coverage.

We present the results for homoscedastic errors in Online Supplementary Material, Figure E.1 in
the supplement. In Online Supplementary Material, Section E.2 in the supplement, we explore the
performance of different methods for settings with the locally invalid IVs where the violation levels
are scaled to /logn/n.

Tuning parameter selection. We investigate the robustness of Algorithm 3 to different choices of
tuning parameters. For the searching CI, we observe in Table 2 that the empirical coverage and the
average lengths are almost invariant to different choices of L, U, and a. For two intervals (ay, by)
and (a2, by), we define its difference as a1 — az| + |b1 — by|. In Table 2, we report the difference
between the searching CI constructed with the default choice of L, U, a in Algorithm 3 and search-
ing Cls with other choices of L, U, a. The average interval difference is smaller than twice the de-
fault grid size #70¢.

In Online Supplementary Material, Section B.2 in the supplement, we demonstrate that the sampling
ClIs have nearly the same empirical coverage and length for different choices of L, U, a, and the resam-
pling size M. The choice of the shrinkage parameter 2 > 0 has a more obvious effect on the sampling CI.
As explained in Remark 3, we choose the smallest A such that more than a prespecified proportion (de-
noted as prop) of the M = 1,000 intervals are nonempty. In Figure 6, we compare the coverage and
length properties of the sampling CIs by varying prop across {1%, 5%, 10%, 20%, 30%}. If
prop > 5%, the empirical coverage reaches the nominal level and vary slightly with prop. In terms
of length, the intervals get slightly longer with a larger value of prop. The empirical coverage and aver-
age lengths of the sampling ClIs are robust to a wide range of 1 values, as long as the corresponding 1
guarantees a sufficient proportion of nonempty sampled searching Cls.
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Figure 5. Empirical coverage and average lengths for the setting 82 with r €

{0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} and heteroscedastic errors. Oracle — BA, TSHT, and CIIV represent the
oracle bias-aware Cl in (10), the Cl by Guo et al. (2018), and the CI by Windmeijer et al. (2021), respectively. The
searching and sampling Cls are implemented as in Algorithm 3.

8 Real data analysis

We study the effect of education on earnings by analyzing the 2018 survey of China Family Panel
Studies (Xie, 2012). The outcome is the logarithm transformation of salary in the past 12
months, and the treatment is the years of education. We include three binary baseline covariates:
gender, urban (whether the subject lives in the urban area), and hukou (whether the subject’s
hukou is agricultural or nonagricultural). Following the literature, we have induced the follow-
ing nine IVs:

(a) Family background variables (e.g., Behrman et al., 2012; Blackburn & Neumark, 1993;
Trostel et al., 2002): the father’s education level, the mother’s education level, the spouse’s
education level, the family size, and the log transformation of the education expenditure in
the past 12 months;

(b) The group-level years of education where the groups are formulated by age, gender, and
region;

(c) Personal traits (Behrman et al., 2012): the statement on the fair competition, the statement
on the talent pay-off, and whether the subject reads some books or not in the past 12 months.
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Figure 6. Comparison of the sampling Cls with different 1 for = 0.4 and M = 1,000. We choose the smallest value
of 2 such that 1,000 - prop sampled intervals are nonempty. For example, for prop = 10%, we choose the smallest 4
leading to 100 nonempty sampled intervals.

The statement on fair competition measures an individual’s willingness to compete through abil-
ity. The statement on the talent pay-off is about an individual’s viewpoint on whether their edu-
cational endeavors will pay off. After removing the missing values, the data consists of 3,758
observations. In the supplement, we report the summary statistics of all Vs and baseline covariates
in Online Supplementary Material, Table E.8.

In Table 3, we compare our proposed searching and sampling CIs with existing methods. By ap-
plying TSHT, we identified six relevant instruments: the father’s education level, the mother’s edu-
cation level, the spouse’s education level, the group-level years of education, the family size,
whether to read some books or not in the past 12 months. Out of these IVs, the family size is de-
tected as the invalid IV. CIIV outputs the same set of valid IVs. When we include all nine IVs, the
concentration parameter is 2,906.36. If we only include the five [Vs selected by TSHT and CIIV, the
concentration parameter is 2,850.57. This indicates that the whole set of IVs are strongly associ-
ated with the treatment, but some IVs (e.g., the family size) are possibly invalid.

As reported in Table 3, CIs by TSHT and CIIV are relatively short, but they may undercover due
to the IV selection error. We compare the lengths of Union method and our proposed searching
and sampling Cls, which are all robust to the IV selection error. The sampling CI is the shortest
among these ClIs. We further plot the searching and sampling ClIs in Online Supplementary
Material, Figure E.4 in the supplement. The validity of the Union CI with s=[p,/2] requires
half of the candidate IVs to be valid; if we can only assume that two of candidate IVs are valid,
then the CI by Union with § = [p,/2] may not be valid but the CI by Union with s =p, — 1 is valid.

9 Conclusion and discussion

Causal inference from observational studies is a challenging task. Typically, stringent identifica-
tion conditions are required to facilitate various causal inference approaches. The valid IV as-
sumption is one of such assumptions to handle unmeasured confounders. In the current paper,
we devise uniformly valid confidence intervals for the causal effect when the candidate IVs are pos-
sibly invalid. Our proposed searching and sampling confidence intervals add to the fast-growing
literature on robust inference with possibly invalid IVs. The proposed method has the advantage of
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Table 3. Confidence intervals for the effect of education on earnings

Method CI Method CI

OLS (0.0305, 0.0503) Searching CI (0.0409, 0.1698)
TSLS (0.0959, 0.1190) Sampling CI (0.0552, 0.1268)
TSHT (0.0946, 0.1178) Union (5=p, — 1) (=0.4915, 1.6043)
CIIV (0.0948, 0.1175) Union(s = [p,/2]) (0.0409, 0.1342)

being more robust to the mistakes in separating the valid and invalid IVs at the expense of a wider
confidence interval. The proposed intervals are computationally efficient and less conservative
than existing uniformly valid confidence intervals.
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