

1 2 Photocycle alteration and increased enzymatic activity in genetically 3 modified photoactivable adenylate cyclase OaPAC 4 5

6 Katalin Raics¹, Katalin Pirisi¹, Bo Zhuang², Zsuzsanna Fekete¹, Nikolett Kis-Bacskei¹, Ildiko
7 Pecsi¹, Kinga Pozsonyi Ujfalusi¹, Elek Telek¹, Yin Li³, Jinnette Tolentino Collado⁴, Peter J.
8 Tonge⁴, Stephen R. Meech⁵, Marten H. Vos², Emoke Bodis^{*1} and Andras Lukacs^{*1}
9
10
11

12 ¹Department of Biophysics, Medical School, University of Pecs, Szigeti str. 12, 7624 Pecs, Hungary.
13
14

15 ² Laboratoire d'Optique et Biosciences, Ecole Polytechnique, 91128 Palaiseau cedex, France
16
17

18 ³Department of Physics, School of Physics and Materials Science, Nanchang University
19
20

21 ⁴Department of Chemistry, Stony Brook University, New York, 11794, United States.
22
23

24 ⁵School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K.
25
26

27 * Correspondence: andras.lukacs@aok.pte.hu; emoke.bodis@aok.pte.hu
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Abstract

Photoactivable adenylate cyclases (PAC) are light activated enzymes that combine blue light sensing capacity with the ability to convert adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a BLUF domain which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated towards the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, photoactivable adenylate cyclases are of great interest in optogenetic studies. The optimal optogenetic device must be “silent” in the dark and highly responsive upon light illumination. OaPAC is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the BLUF domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signalling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction

1 that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be
2 generated.
3
4
5
6
7

Introduction

10 The photoactivated adenylate cyclase (PAC) from the cyanobacterium *Oscillatoria acuminata*
11 (OaPAC) is a recently discovered flavoprotein that translates a blue-light signal into the
12 production of cAMP(1). OaPAC is a homodimer of a 366-aa protein comprising an N-terminal
13 BLUF (blue-light using FAD) domain and a C-terminal class III adenylyl cyclase (AC) domain.
14 The AC activity of OaPAC is stimulated by light up to 20-fold above basal levels in the dark(1).
15 Blue-light regulation of the majority of the PAC proteins is achieved by a BLUF domain. BLUF
16 domains act as light sensing modules and are involved in a large range of light-controlled
17 biological processes like bacteriochlorophyll biosynthesis, biofilm formation, phototaxis and
18 controlling levels of cyclic-AMP.(2-8) Despite the diversity in the function of BLUF domains,
19 the photosensing mechanism is similar: blue-light absorption by the flavin adenine dinucleotide
20 (FAD) chromophore leads to a rearrangement of the hydrogen bonding network, which is
21 reflected in a red-shift of ~ 10 nm of the S₀-S₁ flavin transition(8).
22
23

24 The photoinduced mechanism of the BLUF domain is driven by the photochemistry of FAD:
25 after blue light excitation, the flavin attracts an electron from the neighbouring electron-rich
26 amino acids like tryptophans or tyrosines.(9-11) After the electron transfer step, either the
27 anionic (FAD^{•-}) or the neutral (FADH[•]) flavin radical is formed depending on the flavin
28 environment. A similar process is crucial in the function of cryptochromes, where excitation of
29 the oxidized flavin leads to electron transfer from the neighbouring tryptophan, forming the
30 anionic flavin radical followed by protonation (on the microsecond timescale) to yield a
31 semiquinone flavin radical form.(12-16) However, the actual role of electron transfer in BLUF
32 domain proteins is still under debate, as it was not observed in AppA(17), BlsA(18), or BlrB(7),
33 but was found to be crucial in PixD(5, 19) and PapB(20).
34
35

36 In the OaPAC BLUF domain (Fig. 1) a concerted proton coupled electron transfer process
37 (PCET) takes place: upon excitation of FAD an electron is transferred from a nearby tyrosine
38 (Y6) to the flavin while simultaneously a proton is transferred from Y6 to the adjacent
39 glutamine (Q48) and later to the flavin. Aside the involvement in the PCET process Q48 plays
40 a central role in the photoactivation and the function of the protein as it is thought to tautomerize
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 after the light excitation of flavin. Tautomerization of the glutamine was first proposed for
2 AppA (21-28) but later was proven to be present in PixD (29-31) as well. Based on these
3 findings it is a plausible assumption that during the PCET process Q48 tautomerizes, and this
4 step is expected to be crucial in transmitting the signal to the C-terminal part of the protein
5 where ATP is converted to cAMP. The role of Q48 should be further studied as it is expected
6 to play a central role in the photoactivation and the overall function of OaPAC.
7
8

9 PACs are important for applications in the life sciences as the light-controlled cAMP
10 production is a promising optogenetic tool: EuPAC was expressed in the neurons of the marine
11 gastropod *Aplysia* enabling photocontrol of neuron stimulation(32), and bPAC was utilized in
12 transgenic mice in light controlled flagellar beat of sperms(33). The latter has a 300-fold
13 increase in cAMP conversion activity compared to OaPAC which has around a 20-fold activity
14 increase(1, 34). It is therefore important to enhance control of the cyclase activity of OaPAC.
15 In this work we investigated the functional dynamics of D67N mutant OaPAC, which shows
16 an ~ 1.5-fold increase in light-induced AC activity of OaPAC as well as an acceleration of the
17 forward and backward electron transfer processes and a decrease of the dark state recovery rate
18 in the BLUF domain. The mutation slightly elevated the activity of the enzyme in the dark-
19 adapted state as well, which points to a structural change extending to the enzymatic domain.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36 Results and discussion

37
38
39

40 Transient absorption measurements

41
42

43 Previously, ultrafast transient infrared and visible absorption spectroscopy were employed to
44 investigate the photochemistry of OaPAC and it was established that after absorption of blue
45 light by the flavin, a proton coupled electron transfer takes place(35). During the PCET process,
46 the primary electron donor is the conserved Y6 tyrosine (35). Photoexcitation of the flavin leads
47 to the extraction of an electron from the tyrosine accompanied by the transfer of a proton from
48 the same tyrosine resulting in the formation of neutral (36)tyrosine and flavin radicals. In our
49 previous work, we demonstrated that the AC activity of OaPAC is linked to this PCET process:
50 as the pK_a of the crucial tyrosine (Y6) was lowered from 9.9 to < 7.7, the photocycle was halted
51 at FAD^{•-} and no enzymatic activity was observed(35).
52
53
54
55
56
57

1 Adiabatic quantum mechanical/molecular mechanical simulations performed on Slr1694 (also
2 called PixD), another intensively studied(5, 19, 37) BLUF domain protein, suggested that the
3 replacement of the negatively charged aspartic acid D69 (D67 in OaPAC, see Fig. 1) with a
4 neutral or a positively charged residue will dramatically affect the electron transfer process(38).
5 It was predicted that may demonstrate vastly different photocycle kinetics(38). Thus, here we
6 investigate experimentally the potential effect of an analogous mutation on the photoactivation
7 mechanism of OaPAC and measure the resulting enzymatic activity of the AC domain.
8
9

10 The primary photochemistry of the D67N mutant was characterised using transient
11 absorption measurements. Ultrafast transient absorption (TA) spectroscopy is a powerful
12 method to characterize the electron transfer processes in flavoproteins(4, 5, 7, 10, 14, 39-43).
13 Depending on the protein environment the flavin chromophore can exist in five different redox
14 states(44), and these redox states possess distinct absorption spectra (Fig. S1 A). Using these
15 spectra one can perform spectral modelling in order to identify the flavin and amino acid radical
16 species detected at different time delays after excitation.(10, 14, 45, 46)
17
18

19 The TA spectra of D67N OaPAC measured at early time delays (**Fig. 2A**) are similar to those
20 of other (oxidized) flavoproteins(**10, 22**), including WT OaPAC(35): an intense negative peak
21 (bleach) is observed around 450 nm, which reflects disappearance of the $S_0 \rightarrow S_1$ absorption
22 of the flavin. The positive peak around 510 nm is attributed to the absorption of the excited
23 state, whereas the negative broad peak ~ 550 nm observed at the early time delays can be
24 assigned to the stimulated emission of the flavin. The TA data for the WT protein could be
25 globally fitted with three different time constants(**35**), 5 ps, 83 ps and an infinite value (also
26 called final state). Analysis of the corresponding EAS indicated that the 5-ps component reflects
27 FAD* decay. The 83-ps components reflects decay of both FAD* and formation of FADH $^\bullet$.
28 The FAD* decay kinetics, by electron and proton transfer to the flavin, are thus dispersive (see
29 fluorescence kinetics below) and the slower phases cannot be kinetically disentangled from that
30 of the formation and decay of the FADH $^\bullet$ intermediate state. The final state represents the red-
31 shifted FADox signalling state. Similarly to the WT measurements, the TA data of D67N was
32 also globally fitted with three different time constants (**Fig.2B**) of 5 ps, 65 ps, and infinite. The
33 5-ps EAS ascribed to FAD* decay resembles the 5 ps EAS of WT and EAS2 (65 ps phase for
34 D67N) was equally modelled as a combination of the spectra of the excited flavin and the
35 neutral flavin radical (see Fig. S1 B). The 5ps component thus reflects the formation of the
36 neutral flavin radical and the 65 ps component the relaxation of the radical state (see Fig. S6).
37 Yet, the relative contribution of FAD* to EAS2 appears smaller for D67N (~ 75 % in WT and
38

~ 60% in D67N), indicating also dispersive but faster overall FAD* decay (see also below). In addition, the second time constant is somewhat shorter in the mutant (65 ps vs. 85 ps) which also suggests a faster recombination of the radical pair. In WT OaPAC(35) the ~ 510 nm peak shifts towards 480 nm in ~80 ps; this shift is due to the formation of the signalling state. A similar shift is observed in D67N OaPAC mutant, but the amplitude of the final state EAS is smaller in the mutant compared to WT (see Fig. S5). Along with the finding that the spectrum of the signalling state is similar in WT and D67N OaPAC (see Fig. 5A below), this indicates lower quantum yield of formation of the signalling state. Based on the amplitude ratios of the final state- and the initially formed FAD* difference spectra (EAS final and 5-ps in Fig. S5) we estimate that the signalling state QY is ~4-fold lower in D67N than in WT OaPAC.

Observing the kinetics of the excited state absorption peak of the flavin (~ 505 nm) the mutant's relaxation appears slightly faster compared to WT (**Fig. 2C**); applying a monoexponential fit the time constants for the WT and D67N were 90 ± 30 ps and 64 ± 8 ps respectively. This is due to faster FAD* decay kinetics (see below) as well as to the lower asymptotic value at this wavelength due to lower signalling state formation. The faster FAD* decay is in good agreement with the theoretical expectation that the replacement of the aspartic acid with a neutral or even positively charged amino acid will accelerate the electron transfer process as it alters the active site potential(38).

Ultrafast Transient Fluorescence spectroscopy experiments

To gain further information on the impact of D67N on the electron transfer process in OaPAC, we performed ultrafast transient fluorescence measurements on our home-built Kerr-gated fluorescence setup(47). The advantage of using the Kerr-gate approach compared to fluorescence upconversion is that the fluorescence emission spectrum can be obtained at every time delay whereas in the fluorescence upconversion method the decay of the fluorescent intensity is measured at one certain wavelength. **Fig. 3A) and 3B)** show the EAS spectra obtained from the global fitting of the transient fluorescence dataset. The maximum of the fluorescence emission is at ~ 513 nm, which is slightly higher than that observed in AppA BLUF(48) (~ 500 nm) and significantly lower than of the free flavin (~ 530 nm). The fluorescence emission spectrum indicates that the flavin is embedded in a non-surface exposed environment. There is no significant difference between the emission maxima of WT and

1 mutant OaPAC, suggesting that the mutation did not result in significant change of the flavin
2 environment.

3 The fluorescence of WT OaPAC, which was not reported before, was found to be highly
4 dispersive as was observed in the case of AppA(6). The transient fluorescence dataset could be
5 well described with the same three lifetimes (5 ps, 83 ps and infinite) as retrieved in the TA
6 experiments. The corresponding EAS (species-associated spectra assuming a sequential scheme
7 (1→2→3)) all peaked at ~ 513 nm, implying that they arise from protein-bound flavin, as the
8 fluorescence emission maximum of free flavin is ~ 530 nm.

9 A global fit also resolved three components for the D67N mutant (5 ps, 60 ps, infinite, **Fig.**
10 **3B**), again with a shorter second time constants compared to the WT protein. The kinetic traces
11 observed at 513 nm were overlaid (**Fig. 3C**) to compare the decay of the fluorescence emission
12 of WT and D67N. The time constant of the excited state relaxation in D67N is almost half
13 compared to that observed in the WT protein. This assessment, which is not complicated by
14 contributions of product states as in TA experiments, unambiguously demonstrates that overall
15 electron transfer is faster in D67N OaPAC mutant. Yet, as shown above, this modestly faster
16 initial ET does not lead to a higher yield of the signalling state, presumably due to strongly
17 enhanced back PCET from FADH[•] to the resting dark state (49).

18 It is worth mentioning that the aspartate to asparagine mutation was suggested for PixD where
19 the authors expected that the mutation would enhance significantly the electron transfer
20 kinetics(38). We performed this homologous mutation in PixD (D69N) and it also resulted in
21 faster fluorescence decay and shorter time constants (see Fig S2, S3). We also performed
22 transient absorption measurements on PixD WT and D69N and we observed a similar
23 shortening of the time constant of EAS2 (Fig. S4).

43 Indirect measurement of cAMP

44 An enzymatic assay was employed to examine the impact of accelerating the electron
45 transfer process in the D67N mutant blue light sensing domain on the ability of the AC domain
46 to convert ATP to cAMP plus pyrophosphate. The adenylate cyclase activities of 1 μ M of WT
47 OaPAC and D67N OaPAC were monitored using a spectrophotometric assay that detects
48 pyrophosphate released by OaPAC when it converts ATP to cAMP. The inorganic
49 pyrophosphatase enzyme converts pyrophosphate into two equivalents of phosphate which is
50 then consumed by the MESG/PNP reaction and detected by an increase in absorbance at 360nm.

51 **Fig.4A** shows the dark and the light-induced enzymatic activity of WT OaPAC and D67N

1 mutant OaPAC in the presence of 500 μ M ATP. In the dark the enzymatic activity of the mutant
2 is slightly higher compared to WT but still very low. Upon illumination the conversion rates
3 strongly increased for WT and the D67N mutant. However D67N mutant converts ATP at a
4 higher rate than WT making this mutant a starting point for tuning PACs as optogenetic tool.
5 The enzymatic assays were performed using increasing amount of substrate and the results were
6 evaluated using the classical Michelis-Menten presentation (see Fig 4B). The enzymatic assays
7 show an elevated cAMP production in D67N OaPAC: the maximal velocity of the conversion
8 rate was \sim 1.5 times higher in the mutant (0.100 ± 0.002 mM/min) than in WT (0.064 ± 0.007
9 mM/min). The concentration of half-maximal velocity (K_M) is also slightly higher in the mutant
10 than in WT, but more importantly the catalytic constant (k_{cat}) – which gives the number of
11 substrate molecule each enzyme site can convert to product per unit time is \sim 1.5 times higher
12 in D67N (50.05 1/min) than the WT OaPAC (32.2 1/min) (see Table 1).
13
14

23 Recovery experiments

24

25 The electronic spectrum of the mutant shows the typical red shift of the S_0 - S_1 absorption
26 peak (from 442 nm to 455 nm) after blue light irradiation, resembling WT OaPAC and other
27 BLUF domain proteins (Fig.5A). We measured the dark state recovery of WT and D67N
28 OaPAC to connect the photochemistry of the BLUF domain with the functional dynamics of
29 the AC domain. Light to dark recovery of BLUF domains spans from dozens of minutes to a
30 few seconds. In AppA the photocycle is relatively long, with a recovery lifetime of \sim 25
31 min(50), in PixD it is substantially shorter (\sim 26 s) (8, 19) and in OaPAC it is only a couple of
32 seconds(35). The dark state recovery of D67N mutant and WT OaPAC were monitored at 490
33 nm and the recovery rate of the mutant is \sim 5 times lower (15.3 s) than the recovery rate of WT
34 OaPAC (3.6s) (Fig.5B). This significant change points to a possible structural difference
35 between the mutant and the native protein. The slower recovery of D67N implies that after light
36 excitation the protein spends more time in a structure allowing high-rate cAMP conversion.
37 Altogether, the mutant adopts a structure that is not only more favourable for ATP to cAMP
38 conversion but also slows down the rearrangement to the original structure.
39
40

41 Differential Scanning Calorimetry (DSC) measurements

42

1 The difference in the enzymatic activity and the dark state recovery suggests that the
2 introduced mutation has changed the overall protein structure. To test this hypothesis, we
3 performed differential scanning calorimetry (DSC) experiments on both proteins to examine
4 their thermostability. These measurements reveal a significant difference between mutant and
5 WT OaPAC. The thermal denaturation of WT showed a steep endothermic unfolding with a
6 T_m of 68.1°C and a ΔH of 0.078 J/g. The measurement of D67N resulted in a lower T_m
7 (62.1°C) with a lower ΔH (0.069 J/g). The melting temperature (T_m) is where 50% of the
8 protein is denatured, while the area under the curve reflects the required energy for protein
9 unfolding associated with the enthalpy change (ΔH). The smaller ΔH of D67N indicates a less
10 compact conformation of the D67N mutant. This is also reflected by the considerably (6°C)
11 lower T_m value (**Fig. 6**). This observation suggests that this structural change is at the origin of
12 the elevated activity of D67N OaPAC.
13
14

24 **Fluorescence anisotropy-based nucleotide-binding assays**

25
26

27 It is not known what the affinity of ATP is in the dark- or light-adapted state of the protein.
28 Therefore, using fluorescence anisotropy-based nucleotide-binding assays we measured the
29 binding affinity (K_D) of a fluorescently labelled ATP analogue (MANT ATP) for the WT and
30 D67N mutant. Fluorescence anisotropy provides a sensitive tool to measure the binding of
31 ligands to proteins when a fluorophore is attached to the ligand(36). Changes in the anisotropy
32 are caused by changes in the mobility of the fluorophore. The addition of OaPAC protein or
33 mutant to MANT-ATP increases the fluorescence anisotropy of the N-Methylanthraniloyl (the
34 labelled part of MANT-ATP) as binding of MANT-ATP to OaPAC results in an increase in the
35 volume of the labelled entity and hence slows down its rotational movement. MANT-ATP was
36 excited at $\lambda_{exc}=350\text{nm}$ and the fluorescence anisotropy was detected at 450nm with increasing
37 concentrations of OaPAC. It should be noted that the flavin in OaPAC emits > 500 nm and
38 therefore there is no contribution from the flavin emission in the anisotropy measurements. The
39 affinity (K_D) for MANT-ATP was determined to be $2.2 \pm 0.4 \text{ mM}$ for WT and $7.7 \pm 1.6 \text{ mM}$
40 for the mutant (**Fig.7**). The lower affinity found in the case of the mutant generally aligns with
41 the conclusion that the mutation induces a structural change – as observed in the DSC
42 measurements – which affected the binding affinity of ATP as well as the yield of the cAMP
43 production.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 **Concluding remarks**
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

The D67N mutant, which was predicted to change the photocycle kinetics, was made in OaPAC. Based on the crystal structure of OaPAC, D67 is in hydrogen bonding distance to R79 (~ 3 Å) residue and to the ribityl chain (~ 3.2 Å) of flavin. D67 is a hydrogen bond acceptor and mutating D67 to N, a neutral amino acid, modulates the electrostatic potential of flavin by altering the hydrogen bonding network. According to Goings et al.(38) the electrostatic potential at the center of flavin can be modulated by either moving positive charge toward the ring or moving negative charge away from the ring. In PixD, the Asp69–Arg71 pair is a good example of residues hydrogen bond to each other that have opposite effects on the active site potential. According to the QM/MM study done Goings et al.(38), when the Asp69–Arg71 pair moves closer to the flavin ring, the negatively charged Asp69 destabilizes charge transfer, whereas the positively charged Arg71 stabilizes charge transfer, and vice versa. When D67 is mutated to N the hydrogen bond length between the side chain of N67 and the ribityl chain of flavin is expected to increase, potentially favouring charge transfer.

Our ultrafast transient fluorescence measurements demonstrated that the overall kinetics of forward electron transfer was significantly faster in the mutant compared to WT, in qualitative agreement with the predictions of Goings et al(38). The transient absorption measurements also demonstrated ~ 4 -fold weaker signalling state quantum yield, reflecting a much stronger acceleration of the back reaction competing with formation of the signalling state due to the mutation. A third kinetic effect of the mutation is the ~ 5 -fold deceleration of the recovery of the dark state. Overall, these counterbalancing effects lead to \sim similar acceleration of the enzymatic rate in WT and D67N OaPAC. However, as the basal activity of D67N OaPAC is somewhat higher than that of WT, the maximal enzymatic velocity k_{cat} in the light state is ~ 1.5 higher in the mutant than in WT. This makes this mutant a better potential optogenetic tool as the basal activities are still low but the light-activated cAMP production is higher than in the native protein.

Upon excitation, the D67N mutant spends longer in the structure favouring the ATP to cAMP conversion. This suggests that the enzymatic activity is increased as the protein spends more in the signalling state despite its lower quantum yield. Our calorimetry

1 measurements showed that the melting temperature is considerably lower than observed
2 in WT, indicating that the D67N mutant unfolds more easily. Hence, the mutant protein
3 seems to possess a less compact structure than WT. The binding experiments also
4 pointed to an altered enzymatic domain structure as WT OaPAC binds ATP slightly
5 more strongly than the mutant.
6
7 Overall, future studies aiming at further tuning the relevant kinetic rates may provide a
8 good road to increase the enzymatic activity of PACs
9
10
11
12
13
14
15

16 Experimental Procedures 17 18

19 *Expression and purification of full-length wild type and D76N mutant OaPAC* 20 21

22 The D67N mutation was generated with Q5 Site-Directed Mutagenesis Kit (NEB) using WT
23 full OaPAC/pCold-I as a template. The mutated construct was verified by DNA sequencing.
24 The full WT or D67N OaPAC/pCold-I construct was transformed into *Escherichia coli*
25 BL21(DE3) cells and grown on an LB-agar plate containing 100 µg/mL ampicillin. A single
26 colony was used to inoculate 10 mL 2x-YT medium (Fisher Bioreagents, BP9743-5) containing
27 100 µg/mL ampicillin that was shaken overnight at 37°C (250 RPM). The 10 mL culture was
28 used to inoculate 1 L of 2x-YT medium. The culture was shaken at 37 °C (250 RPM) until the
29 OD600 reached ~0.8. The temperature was lowered to 18°C, and following 30 min incubation
30 the protein expression was induced by adding 1 mM IPTG. After 18 h of induction in the dark
31 the cells were harvested by centrifugation and the cell pellet was stored at -20°C until needed.
32 The cell pellet containing WT or D76N mutant OaPAC was thawed and resuspended in
33 resuspension buffer (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, 2 mg/ml
34 phenylmethylsulphonyl fluoride (PMSF), 1 mg/ml lysozyme, 0.5 mg/ml DNase, Pierce
35 Protease inhibitor tablet (1 tablet/50 ml, Thermo Fisher Scientific)). The resuspended cells were
36 disrupted and lysed by sonication at 4°C. The cell debris was removed by ultracentrifugation at
37 30,000 RPM for 80 min at 4°C. The supernatant was loaded onto a Ni-NTA column equilibrated
38 with resuspension buffer. The column was washed with 60 mL of resuspension buffer
39 containing 5 mM imidazole, and then the protein was eluted using resuspension buffer
40 containing 500 mM imidazole. Buffer content of the eluate was immediately exchanged to 20
41 mM Tris, 150 mM NaCl pH 8.0, 20 mM MgCl2 using an Econo-Pac 10 G desalting column.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 The protein was further purified with Superdex 200 column chromatography. Protein purity
2 and yield were determined using SDS-PAGE and UV-Vis spectroscopy.
3
4

5 *Picosecond time-resolved fluorescence measurements*
6
7

8 Time-resolved fluorescence experiments in the ps time range were performed using a spectrally
9 resolved Kerr-Gate femtosecond fluorometer. The setup employs a Kerr shutter and allows
10 measuring fluorescence spectra with a temporal resolution down to ~100 fs and up to the
11 nanoseconds timescale. The setup was described elsewhere(47). Briefly, the excitation pulse
12 centered at 390 nm is obtained by frequency-doubling, using a BBO crystal, part of the 780 nm
13 pulse operating at 1 kHz. The remaining 780 nm beam is led through a motorized delay-line
14 and focused into the Kerr medium where it spatially overlapped the fluorescence from the
15 sample. The Kerr medium used was CS₂ (response function width ~1.2 ps). The sample was
16 flowed through the 1mm pathlength optical cell using a peristaltic pump. Transient fluorescence
17 spectra were measured with time delays up to 1500 ps for all samples. Global analysis of the
18 time and spectrally resolved data sets in terms of a linear combination of a discrete number of
19 components, each with a distinct exponential rate constant and a decay-associated
20 spectrum(51), was performed using Glotaran(52).
21
22

23 *Ultrafast Transient Absorption measurements*
24
25

26 Transient visible spectra were recorded with 100 fs temporal resolution by a transient
27 absorption (TA) spectrometer applying ~800 μJ laser pulses centered at 800 nm at a repetition
28 rate of 1 kHz. Ultrashort 100 fs pulses were obtained from a Spitfire Ace (Ti:sapphire)
29 regenerative amplifier seeded by a femtosecond Mai Tai mode-locked (Ti:sapphire) laser
30 oscillator and pumped by an Empower 45 multi-kilohertz, intracavity-doubled, green (Nd:YLF)
31 pump laser. The output of the amplifier was split in the ratio 1:9 to build the so-called pump-
32 probe arrangement. The higher energy pulses served to produce, in a BBO crystal, the SHG
33 (second harmonic generation) 400nm pump pulses from the 800nm output of the regenerative
34 amplifier and were attenuated to ~200-400nJ/pulse before reaching to the sample. The probe
35 arm was provided by the lesser energy laser pulses via white continuum generation (WCG) in
36 a rastered CaF₂ crystal. The pump and probe pulses were spatially overlapped in the sample and
37 the polarization of the probe was again set to magic angle compared to excitation. To avoid
38
39

photodegradation, the cuvette was moved with the help of a homemade Lissajous scanner, simultaneously flowed by a peristaltic pump and kept at 12 °C temperature during the whole measurement. A Newport (IMS Series High-Performance Long Travel Linear Stages 600 PP) delay stage was placed in the beam path of the pump pulse to adjust the different pump-probe time delays. Exciting pulses were chopped by a Thorlabs MC2000 optical chopper (to half of the output repetition rate) to generate “pump ON” and “pump OFF” states of the sample. Absorption spectra were recorded by an Andor Newton CCD operating at -80 °C. Absorption data matrices were collected, and the absorption changes calculated, recorded and stored by the home written NI LabView (visual programming language) data acquisition and control software. The absorption changes were reported as pump on – pump off normalized difference spectra. The obtained data matrix was analysed by the Glotaran software assuming a sequential scheme with evolutionary associated spectra (EAS) assigned to the obtained time constants.

cAMP yield measurement / Adenylate Cyclase Activity

The ATP-cAMP conversion of WT and D67N mutant OaPAC was quantified using a pyrophosphate assay (EnzChek® Pyrophosphate Assay Kit). This assay is based on the PPi-dependent increase of the absorption of 2-amino-6-mercaptopurine, which was monitored as a function of time at 360 nm. The reaction rate was determined from the slope of a linear fit using an extinction coefficient of 11,000 M⁻¹cm⁻¹ at 360 nm. From the slope of the change of the absorbance the reaction rate (μM/s) of the purine base product (2-amino-6-mercaptopurine) was determined which is the same as the reaction rate of pyrophosphate derived from ATP.

To determine the Michaelis-Menten constant, the assay was performed in the presence of 0-500 μM concentrations of ATP using the same condition of the continuous illumination. The initial reaction rate at each ATP concentration was extracted from the linear part of OD₃₆₀ vs. time plot. The resulting rate constants were plotted as a function of ATP concentration. Fitting a Michaelis-Menten saturation curve for the enzyme reaction, the maximum reaction rate (V_{max}), the concentration at the half of the maximum K_M as well as the k_{cat} – which is the number of ATP molecule each OaPAC converts to cAMP per unit time – were determined.

Differential Scanning Calorimetry (DSC) measurements

Differential scanning calorimetry (DSC) was performed to measure the thermal stability of the WT and D67N mutant OaPAC using a SETARAM Micro DSC-III calorimeter. The measurements were carried out in the range of 20 – 100 °C with a heating rate of 0.3 K·min⁻¹. The sample (WT and D67N) and the reference (buffer) were balanced with a precision of ± 0.05 mg in order to avoid corrections for the heat capacity of the vessels. A second thermal scan of the denatured sample was measured for baseline correction. The melting temperature (T_m) of the thermal unfolding curves were analyzed by the OriginLab Origin®2021 software.

Fluorescence anisotropy-based nucleotide-binding assays

Fluorescence anisotropy-based nucleotide-binding assays were performed at room temperature using 2 μM 2'-(or-3')-O-(N-Methylanthraniloyl) Adenosine 5'-Triphosphate, Trisodium Salt (MANT ATP). This is a hydrolyzable fluorescently labelled ATP, on excitation at 350nm, emits at ~450nm. Steady-state fluorescence anisotropy measurements were performed with a Fluorolog Jobin Yvon Horiba spectrofluorometer in L-format configuration equipped with a polarization accessory. The measurements were performed at an excitation wavelength of λ_{exc}=350nm with a vertical polarization filter and by measuring the emission at 450nm (average of 30 measurements on the same sample) with the polarization filter both parallel and perpendicular with respect to the excitation light polarization. Fluorescence anisotropies were calculated from the fluorescence intensities detected according to the equation (1)

$$r = \frac{I_{\text{perp}/\text{perp}} - G(\lambda)I_{\text{perp}/\text{par}}}{I_{\text{perp}/\text{perp}} + 2G(\lambda)I_{\text{perp}/\text{par}}} \quad (1)$$

where r is the fluorescence anisotropy, I_{perp/perp} is the fluorescence emission intensity detected with vertical polarization, I_{perp/par} is the fluorescence emission intensity detected with vertical polarization on the excitation and horizontal polarization on the emission, and G(λ) is the correction factor experimentally determined measuring the ratio I_{perp}/I_{par} with a horizontally polarized excitation. Data processing was done using Origin 2020 software (OriginLab) and K_D values were determined by fitting to a quadratic binding equation

$$\frac{r - r_A}{r_{AT} - r_A} = \frac{A_0 + T_0 + K_D - \sqrt{(A_0 + T_0 + K_D)^2 - 4 \cdot A_0 \cdot T_0}}{2} \quad (2)$$

1 where A_o and T_o are the total MANT-ATP/cAMP and OaPAC concentrations respectively, r_A
2 is the steady-state anisotropy of MANT-ATP/cAMP, r_{AT} is the steady-state anisotropy of
3 MANT-ATP/cAMP at a saturating amount of OaPAC and K_D is the dissociation equilibrium
4 constant of the MANT-ATP/cAMP-OaPAC complex.
5
6
7
8
9

Data availability statement

10 Data are available in the Supporting information. All remaining data are contained in the article.
11
12
13
14
15
16
17

Acknowledgements

18 J.T.C. was supported by the National Institutes of Health IMSD-MERGE
19 (T32GM135746) and NY-CAPs IRACDA (K12-GM102778) Programs at Stony Brook
20 University. B.Z. was supported by a PhD scholarship from the Chinese scholarship
21 Council. A.L. acknowledges funding from the Hungarian National Research and
22 Innovation Office (K-137557) and was supported by PTE ÁOK-KA-2021. This study
23 was supported by the National Science Foundation (NSF) (MCB-1817837 to PJT) and
24 the EPSRC (EP/N033647/1 to S.R.M.).
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

1. Ohki, M., Sugiyama, K., Kawai, F., Matsunaga, S., Iseki, M., and Park, S. (2016) Structural basis for photoactivation of a light-regulated adenylate cyclase from the photosynthetic cyanobacterium *Oscillatoria acuminata* *Acta Crystallographica a-Foundation and Advances* **72**, S251-S251 10.1107/S2053273316096194
2. Anderson, S., Dragnea, V., Masuda, S., Ybe, J., Moffat, K., and Bauer, C. (2005) Structure of a novel photoreceptor, the BLUF domain of AppA from *Rhodobacter sphaeroides* *Biochemistry* **44**, 7998-8005 10.1021/bi0502691
3. Masuda, S., Hasegawa, K., Ishii, A., and Ono, T. A. (2004) Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of *Synechocystis* sp. PCC6803 *Biochemistry* **43**, 5304-5313 10.1021/bi049836v
4. Bonetti, C., Mathes, T., van Stokkum, I., van Grondelle, R., Groot, M., Hegemann, P. *et al.* (2007) The light activation mechanism of a novel blue-light photoreceptor *Biophysical Journal* 337A-337A
5. Bonetti, C., Stierl, M., Mathes, T., van Stokkum, I., Mullen, K., Cohen-Stuart, T. *et al.* (2009) The Role of Key Amino Acids in the Photoactivation Pathway of the *Synechocystis* Slr1694 BLUF Domain *Biochemistry* **48**, 11458-11469 10.1021/bi091196x
6. Gauden, M., Yeremenko, S., Laan, W., van Stokkum, I., Ihlainen, J., van Grondelle, R. *et al.* (2005) Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes *Biochemistry* **44**, 3653-3662 10.1021/bi047359a
7. Mathes, T., van Stokkum, I., Bonetti, C., Hegemann, P., and Kennis, J. (2011) The Hydrogen-Bond Switch Reaction of the Blrb Bluf Domain of *Rhodobacter sphaeroides* *Journal of Physical Chemistry B* **115**, 7963-7971 10.1021/jp201296m
8. Lukacs, A., Tonge, P. J., and Meech, S. R. (2022) Photophysics of the Blue Light Using Flavin Domain *Acc Chem Res* **55**, 402-414 10.1021/acs.accounts.1c00659
9. Zhong, D., and Zewail, A. H. (2001) Femtosecond dynamics of flavoproteins: charge separation and recombination in riboflavin (vitamin B2)-binding protein and in glucose oxidase enzyme *Proc Natl Acad Sci U S A* **98**, 11867-11872 10.1073/pnas.211440398
10. Nag, L., Lukacs, A., and Vos, M. H. (2019) Short-Lived Radical Intermediates in the Photochemistry of Glucose Oxidase *Chemphyschem* **20**, 1793-1798 10.1002/cphc.201900329
11. Mataga, N., Chosrowjan, H., Shibata, Y., Tanaka, F., Nishina, Y., and Shiga, K. (2000) Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanospace *Journal of Physical Chemistry B* **104**, 10667-10677 10.1021/jp002145y
12. Müller, P., Bouly, J. P., Hitomi, K., Balland, V., Getzoff, E. D., Ritz, T. *et al.* (2014) ATP binding turns plant cryptochrome into an efficient natural photoswitch *Sci Rep* **4**, 5175 10.1038/srep05175
13. Müller, P., and Bouly, J. P. (2015) Searching for the mechanism of signalling by plant photoreceptor cryptochrome *FEBS Lett* **589**, 189-192 10.1016/j.febslet.2014.12.008
14. Müller, P., Brettel, K., Grama, L., Nyitrai, M., and Lukacs, A. (2016) Photochemistry of Wild-Type and N378D Mutant *E. coli* DNA Photolyase with Oxidized FAD Cofactor Studied by Transient Absorption Spectroscopy *Chemphyschem* **17**, 1329-1340 10.1002/cphc.201501077
15. Kottke, T., Hense, A., Herman, E., and Oldemeyer, S. (2015) Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome *Faseb Journal* **29**,
16. Langenbacher, T., Immeln, D., Dick, B., and Kottke, T. (2009) Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome *Journal of the American Chemical Society* **131**, 14274-14280 10.1021/ja901628y
17. Lukacs, A., Brust, R., Haigney, A., Laptenok, S. P., Addison, K., Gil, A. *et al.* (2014) BLUF domain function does not require a metastable radical intermediate state *J Am Chem Soc* **136**, 4605-4615 10.1021/ja4121082
18. Brust, R., Haigney, A., Lukacs, A., Gil, A., Hossain, S., Addison, K. *et al.* (2014) Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium *J Phys Chem Lett* **5**, 220-224 10.1021/jz4023738

19. Gil, A. A., Laptenok, S. P., Iuliano, J. N., Lukacs, A., Verma, A., Hall, C. R. *et al.* (2017) Photoactivation of the BLUF Protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues *J Am Chem Soc* **139**, 14638-14648 10.1021/jacs.7b07849

20. Fujisawa, T., Takeuchi, S., Masuda, S., and Tahara, T. (2014) Signaling-State Formation Mechanism of a BLUF Protein PapB from the Purple Bacterium *Rhodopseudomonas palustris* Studied by Femtosecond Time-Resolved Absorption Spectroscopy *J Phys Chem B* **118**, 14761-14773 10.1021/jp5076252

21. Stelling, A. L., Ronayne, K. L., Nappa, J., Tonge, P. J., and Meech, S. R. (2007) Ultrafast Structural Dynamics in BLUF Domains: Transient Infrared Spectroscopy of AppA and Its Mutants *JACS* **129**, 15556-15564 10.1021/ja074074n

22. Lukacs, A., Haigney, A., Brust, R., Zhao, R. K., Stelling, A. L., Clark, I. P. *et al.* (2011) Photoexcitation of the blue light using FAD photoreceptor AppA results in ultrafast changes to the protein matrix *J Am Chem Soc* **133**, 16893-16900 10.1021/ja2060098

23. Khrenova, M. G., Domratcheva, T., Schlichting, I., Grigorenko, B. L., and Nemukhin, A. V. (2011) Computational characterization of reaction intermediates in the photocycle of the sensory domain of the AppA blue light photoreceptor *Photochem Photobiol* **87**, 564-573 10.1111/j.1751-1097.2010.00861.x

24. Khrenova, M. G., Nemukhin, A. V., and Domratcheva, T. (2013) Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors *J Phys Chem B* **117**, 2369-2377 10.1021/jp312775x

25. Sadeghian, K., Bocola, M., and Schütz, M. (2008) A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors *J Am Chem Soc* **130**, 12501-12513 10.1021/ja803726a

26. Udvarhelyi, A., and Domratcheva, T. (2011) Photoreaction in BLUF receptors: proton-coupled electron transfer in the flavin-Gln-Tyr system *Photochem Photobiol* **87**, 554-563 10.1111/j.1751-1097.2010.00884.x

27. Udvarhelyi, A., and Domratcheva, T. (2013) Glutamine rotamers in BLUF photoreceptors: a mechanistic reappraisal *J Phys Chem B* **117**, 2888-2897 10.1021/jp400437x

28. Hsiao, Y. W., Götze, J. P., and Thiel, W. (2012) The central role of Gln63 for the hydrogen bonding network and UV-visible spectrum of the AppA BLUF domain *J Phys Chem B* **116**, 8064-8073 10.1021/jp3028758

29. Hontani, Y., Mehlhorn, J., Domratcheva, T., Beck, S., Kloz, M., Hegemann, P. *et al.* (2023) Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction *J Am Chem Soc* **145**, 1040-1052 10.1021/jacs.2c10621

30. Domratcheva, T., Hartmann, E., Schlichting, I., and Kottke, T. (2016) Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry *Sci Rep* **6**, 22669 10.1038/srep22669

31. Goings, J., Li, P., Zhu, Q., and Hammes-Schiffer, S. (2020) Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state *Proceedings of the National Academy of Sciences of the United States of America* **117**, 26626-26632 10.1073/pnas.2016719117

32. Nagahama, T., Suzuki, T., Yoshikawa, S., and Iseki, M. (2007) Functional transplant of photoactivated adenylyl cyclase into Aplysia mechanosensory neurons *Neuroscience Research* **58**, S241-S241 10.1016/j.neures.2007.06.593

33. Jansen, V., Alvarez, L., Balbach, M., Strunker, T., Hegemann, P., Kaupp, U. *et al.* (2015) Controlling fertilization and cAMP signaling in sperm by optogenetics *Elife* **4**, 10.7554/elife.05161

34. Lindner, R., Hartmann, E., Tarnawski, M., Winkler, A., Frey, D., Reinstein, J. *et al.* (2017) Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase *Journal of Molecular Biology* **429**, 1336-1351 10.1016/j.jmb.2017.03.020

35. Collado, J., Iuliano, J., Pirisi, K., Jewlikar, S., Adamczyk, K., Greetham, G. *et al.* (2022) Unraveling the Photoactivation Mechanism of a Light-Activated Adenylyl Cyclase Using Ultrafast Spectroscopy Coupled with Unnatural Amino Acid Mutagenesis *ACS Chemical Biology* **17**, 2643-2654 10.1021/acschembio.2c00575

36. Lakowicz, J. R. (2006) *Principles of fluorescence spectroscopy*, Springer,

37. Bonetti, C., Mathes, T., van Stokkum, I. H., Mullen, K. M., Groot, M. L., van Grondelle, R. *et al.* (2008) Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy *Biophys J* **95**, 4790-4802 10.1529/biophysj.108.139246

38. Goings, J., and Hammes-Schiffer, S. (2019) Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics *Journal of the American Chemical Society* **141**, 20470-20479 10.1021/jacs.9b11196

1 Lukacs, A., Eker, A., Byrdin, M., Villette, S., Pan, J., Brettel, K. *et al.* (2006) Role of the middle residue in
2 the triple tryptophan electron transfer chain of DNA photolyase: Ultrafast spectroscopy of a Trp -> Phe
3 mutant *Journal of Physical Chemistry B* **110**, 15654-15658 10.1021/jp063686b

4 Lukacs, A., Eker, A. P., Byrdin, M., Brettel, K., and Vos, M. H. (2008) Electron hopping through the 15 Å
5 triple tryptophan molecular wire in DNA photolyase occurs within 30 ps *J Am Chem Soc* **130**, 14394-
6 14395 10.1021/ja805261m

7 Zhuang, B., Liebl, U., and Vos, M. H. (2022) Flavoprotein Photochemistry: Fundamental Processes and
8 Photocatalytic Perspectives *J Phys Chem B* **126**, 3199-3207 10.1021/acs.jpcb.2c00969

9 Zhuang, B., Vos, M. H., and Aleksandrov, A. (2022) Photochemical and Molecular Dynamics Studies of
10 Halide Binding in Flavoenzyme Glucose Oxidase *ChemBioChem* **23**, e202200227
11 10.1002/cbic.202200227

12 Zhuang, B., Ramodiharijaly, R., Liebl, U., Aleksandrov, A., and Vos, M. H. (2022) Ultrafast photooxidation
13 of protein-bound anionic flavin radicals *Proc Natl Acad Sci U S A* **119**, 10.1073/pnas.2118924119

14 Kao, Y., Saxena, C., He, T., Guo, L., Wang, L., Sancar, A. *et al.* (2008) Ultrafast dynamics of flavins in five
15 redox states *Journal of the American Chemical Society* **130**, 13132-13139 10.1021/ja8045469

16 Brazard, J., Usman, A., Lacombat, F., Ley, C., Martin, M. M., Plaza, P. *et al.* (2010) Spectro-temporal
17 characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase
18 photoreceptors *J Am Chem Soc* **132**, 4935-4945 10.1021/ja1002372

19 Nag, L., Sournia, P., Myllykallio, H., Liebl, U., and Vos, M. (2017) Identification of the TyrOH(center dot+)
20 Radical Cation in the Flavoenzyme TrmFO (vol 139, pg 11500, 2017) *Journal of the American Chemical
21 Society* **139**, 15554-15554 10.1021/jacs.7b10508

22 Laptenok, S. P., Nuernberger, P., Lukacs, A., and Vos, M. H. (2014) Subpicosecond Kerr-gate
23 spectrofluorometry *Methods Mol Biol* **1076**, 321-336 10.1007/978-1-62703-649-8_13

24 Karadi, K., Kapetanaki, S. M., Raics, K., Pecsi, I., Kapronczai, R., Fekete, Z. *et al.* (2020) Functional
25 dynamics of a single tryptophan residue in a BLUF protein revealed by fluorescence spectroscopy *Sci
26 Rep* **10**, 2061 10.1038/s41598-020-59073-5

27 Zhou, Z., Chen, Z., Kang, X. W., Zhou, Y., Wang, B., Tang, S. *et al.* (2022) The nature of proton-coupled
28 electron transfer in a blue light using flavin domain *Proc Natl Acad Sci U S A* **119**, e2203996119
29 10.1073/pnas.2203996119

30 Gil, A., Haigney, A., Laptenok, S. P., Brust, R., Lukacs, A., Iuliano, J. *et al.* (2016) Mechanism of the
31 AppABLUF Photocycle Probed by Site-Specific Incorporation of Fluorotyrosine Residues: Effect of the
32 Y21 pKa on the Forward and Reverse Ground-State Reactions *J Am Chem Soc* **138**, 926-935
33 10.1021/jacs.5b11115

34 van Stokkum, I. H., Larsen, D. S., and van Grondelle, R. (2004) Global and target analysis of time-resolved
35 spectra *Biochim Biophys Acta* **1657**, 82-104 10.1016/j.bbabi.2004.04.011

36 Snellenburg, J., Laptenok, S., Seger, R., Mullen, K., and van Stokkum, I. (2012) Glotaran: A Java-Based
37 Graphical User Interface for the R Package TIMP *Journal of Statistical Software* **49**, 1-22
38 10.18637/jss.v049.i03

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1
2
3
4
Figure legends
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
Figure 1.
20
21

22 Environment of FAD in OaPAC including the Y6, D67, Q48 and W90 amino acids,
23 involved in the photophysics of OaPAC (PDB: 4yus). Y6 is the primary electron donor,
24 but W90 can donate an electron as well. Q48 is crucial in the propagation of the signal from
25 the BLUF domain towards the AC domain. D67 is in hydrogen bonding distance to R79
26 (~ 3 Å) residue and to the ribityl chain (~ 3.2 Å) of flavin. D67 is a hydrogen bond acceptor
27 and mutating D67 to N, a neutral amino acid, modulates the electrostatic potential of flavin
28 by altering the hydrogen bonding network.
29
30
31
32
33

34
35
Figure 2.
36
37

38 A) Transient absorption measurements on the D67N mutant at indicated time delays B)
39 EAS spectra obtained after global analysis. The time constants show that the excited state
40 of FAD, formed right after excitation, decays in 5 ps to the next state which shows the
41 presence of the neutral flavin radical. The final state is dominated by the signalling state
42 and exist longer than the window of the measurement C) Individual kinetics of the WT and
43 D67N OaPAC measured at 505 nm. Applying a monoexponential fit the time constants for
44 the WT and D67N were 90 ± 30 ps and 64 ± 8 ps respectively
45
46

47
48
Figure 3.
49
50

51 A) EAS spectra obtained by global analysis of the transient fluorescence data of WT. The
52 result of the global fit shows a heterogeneous decay of the flavin. B) EAS spectra obtained
53 by global analysis of the transient fluorescence data of the D67N mutant. C) Individual
54 kinetics of the fluorescence decay observed at 513 nm. Using a monoexponential fit we
55 obtained a fluorescence lifetime of 40 ± 2 ps for WT and 25 ± 2 ps for D67N.
56
57

58
59
Figure 4.
60
61

62 A) The kinetics of ATP conversion in the dark- and light-adapted state of WT and D67N
63 OaPAC. In the dark, the ATP conversion rate is slightly higher in the D67N mutant (green)
64 than in WT (orange). In the light-adapted state at 0.5 mM ATP the speed of the conversion
65 was higher in the case of the mutant (blue) than in WT (red). B) Michelis-Menten plot of

1 the enzymatic activity of WT (red) and D67N (blue) under irradiation, v_{max} is increased in
2 the D67N mutant.

3

4

5 **Figure 5.**

6

7 A) Absorption spectra of WT and D67N OaPAC in dark and light state. The absorption
8 spectra of WT and the mutant are very similar in the dark adapted state: the peak of the S₀-
9 S₁ transition is the same for both proteins with a maximum at 442 nm; a 4 nm blue shift of
10 the S₀-S₂ transition is observed for the mutant (376 nm for the WT and 372 nm for the
11 mutant). In light adapted state the S₀-S₁ peak shifts to 452 nm in WT and to 456 nm in the
12 mutant. The S₀-S₂ peak shifts from 376 nm to 379 nm in the WT, and from 372 nm to 376
13 nm in the mutant. B) Recovery kinetics of WT (red) and D67N (blue) OaPAC, measured
14 at 490 nm. The time constant of dark state recovery is 3.6 s for WT and 15.3 s for D67N

15

16

17

18

19

20

21

22

23

24

25 **Figure 6.**

26 Thermal unfolding of wild type (WT) and mutant (D67N) OaPAC measured by DSC. The
27 DSC curve of the WT shows a steep endothermic unfolding with a melting temperature of
28 6 °C higher than of the mutant. This points to a more stable or packed structure of the WT
29 protein as denaturing starts at lower temperature in the case of the mutant.

30

31

32

33

34

35

36 **Figure 7.**

37 Fluorescence anisotropy measurement of MANT-ATP nucleotide in WT and D67N
38 OaPAC as a function of protein concentration at fixed (1 μM) MANT-ATP concentration.
39 As the concentration of protein is increasing the population of bound nucleotide is also
40 increase resulting in higher fluorescence anisotropy. The obtained binding affinity from
41 the fit was 2.2 ± 0.4 μM in WT and 7.7 ± 1.6 μM in D67N.

42

43

44

45

46

47

48

49 **Table 1.**

50 Kinetic parameters for wild-type OaPAC and D67N mutant.

51

52

53

54

55

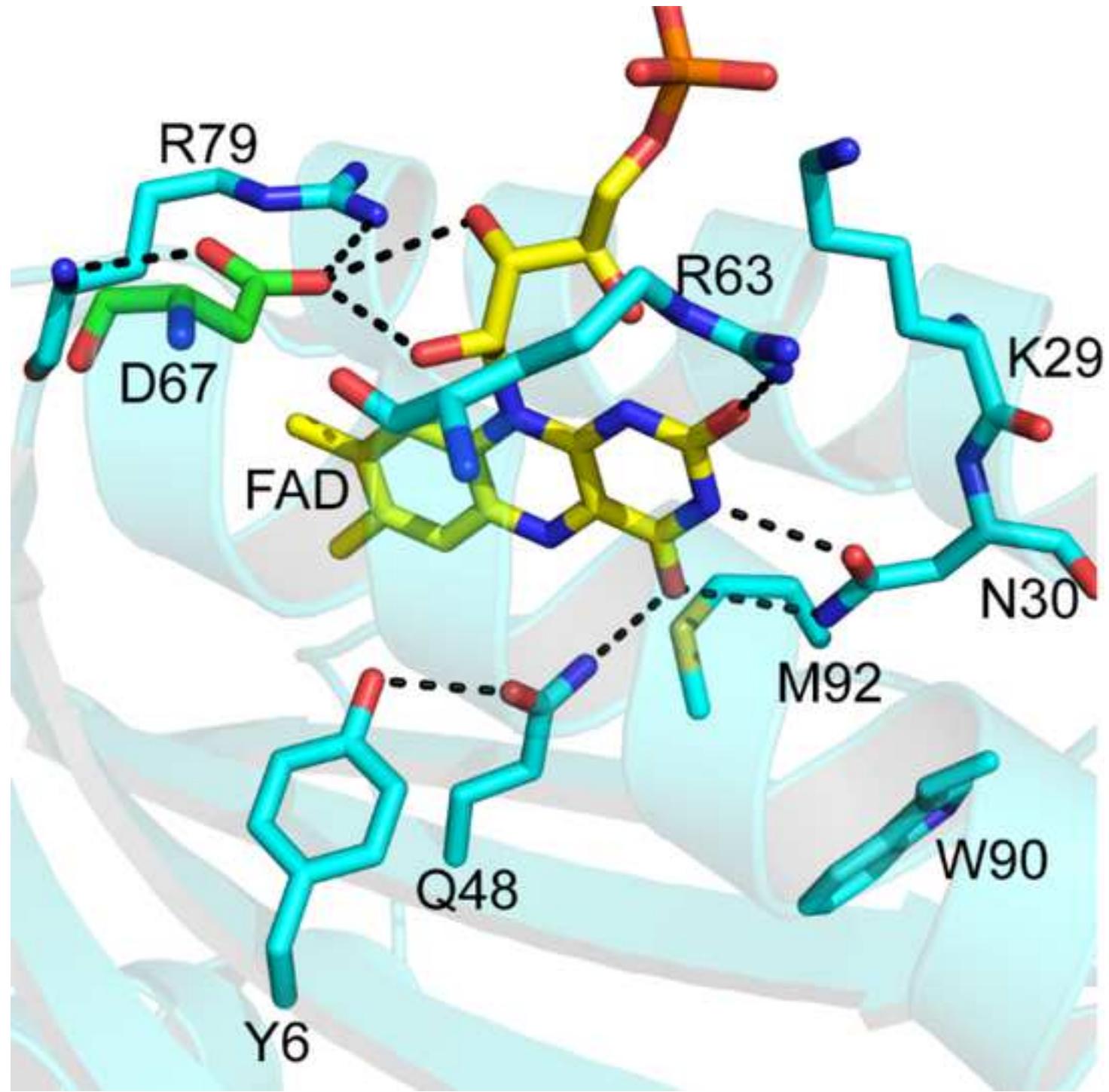
56

57

58

59

60


61

62

63

64

65

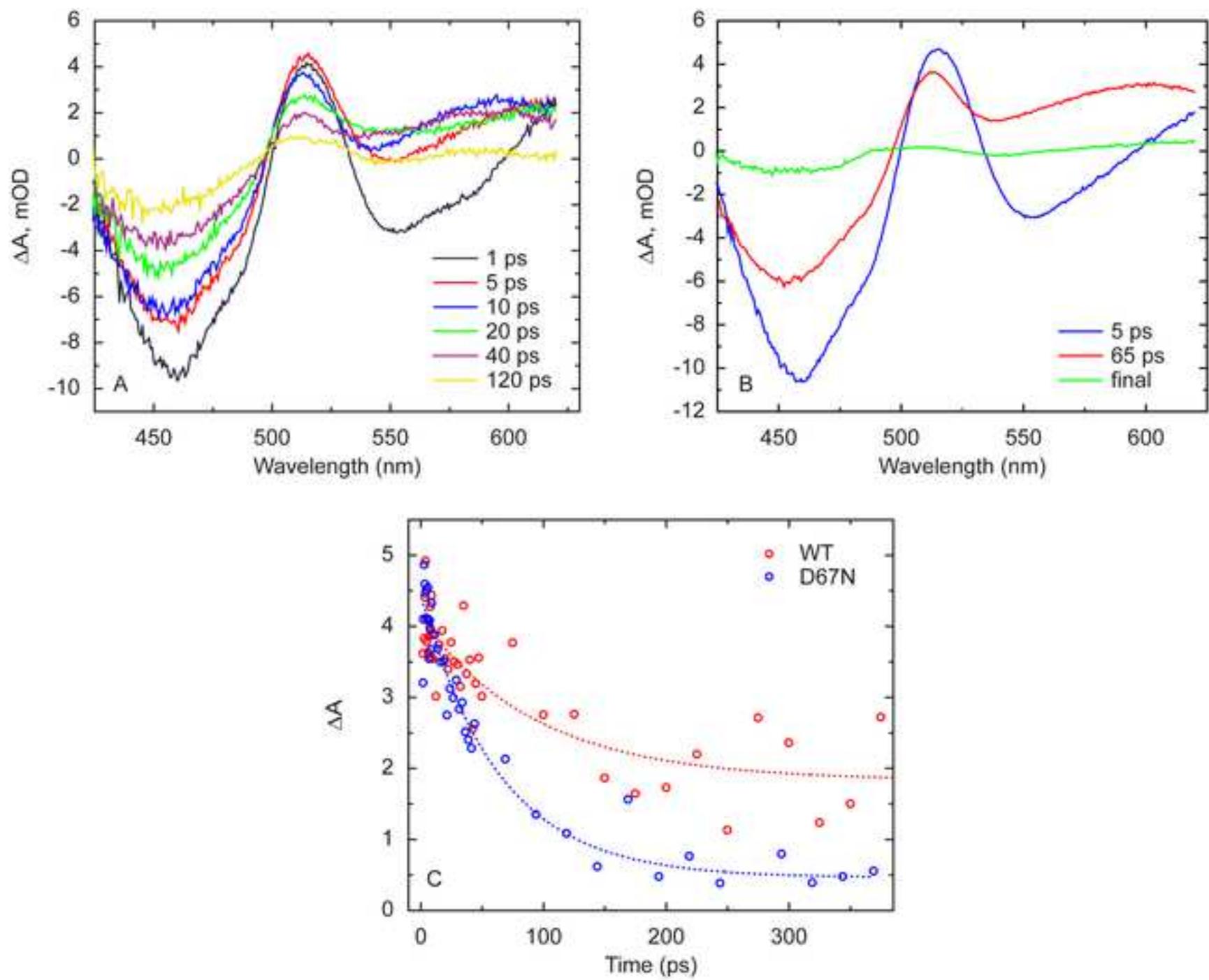
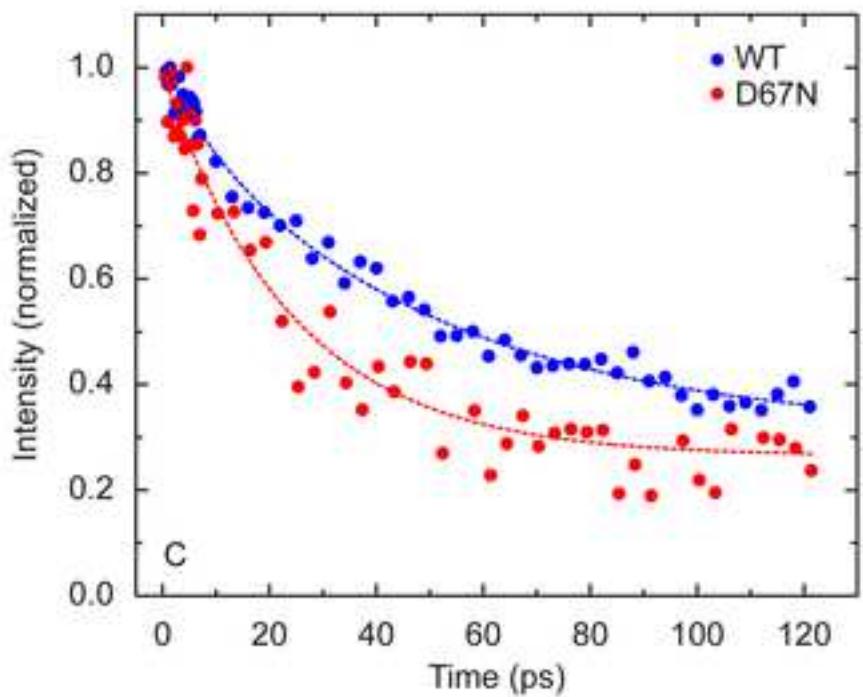
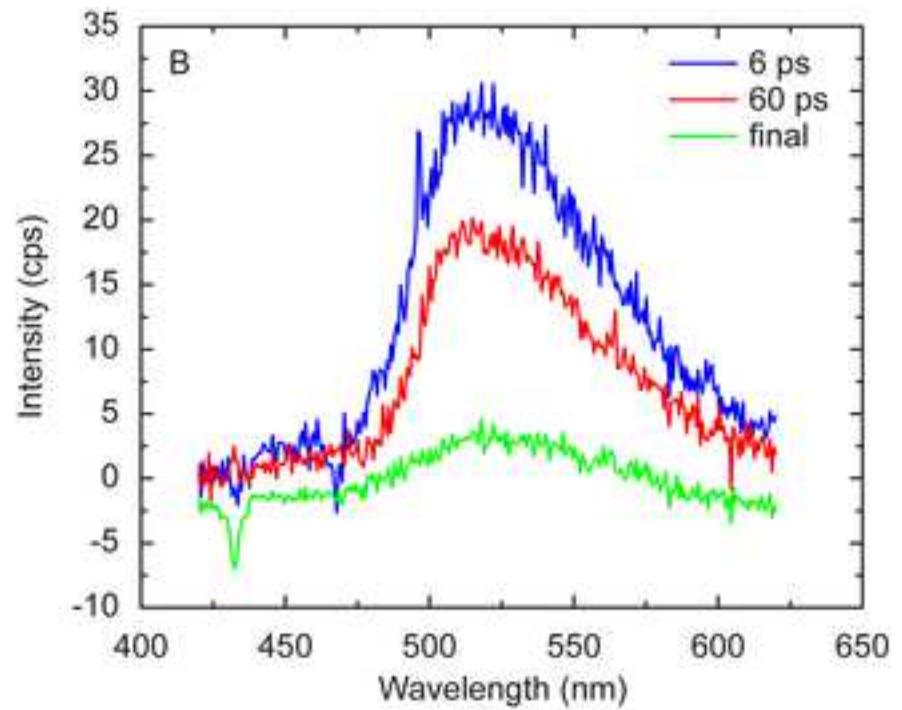
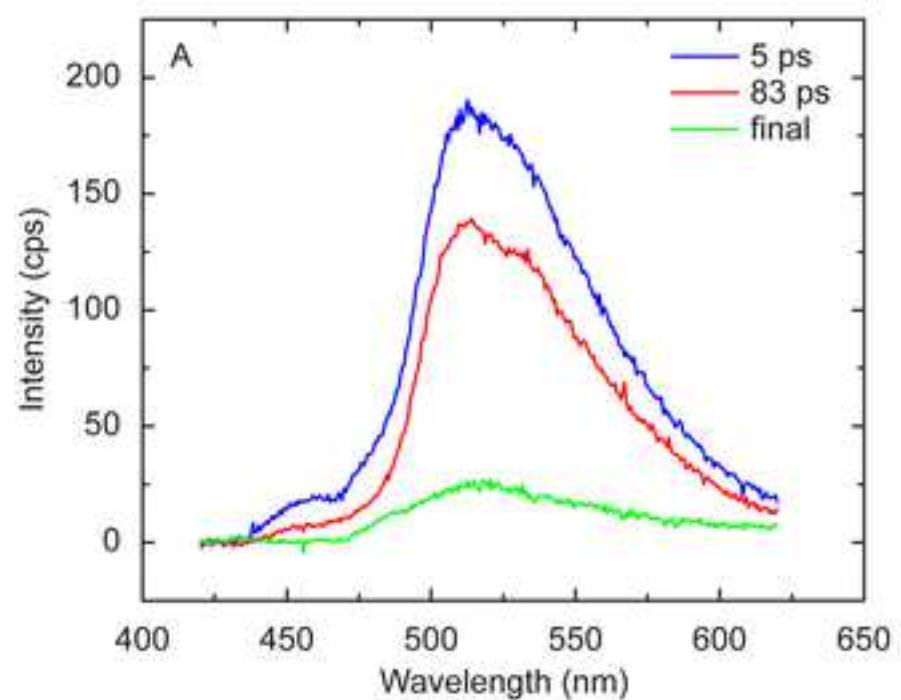





Figure 3

Click here to access/download; Main Figure (High Resolution); Figure 3. ABC new.tif

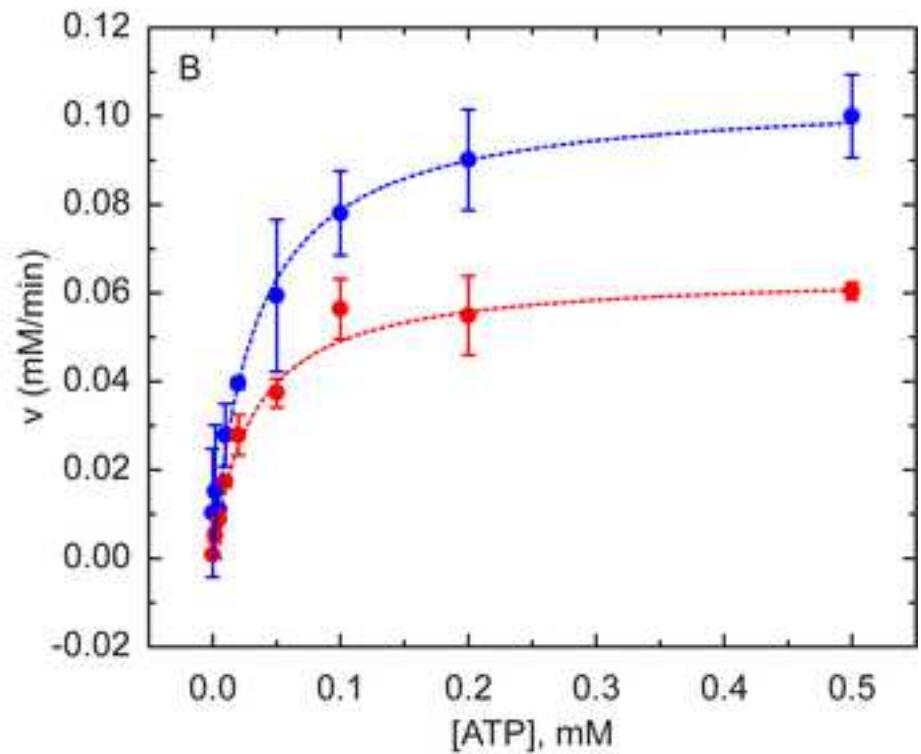
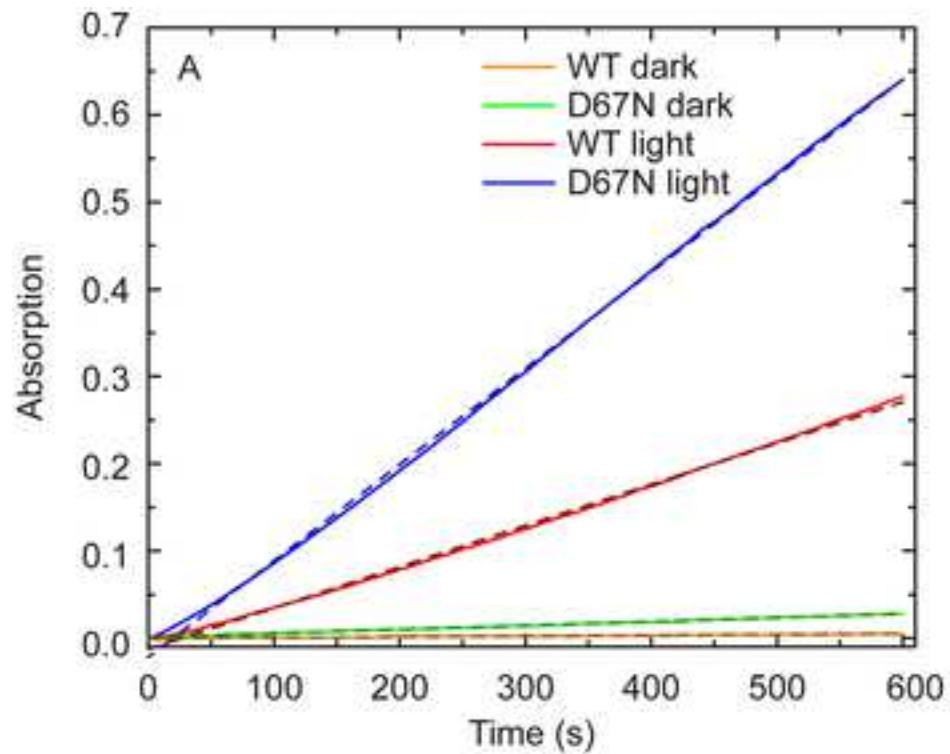
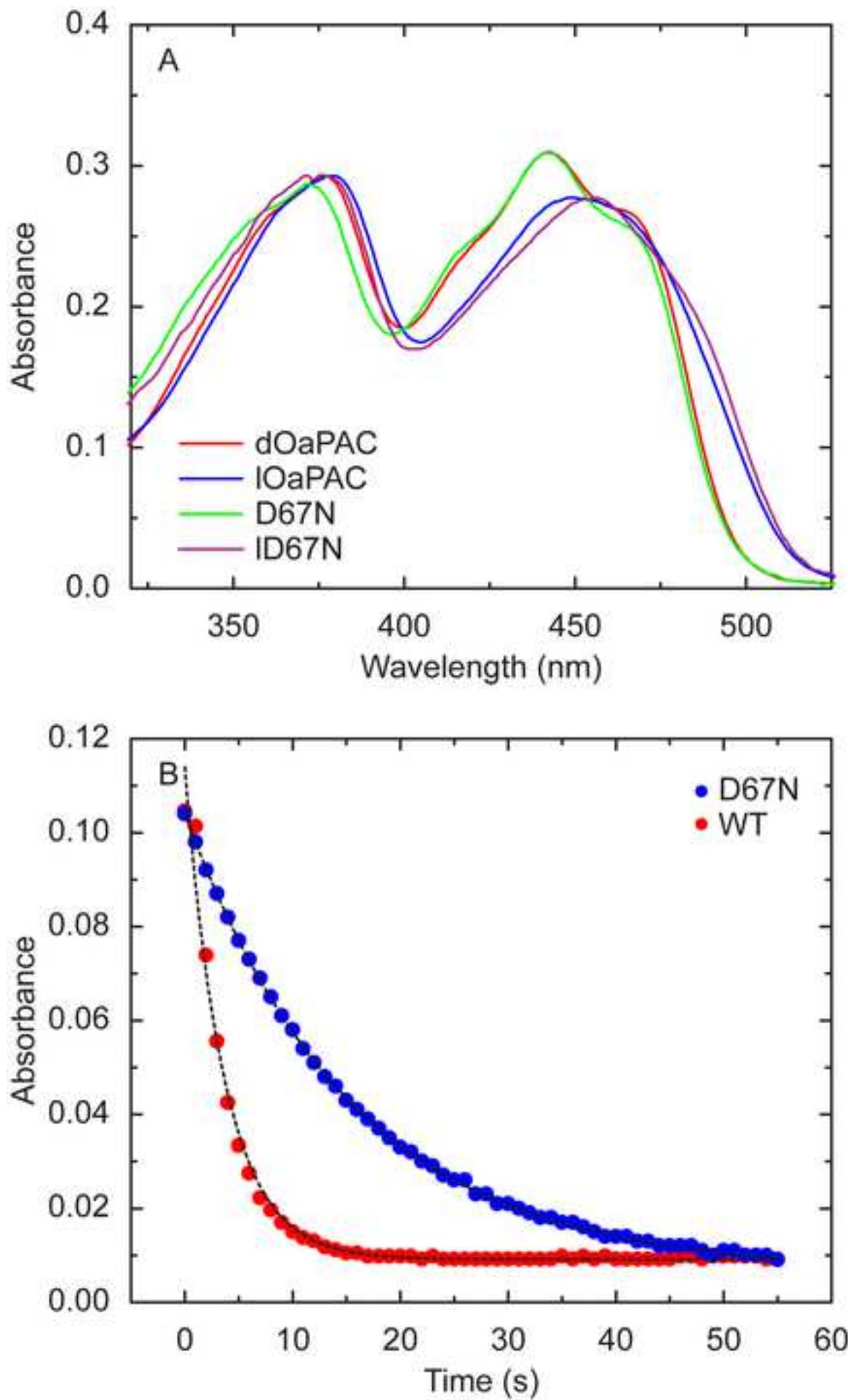
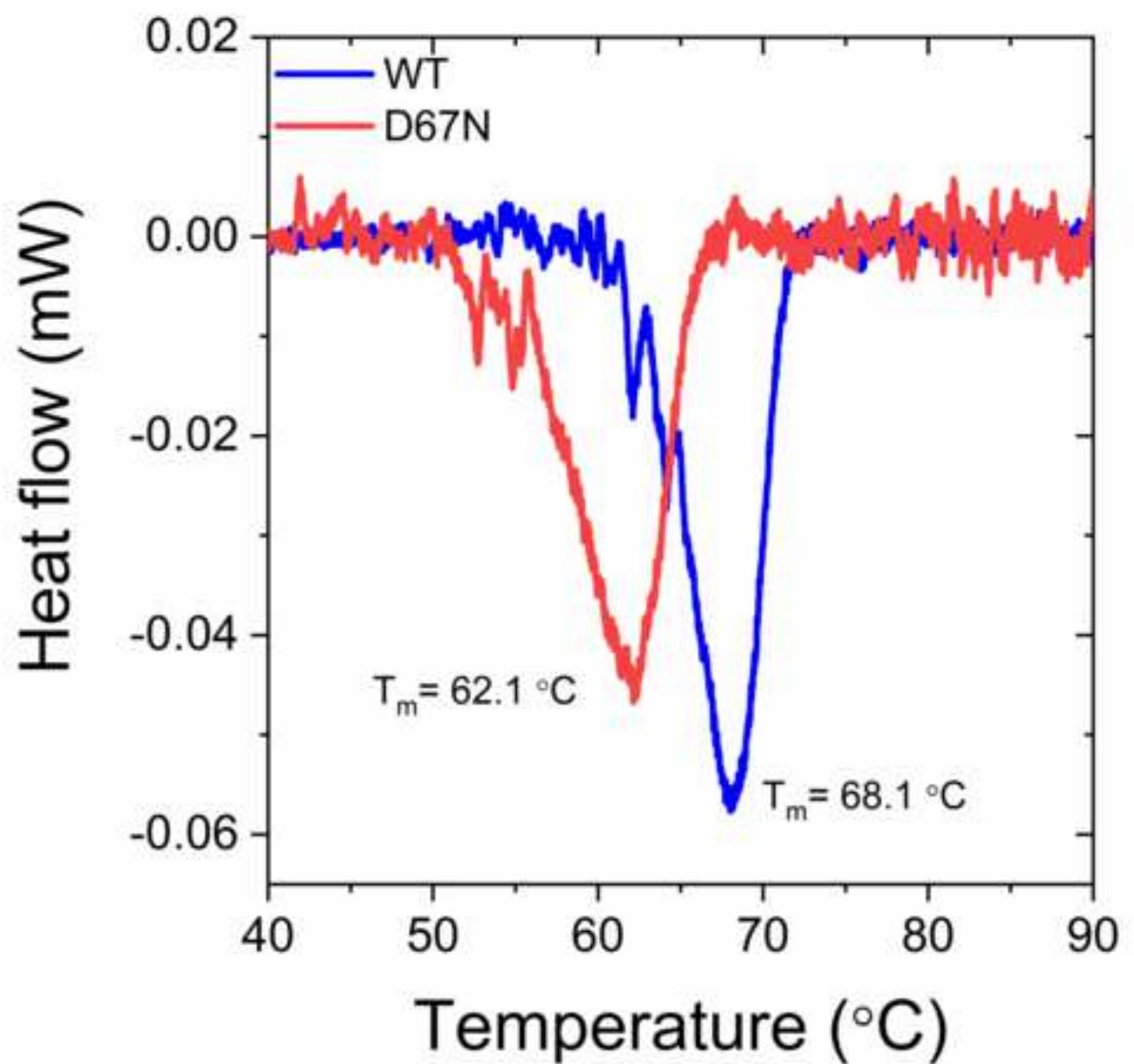





Figure 5

[Click here to access/download; Main Figure \(High Resolution\); Figure 5AB.tif](#)

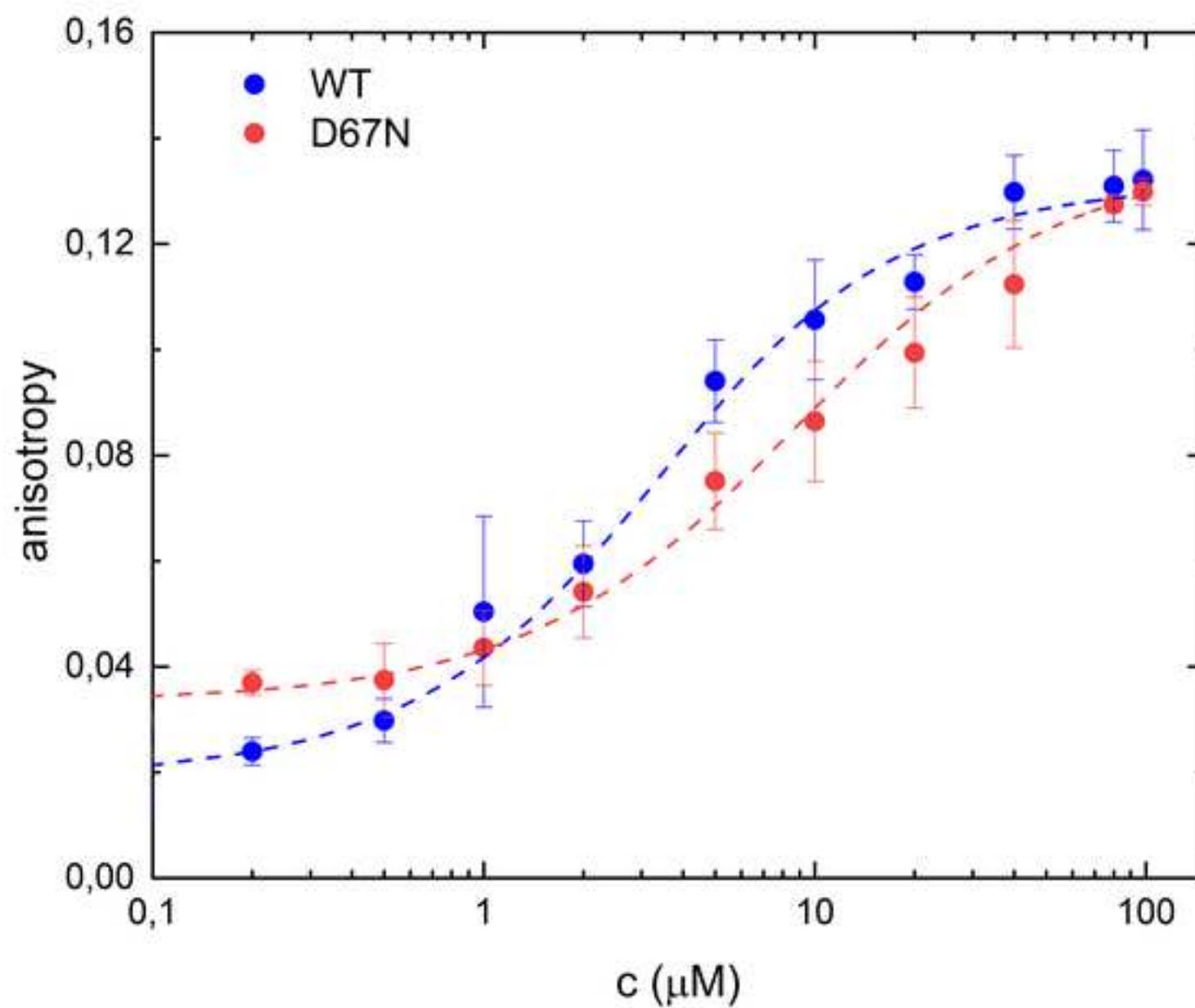
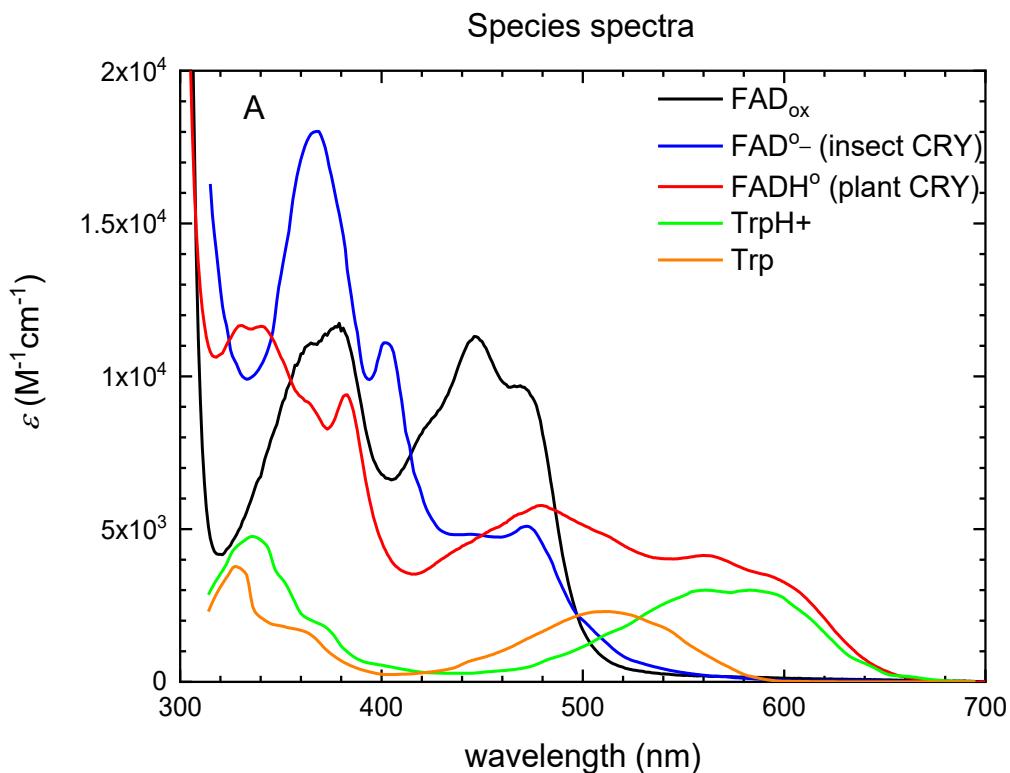
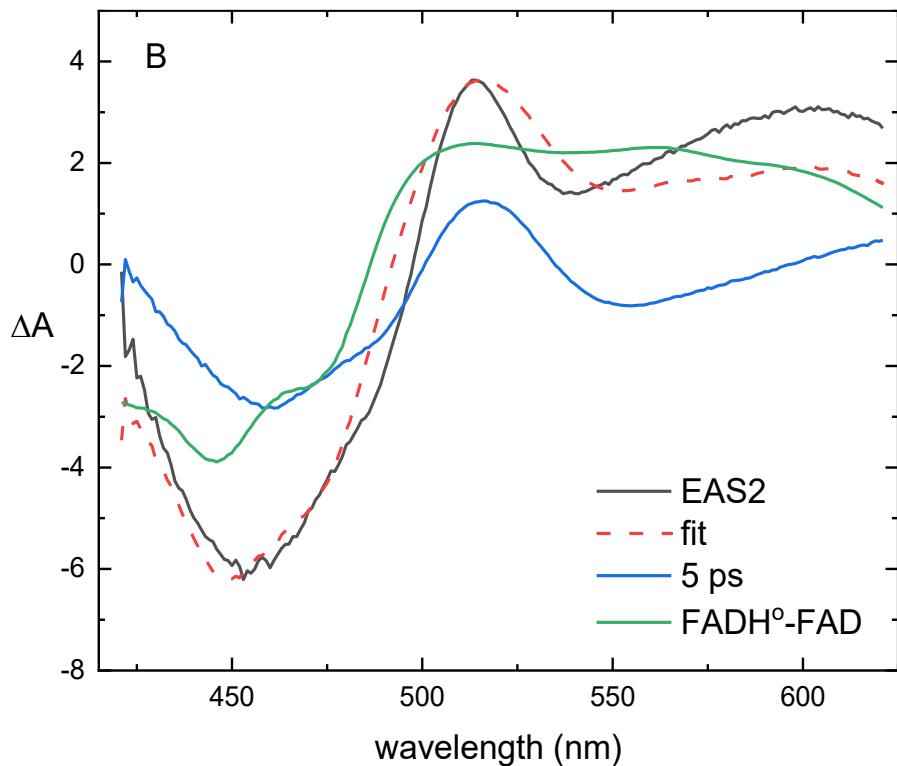


Table 1

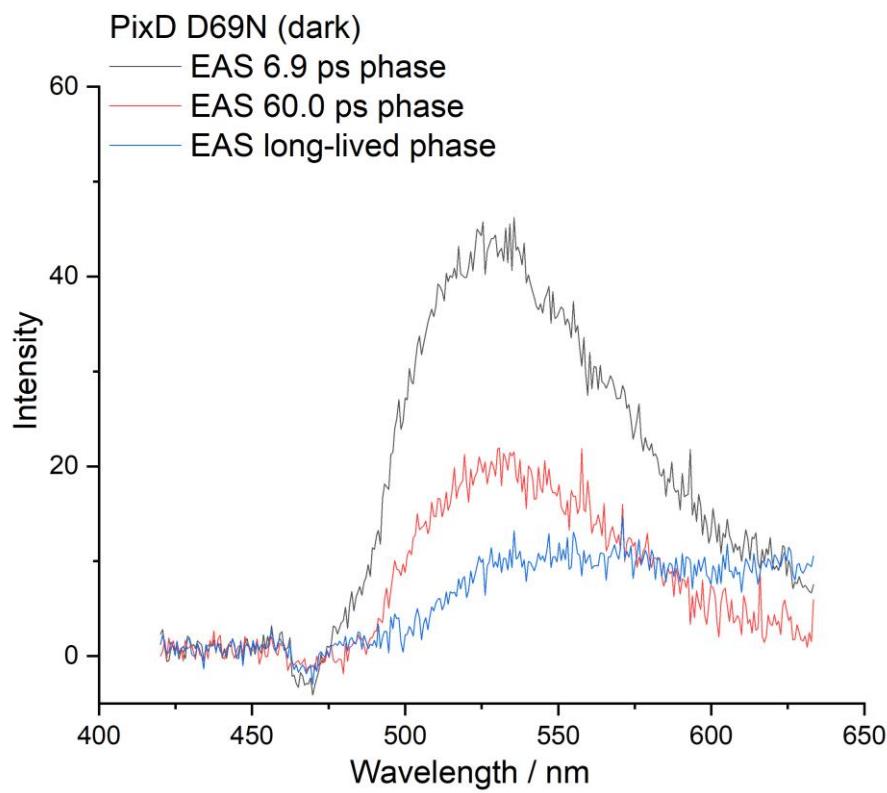
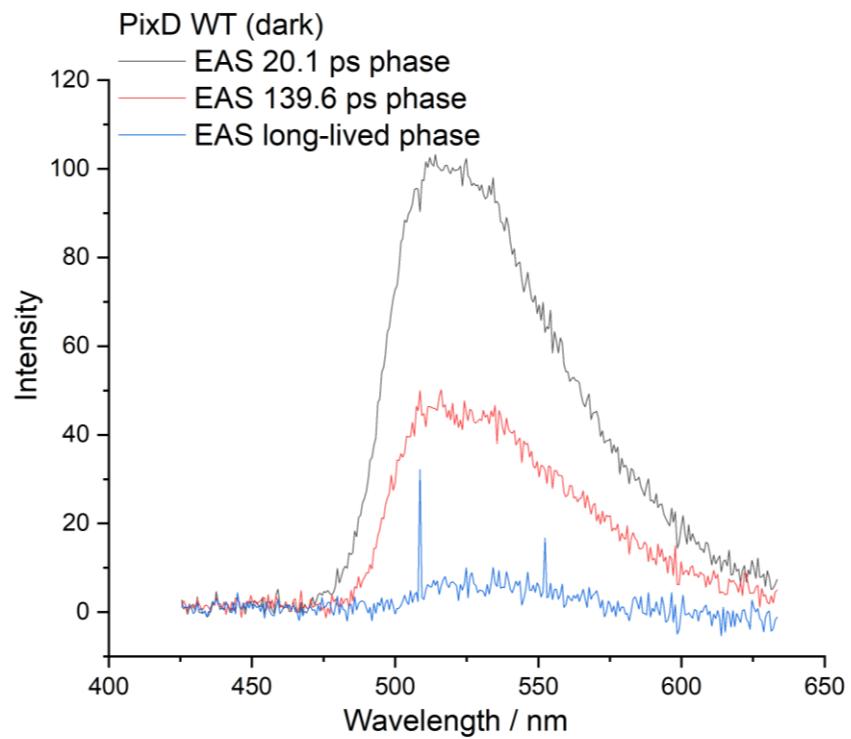

Parameters	WT OaPAC	D67N mutant
V_{max}	0.064 ± 0.007 mM/min	0.100 ± 0.002 mM/min
k_{cat}	32.2 1/min	50.05 1/min
K_M	0.031 ± 0.001 mM	0.041 ± 0.005 mM
Dark state recovery	3.6 s	15.3 s
Excited state relaxation	90 ± 30 ps	64 ± 8 ps
Fluorescence lifetime	40 ± 2 ps	25 ± 2 ps
T_m	68.1 °C	62.1 °C
ΔH	0.078 J/g	0.069 J/g
K_d	2.2 ± 0.4 mM	7.7 ± 1.6 mM

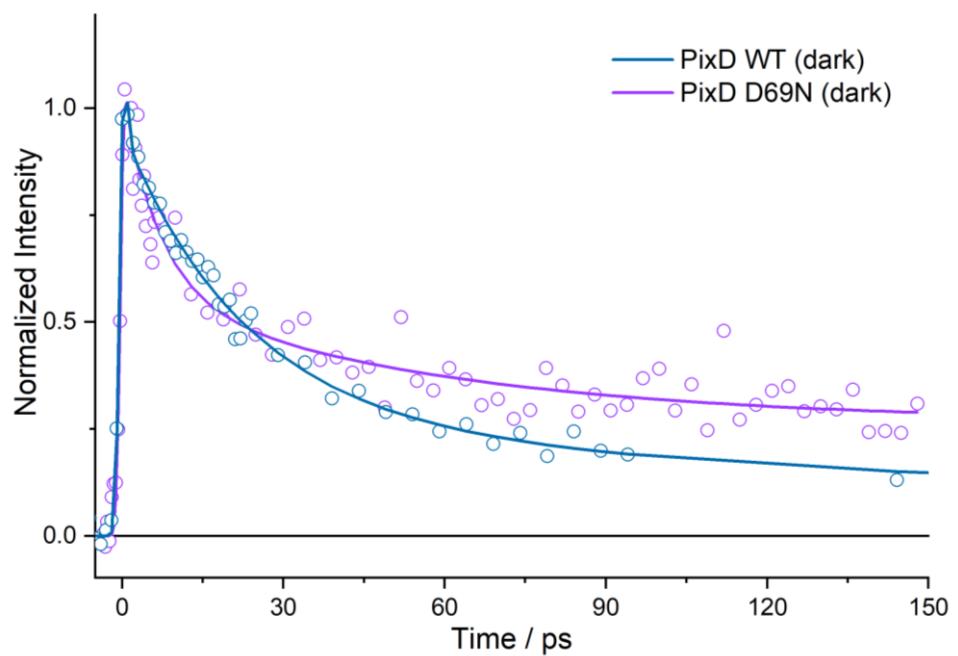

Credit author statement

Katalin Raics: Investigation, Data analysis **Katalin Pirisi:** Investigation **Yin Li:** Investigation **Bo Zhuang:** Investigation, Data Analysis **Zsuzsanna Fekete:** Investigation, Methodology **Nikolett Kis-Bicskei:** Investigation, Methodology, **Ildiko Pecsi:** Investigation, Methodology **Kinga Pozsonyi Ujfalusi:** Investigation, **Elek Telek:** Investigation **Jinnette Tolentino Collado:** Investigation, Visualization **Peter J. Tonge:** Conceptualization, Writing **Stephen R. Meech:** Conceptualization, Writing, **Marten H. Vos :** Investigation, Writing **Emoke Bodis:** Investigation, Data analysis **Andras Lukacs:** Conceptualization, Investigation, Writing

1. Spectral modelling of the transient absorption spectra

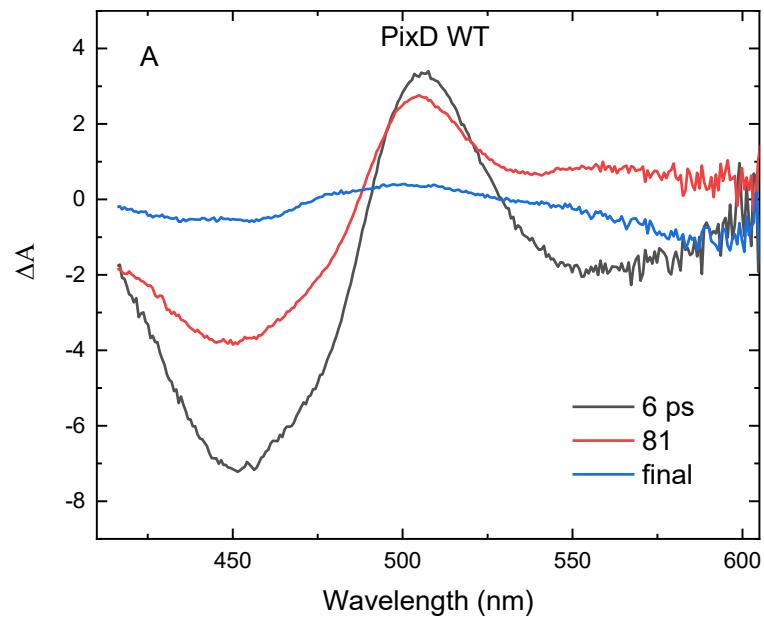
In order to find the presence of the different radical species we used reference spectra of each plausible radical. The flavin radical spectra were taken from measurements performed on mosquito AgCRY1 (*Anopheles gambiae*). (1, 2) Fig. S1 also contains the spectra of tryptophan radicals determined by pulsed radiolysis experiments.(3) The EAS2 (65 ps) spectra could be fit with a combination of spectra of the flavin excited state and the neutral radical state.

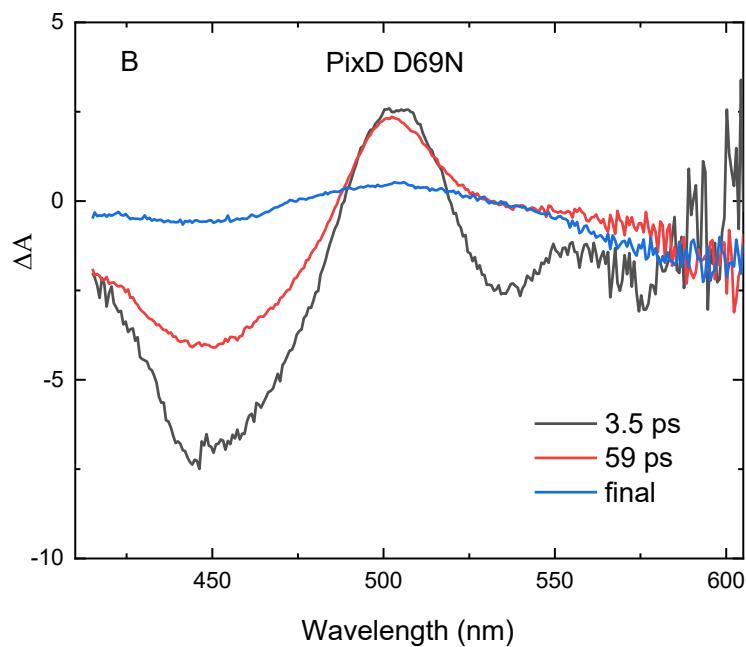




Figure S1. Spectral fitting of **A)** Spectra of the oxidized FAD and the radical FAD species as well as the spectra of the tryptophan radicals. As TyrH and Tyr[°] do not absorb at >420 nm, their contributions were not taken into account. **B)** 65 ps component for D67N-OaPAC was fitted as a linear combination of (FADH[°]-FAD) and (FAD^{*}-FAD_{ox}) spectra, as from the fluorescence measurements can be seen that the excited state is present at the longer time constant as well. The FADH[°] and FAD_{ox} spectra from fig S1A were used to construct the (FADH[°]-FAD) spectrum and the 5-ps EAS was used as (FAD^{*}-FAD_{ox}) spectrum.

2. PixD WT and D69N fluorescence data

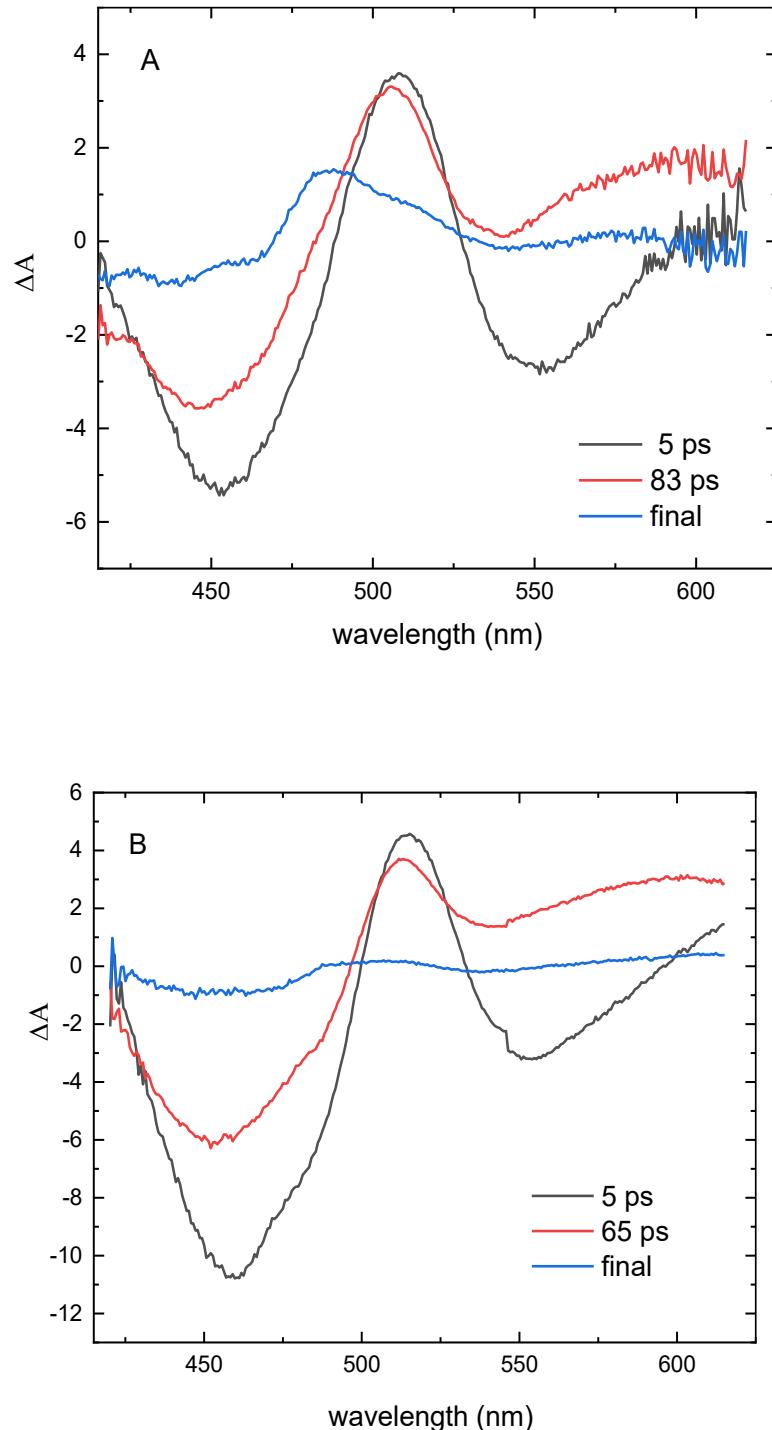
To check the effect of the mutation proposed by Goings et al.(4) in PixD we made the mutant and performed transient fluorescent measurement on WT as well as on the D69N mutant. The fluorescence decay of WT PixD was heterogeneous, similar to WT OaPAC with longer time constants. The time constants of the D69N mutant were very close to the observed in OaPAC D67N mutant. Observing the fluorescence decay of WT and D69N at 520 nm, one can see only a slightly faster initial decay of the fluorescence emission in the mutant.


Figure S2. A) EAS spectra obtained in the case of WT B) In D67N mutant.

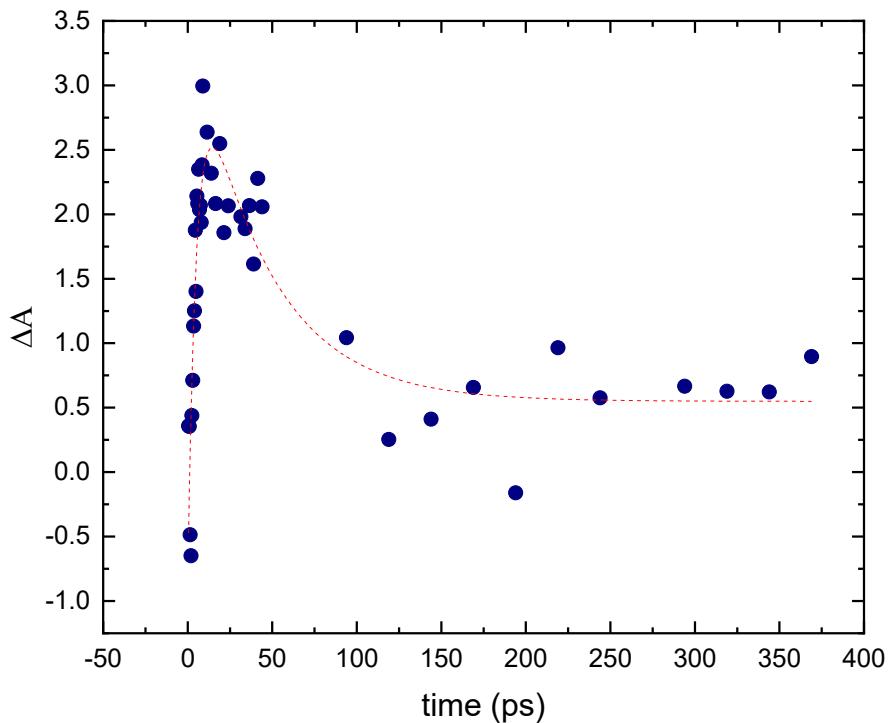

Figure S3. Individual kinetics of WT PixD and D69N PixD observed at 520 nm

3. Transient absorption measurements on WT and D69N PixD

We performed transient absorption measurements on WT PixD and on PixD D69N mutant and we observed a rather similar behaviour as seen in OaPAC. The back transfer is faster in the mutant than in WT.



4.


Figure S4. EAS spectra after global analysis on A) WT and B) D69N data

5. Not normalized EAS spectra of WT and D67N OaPAC

Figure S5. Not normalized EAS spectra after global analysis on WT and D67N data. The amplitude of the final state is less than 10 % of the first EAS in the case of D67N measurement

6. Kinetics observed by transient absorption in D67N at 600 nm

Figure S6. Kinetics observed at 600 nm where formation of FADH[•] should appear. The formation of the neutral radical state and happens with a time constant of 5.1 ± 1.5 ps, relaxation (deprotonation) of this state happens with a time constant 42.5 ± 18 ps. The two time constants overlap with the values of EAS1 and EAS2 determined by the global fit.

References

1. Liu, B., Liu, H., Zhong, D., and Lin, C. (2010) Searching for a photocycle of the cryptochrome photoreceptors *Curr Opin Plant Biol* **13**, 578-586 10.1016/j.pbi.2010.09.005
2. Liu, Z., Zhang, M., Guo, X., Tan, C., Li, J., Wang, L. *et al.* (2013) Dynamic determination of the functional state in photolyase and the implication for cryptochrome *Proceedings of the National Academy of Sciences of the United States of America* **110**, 12972-12977 10.1073/pnas.1311077110
3. Solar, S., Gtoff, N., Surdhar, P. S., Armstrong, D. A., and Singh, A. (1991) Oxidation of tryptophan and N-methylindole by N3[•], Br2[•] and (SCN)2[•] radicals in light- and heavy-water solutions: a pulse radiolysis study *Journal of Physical Chemistry* 3639-3643
4. Goings, J., and Hammes-Schiffer, S. (2019) Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics *Journal of the American Chemical Society* **141**, 20470-20479 10.1021/jacs.9b11196