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Social robots in the home will need to solve audio identiication problems to better interact with their users. This paper

focuses on the classiication between a) natural conversation that includes at least one co-located user and b) media that

is playing from electronic sources and does not require a social response, such as television shows. This classiication can

help social robots detect a user’s social presence using sound. Social robots that are able to solve this problem can apply this

information to assist them in making decisions, such as determining when and how to appropriately engage human users. We

compiled a dataset from a variety of acoustic environments which contained either natural or media audio, including audio

that we recorded in our own homes. Using this dataset, we performed an experimental evaluation on a range of traditional

machine learning classiiers, and assessed the classiiers’ abilities to generalize to new recordings, acoustic conditions, and

environments. We conclude that a C-Support Vector Classiication (SVC) algorithm outperformed other classiiers. Finally, we

present a classiication pipeline that in-home robots can utilize, and discuss the timing and size of the trained classiiers, as

well as privacy and ethics considerations.

CCS Concepts: · Human-centered computing → Sound-based input / output.

Additional Key Words and Phrases: human-robot interaction, audio analysis, in-home systems

1 INTRODUCTION

Imagine you are walking around the house when you stumble upon a door that is slightly ajarÐopened just
enough so that you can hear, but not see, what is going on inside. Opening the door to see if it is appropriate or
not to enter is self-defeating. If you do not hear anything, it is very diicult to make any judgments. Suppose,
however, that you hear human speech from behind the door. This piece of information can give you insight and
can help you in your decision-making.
However, knowing that there is human speech is not enough. Many lower-level characteristics, as well as

higher-level conceptual components of this speech, might be important factors in your decision. Do you recognize
the voices? Does the speech sound serious or is it more lighthearted? Is there shouting or is the tone normal?
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What emotions can you detect from the speech? How many people can you hear? If you hear two friendly
sounding people having a chat, you might be more inclined to knock. If you stop by to relay a message, and you
hear yelling coming from the room, it is probably best to steer clear for now. But, imagine that the yelling is
from an enthusiastic sportscaster describing a sporting event or that the serious tone that you hear is from a
dramatic soap opera. You might make a diferent decision if you know that the speech is coming from a television
show rather than from physically present people in the room conversing. This is an important component of the
speech that will inluence your understanding of the situation and can afect how you interact, if you do.

Similarly, a social robot that is designed to interact with users in realistic and appropriate ways should have the
ability to make this disambiguation. The robot can beneit from knowing whether the speech coming from behind
the door is from a physically present human socializing. More generally, knowing when speech is a product
of at least one co-located person conversing, or not, can assist social robots in making inferences about users’
activities and can help them accommodate their users through a better understanding of their environments.
This paper focuses on whether there is (1) natural conversation occurring that includes at least one co-located
user or (2) media playing from electronic sources that does not require a social response. These are common
speech scenarios in the home which can assist the robot in detecting the social presence of a user through what
the robot hears.

In practice, we imagine countless settings where the ability to make such a classiication could be utilized by
robots to assist them in accomplishing their goals. For example, a social companion robot in the home may decide
to engage a co-located user with a supportive, social interaction if it infers that the user is upset, as opposed
to if it knows the speech is media. A robot assisting people with Autism Spectrum Disorder may not interrupt
when a user is engaged in natural conversation (to encourage social interaction), but may attempt to engage if it
suspects the user is watching too much media. A customer service robot may decide whether or not to head in
the direction of customers chatting in a store or may choose to disregard the speech if it is coming from a TV. An
in-home robot may reach out for external assistance if a user is distressed, but may not if it realizes the speech is
from an action movie on TV. Depending on the end goals of the system, the robot can use such a classiication,
along with other prudent factors, to help it in making decisions.

To precisely characterize the diferences between audio from natural and media scenarios is a challenge. Both
of these audio categories contain human voices. Both categories contain diverse audio with similarities that make
it diicult to quantify how we, as humans, usually know which of the two we are listening to. One potential
discriminatory criterion, for example, is the speech patterns in the scripted conversation of television shows as
opposed to the more spontaneous nature of impromptu conversation. This could be suicient for categorizing
a sitcom as media, but this does not help us in correctly classifying a radio podcast where the host is casually
interviewing a guest. One could also try to make this classiication based on if they hear cleanly engineered
audio, like that produced in a studio, versus the noisy, distorted natural audio environments of everyday life.
This can help with correctly classifying a TV show or movie played on a good sound system as media, but will
not help when listening to sports, which involve crowd and audience noise. Solely detecting the presence of
electronically sourced audio (i.e., coming from the speakers of a computer or television) is also not enough.
Video calls with friends are natural situations in which there is electronic-sourced audio, along with at least
one organically-sourced (i.e., coming directly from human vocal cords) speaker playing an active role in the
conversation. If we know that some part of the audio is organically sourced, we can be sure that there is a
co-located, physically present person talking. But, it can sometimes be tough to know if this is the case, especially
if electronic audio sounds natural (e.g., conversational) and is played on a high-quality sound system. Making the
classiication between audio that is natural or media is hard.

For this paper, we focus on being able to classify between natural and media audio from the dynamic environ-
ment of the home. We focus on diferentiating between speech from popular genres of media that is originating
from loudspeakers and speech from natural conversations including at least one co-located person in the home.
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Ideally, robots in real-world environments would have the ability to make this classiication, regardless of the
acoustic environments they are in (e.g., diferent rooms, diferent loudspeakers, distances from the audio source)
and the diferent audio content that they hear (e.g., diferent voices, diferent TV/radio shows, background noise).
Social roboticists that deploy robots in the home and intend to use audio to make decisions on how their robots
interact with users can beneit from this work.
Our main contributions are:

• Describing a salient audio problem that social robots in the home face: the classiication between a) natural
conversation including at least one co-located user and b) media playing from electronic sources that does
not require a social response

• Training classiiers1 that use in-home audio to diferentiate between natural and media, and evaluating
how well the classiiers generalize to new recordings, acoustic conditions, and environments

• Proposing a classiication pipeline that can provide additional, situational context to a social robot by
assisting it in detecting social presence using sound

The organization of the paper is as follows: Section 2 ofers background and related work. Section 3 describes
the methodology in collecting the dataset, in selecting and extracting features of the audio, and in selecting the
classiication algorithms. Section 4 describes the experiments used to test the generalizability of the classiiers,
and discusses the results. Section 5 discusses how these classiiers can be applied in practice, with details on
timing and size of each, a proposed classiication pipeline, and a discussion on ethics and privacy considerations.
Section 6 discusses some limitations of the work and Section 7 concludes the work.

2 BACKGROUND

According to a recent U.S. Bureau of Labor Statistics survey [44], watching television was the most popular
and time-consuming leisure activity in an American’s average day, with people spending close to three hours
watching TV. In comparison, activities such as eating, drinking, socializing, and communicating amount to
approximately two hours total a day. These everyday domestic situations involve humans engaging with media

(e.g., watching television) or natural situations (e.g., participating in a conversation at the dinner table).

2.1 In-Home Virtual Assistants

Popular virtual assistants, such as Amazon’s Alexa, have already been integrated into many homes around the U.S.
They use audio-based techniques that make them efective in the household. Source localization approximates
the origin of audio input and wake-word detection [26] prompts sending the speech command to the cloud for
natural language processing [25]. These features inform the assistant’s decision-making policy to efectively and
appropriately respond [29, 35]. These in-home systems do not incorporate much, if any, contextual awareness of
their surroundings [40]. In fact, these systems typically require speciic and explicit user prompts to engage them
(e.g., łAlexaž). Because these systems are user-initiated, the detection of social context is much less necessary. Yet,
for systems designed to interact with users autonomously, the ability to garner context about the environment is
crucial [28].

We believe that virtual assistants can also beneit from the ideas presented in this paper, especially if developers
believe there is value in additional functionality that includes behaving more socially and independently. Although
we will focus on social robots in this paper, we note that social presence through sound can be of use to any
device in the home that could utilize such context to help it make decisions.

1A link to our trained models and the code used to create the input feature vectors for our models: https://github.com/ScazLab/social-presence-

sound
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2.2 Using Audio for Activity and Event Detection in the Home

Automatic recognition of user activity in dynamic, unstructured environments, like the home, is important for
systems whose primary purpose is to support their users through social means. Having some understanding of a
user’s activity and social context can help the system in its decision making.

Audio scene classiication (ASC), or the identiication of the environment or activity based on acoustic signals,
is important for robotics and can help better facilitate human-robot interaction [3]. ASC has become a trending
topic with growing interest because of the advent of smart homes and robots [14, 45, 47]. In recent years, audio
analysis capabilities have been added to assistive robotic systems, such as the TIAGo service robot [19] and
RiSH, a robot-integrated smart home for elderly care [13], with the goal that audio will provide more contextual
awareness. Work for audio analysis in the home includes activity detection speciic to helping the elderly by
detecting falls [38] or by identifying common activities, to help medical staf monitor people who utilize ambient
assisted living services [2, 11, 36]. Audio scene classiication has also been used in the context of diferentiating
between speciic kitchen sounds like the mixer, dishwasher, and utensils clanking [45], bathroom sounds like
showering, washing hands, and lushing [9], breathing or snoring [17], or common sounds including keyboard
typing, applause, and phone ringing [42]. Traditional machine learning classiiers have been used for these
classiications with success.

Work has also been done that involves classifying in-home audio with the help of humans-in-the-loop. Some
of this work includes human-assisted sound event recognition for home service robots for the elderly, where
a human caregiver helps provide a robot with in-the-loop labels to non-voice sounds, in order to help a robot
actively learn auditory events [12]. Additional work has used audio to classify diferent rooms in the home, like
the kitchen and oice, and also discriminated between nonverbal sounds like clapping and one-word speech
scenarios [30].
The research area of voice activity detection (VAD) looks to classify between audio that contains speech and

non-speech [20]. Research has been done to use noise cancellation to better implement VAD on smart home
devices [22]. Other VAD work includes enhanced speech detection for humanoid robots in sparse dialogue [24]
and robust classiication between speech and non-speech [39] in noisy environments. Work has been done to
recognize emotional states from speech using a support vector machine [41], to separate speech from music [1],
and to detect and classify noises in speech signals [33].

There has also been research looking into how to accurately discriminate between speech commands produced
from an electronic speaker from organic human speech [6]. This approach was discussed in the context of
cybersecurity to better identify replay attacks of certain commands on Internet of Things devices, by focusing on
determining the origin of pre-written speech commands, but does not focus on in-home, noisy experimentation.
Our work presents a new tool that can be used by robots in the home to gather more social context about a

user’s social presence through sound, when presented with human speech. The classiication between natural

and media that we focus on in this work encapsulates common speech scenarios in the home, that can give
insight into people’s activities. Our experimentation focuses on real-world audio recorded in noisy, in-home
environments, and this work adds to the research area of activity detection in a dynamic environment.

2.3 Audio Classification of Media

Work has also been done in the classiication of diferent forms ofmedia. Audio information has also been utilized
when researching genre classiication in diferent forms of media. Music information retrieval methods have
explored classifying songs into genres such as pop, rock, or blues [5, 43] and television media classiication
has classiied videos into genres such as cartoons, news, or weather forecasts [15]. A key aspect of many of
these media approaches, along with the in-home activity detection of Section 2.2, involves extracting time and
frequency domain features (e.g., spectral contrasts, spectral roll-ofs, Mel-Frequency Cepstral Coeicients, or
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chroma features) from the overall audio signal and using these features to inform and train machine-learning
classiication algorithms. We build on this work by using similar features in our analysis, and discuss more
background and motivation of the feature selection in Section 3.2.

3 METHODOLOGY

In this section, we describe how we (a) compiled an audio dataset containing the natural and media classes, (b)
extracted features from each audio sample, and (c) selected the machine learning classiiers that we experimented
with. We deine two terms that we will be using throughout this paper. First, when discussing a sample, we are
referring to a 5-second segment of audio that has been recorded and is used in feature extraction. A recording is
a collection of contiguously captured samples during a given time window.

3.1 Audio Sample Collection

We collected audio content from various television genres and radio shows (sound from electronic speakers)
and human speakers (sound from human voices). The inal dataset contained approximately 30 hours of audio
recordings, and was well-balanced between the media and natural classes.

Both categories were recorded on Kinect One microphones. This was important because any decisions made
by a machine learning classiier would be able to focus on the diference of the audio content, rather than
discrepancies caused by diferent recording hardware.

3.1.1 Media Recording Set. Ourmedia (M) recording set consisted of a variety of TV shows or radio recordings,
that we recorded on the Kinect One2. We focused on collecting audio recordings from popular television genres,
which include drama, comedy, participatory/reality, news, and sports [46], as well as audio from radio shows.
This category was recorded in diferent rooms, using a variety of electronic speakers3, with the microphone
capturing audio at varying distances from the speakers, during diferent contiguous time windows. Recording
during diferent time windows allowed for diferent background and ambient noise to be captured as a part of the
various recordings. All audio recordings were recorded at a rate of 16 kilohertz (kHz) in the waveform audio ile
format (.wav).
Each room, speaker, and microphone position coniguration is referred to as its own unique label. These

diferent recording conigurations emulate a variety of recording conditions that an in-home agent might face.
The distribution of the audio in each label can be seen in Table 1. There are 60 media recordings in our dataset,
with a total of 10,138 samples, for around 14 hours of audio. Depending on the experiment that we performed, a
diferent split of the recordings in the media set was used as training and testing data (explained in more detail in
Section 4).

3.1.2 Natural Recording Set. The natural recording set can be broken down into three categories: CHiME5
(C), Video Calls (V), and Family Conversations (F).

Natural Audio from CHiME5. Category C recordings were comprised of content from the CHiME-5 dataset [4],
available online. CHiME-5 contains audio captured from dinner parties in diferent houses. Each dinner party
involved a diferent group of four people, who were told to engage in natural conversation in the house’s kitchen,
dining room, and living room for at least 2 hours.

Category C contained audio from 10 diferent CHiME-5 sessions. Each session contained audio from six Kinect
microphone arrays, placed in diferent locations (bedroom, kitchen, living room) in each home, with audio input
from each channel of each microphone. We used audio from the diferent Kinect microphones within the same

2We recorded the media recordings being emitted through electronic speakers, instead of inputting the media audio ile directly into the

classiier, because this is how a robot in the home would be capturing the media audio.
3The speciic speaker models are as follows: Bose SoundLink 359037-1300 Mini Bluetooth Speaker (Bose), MacBook Pro 13" (Mac), iPhone 11

Pro (iPhone), Bose Wave Music System II (BigBose), 40" Eco Bravia VE5 Series LCD HDTV (SonyTV)
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dinner party in our dataset because we wanted a diverse set of audio captured from diferent locations with
varying acoustic properties. For the C category, we considered a recording to be all of the audio collected from
a unique CHiME-5 session. The CHiME-5 audio iles were in the waveform audio ile format (.wav), with a
recording rate of 16kHz. We chose CHiME-5 because it captured natural, social scenarios that one can expect to
ind in a home environment. We input the CHiME-5 iles directly into the classiier because this is how natural

audio would be captured by the robot. In total, category C contained 10,130 samples (1013 samples per recording).
This sample number is equivalent to approximately 1.4 hours per CHiME-5 session, for a total of almost 14 hours
of audio. Samples from the C category were used as our natural training data.
Natural Audio from Our Home Environments.We also captured natural audio from our own homes. We had

Institutional Review Board approval to record audio in homes and to extract and analyze acoustic features. There
were two categories that we experimented with, involving natural scenarios from 6 rooms in 3 diferent homes.
We left a recording microphone in locations that we deemed appropriate for an in-home robot or device to be
placed, recorded audio, and later inspected the audio. Audio from these two categories was used as our natural
testing data.
Category V captured audio from video calls taking place in a home’s oice, dining room, and living room.

These recordings involved conversations between members of a family consisting of two children and three
adults. Members of the family congregated in their dining room and spoke over a video call on a laptop and
phone using Zoom or Facebook Messenger. The calls were all on speaker. As a result, voices were variably distant
from the microphone and the recordings captured by the Kinect included a mixture of voices coming from an
organic source (the person in the same room as the Kinect microphone) and from electronic sources (the people
on the video call). The same person was physically in the room with the Kinect for each of these recordings.
Category V included six separate recordings, with a total of 917 samples.
Category F consisted of audio collected from family conversations in kitchens and living rooms, in three

diferent homes. The microphone was placed close to where people were dining and conversing. An example
location for the microphone was on a counter in an open, spacious kitchen. The kitchen recordings included
some background noises such as the running sink, clanking utensils, and plates and glasses moving, while the
living room recordings happened with little to no noise in the background. Category F included 965 samples and
seven separate recordings, including voices from 11 diferent people.
There are multiple reasons that we decided to also collect natural audio that we recorded ourselves, despite

having an extensive corpus of in-home, natural audio from CHiME5. Even though we tried to collect our media

sample set with similar recording characteristics (i.e., microphone and sampling frequency) to CHiME5, we
wanted to see whether or not classiiers trained solely on CHiME-5 could generalize to classifying other natural
audio from outside of that corpus. This could show that these classiiers are able to correctly disambiguate between
natural and media recorded by us, and that that the classiication is not just a result of some discrepancies in how
CHiME-5 was collected and how we recorded our audio. Lastly, we wanted to be able to experiment with the
case of social presence that includes a mixture of electronic audio and organic-sourced natural audio, captured
in the V dataset. This circumstance indicates social presence because at least one user that is co-located with
the robot is engaged in a natural conversation, while chatting on a call with others. Samples from the V and F
categories were used as our natural testing data.

3.2 Feature Extraction

We split our entire audio dataset into 5-second samples. From each sample, we extracted features to create an
input vector that was used to train machine learning classiiers. We used the LibRosa Python package [31] to
extract audio features. These are commonly used features in audio analysis (as mentioned in Section 2.3), which
was the motivation for using them.

ACM Trans. Hum.-Robot Interact.



Is Someone There Or Is That The TV? Detecting Social Presence Using Sound • 7

Table 1. Media Data Set Composition

Label Room Speaker Kinect Distance Total Samples Recordings

A Bedroom Bose 1 ft 617 6

B Bedroom Bose 9 ft 852 7

C Bedroom Mac 6 ft 2075 11

D Playroom Bose 1 ft 627 5

E Playroom Bose 5 ft 517 9

F Playroom Bose 10 ft 332 3

G Playroom iPhone 1 ft 423 3

H Playroom iPhone 4 ft 372 2

I Kitchen Bose 9 ft 543 2

J Kitchen BigBose 9 ft 1185 5

K Kitchen SonyTV 4 ft 1432 2

L Kitchen iPhone 6 ft 201 1

M Kitchen Mac 6 ft 551 3

N Kitchen Mac 1 ft 411 1

In total, 83 features were extracted from each audio sample. We performed a standard transformation of each
feature to normalize the feature set. The input vector contained the features below for each audio sample:

• Mel-frequency cepstral coeicients (MFCCs): These are dominant features that have been historically used in
speech recognition and they have been explored in separating music and speech [27]. It is typical that 13
coeicients are used for speech representation [43], so we use the means and standard deviations for each
of the irst 13 coeicients over the sample, for a total of 26 features.

• Chroma Energy Normalized Statistics (CENS): These are features that have been used in audio analysis
research to match similar audio [34]. There are 12 chroma classes and we use the mean and standard
deviation for each chroma class over the sample, for a total of 24 features.

• Root-mean-square (RMS) energy values: Energy features are commonly used in audio analysis, with some
prior work inding that the combination of energy with MFCC is better than using MFCCs alone [23]. We
use the range, standard deviation, and skewness of this feature, for a total of 3 features.

• Zero-crossing rates: These are features that are commonly used in audio analysis [15] and can help provide
a measure of noisiness of the audio sample [43]. We use the mean, standard deviation, and skewness, for a
total of 3 features.

• Tempo: This feature estimates the beats per minute in the audio sample. The motivation behind adding this
is that music from TV or radio commercials typically have more tempo than conversational audio in the
home. This is 1 feature.

• Spectral centroid, latness, rollof, and bandwidth: These are also commonly used low-level components of
the audio signal [10, 43]. We use the mean, standard deviation, and skewness for each, for a total of 12
features.

• Spectral contrast: These are features that have been shown to discriminate among diferent music genres
[23], so we use the means and standard deviations for seven sub-bands, for a total of 14 features.

Note that none of these features involve transcription or semantic representation of dialogue/words in the audio
environment. This way, the audio is translated into a machine readable format that has little to no meaning to
a human, as opposed to words, which are used in lexical analysis in Natural Language Processing. This is an
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arguably less invasive and more privacy-sensitive approach than using words, especially if the robot is intending
on sending the input vector to the cloud to be analyzed.

3.3 Classification Algorithms

In our experiments to determine if our classiication problem can be solved, we trained and tested diferent
models with six traditional machine learning classiication algorithms, using the sci-kit learn Python library [37].
These are commonly used algorithms for audio classiication tasks (see Section 2 for more details). We performed
an experimental evaluation of various approaches, to see which classiiers would be best suited to tackle the
problem. We experimented with the following algorithms:

• KNeighborsClassiier [18]
• DecisionTreeClassiier [7]
• QDA (Quadratic Discriminant Analysis) [21]
• LogisticRegression [49]
• GaussianNB (Gaussian Naive Bayes) [48]
• SVC (C-Support Vector Classiication) [8, 16]

We use these traditional classiiers instead of deep learning techniques, which have gained popularity in recent
years in the audio analysis space, for multiple reasons. First, our dataset is modestly sized, and traditional ML
algorithms have a much better chance at performing successfully than deep learning when the dataset is not very
large. Second, we know the feature space that we want to use for this classiication task. Lastly, we are hoping
to be able to use these trained classiiers on real-time systems, so the response time needs to be quick and the
complexity and space taken by the classiier needs to be reasonable (many social robots have limited compute
power).
A gridsearch on each classiication algorithm measured what hyperparameter combination was the best for

each algorithm on our irst experiment (described in Section 4.1). The diferent hyperparameter combinations for
each classiier that were experimented with can be found in Appendix A. The hyperparameters that led to the
highest performance, and were subsequently selected for the classiier in all of the following tests can be seen in
Appendix B.

4 EXPERIMENTS AND RESULTS

In this section, we describe how the various classiiers performed on experiments that tested the classiiers’
abilities to generalize to novel recordings, environments, and conditions. We test how well classiiers perform on
a leave-one-recording-out cross validation, where we test on recordings that were left out of the training set. We
also test how well the classiiers generalize to classifying natural recordings from outside of the training corpus
and to media recordings from (1) rooms, (2) speakers, (3) microphone positions, and (4) combinations of all three,
that they were not trained on.

4.1 Leave-One-Recording-Out Cross Validation

We performed an evaluation similar to a leave-one-out cross-validation (LOOCV), but in our case, leave-one-
recording-out cross-validation (LOROCV)4. To perform LOROCV, we trained models using natural recordings
from our CHiME-5 category (C) andmedia recordings from our media (M) recording set. For each fold of LOROCV,

4A conventional splitting of all of the samples into a train, test, and validation set would not be very insightful because many of our data

samples were part of the same contiguously recorded audio clips (recordings). For any given recording in our dataset, there were at least 15

samples that were a part of the same original audio recording. When randomly shuling the dataset for the train/test/validation splits, it

is likely that some of a recording’s 5-second samples land in each of the folds and the test and validation sets. Since audio from the same

recording is inherently similar, we performed a cross validation per recording.
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we trained on all recordings except for one from C and one from M. We did this for all possible pairs of recordings
from C and M, which resulted in 600 folds (the Cartesian product of the 10 recordings in C and the 60 recordings
in M). For each fold, we tested our classiier on the 1) left-out {C,M} recording pair, 2) left-out M recording and
natural audio sampled from V, 3) left-out M recording and natural audio sampled from F, and 4) left-out M
recording and natural audio sampled from both F and V. Because recordings can be of diferent lengths, we
randomly sampled from the larger recording to match the size of the smaller recording. This ensured that we had
balanced test sets each time.

The metrics that we recorded for all of our experiments are below. TP is a true positive, TN is a true negative,
FP is a false positive, and FN is a false negative.

• Accuracy=(TP+TN)/(TP+TN+FN+FP)
• Precision = TP/(TP+FP)
• Recall = TP/(TP+FN)
• F1 Score = (2*Precision*Recall)/(Precision+Recall)

We recorded the precision, recall, and F1 scores for both the media and the natural classes (i.e., we treated both
as the positive class). Both the macro averages (arithmetic mean) and micro averages (weighted average) were
recorded across all folds. The full results for LOROCV can be found in Table 13 in Appendix D, with a summary
in Table 4 in Appendix C.
With LOROCV, we test on natural audio from left-out CHiME-5 sessions (new voices and rooms from new

homes within the CHiME-5 corpus), or better yet, on natural audio from the V or F categories that we recorded
ourselves. We also test on unseen media recordings that the classiiers have not trained on and that we have
recorded ourselves. This provides insight into how the trained algorithms can generalize to classifying novel
recordings of media and natural audio.

4.2 Leave Out Rooms, Speakers, and Microphone Positions in the Media Set

We can gain further insight into how robustly the classiiers can diferentiate between natural and media audio,
if media in the training set contains recordings from diferent acoustic conditions (e.g., rooms, loudspeakers,
microphone distances) than media in the testing set. In the experiments in this section, we evaluate how our
classiiers perform when toggling which condition(s) of the media recording set to leave out of the training set.
We also use the natural audio from the C category to train our models. We test on the natural V and F categories
that we recorded ourselves and on the left-out media.

We left all of the media samples of a speciic (1) room, (2) speaker, (3) microphone position, or (4) combinations
of the three, out of the training set, and tested on the left out media samples and on natural samples from the V
and F test categories. We matched the number of media samples in the training set with an equally distributed,
random sample of 5-second samples from each natural recording in category C. We randomly sampled from
all of the recordings in the larger test subset to match the size of the smaller subset. This ensured that we had
balanced test sets each time. We recorded the micro and macro averages of precision, recall, and F1 scores for
both the media and natural classes, as in LOROCV. The following paragraphs describe each experiment that we
performed.
In Leave One Label Out (LOLO), we wanted to see how well classiiers would perform when they trained

on media from speciic labels, or speciic room, speaker, and Kinect distance conigurations (see Table 1), along
with natural from category C, and then were tested against conigurations that they were not trained on. We
performed a Leave One Label Out (LOLO) experiment on all labels of our media data, where we trained diferent
models using all the recordings from all combinations of labels, and tested against the held out labels. The left
out media data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The full
results for each classiier can be found in Table 14 of Appendix D, with a summary in Table 5 of the Appendix C.
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In Leave One Room Out (LORO), we wanted to see how well classiiers would perform when they trained on
media from speciic rooms, along with natural from category C, and then were tested against media from a room
they had not trained on. This is important because each room has a diferent acoustic environment and layout.
The classiiers should be able to make accurate predictions regardless of if they have trained on audio from the
room in which they are deployed. In LORO, classiiers test on media recordings from a room that they have not
trained on, but the test set includes loudspeakers and microphone distances that they have trained on. The left
out media data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The full
results for each classiier can be found in Table 15 of Appendix D, with a summary in Table 6 of Appendix C.
In Leave One Speaker Out (LOSO), we wanted to see how well classiiers would perform when they trained

on media from speciic loudspeakers, along with natural from category C, and then were tested against media

from loudspeakers they had not trained on. This is important because each loudspeaker has diferent hardware
properties and the classiiers should be able to make accurate predictions regardless of if they have trained on
audio from the loudspeaker from which they hear audio. In LOSO, classiiers test on media recordings from a
loudspeaker that they have not trained on, but the test set includes rooms and microphone distances that they
have trained on. The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classiier can be found in Table 16 of Appendix D, with a summary in
Table 7 of Appendix C.

In Leave One Distance Out (LODO), we wanted to see how well classiiers would perform when they trained
on media from certain microphone distances from a loudspeaker, along with natural from category C, and then
were tested against media from microphone distances they had not trained on. This is important because the
robot might be at variable distances from the sound source. In LODO, classiiers test on media recordings from a
microphone distance that they have not trained on, but the test set includes loudspeakers and rooms that they
have trained on. The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classiier can be found in Table 17 of Appendix D, with a summary in
Table 8 of Appendix C.

In Leave One Room and Speaker Out (LORSO), we wanted to see how well classiiers would perform when
they were tested on media rooms and speakers that they had not trained on. This is a more robust test than the
previous ones. In LORSO, classiiers test on media recordings from a room and speaker that they have not trained
on, but the test set includes microphone distances that they have trained on. The left out media data at each fold
was tested along with natural audio from the category V, F, and V+F datasets. The full results for each classiier
can be found in Table 18 of Appendix D, with a summary in Table 9 of Appendix C.

In Leave One Room and Distance Out (LORDO), we wanted to see how well classiiers would perform when
they were tested on media rooms and microphone distances that they had not trained on. In LORDO, classiiers
test on media recordings from a room and microphone distances that they have not trained on, but the test set
includes microphone distances that they have trained on. The left out media data at each fold was tested along
with natural audio from the category V, F, and V+F datasets. The full results for each classiier can be found in
Table 19 of Appendix D, with a summary in Table 10 of Appendix C.

In Leave One Speaker and Distance Out (LOSDO), we wanted to see how well classiiers would perform when
they were tested on media speakers and microphone distances that they had not trained on. In LOSDO, classiiers
test on media recordings from a loudspeaker and microphone distances that they have not trained on, but the test
set includes rooms that they have trained on. The left out media data at each fold was tested along with natural

audio from the category V, F, and V+F datasets. The full results for each classiier can be found in Table 20 of
Appendix D, with a summary in Table 11 of Appendix C.

In Leave One Room, Speaker, and Distance Out (LORSDO), we wanted to see how well classiiers would
perform when they were tested on media speakers, rooms, and microphone distances that they had not trained
on. This is the most challenging test that we perform for the classiier. In LORSDO, classiiers test on media
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recordings from a room, loudspeaker, and microphone distance that they have not trained on. The left out media
data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The full results
for each classiier can be found in Table 21 of Appendix D, with a summary in Table 12 of Appendix C.

Table 2. Experiment Summary. The table shows the average of the macro average F1 scores ((�������� + ������)/2) for each

classifier across all folds of each experiment. The table shows the average results of the trained classifiers being tested

on the let out media sets along with natural recordings from the V and F categories. The classifier with the best average

performance on each test set and experiment is in bold. More comprehensive results can be found in the Appendix.

Experiment Test Set KNN QDA DT GNB LR SVC

V+M 94.5 89.0 87.9 86.0 87.9 91.3
LOROCV F+M 87.1 99.5 98.9 96.2 98.9 96.6

F+V+M 91.3 93.3 92.8 90.5 92.8 93.7

V+M 78.5 99.3 96.0 90.4 91.7 93.1
LOLO F+M 85.6 88.8 77.9 82.4 82.9 90.4

F+V+M 82.5 93.4 85.8 85.5 86.4 91.7

V+M 77.4 99.2 94.3 81.0 85.0 94.9
LORO F+M 83.1 86.1 75.1 83.5 82.7 86.5

F+V+M 80.4 92.6 84.8 82.9 84.5 90.6

V+M 76.9 98.5 99.0 93.8 97.1 93.4
LOSO F+M 83.6 84.4 75.2 80.7 84.3 87.5

F+V+M 80.9 91.0 86.6 87.0 90.4 90.3

V+M 78.9 98.8 97.3 91.6 97.8 94.8
LODO F+M 74.3 83.6 63.9 71.6 81.6 84.1

F+V+M 77.7 91.0 81.4 81.8 89.6 89.4

V+M 67.9 86.6 87.9 70.1 85.6 86.3
LORSO F+M 82.1 82.9 78.1 76.7 87.2 88.1

F+V+M 76.1 85.1 83.1 74.9 86.9 87.6

V+M 70.0 92.5 95.3 78.5 88.8 87.4
LORDO F+M 78.3 86.7 77.9 77.1 89.4 90.5

F+V+M 75.0 89.4 85.8 78.0 89.6 89.5

V+M 76.3 90.9 90.1 85.2 95.3 94.5
LOSDO F+M 79.1 80.8 76.6 78.3 83.3 84.8

F+V+M 77.9 85.5 82.8 81.4 89.0 89.5

V+M 65.8 82.4 87.2 70.0 86.5 85.3
LORSDO F+M 73.0 77.1 72.7 66.7 83.7 85.2

F+V+M 69.9 79.5 79.6 68.2 85.0 85.3
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4.3 Selecting a Classifier

In general, we see that most of the trained classiication algorithms perform well on our experiments. We see
that most of the classiiers have average F1 scores in the 90s or 80s for a majority of the experiments. Table 2
summarizes the results for all our experiments, for each classiier.

4.3.1 Results. We see that SVC has the best performance on the most tests throughout our experiments. SVC
has the highest average F1 score on 12 out of the 27 tests, with the highest average F1 score on 7 out of the 12
more diicult tests (where two or three of the media parameters are left out of the test set in LORSO, LORDO,
LOSDO, and LORSDO). SVC has the highest performance on the F+V+M test sets on all but one of the more
diicult experiments, and SVC has the highest F1 score on the F+M test sets for almost all of the experiments. On
LORSDO, the most diicult experiment, SVC has the best performance on two out of three of the tests (V+M and
F+M). Despite not having the highest scores on V+M, it does consistently well on the test set, throughout all of
the experiments. Generally, SVC is the most consistent classiier across the diferent test sets and experiments,
and is always performing with high F1 scores.
The next best classiier in terms of leading F1 scores is QDA, which has 7 of the best F1 scores. For QDA, all

of these top results come in the irst ive experiments, where the training data includes more of the acoustic
environment and conditions than in the last four experiments. QDA performs very strongly on the V+M test
sets and on the F+V+M test sets for these experiments. This shows that if the training set has certain qualities
similar to the test set, QDA could be a legitimate option for classifying between natural and media. However,
the classiier that performs the best when the test data is most dissimilar to the training data is SVC. QDA does
reasonably well, but performs overall worse than SVC in the last four experiments, especially on the F+M and
the F+V+M datasets. QDA could be a good option alongside SVC if we know that the testing environment and
conditions will have similarities to the training set.

DT has the top average F1 scores on 4 of the tests. DT does very well when classifying the V+M test set, with
high scores on three out of four of the V+M tests in the more diicult experiments. Except for LOROCV, DT
performs very well on the V+M test sets on all of the experiments. However, there is a signiicant tradeof seen in
how well DT performs on the F+M test sets. DT might be very good at classifying between natural and media

with natural video calls and media in the test set, but does very poorly at classifying natural family conversations.
In this regard, SVC is better overall for its consistency across both the V+M and F+M test sets.

LR has the top average F1 score on only 2 of the tests, however we see that LR is able to generalize well to new
media and natural audio. LR performs very well in many of the experiments, with F1 scores that are close to,
albeit slightly worse than, SVC in most of the experiments. Especially in LORSO, LORDO, LOSDO, and LORSDO,
we see that LR is able to perform consistently well on V and F data, with scores similar to that of SVC on the
F+V+M datasets. LR does a good job at generalizing to new environments that it has not trained on for left out
media data, and video calls and family conversations. However, QDA is better than LR when the training set is
more similar to the test set, and SVC is better than LR when the test set is more dissimilar.

KNN and GNB have the worst performances on our experiments. KNN performs the best on V+M in LOROCV,
but besides that, KNN and GNB show substantially worse performance than the other classiiers. They perform
particularly poorly on LORSDO, which tests how well they can generalize when training on very dissimilarmedia

data to the test set. We would not recommend KNN or GNB, especially when compared to our other trained
classiier.

4.3.2 Discussion. Overall, SVC is best able to generalize to new recordings. We see this both in SVC’s ability to
perform well on natural data that we recorded in our own homes, which was outside of the natural audio from
the CHiME-5 corpus that the model was trained on, as well as good performance of the classiier to media from
loudspeakers, microphone distances, and rooms that it was not trained on (Table 21). SVC performs consistently
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well when tested on in-the-home, natural audio of both video calls (V) and family conversations (F). SVC performs
with accuracies of over 85% on LORSDO, with recall scores of over 90% for natural V or F audio, and recall of
over 81% for media data from a diferent room, loudspeaker, and microphone distance than it was trained on.
We believe that SVC is the best classiication algorithm that we experimented with at disambiguating between
natural and media. It does the most consistently well across our tests sets in our experiments, and does the best
at generalizing to new environments and conditions that it has not trained on.
LR also performs well on both of the natural test sets and on many of the experiments, but performs worse

than SVC overall. QDA performs very well when tested against data with some similar characteristics to what it
is trained with, but does more poorly on stricter generalizability tests. DT performs very well on video calls, but
very poorly when tested against family conversations. KNN and GNB do not perform well.

Since QDA, LR, and SVC all perform well across all of our test sets and experiments, with QDA showing
particularly strong performance when the media testing conditions have some similarities to their training
coonditions, it could be an option to use an ensemble of classiiers in making the natural vs. media prediction.
We need to verify that the classiiers do not take too long to make predictions and that they do not take too much
space in memory. If these two statements hold true, it could be reasonable to use all three in predicting natural
vs. media. We perform these timing and size experiments in Section 5.1.

5 PROPOSED APPLICATION

A critical criterion when selecting a classiication algorithm is that it can perform in close to real-time to be
suitable for a robot in the home or in the real world. A robot should provide a naturalistic and intuitive interaction
for human users, so real-time classiications and responses are essential. Taking too much time to analyze the
audio environment, extract features, make predictions, and act on those predictions may negatively afect the
overall interaction. Keeping these factors in mind, we (a) perform several timing and size tests on various steps
of the audio collection and decision-making process, (b) suggest an overall classiication pipeline for a robot to
implement this approach, and (c) present ethics and privacy considerations that were taken into account for this
pipeline. For these timing and size experiments, we train the classiier on the entire natural C category that we
compiled, and all of our media recordings.

5.1 Timing and Size Experiments

We measured the speed of feature extraction and prediction using around 45 minutes of audio data (540 5-second
samples). Extracting features from each of the 540 audio samples took an average of 0.557 seconds (STD=0.0442
seconds) on a Dell Laptop with an Intel i5-5200U CPU@ 2.2GHz and 8GB RAM. To measure the average prediction
time for each audio sample, we measured the time that it took to standardize and predict the entire (540x83) input
vector and divided it by 540. The trained standardization scaler had a size of 4 kB. The average prediction times
and the sizes on disk for each trained classiier can be seen in Table 3 below.

Table 3. Classifier Size and Prediction Times

Model Avg. Prediction Time (ms) Size (kB)

KNN 2.524 13,545

QDA 0.01064 115

DT 0.00117 12

GNB 0.00312 4

LR 0.00366 4

SVC 0.17480 668
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Fig. 1. Proposed classification pipeline. See Section 5.2 for description.

We see that all of the classiiers that we trained have fast prediction times. DT and GNB are the fastest, with
LR and QDA next, then SVC, and KNN last. However, all the classiiers, except for KNN, are considerably faster
than a millisecond, so we believe that any of the classiiers would be suicient in that respect.

With respect to size on disk, LR and GNB are the smallest, with DT as next smallest. SVC is the second largest,
but still not prohibitively big.

These sizes (and predictions) are also promising in that if the dataset were to get substantially larger, that most
of these classiication algorithms seem like they would be able to scale and still be reasonable to use on-board and
real-time. This might not be true for KNN, but that was eliminated due to its poor performance on generalization.

This also means that after recording a 5-second sample, the whole classiication process could be used on-board
a robot, even on one with little memory. The whole classiication process, after recording a 5-second sample, can
take less than a second for feature extraction, standardization, and the prediction, making it possible to use this
in real-time.
Furthermore, a robot could reasonably include multiple trained classiiers on disk and require less than one

megabyte (MB) of space. If using an ensemble of classiiers, the prediction time still remains substantially lower
than one millisecond. Both the timing and size of the classiiers together allow for an ensemble to be used.

5.2 Classification Pipeline

In a real-world setting, we suggest our classiier be used as a part of a greater classiication pipeline, shown
in Figure 1. A Kinect One microphone would be required5, along with minimal onboard computing power. All
audio collection, analysis, and computation can take place locally, without needing to oload any data to online
services.
The system begins by recording a 5-second raw audio stream of the environment and initializing the count

variables to 0. The system stores the recording and checks it for speech.6 If speech is not detected, the system
should loop back to the start by resetting the counts, and deletes the recording. If speech is detected, the feature
extraction is performed, the audio is deleted, and a corresponding natural or media prediction is made. After
a prediction, the corresponding count is incremented, and the other count is reset to 0. Only after � , or � ,
consecutive predictions in a certain category will the decision be łinal". Otherwise, the corresponding count is
reset to 0. Once a inal decision is output by the pipeline, the process starts again, with both counts initialized to
0.

5We did not test multiple microphones so we cannot say whether or not our classiier would have any success recording with a diferent

microphone.
6Speech could be checked for by using a voice activity detection (VAD) algorithm, trained on the Kinect, that can detect when human speech

is a part of the acoustic environment.
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Depending on how sensitive we want the system to be to the classiier’s predictions, we can alter the values
of X and Y. For example, with � = 3, the classiier will have to predict close to 15 consecutive seconds (three
decisions in a row) as media. This approach does not allow for one false positive to ruin the inal classiication,
but rather the classiier would have to get the audio scene wrong three times in a row in order to make a mistake.
An alternative approach is to set both X=1 and Y=1, in which case the pipeline will be returning a inal

prediction on every 5-second audio sample, unless it does not detect speech. This will give a robot using this
pipeline more frequent data points to use in its inal decision making.

After the system determines whether or not the speech that it hears in its environment is media or natural, it
can use this classiication, along with other contextual information to make decisions on how to act. For example,
the robot could also have other tools available to it that can detect characteristics from human speech such as
tone, emotion, and intensity. The robot could also utilize context like the time of day, the day of the week, its
location in the home, the current weather, and more.
Another interesting contextual tool that could be incorporated into this pipeline is sound source localization

(SSL), which utilizes the microphone array of the Kinect. SSL could help the robot get an approximation of
where the speech is coming from. This extra context, combined with the natural vs. media classiication, could
further assist the robot in making a more informed decision on social presence and providing it with a better
understanding its environment. VAD and SSL could be combined to localize and individually classify multiple
speakers in a noisy audio scene, but such VAD for multi-speaker diarization in real-world scenarios remains an
open research problem[32].
This classiication pipeline can provide the robot with an understanding of if speech is natural or media in

its environment, helping it in inferring social presence. The robot can use this information, along with other
context, to make appropriate decisions about how to interact, or not, and to best accommodate its user(s) and to
reach its goals.

5.3 Ethics and Privacy Considerations

In home data is inherently sensitive, and the audio pipeline presented in our paper is considerate of that. We
believe our solution is minimally invasive. Using one modality (i.e., just audio) to make decisions is undoubtedly
less invasive than using more. In fact, our suggested solution is computed locally (it is lightweight and would
not require sending any sensitive data to online services), only needs to store a 5-second sample of audio at
a time (which can be deleted immediately after features are extracted from it), and does not use any semantic
representation or transcription of the audio (which could contain sensitive information) as a part of its decision
making. These are important factors that keep users’ privacy in mind.

6 LIMITATIONS

There are several limitations to this work that we believe are important to make clear. First, the dataset that we
compiled could be more diverse and representative. Our natural training data is only comprised of audio from
the CHiME-5 dataset, even though it does contain audio from diferent homes, rooms, and voices. Our media

dataset contains three diferent rooms from within one home and ive diferent electronic devices. Obviously,
there are countless other possible devices from which audio can be emitted in the home, which were not included
in our training set. Despite these limitations, our results showed that classiiers were able to make accurate
media classiications on audio from recording devices, rooms, microphone distances, and combinations of the
three that they were not trained on, and the classiiers were able to classify natural audio from outside of the
CHiME-5 training corpus, that included new rooms and voices in the V and F test sets. Another limitation is
that the recordings in our V and F categories could be more diverse and comprehensive, with the inclusion of

ACM Trans. Hum.-Robot Interact.



16 • Georgiou, et al.

audio from more homes, families, and people. Also, we only focus on audio from the home, when ideally, such a
classiication tool should be able to make predictions in other dynamic, human environments as well.

Additionally, our dataset does not include examples of scenarios where media from television or radio shows is
playing at the same time that natural conversation (that includes at least one co-located person) is occurring.7

Further testing would be needed to see how our classiiers would perform when both media and natural audio
are overlaid. We did see that in situations where electronic and organic speakers are conversing with each other
in the audio scene (in our video calls test category), the classiication algorithms classiied the audio as natural. It
could be beneicial if a robot could garner more detailed context of identifying, indexing, and classifying between
each organic and electronic speaker engaged in the conversation, but we leave this as a future research direction.
Regardless, through our experimentation in this paper, we see that the classiiers can provide important context to
a robot by accurately diferentiating between common speech scenarios in the home from which social presence
can be implied: popular genres in media originating from loudspeakers and natural conversation including a
co-located user.

7 CONCLUSIONS

Detecting social presence using sound involves being able to classify audio as containing either 1) natural
conversation including at least one co-located user or 2) media playing from electronic sources that does not
require a social response, such as television shows. It is important for in-home social robots to have such
a capability, as the additional context can help them in their decision making. We perform an experimental
evaluation that tests the robustness of several traditional machine learning classiiers on data from our compiled
natural vs. media dataset. We conclude that a C-Support Vector Classiication (SVC) algorithm outperforms other
classiiers, and we propose a classiication pipeline that can be utilized by social robots in the home to help them
in detecting social presence using sound.
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• "weights": [’uniform’, ’distance’]
• "p": [1,2]

A.2 QDA

• "reg_param": [0.00001, 0.0001, 0.001,0.01, 0.1
• "tol": [0.0001, 0.001,0.01, 0.1]

A.3 DT

• "criterion": [’gini’,’entropy’]
• "max_depth": [1, 5,10,None]
• "min_samples_split": [2,5,10]
• "min_samples_leaf": [1,2,5]

A.4 GNB

• "var_smoothing": [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15]

A.5 LR

• "solver": [’lbfgs’,’liblinear’, ’newton-cg’]
• "penalty": [’l1’, ’l2’]
• "C": [0.001,0.01,0.1,1,10,100,1000]

A.6 SVC

• "kernel": [’linear’,’rbf’]
• "gamma": [‘scale’, ‘auto’]
• "C": [0.1,1,10,1000]

B HYPERPARAMETERS OF MODELS PRESENTED IN SECTION 4 RESULTS

Model Hyperparameters

KNN ‘algorithm’=‘auto’, ‘leaf_size’=30, ‘metric’=‘minkowski’, ‘metric_params’=None,
‘n_jobs’=None, ‘n_neighbors’=8, ‘p’=1, ‘weights’=‘distance’

QDA ‘priors’=None, ‘reg_param’=0.01, ‘store_covariance’=False, ‘tol’=0.0001.

DT ‘ccp_alpha’=0.0, ‘class_weight’=None, ‘criterion’=’entropy’, ‘max_depth’=None,
‘max_features’=None, ‘max_leaf_nodes’=None, ‘min_impurity_decrease’=0.0,
‘min_impurity_split’=None, ‘min_samples_leaf’=2, ‘min_samples_split’=2,
‘min_weight_fraction_leaf’=0.0, ‘random_state’=0, ‘splitter’=‘best’

GNB ‘priors’: None, ‘var_smoothing’: 0.001

LR ‘C’: 0.1, ‘class_weight’: None, ‘dual’: False, ‘it_intercept’: True, ‘intercept_scaling’: 1,
‘l1_ratio’: None, ’max_iter’: 100, ‘multi_class’: ‘auto’, ’n_jobs’: None, ‘penalty’: ‘l2’, ‘ran-
dom_state’: None, ’solver’: ‘lbfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: False.

SVC ‘C’: 10, ‘break_ties’: False, ‘cache_size’: 200, ‘class_weight’: None, ‘coef0’: 0.0, ‘deci-
sion_function_shape’: ‘ovr’, ’degree’: 3, ‘gamma’: ‘scale’, ‘kernel’: łrbfž, ‘max_iter’: -1,
‘probability’: False, ‘random_state’: None, ‘shrinking’: True, ‘tol’: 0.001, ‘verbose’: False
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C EXPERIMENT F1 SCORE SUMMARIES

Leave-One-Recording-Out Cross Validation (LOROCV) Summary. We present the average F1 scores between each of the two

classes across all LOROCV folds. For each fold, all of a room’s media recordings were held out of the training set, and used in

the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 95.1 87.7 86.4 85.5 86.4 90.6
V + M �1����� 93.8 90.2 89.4 86.5 89.3 91.9

Avg. F1 94.5 89.0 87.9 86.0 87.9 91.3

�1������� 86.9 99.5 98.9 96.4 99.0 96.5
F + M �1����� 87.2 99.5 98.8 95.9 98.8 96.6

Avg. F1 87.1 99.5 98.9 96.2 98.9 96.6

�1������� 91.7 93.1 92.3 90.4 92.3 93.4

F + V + M �1����� 90.9 93.4 93.2 90.5 93.2 93.9

Avg. F1 91.3 93.3 92.8 90.5 92.8 93.7

Leave-One-Label-Out (LOLO) Summary. We present the average F1 scores between each of the two classes across all 14

LOLO folds. For each fold, a media recording and natural C recording were held out of the training set, and used in the

testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 81.5 99.3 96.9 92.9 94.9 94.1
V + M �1����� 75.5 99.2 95.1 87.9 88.5 92.1

Avg. F1 78.5 99.3 96.0 90.4 91.7 93.1

�1������� 88.4 87.5 75.6 84.0 85.0 90.2

F + M �1����� 82.7 90.0 80.2 80.7 80.8 90.6

Avg. F1 85.6 88.8 77.9 82.4 82.9 90.4

�1������� 85.4 93.0 85.8 87.8 89.4 92.0
F + V + M �1����� 79.5 93.8 85.8 83.2 83.3 91.3

Avg. F1 82.5 93.4 85.8 85.5 86.4 91.7
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Leave-One-Room-Out (LORO) Summary. We present the average F1 scores between each of the two classes across all three

LORO folds. For each fold, all of a room’s media recordings were held out of the training set, and used in the testing set

along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 77.8 99.2 94.8 85.6 88.9 94.7
V + M �1����� 76.9 99.2 93.7 76.3 81.0 95.0

Avg. F1 77.4 99.2 94.3 81.0 85.0 94.9

�1������� 85.2 84.3 71.8 82.9 82.5 86.5

F + M �1����� 81.0 87.8 78.3 84.0 82.9 86.4
Avg. F1 83.1 86.1 75.1 83.5 82.7 86.5

�1������� 81.5 92.1 84.1 84.0 85.2 90.4
F + V + M �1����� 79.3 93.0 85.4 81.7 83.7 90.7

Avg. F1 80.4 92.6 84.8 82.9 84.5 90.6

Leave-One-Speaker-Out (LOSO) Summary. We present the average F1 scores between each of the two classes across all five

LOSO folds. For each fold, all of a loudspeaker’s media recordings were held out of the training set, and used in the testing

set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 78.8 98.5 99.0 94.1 97.1 93.4
V + M �1����� 75.0 98.4 98.9 93.4 97.1 93.4

Avg. F1 76.9 98.5 99.0 93.8 97.1 93.4

�1������� 87.0 83.1 72.7 82.0 83.8 87.2

F + M �1����� 80.1 85.7 77.6 79.4 84.8 87.8

Avg. F1 83.6 84.4 75.2 80.7 84.3 87.5

�1������� 83.3 90.6 85.9 87.6 90.2 90.1
F + V + M �1����� 78.4 91.3 87.2 86.4 90.5 90.4

Avg. F1 80.9 91.0 86.6 87.0 90.4 90.3
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Leave-One-Distance-Out Cross Validation (LODO) Summary. We present the average F1 scores between each of the two

classes across all three LODO folds. For each fold, all of a microphone distance’s media recordings were held out of the

training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 79.7 98.8 97.4 92.1 97.7 94.5
V + M �1����� 78.1 98.8 97.1 91.1 97.8 95.0

Avg. F1 78.9 98.8 97.3 91.6 97.8 94.8

�1������� 81.5 82.5 70.9 76.9 82.2 84.6

F + M �1����� 67.0 84.6 56.8 66.3 80.9 83.6
Avg. F1 74.3 83.6 63.9 71.6 81.6 84.1

�1������� 79.9 90.7 83.6 83.9 89.6 89.2
F + V + M �1����� 75.4 91.3 79.2 79.6 89.5 89.5

Avg. F1 77.7 91.0 81.4 81.8 89.6 89.4

Leave-One-Room and Speaker-Out (LORSO) Summary. We present the average F1 scores between each of the two classes

across all nine LORSO folds. For each fold, all of a room’s media recordings were held out of the training set, and used in the

testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 75.5 92.2 91.7 81.4 89.0 89.5
V + M �1����� 60.3 81.0 84.0 58.8 82.2 83.1

Avg. F1 67.9 86.6 87.9 70.1 85.6 86.3

�1������� 85.8 84.5 76.1 80.5 87.6 89.1

F + M �1����� 78.4 81.2 80.0 72.9 86.7 87.0

Avg. F1 82.1 82.9 78.1 76.7 87.2 88.1

�1������� 81.1 88.2 83.6 80.6 88.1 89.0

F + V + M �1����� 71.0 81.9 82.5 69.1 85.7 86.2

Avg. F1 76.1 85.1 83.1 74.9 86.9 87.6
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Leave-One-Recording and Distance-Out (LORDO) Summary. We present the average F1 scores between each of the two

classes across all nine LORDO folds. For each fold, all of a room and microphone distance’s media recordings were held out

of the training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 76.1 94.0 96.4 85.4 91.5 89.6
V + M �1����� 63.8 90.9 94.2 71.6 86.0 85.1

Avg. F1 70.0 92.5 95.3 78.5 88.8 87.4

�1������� 83.9 86.3 75.6 80.3 89.2 90.5

F + M �1����� 72.7 87.0 80.2 73.8 89.6 90.5

Avg. F1 78.3 86.7 77.9 77.1 89.4 90.5

�1������� 80.2 90.0 85.8 82.6 90.2 90.0
F + V + M �1����� 69.8 88.8 85.8 73.4 88.9 88.9

Avg. F1 75.0 89.4 85.8 78.0 89.6 89.5

Leave-One-Speaker and Distance-Out (LOSDO) Summary. We present the average F1 scores between each of the two classes

across all nine LOSDO folds. For each fold, all of a speaker and microphone distance combination’s media recordings were

held out of the training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 79.7 94.6 93.7 89.6 95.2 94.3
V + M �1����� 72.8 87.2 86.4 80.7 95.4 94.6

Avg. F1 76.3 90.9 90.1 85.2 95.3 94.5

�1������� 84.0 82.7 77.4 81.6 85.5 87.0

F + M �1����� 74.2 78.9 75.7 75.0 81.0 82.5

Avg. F1 79.1 80.8 76.6 78.3 83.3 84.8

�1������� 82.1 88.3 85.4 85.2 89.7 90.0

F + V + M �1����� 73.7 82.6 80.2 77.5 88.3 89.0

Avg. F1 77.9 85.5 82.8 81.4 89.0 89.5
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Leave-One-Room and Speaker and Distance-Out (LORSDO) Summary. We present the average F1 scores between each of the

two classes across all 14 LORSDO folds. For each fold, all of a room, speaker, and microphone distance combination’s media

recordings were held out of the training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

�1������� 74.1 89.6 91.1 81.2 89.1 88.1
V + M �1����� 57.4 75.1 83.3 58.8 83.8 82.5

Avg. F1 65.8 82.4 87.2 70.0 86.5 85.3

�1������� 80.9 83.6 72.3 76.9 86.7 88.2

F + M �1����� 65.0 70.5 73.1 56.4 80.6 82.1

Avg. F1 73.0 77.1 72.7 66.7 83.7 85.2

�1������� 78.0 86.4 82.0 78.9 87.8 88.1

F + V + M �1����� 61.7 72.5 77.2 57.5 82.2 82.4

Avg. F1 69.9 79.5 79.6 68.2 85.0 85.3

D EXPERIMENT COMPREHENSIVE RESULTS

ACM Trans. Hum.-Robot Interact.



Is Someone There Or Is That The TV? Detecting Social Presence Using Sound • 25

Leave-One-Recording-Out CV Results. The table presents the macro and micro averages across all LOROCV folds for each

classifier.

Our In-Home Natural Recordings
C+M F+M V+M V+F+M

Model Metrics Macro Micro Macro Micro Macro Micro Macro Micro

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

96.8
95.7
99.5
97.3
99.4
94.1
95.8

96.3
94.8
99.6
96.8
94.8
93.1
95.3

94.7
95.7
95.0
95.1
94.1
94.4
93.8

94.0
94.7
94.6
94.4
93.7
93.4
93.1

87.3
94.8
81.0
86.9
82.5
93.6
87.2

86.9
93.7
81.1
86.5
82.3
92.7
86.7

91.5
95.3
89.0
91.7
88.7
94.1
90.9

90.9
94.2
88.7
91.1
88.4
93.1
90.2

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

99.6
99.8
99.5
99.6
99.5
99.8
99.6

99.6
99.7
99.5
99.6
99.7
99.7
99.6

89.1
99.8
78.4
87.7
82.4
99.8
90.2

88.9
99.7
78.0
87.4
82.1
99.8
90.0

99.5
99.7
99.3
99.5
99.3
99.7
99.5

99.4
99.7
99.1
99.4
99.1
99.7
99.4

93.6
99.7
87.3
93.1
88.8
99.8
93.4

93.5
99.7
87.2
93.0
88.7
99.7
93.4

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

99.0
99.2
99.1
99.1
99.1
99.0
99.0

99.0
99.2
99.1
99.1
99.2
99.0
99.0

88.2
99.0
77.6
86.4
82.0
98.8
89.4

88.3
99.1
77.7
86.6
82.0
98.9
89.4

98.9
99.3
98.7
98.9
98.7
99.1
98.8

98.8
99.3
98.6
98.9
98.6
99.1
98.8

92.8
99.1
86.7
92.3
88.3
99.0
93.2

92.9
99.2
86.7
92.3
88.4
99.0
93.2

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

92.2
93.7
91.2
91.7
92.7
93.2
92.3

92.8
94.8
91.1
92.2
94.8
94.4
93.1

86.2
93.0
79.7
85.5
81.2
92.6
86.5

87.4
94.1
80.8
86.7
82.9
94.0
87.9

96.2
94.7
98.5
96.4
98.5
93.9
95.9

96.7
95.7
98.4
96.9
98.3
95.0
96.4

90.5
93.6
87.8
90.4
88.4
93.2
90.5

91.4
94.7
88.4
91.3
89.0
94.4
91.5

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

99.0
99.2
99.1
99.1
99.1
98.9
98.9

99.0
99.2
99.1
99.1
99.2
99.0
98.9

88.2
99.0
77.5
86.4
82.0
98.8
89.3

88.3
99.1
77.7
86.6
82.0
98.9
89.4

98.9
99.3
98.7
99.0
98.7
99.1
98.8

98.8
99.3
98.6
98.9
98.6
99.0
98.8

92.8
99.1
86.7
92.3
88.3
98.9
93.2

92.9
99.1
86.7
92.3
88.4
99.0
93.2

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

99.4
99.4
99.6
99.4
99.6
99.2
99.3

99.4
99.4
99.6
99.5
99.4
99.2
99.3

91.4
99.4
83.5
90.6
85.5
99.2
91.9

91.5
99.4
83.8
90.9
86.0
99.2
92.1

96.6
99.4
94.0
96.5
94.4
99.1
96.6

96.5
99.4
93.9
96.5
94.2
99.2
96.5

93.6
99.4
88.0
93.3
89.3
99.2
93.9

93.7
99.4
88.2
93.4
89.4
99.2
93.9
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Leave-One-Label-Out Results. The table presents the macro and micro averages across all LOLO folds for each classifier.

LOLO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

79.5
84.1
81.2
81.5
76.2
77.8
75.5

78.8
83.9
80.5
80.9
75.4
77.2
74.7

86.4
85
94
88.4
91.6
78.8
82.7

86.1
85.3
92.8
88
90.5
79.4
82.6

83.4
84.5
88.4
85.4
84.4
78.3
79.5

82.9
84.5
87.3
84.9
83.5
78.4
79.1

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

99.2
99.2
99.3
99.3
99.3
99.2
99.2

99.2
99.3
99.1
99.2
99.1
99.3
99.2

88.9
99.3
78.3
87.5
82.2
99.5
90

87.7
99.3
76
86
80.7
99.5
89

93.4
99.3
87.5
93
88.9
99.3
93.8

92.8
99.3
86.3
92.3
87.9
99.4
93.3

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

95.6
94
99.8
96.4
99.6
91.5
94.2

96.3
94.8
99.8
96.9
99.7
92.7
95.1

78.6
93.2
64.9
75.6
71.9
92.4
80.2

78
93.4
63.1
74.5
71.1
92.8
79.9

86.1
93.6
80.2
85.8
81.8
92
85.8

86.1
94.1
79.5
85.7
81.4
92.8
86

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

90.7
88.4
98.2
92.4
91.1
83.1
86.4

91.5
89.4
97.9
92.9
91.9
85
87.9

83.2
87.1
82.4
84
78
84
80.7

84
88.9
81.7
84.5
78.4
86.3
82

86.5
87.5
89.3
87.8
83.2
83.6
83.2

87.3
89
88.9
88.4
83.8
85.7
84.6

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

92.3
92.6
98.3
94.4
92.5
86.4
86.7

93.2
93.3
98.2
94.9
93.3
88.1
88.5

84.1
92.6
80.5
85
76.6
87.6
80.8

84
93.4
79.2
84.5
76.4
88.8
81.2

87.7
92.6
88.4
89.4
82.2
87
83.3

88.1
93.3
87.7
89.5
82.6
88.5
84.3

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

93.4
95.6
93.6
94.1
92.7
93.3
91.8

93.5
95.5
93.5
94.1
92.8
93.5
92.1

90.5
97.1
84.9
90.2
86.4
96.2
90.6

90.1
97.5
83.5
89.6
85.4
96.7
90.3

91.8
96.3
88.7
92
89.1
94.9
91.3

91.6
96.5
88
91.7
88.5
95.3
91.2
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Leave-One-Room-Out Results. The table presents the results of the three LORO folds (each room column is the let-out

room), and the macro averages across all LORO folds for each classifier. Only macro averages are presented because the test

sets were the same size (the let out room media set was larger than the natural testing subset, so media was sampled to

match the size of the natural sets).

Kitchen Bedroom Playroom Average

Model Metrics V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

82.4
82.1
82.9
82.5
82.7
81.9
82.3

84.3
77.4
97
86.1
96
71.6
82

83.4
79.4
90.1
84.4
88.6
76.6
82.2

73.1
71.4
77.2
74.2
75.2
69
72

93.2
97.3
88.8
92.8
89.7
97.5
93.4

83.4
83.6
83.2
83.4
83.2
83.6
83.4

76.7
76.3
77.4
76.9
77.1
76
76.6

72.8
67.1
89.5
76.7
84.3
56.2
67.4

74.7
71
83.6
76.8
80.1
65.8
72.3

77.4
76.6
79.2
77.8
78.3
75.6
76.9

83.4
80.6
91.8
85.2
90
75.1
81

80.5
78
85.6
81.5
84
75.4
79.3

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

98.9
99.7
98.1
98.9
98.2
99.7
98.9

89.6
99.1
80
88.5
83.2
99.3
90.5

94.2
99.4
88.8
93.8
89.9
99.5
94.5

99.6
100
99.2
99.6
99.2
100
99.6

82.5
99.7
65.2
78.8
74.1
99.8
85.1

90.8
99.9
81.8
89.9
84.6
99.9
91.6

99
98.3
99.7
99
99.7
98.3
99

86.9
94.4
78.4
85.7
81.6
95.3
87.9

92.8
96.5
88.8
92.5
89.6
96.8
93.1

99.2
99.3
99
99.2
99
99.3
99.2

86.3
97.7
74.5
84.3
79.6
98.1
87.8

92.6
98.6
86.5
92.1
88
98.7
93

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

98.4
96.9
99.9
98.4
99.9
96.8
98.3

81.7
99
63.9
77.7
73.4
99.4
84.4

89.8
97.8
81.5
88.9
84.1
98.1
90.6

86.3
79.5
97.7
87.7
97
74.8
84.5

72.4
88.3
51.7
65.2
65.9
93.2
77.2

79.2
82.4
74.1
78.1
76.5
84.2
80.2

98.4
97.1
99.7
98.4
99.7
97.1
98.3

73
73.7
71.3
72.5
72.2
74.6
73.4

85.3
85.5
85.1
85.3
85.2
85.5
85.4

94.3
91.2
99.1
94.8
98.9
89.6
93.7

75.7
87
62.3
71.8
70.5
89.1
78.3

84.8
88.6
80.2
84.1
81.9
89.3
85.4

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

87.9
82.5
96.3
88.9
95.5
79.6
86.9

82.5
80.2
86.2
83.1
85.1
78.8
81.8

85.1
81.4
91.1
86
89.9
79.2
84.2

64.1
58.6
96.1
72.8
89.1
32.2
47.3

85
96.2
72.8
82.9
78.1
97.1
86.6

74.8
70.9
84.2
77
80.5
65.5
72.2

95
91.6
99
95.2
98.9
90.9
94.8

83.1
85.1
80.2
82.6
81.3
85.9
83.5

88.9
88.5
89.4
88.9
89.3
88.4
88.8

82.4
77.6
97.1
85.6
94.5
67.6
76.3

83.5
87.2
79.8
82.9
81.5
87.3
84

82.9
80.3
88.2
84
86.6
77.7
81.7

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

98.5
99.9
97.1
98.5
97.1
99.9
98.5

87.9
95.9
79.2
86.7
82.3
96.6
88.8

93
98
87.9
92.7
89
98.2
93.4

66
59.8
97.7
74.2
93.7
34.2
50.2

87.9
100
75.8
86.2
80.5
100
89.2

77.2
73
86.5
79.1
83.4
68
74.9

94.3
96.9
91.6
94.2
92
97.1
94.5

72.8
70
79.9
74.6
76.6
65.8
70.8

83.3
81.9
85.6
83.7
84.9
81
82.9

86.3
85.5
95.5
88.9
94.3
77.1
81

82.9
88.6
78.3
82.5
79.8
87.5
82.9

84.5
84.3
86.6
85.2
85.8
82.4
83.7

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

94.9
98.6
91.2
94.7
91.8
98.7
95.1

93.5
95.3
91.5
93.3
91.8
95.4
93.6

94.2
96.8
91.3
94
91.8
97
94.3

95.9
100
91.7
95.7
92.3
100
96

89.6
100
79.3
88.4
82.8
100
90.6

92.7
100
85.3
92.1
87.2
100
93.2

93.7
96.4
90.8
93.5
91.3
96.6
93.9

76.3
73.6
82.2
77.6
79.8
70.5
74.8

84.8
83.7
86.4
85
85.9
83.2
84.6

94.8
98.3
91.2
94.7
91.8
98.4
95

86.5
89.6
84.3
86.5
84.8
88.6
86.4

90.6
93.5
87.7
90.4
88.3
93.4
90.7

ACM Trans. Hum.-Robot Interact.



28 • Georgiou, et al.

Leave-One-Speaker-Out Results. The table presents the results of the five LOSO folds (each speaker column is the let-out

speaker), and the macro (M) and micro (�) averages across all LOSO folds for each classifier.

Bose iPhone BigBose Sony Mac Average

Model Metrics V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M
V+M F+M V+F+M

M � M � M �

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

68.4
66.2
75.5
70.5
71.4
61.4
66

59.8
56.1
89.6
69
74.3
29.9
42.7

64
60.2
82.7
69.7
72.4
45.3
55.7

87.1
91.1
82.3
86.4
83.8
91.9
87.7

95.7
100
91.5
95.5
92.1
100
95.9

92
96.1
87.4
91.6
88.5
96.5
92.3

87.1
96.7
76.9
85.6
80.8
97.3
88.3

95.5
98.9
92.1
95.4
92.6
98.9
95.7

91.8
98
85.3
91.2
87
98.2
92.3

56.2
54.2
79.6
64.5
61.6
32.8
42.8

73.9
67.9
90.7
77.6
86
57.1
68.6

65.9
61.4
85.7
71.5
76.3
46.1
57.5

86.6
89.1
83.5
86.2
84.5
89.7
87

95.8
96.7
94.8
95.8
94.9
96.8
95.8

91.3
93.1
89.3
91.2
89.7
93.4
91.5

77.1
79.4
79.5
78.7
76.4
74.6
74.4

76.2
77.8
79.5
77.9
76.1
72.9
73.4

84.1
83.9
91.7
86.7
88
76.5
79.7

82.5
81.8
91.8
85.5
87.3
73.3
77.4

81
81.7
86.1
83
82.8
75.9
77.9

79.6
79.7
86
81.9
82.1
73.1
76

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

94.4
90.1
99.8
94.7
99.8
89
94.1

65.2
61.2
83.1
70.5
73.7
47.4
57.7

79.4
73.8
91.2
81.6
88.5
67.6
76.7

99.2
99.8
98.6
99.2
98.6
99.8
99.2

85.9
99.8
71.9
83.6
78
99.8
87.6

91.7
99.8
83.5
90.9
85.8
99.8
92.3

99.3
99.8
98.9
99.3
98.9
99.8
99.3

85.6
99.2
71.7
83.2
77.9
99.4
87.3

91.7
99.5
83.8
91
86
99.6
92.3

99.5
100
99.1
99.5
99.1
100
99.5

86.5
100
73
84.4
78.7
100
88.1

92.4
100
84.8
91.8
86.8
100
92.9

98.9
99
98.8
98.9
98.8
99
98.9

84.7
98.8
70.3
82.1
76.9
99.2
86.6

91.6
98.9
84.2
91
86.2
99.1
92.2

98.3
97.7
99
98.3
99
97.5
98.2

97.9
97
99.1
98
99.1
96.7
97.8

81.6
91.8
74
80.8
77.1
89.1
81.5

80.6
90
74.4
80.1
76.8
86.8
80.1

89.4
94.4
85.5
89.2
86.7
93.2
89.3

88.7
92.9
85.9
88.7
86.8
91.4
88.4

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

95.7
92.2
100
95.9
100
91.5
95.6

55.8
54.6
68.8
60.9
57.8
42.7
49.1

75.2
71.5
84
77.2
80.6
66.5
72.9

99.3
98.6
100
99.3
100
98.6
99.3

80.7
99.7
61.6
76.1
72.2
99.8
83.8

88.8
99.1
78.3
87.5
82.1
99.3
89.9

100
100
100
100
100
100
100

79.4
100
58.8
74.1
70.8
100
82.9

88.6
100
77.1
87.1
81.4
100
89.7

99.8
99.7
100
99.8
100
99.7
99.8

79.1
100
58.2
73.6
70.5
100
82.7

88.5
99.8
77.1
87
81.3
99.9
89.7

99
98.2
99.8
99
99.8
98.1
99

69.6
72.9
62.3
67.2
67.1
76.9
71.7

83.9
86.3
80.6
83.3
81.8
87.2
84.4

98.8
97.7
100
98.8
100
97.6
98.7

98.5
97.2
99.9
98.5
99.9
97
98.4

72.9
85.4
61.9
70.4
67.7
83.9
74

71.3
82.2
62.4
69.3
66.8
80.3
72

85
91.3
79.4
84.4
81.4
90.6
85.3

84
89.1
79.9
83.7
81.4
88.1
84.1

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

93.6
88.9
99.7
94
99.6
87.6
93.2

55.5
53.8
77.8
63.6
59.9
33.2
42.7

74.1
68.7
88.5
77.3
83.8
59.7
69.7

96.4
94.3
98.8
96.5
98.8
94
96.3

86.8
92.6
80.1
85.9
82.4
93.6
87.7

91
93.4
88.3
90.8
88.9
93.8
91.3

96.7
96.1
97.3
96.7
97.3
96
96.7

87.8
95.9
79
86.7
82.2
96.7
88.8

91.8
96
87.2
91.4
88.3
96.4
92.1

95.7
94.6
97.1
95.8
97
94.4
95.7

88.3
98.5
77.8
87
81.7
98.9
89.5

91.7
96.5
86.5
91.2
87.8
96.9
92.1

80.7
73.2
96.8
83.4
95.3
64.6
77

85.1
83.1
88.2
85.6
87.4
82.1
84.7

83
77.7
92.4
84.4
90.6
73.5
81.2

92.6
89.4
98
93.3
97.6
87.3
91.8

91.4
87.6
98
92.2
97.5
84.8
90.3

80.7
84.8
80.6
81.7
78.7
80.9
78.7

79.2
82.5
80.9
80.7
77.9
77.5
76.5

86.3
86.5
88.6
87
87.9
84
85.3

84.9
84.1
88.9
85.9
87.7
80.9
83.5

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

91.2
91.7
90.6
91.2
90.7
91.8
91.3

73.1
69
83.6
75.6
79.2
62.5
69.9

81.9
78.9
87
82.8
85.6
76.8
80.9

99.3
100
98.6
99.3
98.6
100
99.3

88.1
100
76.2
86.5
80.7
100
89.3

93
100
85.9
92.4
87.7
100
93.4

99.3
99.8
98.9
99.3
98.9
99.8
99.3

87.7
100
75.4
86
80.2
100
89

92.9
99.9
85.8
92.3
87.6
99.9
93.3

96.8
95.1
98.6
96.8
98.6
94.9
96.7

88.3
99.8
76.7
86.7
81.1
99.9
89.5

92.1
97.3
86.6
91.6
87.9
97.6
92.5

99.2
99.5
98.9
99.2
98.9
99.5
99.2

87.3
99.6
74.9
85.5
79.9
99.7
88.7

93.1
99.5
86.6
92.6
88.1
99.6
93.5

97.2
97.2
97.1
97.2
97.1
97.2
97.2

96.6
96.7
96.6
96.6
96.6
96.7
96.6

84.9
93.7
77.4
84.1
80.2
92.4
85.3

84.2
92.3
77.7
83.5
80.2
90.7
84.4

90.6
95.1
86.4
90.4
87.4
94.8
90.7

90
94
86.5
89.9
87.3
93.5
90.1

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

85.4
85.6
85.1
85.3
85.2
85.7
85.4

76
72
85.1
78
81.8
66.9
73.6

80.6
78.1
85.1
81.4
83.6
76.1
79.7

95.9
100
91.7
95.7
92.3
100
96

91.5
100
83.1
90.8
85.5
100
92.2

93.4
100
86.8
93
88.4
100
93.8

96.7
100
93.4
96.6
93.8
100
96.8

90.7
100
81.5
89.8
84.4
100
91.5

93.4
100
86.8
92.9
88.3
100
93.8

91.7
89.8
94.1
91.9
93.8
89.3
91.5

90.3
100
80.6
89.3
83.8
100
91.2

91
94.7
86.7
90.6
87.8
95.2
91.3

97.1
100
94.2
97
94.5
100
97.2

89.8
100
79.7
88.7
83.1
100
90.8

93.4
100
86.8
92.9
88.3
100
93.8

93.4
95.1
91.7
93.3
91.9
95
93.4

92.8
94.3
91.3
92.7
91.5
94.2
92.8

87.7
94.4
82
87.3
83.7
93.4
87.9

86.9
93.1
82
86.7
83.5
91.9
87

90.3
94.6
86.4
90.2
87.3
94.3
90.5

89.7
93.4
86.3
89.5
87
93
89.7
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Leave-One-Distance-Out Results. The table presents the results of the three LODO folds (each microphone distance is the

let-out distance), and the macro averages across all LODO folds for each classifier. Only macro averages are presented

because the test sets were the same size (the let out microphone distance media set was larger than the natural testing

subset, so media was sampled to match the size of the natural sets).

1 ft 4-6 ft 8-10 ft LODO Average

Model Metrics V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M V+M F+M V+F+M

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

83.3
87.7
77.5
82.3
79.9
89.1
84.2

55.3
53
94.8
68
75.2
15.8
26

68.9
64
86.4
73.6
79.1
51.5
62.4

87.9
88.9
86.7
87.8
87
89.2
88.1

84.4
80.6
90.7
85.3
89.3
78.1
83.4

86.1
84.3
88.7
86.5
88.1
83.5
85.8

65.8
63.1
75.9
68.9
69.8
55.6
61.9

91.6
93.5
89.3
91.4
89.8
93.8
91.7

79
76.9
82.8
79.8
81.4
75.2
78.2

79
79.9
80
79.7
78.9
78
78.1

77.1
75.7
91.6
81.5
84.8
62.6
67

78
75.1
86
79.9
82.9
70.1
75.4

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

98.6
97.5
99.8
98.7
99.8
97.5
98.6

75.3
76.2
73.5
74.8
74.4
77.1
75.7

86.7
86.9
86.3
86.6
86.4
87
86.7

99.1
99.6
98.7
99.1
98.7
99.6
99.1

87
98.8
74.9
85.2
79.8
99.1
88.4

92.9
99.2
86.5
92.4
88
99.3
93.3

98.5
98.8
98.3
98.5
98.3
98.8
98.5

88.7
99.5
77.8
87.3
81.8
99.6
89.8

93.5
99.1
87.8
93.1
89
99.2
93.8

98.8
98.6
98.9
98.8
98.9
98.6
98.8

83.7
91.5
75.4
82.5
78.7
91.9
84.6

91
95.1
86.9
90.7
87.8
95.2
91.3

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

93.2
88.2
99.8
93.6
99.7
86.6
92.7

41.1
45
80.2
57.7
9.48
2.07
3.4

66.5
61.3
89.7
72.8
80.8
43.3
56.4

99.5
99.1
99.9
99.5
99.9
99.1
99.5

79.4
92.8
63.7
75.6
72.4
95
82.2

89.2
96.5
81.3
88.3
83.9
97
90

99
98.1
100
99
100
98
99

82.6
97.6
66.8
79.3
74.8
98.3
85

90.6
97.9
83
89.8
85.2
98.2
91.3

97.2
95.1
99.9
97.4
99.9
94.6
97.1

67.7
78.5
70.3
70.9
52.2
65.1
56.8

82.1
85.2
84.7
83.6
83.3
79.5
79.2

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

91.7
86.1
99.3
92.3
99.2
84
91

46
47.4
73.7
57.7
40.9
18.2
25.2

68.2
63.4
86.2
73.1
78.4
50.3
61.3

88.1
83.6
94.9
88.9
94.1
81.4
87.3

84.3
82
87.9
84.8
86.9
80.7
83.7

86.2
82.8
91.3
86.8
90.3
81
85.4

95
93.8
96.5
95.1
96.4
93.6
95

89.1
96.4
81.1
88.1
83.7
97
89.9

92
95
88.6
91.7
89.3
95.3
92.2

91.6
87.8
96.9
92.1
96.6
86.3
91.1

73.1
75.3
80.9
76.9
70.5
65.3
66.3

82.1
80.4
88.7
83.9
86
75.5
79.6

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

95.6
99.9
91.4
95.4
92.1
99.9
95.8

67.3
63.8
79.9
71
73.1
54.7
62.6

81.1
78.6
85.5
81.9
84.1
76.7
80.2

98.8
99
98.6
98.8
98.6
99
98.8

88.8
97.8
79.4
87.6
82.7
98.2
89.8

93.7
98.5
88.7
93.3
89.7
98.6
94

98.8
99
98.6
98.8
98.6
99
98.8

89.3
99.9
78.8
88.1
82.5
99.9
90.3

93.9
99.4
88.4
93.6
89.6
99.5
94.3

97.7
99.3
96.2
97.7
96.4
99.3
97.8

81.8
87.2
79.3
82.2
79.4
84.3
80.9

89.6
92.2
87.5
89.6
87.8
91.6
89.5

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

94
99.8
88.2
93.6
89.4
99.8
94.3

71.1
67.4
81.9
73.9
76.9
60.4
67.7

82.3
80.6
85
82.7
84.1
79.6
81.8

96.9
100
93.9
96.9
94.2
100
97

90.3
99
81.3
89.3
84.2
99.2
91.1

93.5
99.5
87.5
93.1
88.8
99.6
93.9

93.3
96.6
89.7
93
90.4
96.8
93.5

91.5
99.4
83.4
90.7
85.7
99.5
92.1

92.3
98
86.5
91.9
87.9
98.2
92.8

94.7
98.8
90.6
94.5
91.4
98.9
95

84.3
88.6
82.2
84.6
82.3
86.4
83.6

89.4
92.7
86.3
89.2
86.9
92.5
89.5
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Leave-One-Room+Speaker-Out Results. The table presents the macro and micro averages across all LORSO folds for each

classifier.

LORSO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

70.3
71.6
82.7
75.5
67.8
57.9
60.3

67
68.8
81.6
73.2
63
52.3
54.6

83
79.5
95.1
85.8
93.2
71
78.4

81.9
78.2
94
84.7
91.9
69.8
77.4

77.3
75.6
89.6
81.1
83.6
65.1
71

75.1
73.4
88.4
79.3
81.5
61.9
68.1

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

89.1
88.4
99.3
92.2
99.3
79
81

90.1
89.3
99.2
92.8
99.2
80.9
83

84.2
92.5
80.3
84.5
80.8
88.1
81.2

85
94.5
77.5
84.1
80.3
92.5
84.2

86.4
90
88.9
88.2
87.3
84
81.9

87.3
91.2
87.4
88.3
86.8
87.2
84.7

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

89.2
86.3
100
91.7
99.9
78.5
84

86.9
83.6
100
90
99.9
73.9
80.3

78.6
90.2
67.4
76.1
73.5
89.8
80

79.2
90.2
67.5
76.6
73.8
90.9
81

83.3
87.3
82
83.6
82.4
84.6
82.5

82.7
85.8
82.2
83.2
82.3
83.2
81.9

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

75.1
71.7
97.6
81.4
95.7
52.5
58.8

75.3
72.1
97.6
81.6
95.6
53
59

78.5
80.5
83.2
80.5
78.7
73.7
72.9

80.9
83.9
81.8
81.8
80.1
80.1
78

76.9
74.8
89.7
80.6
83.6
64.1
69.1

78.4
76.3
88.9
81.3
84.3
67.8
72.8

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

86.8
86.3
93.5
89
87.7
80.1
82.2

86.3
85.7
94
88.9
87
78.7
80.8

87.6
93.9
83.6
87.6
86
91.5
86.7

88
95.4
81.6
87.4
84.3
94.4
88

87.2
89.4
88.1
88.1
87.4
86.3
85.7

87.2
89.7
87.2
87.9
86.7
87.3
86.1

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

87.4
88.4
92.5
89.5
87.4
82.4
83.1

86.5
88
91.6
88.8
85.3
81.4
81.4

88.4
91.1
88.6
89.1
89.3
88.3
87

88.4
91.9
86.4
88.5
87.3
90.4
87.8

88
89.1
90.4
89
89.6
85.6
86.2

87.5
89.2
88.7
88.3
88
86.3
86.1
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Leave-One-Room+Distance-Out Results. The table presents the macro and micro averages across all LORDO folds for each

classifier.

LORDO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

71.7
71.8
83.3
76.1
72
60.2
63.8

74.2
74.1
83.9
77.8
75.1
64.6
68.1

80.2
77.3
94.2
83.9
90.7
66.2
72.7

81.4
79.2
94.3
84.9
92
68.6
73.9

76.4
74.2
89.3
80.2
83.1
63.6
69.8

78.1
76
89.5
81.3
84.8
66.7
72.6

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

92.8
90.2
99.4
94
99.4
86.2
90.9

94.8
93.3
99.1
95.6
99.1
90.6
93.5

86.8
92.8
81.5
86.3
83.1
92
87

87.5
95.1
80.2
86.6
82.7
94.7
88

89.5
91.3
89.6
90
89.2
89.5
88.8

90.9
93.9
88.9
91
89.1
92.8
90.5

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

95.6
94
99.8
96.4
99.6
91.5
94.2

96.3
94.8
99.8
96.9
99.7
92.7
95.1

78.6
93.2
64.9
75.6
71.9
92.4
80.2

78
93.4
63.1
74.5
71.1
92.8
79.9

86.1
93.6
80.2
85.8
81.8
92
85.8

86.1
94.1
79.5
85.7
81.4
92.8
86

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

81.4
77.9
97.2
85.4
84.7
65.5
71.6

81.3
78.2
95.7
85.1
87.4
66.8
73.1

78.5
80
82.6
80.3
74
74.3
73.8

80.3
81.6
83
81.5
78
77.6
77.4

79.7
78.5
89.1
82.6
77.9
70.3
73.4

80.8
79.3
88.9
83.1
81.8
72.6
76.2

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

89.9
91.3
93.2
91.5
88.3
86.7
86

91.6
92.4
95
93.1
90.4
88.1
87.9

89.4
92.8
86.4
89.2
87.3
92.5
89.6

88.9
93.4
84.5
88.5
85.9
93.3
89.2

89.7
91.7
89.6
90.2
89.1
89.9
88.9

90.1
92.5
89.4
90.5
89
90.9
89.4

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

88.2
90.3
90.3
89.6
86.9
86
85.1

90
92.5
91.2
91.2
88.2
88.8
87.2

90.6
92.5
89.1
90.5
89.5
92.1
90.5

91
93.5
88.8
90.9
89.4
93.3
91.1

89.6
91.1
89.7
90
89.3
89.5
88.9

90.5
92.5
89.9
90.9
89.7
91.2
90
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Leave-One-Speaker+Distance-Out Results. The table presents the macro and micro averages across all LOSDO folds for each

classifier.

LOSDO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

77.5
78.7
82.7
79.7
75.9
72.2
72.8

74.7
75.4
82
77.6
73.5
67.4
69

80.8
77.4
93.6
84
85.9
68
74.2

78.5
75.1
93
82.3
83.5
63.9
70.5

79.3
77.7
88.7
82.1
80.6
69.8
73.7

76.7
75
88
80.2
78.1
65.5
70

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

92.6
91.7
99.5
94.6
98.4
85.8
87.2

92.3
91.8
99.3
94.4
98
85.3
86.1

81.8
88.6
80.2
82.7
78.6
83.3
78.9

81.1
88.1
79.4
82.1
77
82.8
77.9

86.6
89.9
88.9
88.3
84.9
84.4
82.6

86.2
89.8
88.5
88
83.6
83.9
81.7

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

91.8
91.3
97.9
93.7
98
85.7
86.4

91.4
90.5
98.9
93.6
98.9
84
85.1

77.8
87.4
71.9
77.4
70.1
83.7
75.7

74.8
85.9
68.1
74.1
66
81.6
72.4

84.2
89.3
83.7
85.4
77.3
84.6
80.2

82.4
88.2
82.1
83.9
74.5
82.7
77.7

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

87.1
83.8
98
89.6
86.6
76.1
80.7

85.5
82.4
97.5
88.4
84.1
73.5
78

79.6
81.5
83.8
81.6
75.7
75.4
75

78.8
81.1
83.2
81
73.5
74.4
73.4

82.9
82.4
90.1
85.2
80.4
75.7
77.5

81.9
81.6
89.7
84.5
78.2
74
75.5

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

95.3
97.2
93.5
95.2
93.8
97.1
95.4

95.3
96.3
94.4
95.3
94.6
96.3
95.4

84.2
89.6
84
85.5
80.9
84.5
81

82.9
88.7
82.5
84.2
78.7
83.2
79.1

89.2
92.2
88.3
89.7
88
90.1
88.3

88.6
91.5
87.9
89.1
87.5
89.2
87.5

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

94.5
97.2
91.7
94.3
92.2
97.2
94.6

93.6
96.1
91.2
93.5
91.7
96.1
93.8

85.7
89.5
86.7
87
83.8
84.7
82.5

83.9
88.1
85.3
85.5
81.6
82.5
80

89.6
91.8
89
90
88.9
90.2
89

88.3
90.5
88
88.8
87.7
88.7
87.6
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Leave-One-Room+Speaker+Distance-Out Results. The table presents the macro and micro averages across all LORSDO folds

for each classifier.

LORSDO Average

Model Metrics
V+M F+M V+F+M

Macro Micro Macro Micro Macro Micro

KNN

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

68.5
67.2
84.9
74.1
69
52
57.4

69.3
68.4
85.1
74.8
68.4
53.5
57.8

75.8
71.2
95.9
80.9
88.8
55.6
65

77.2
72.7
96.4
82.1
90
58.1
67

72.6
69.4
91.1
78
79.4
54
61.7

73.7
70.8
91.4
78.9
80.2
56
63

QDA

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

85.6
83.9
99.5
89.6
99.5
71.7
75.1

88.7
87.5
99.5
91.8
99.5
77.9
80.4

80
84.1
87.5
83.6
79.2
72.4
70.5

81.1
87
84.9
83.8
78.6
77.3
73.4

82.5
84
92.9
86.4
85
72.1
72.5

84.5
87.2
91.4
87.6
85
77.6
76.4

DT

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

88.7
85.6
99.5
91.1
99.4
78
83.3

89.2
85.8
99.5
91.4
99.5
79
84.5

74.4
81.1
69.8
72.3
71.6
78.9
73.1

71.2
78.3
62.7
67
68.1
79.7
71.5

80.8
83.9
83
82
80.3
78.5
77.2

79.3
83.2
79.1
79.8
77.8
79.4
76.6

GNB

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

74.9
71.2
97.7
81.2
85
52.1
58.8

78.7
75
96.6
83.4
86.8
60.8
67

71
72
87.1
76.9
68
54.9
56.4

74.8
75.9
86.5
79.2
71.9
63.2
64

72.7
71.5
91.8
78.9
73.1
53.6
57.5

76.5
75.3
91
81.1
76.6
62.1
65.3

LR

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

87.5
87.9
91.6
89.1
86.4
83.3
83.8

89.1
89.2
93.1
90.5
88.6
85.2
86

85
87.3
88.7
86.7
85
81.3
80.6

86.1
89.9
87.3
87.4
84.5
84.8
82.5

86.1
87.2
90
87.8
85.3
82.1
82.2

87.4
89.2
89.9
88.8
85.9
85
84.2

SVC

Accuracy
Precision�
Recall�
F1�
Precision�
Recall�
F1�

86.2
86.3
91.4
88.1
85.6
81
82.5

86.9
87.6
90.9
88.5
86.1
82.9
83.7

86.3
87.4
91.3
88.2
88
81.2
82.1

87.6
89.8
90.4
89.1
87.7
84.8
84.1

86.3
86.7
91.4
88.1
86.8
81.1
82.4

87.3
88.5
90.6
88.7
86.8
84
84.1
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