Check for
Updates

Is Someone There Or Is That The TV? Detecting Social Presence Using
Sound

NICHOLAS C GEORGIOU, Social Robotics Lab, Yale University, USA
REBECCA RAMNAUTH, Social Robotics Lab, Yale University, USA
EMMANUEL ADENIRAN, Social Robotics Lab, Yale University, USA
MICHAEL LEE, Social Robotics Lab, Yale University, USA

LILA SELIN, Social Robotics Lab, Yale University, USA

BRIAN SCASSELLATI, Social Robotics Lab, Yale University, USA

Social robots in the home will need to solve audio identification problems to better interact with their users. This paper
focuses on the classification between a) natural conversation that includes at least one co-located user and b) media that
is playing from electronic sources and does not require a social response, such as television shows. This classification can
help social robots detect a user’s social presence using sound. Social robots that are able to solve this problem can apply this
information to assist them in making decisions, such as determining when and how to appropriately engage human users. We
compiled a dataset from a variety of acoustic environments which contained either natural or media audio, including audio
that we recorded in our own homes. Using this dataset, we performed an experimental evaluation on a range of traditional
machine learning classifiers, and assessed the classifiers’ abilities to generalize to new recordings, acoustic conditions, and
environments. We conclude that a C-Support Vector Classification (SVC) algorithm outperformed other classifiers. Finally, we
present a classification pipeline that in-home robots can utilize, and discuss the timing and size of the trained classifiers, as
well as privacy and ethics considerations.

CCS Concepts: « Human-centered computing — Sound-based input / output.
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1 INTRODUCTION

Imagine you are walking around the house when you stumble upon a door that is slightly ajar—opened just
enough so that you can hear, but not see, what is going on inside. Opening the door to see if it is appropriate or
not to enter is self-defeating. If you do not hear anything, it is very difficult to make any judgments. Suppose,
however, that you hear human speech from behind the door. This piece of information can give you insight and
can help you in your decision-making.

However, knowing that there is human speech is not enough. Many lower-level characteristics, as well as
higher-level conceptual components of this speech, might be important factors in your decision. Do you recognize
the voices? Does the speech sound serious or is it more lighthearted? Is there shouting or is the tone normal?
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What emotions can you detect from the speech? How many people can you hear? If you hear two friendly
sounding people having a chat, you might be more inclined to knock. If you stop by to relay a message, and you
hear yelling coming from the room, it is probably best to steer clear for now. But, imagine that the yelling is
from an enthusiastic sportscaster describing a sporting event or that the serious tone that you hear is from a
dramatic soap opera. You might make a different decision if you know that the speech is coming from a television
show rather than from physically present people in the room conversing. This is an important component of the
speech that will influence your understanding of the situation and can affect how you interact, if you do.

Similarly, a social robot that is designed to interact with users in realistic and appropriate ways should have the
ability to make this disambiguation. The robot can benefit from knowing whether the speech coming from behind
the door is from a physically present human socializing. More generally, knowing when speech is a product
of at least one co-located person conversing, or not, can assist social robots in making inferences about users’
activities and can help them accommodate their users through a better understanding of their environments.
This paper focuses on whether there is (1) natural conversation occurring that includes at least one co-located
user or (2) media playing from electronic sources that does not require a social response. These are common
speech scenarios in the home which can assist the robot in detecting the social presence of a user through what
the robot hears.

In practice, we imagine countless settings where the ability to make such a classification could be utilized by
robots to assist them in accomplishing their goals. For example, a social companion robot in the home may decide
to engage a co-located user with a supportive, social interaction if it infers that the user is upset, as opposed
to if it knows the speech is media. A robot assisting people with Autism Spectrum Disorder may not interrupt
when a user is engaged in natural conversation (to encourage social interaction), but may attempt to engage if it
suspects the user is watching too much media. A customer service robot may decide whether or not to head in
the direction of customers chatting in a store or may choose to disregard the speech if it is coming from a TV. An
in-home robot may reach out for external assistance if a user is distressed, but may not if it realizes the speech is
from an action movie on TV. Depending on the end goals of the system, the robot can use such a classification,
along with other prudent factors, to help it in making decisions.

To precisely characterize the differences between audio from natural and media scenarios is a challenge. Both
of these audio categories contain human voices. Both categories contain diverse audio with similarities that make
it difficult to quantify how we, as humans, usually know which of the two we are listening to. One potential
discriminatory criterion, for example, is the speech patterns in the scripted conversation of television shows as
opposed to the more spontaneous nature of impromptu conversation. This could be sufficient for categorizing
a sitcom as media, but this does not help us in correctly classifying a radio podcast where the host is casually
interviewing a guest. One could also try to make this classification based on if they hear cleanly engineered
audio, like that produced in a studio, versus the noisy, distorted natural audio environments of everyday life.
This can help with correctly classifying a TV show or movie played on a good sound system as media, but will
not help when listening to sports, which involve crowd and audience noise. Solely detecting the presence of
electronically sourced audio (i.e., coming from the speakers of a computer or television) is also not enough.
Video calls with friends are natural situations in which there is electronic-sourced audio, along with at least
one organically-sourced (i.e., coming directly from human vocal cords) speaker playing an active role in the
conversation. If we know that some part of the audio is organically sourced, we can be sure that there is a
co-located, physically present person talking. But, it can sometimes be tough to know if this is the case, especially
if electronic audio sounds natural (e.g., conversational) and is played on a high-quality sound system. Making the
classification between audio that is natural or media is hard.

For this paper, we focus on being able to classify between natural and media audio from the dynamic environ-
ment of the home. We focus on differentiating between speech from popular genres of media that is originating
from loudspeakers and speech from natural conversations including at least one co-located person in the home.
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Ideally, robots in real-world environments would have the ability to make this classification, regardless of the
acoustic environments they are in (e.g., different rooms, different loudspeakers, distances from the audio source)
and the different audio content that they hear (e.g., different voices, different TV/radio shows, background noise).
Social roboticists that deploy robots in the home and intend to use audio to make decisions on how their robots
interact with users can benefit from this work.

Our main contributions are:

o Describing a salient audio problem that social robots in the home face: the classification between a) natural
conversation including at least one co-located user and b) media playing from electronic sources that does
not require a social response

e Training classifiers! that use in-home audio to differentiate between natural and media, and evaluating
how well the classifiers generalize to new recordings, acoustic conditions, and environments

e Proposing a classification pipeline that can provide additional, situational context to a social robot by
assisting it in detecting social presence using sound

The organization of the paper is as follows: Section 2 offers background and related work. Section 3 describes
the methodology in collecting the dataset, in selecting and extracting features of the audio, and in selecting the
classification algorithms. Section 4 describes the experiments used to test the generalizability of the classifiers,
and discusses the results. Section 5 discusses how these classifiers can be applied in practice, with details on
timing and size of each, a proposed classification pipeline, and a discussion on ethics and privacy considerations.
Section 6 discusses some limitations of the work and Section 7 concludes the work.

2 BACKGROUND

According to a recent U.S. Bureau of Labor Statistics survey [44], watching television was the most popular
and time-consuming leisure activity in an American’s average day, with people spending close to three hours
watching TV. In comparison, activities such as eating, drinking, socializing, and communicating amount to
approximately two hours total a day. These everyday domestic situations involve humans engaging with media
(e.g., watching television) or natural situations (e.g., participating in a conversation at the dinner table).

2.1 In-Home Virtual Assistants

Popular virtual assistants, such as Amazon’s Alexa, have already been integrated into many homes around the U.S.
They use audio-based techniques that make them effective in the household. Source localization approximates
the origin of audio input and wake-word detection [26] prompts sending the speech command to the cloud for
natural language processing [25]. These features inform the assistant’s decision-making policy to effectively and
appropriately respond [29, 35]. These in-home systems do not incorporate much, if any, contextual awareness of
their surroundings [40]. In fact, these systems typically require specific and explicit user prompts to engage them
(e.g., “Alexa”). Because these systems are user-initiated, the detection of social context is much less necessary. Yet,
for systems designed to interact with users autonomously, the ability to garner context about the environment is
crucial [28].

We believe that virtual assistants can also benefit from the ideas presented in this paper, especially if developers
believe there is value in additional functionality that includes behaving more socially and independently. Although
we will focus on social robots in this paper, we note that social presence through sound can be of use to any
device in the home that could utilize such context to help it make decisions.

1A link to our trained models and the code used to create the input feature vectors for our models: https://github.com/ScazLab/social-presence-
sound
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2.2 Using Audio for Activity and Event Detection in the Home

Automatic recognition of user activity in dynamic, unstructured environments, like the home, is important for
systems whose primary purpose is to support their users through social means. Having some understanding of a
user’s activity and social context can help the system in its decision making.

Audio scene classification (ASC), or the identification of the environment or activity based on acoustic signals,
is important for robotics and can help better facilitate human-robot interaction [3]. ASC has become a trending
topic with growing interest because of the advent of smart homes and robots [14, 45, 47]. In recent years, audio
analysis capabilities have been added to assistive robotic systems, such as the TIAGo service robot [19] and
RiSH, a robot-integrated smart home for elderly care [13], with the goal that audio will provide more contextual
awareness. Work for audio analysis in the home includes activity detection specific to helping the elderly by
detecting falls [38] or by identifying common activities, to help medical staff monitor people who utilize ambient
assisted living services [2, 11, 36]. Audio scene classification has also been used in the context of differentiating
between specific kitchen sounds like the mixer, dishwasher, and utensils clanking [45], bathroom sounds like
showering, washing hands, and flushing [9], breathing or snoring [17], or common sounds including keyboard
typing, applause, and phone ringing [42]. Traditional machine learning classifiers have been used for these
classifications with success.

Work has also been done that involves classifying in-home audio with the help of humans-in-the-loop. Some
of this work includes human-assisted sound event recognition for home service robots for the elderly, where
a human caregiver helps provide a robot with in-the-loop labels to non-voice sounds, in order to help a robot
actively learn auditory events [12]. Additional work has used audio to classify different rooms in the home, like
the kitchen and office, and also discriminated between nonverbal sounds like clapping and one-word speech
scenarios [30].

The research area of voice activity detection (VAD) looks to classify between audio that contains speech and
non-speech [20]. Research has been done to use noise cancellation to better implement VAD on smart home
devices [22]. Other VAD work includes enhanced speech detection for humanoid robots in sparse dialogue [24]
and robust classification between speech and non-speech [39] in noisy environments. Work has been done to
recognize emotional states from speech using a support vector machine [41], to separate speech from music [1],
and to detect and classify noises in speech signals [33].

There has also been research looking into how to accurately discriminate between speech commands produced
from an electronic speaker from organic human speech [6]. This approach was discussed in the context of
cybersecurity to better identify replay attacks of certain commands on Internet of Things devices, by focusing on
determining the origin of pre-written speech commands, but does not focus on in-home, noisy experimentation.

Our work presents a new tool that can be used by robots in the home to gather more social context about a
user’s social presence through sound, when presented with human speech. The classification between natural
and media that we focus on in this work encapsulates common speech scenarios in the home, that can give
insight into people’s activities. Our experimentation focuses on real-world audio recorded in noisy, in-home
environments, and this work adds to the research area of activity detection in a dynamic environment.

2.3 Audio Classification of Media

Work has also been done in the classification of different forms of media. Audio information has also been utilized
when researching genre classification in different forms of media. Music information retrieval methods have
explored classifying songs into genres such as pop, rock, or blues [5, 43] and television media classification
has classified videos into genres such as cartoons, news, or weather forecasts [15]. A key aspect of many of
these media approaches, along with the in-home activity detection of Section 2.2, involves extracting time and
frequency domain features (e.g., spectral contrasts, spectral roll-offs, Mel-Frequency Cepstral Coefficients, or
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chroma features) from the overall audio signal and using these features to inform and train machine-learning
classification algorithms. We build on this work by using similar features in our analysis, and discuss more
background and motivation of the feature selection in Section 3.2.

3 METHODOLOGY

In this section, we describe how we (a) compiled an audio dataset containing the natural and media classes, (b)
extracted features from each audio sample, and (c) selected the machine learning classifiers that we experimented
with. We define two terms that we will be using throughout this paper. First, when discussing a sample, we are
referring to a 5-second segment of audio that has been recorded and is used in feature extraction. A recording is
a collection of contiguously captured samples during a given time window.

3.1 Audio Sample Collection

We collected audio content from various television genres and radio shows (sound from electronic speakers)
and human speakers (sound from human voices). The final dataset contained approximately 30 hours of audio
recordings, and was well-balanced between the media and natural classes.

Both categories were recorded on Kinect One microphones. This was important because any decisions made
by a machine learning classifier would be able to focus on the difference of the audio content, rather than
discrepancies caused by different recording hardware.

3.1.1 MediaRecording Set. Our media (M) recording set consisted of a variety of TV shows or radio recordings,
that we recorded on the Kinect One?. We focused on collecting audio recordings from popular television genres,
which include drama, comedy, participatory/reality, news, and sports [46], as well as audio from radio shows.
This category was recorded in different rooms, using a variety of electronic speakers®, with the microphone
capturing audio at varying distances from the speakers, during different contiguous time windows. Recording
during different time windows allowed for different background and ambient noise to be captured as a part of the
various recordings. All audio recordings were recorded at a rate of 16 kilohertz (kHz) in the waveform audio file
format (.wav).

Each room, speaker, and microphone position configuration is referred to as its own unique label. These
different recording configurations emulate a variety of recording conditions that an in-home agent might face.
The distribution of the audio in each label can be seen in Table 1. There are 60 media recordings in our dataset,
with a total of 10,138 samples, for around 14 hours of audio. Depending on the experiment that we performed, a
different split of the recordings in the media set was used as training and testing data (explained in more detail in
Section 4).

3.1.2 Natural Recording Set. The natural recording set can be broken down into three categories: CHiME5
(C), Video Calls (V), and Family Conversations (F).

Natural Audio from CHIiMES5. Category C recordings were comprised of content from the CHiME-5 dataset [4],
available online. CHiME-5 contains audio captured from dinner parties in different houses. Each dinner party
involved a different group of four people, who were told to engage in natural conversation in the house’s kitchen,
dining room, and living room for at least 2 hours.

Category C contained audio from 10 different CHiME-5 sessions. Each session contained audio from six Kinect
microphone arrays, placed in different locations (bedroom, kitchen, living room) in each home, with audio input
from each channel of each microphone. We used audio from the different Kinect microphones within the same

2We recorded the media recordings being emitted through electronic speakers, instead of inputting the media audio file directly into the
classifier, because this is how a robot in the home would be capturing the media audio.

3The specific speaker models are as follows: Bose SoundLink 359037-1300 Mini Bluetooth Speaker (Bose), MacBook Pro 13" (Mac), iPhone 11
Pro (iPhone), Bose Wave Music System II (BigBose), 40" Eco Bravia VE5 Series LCD HDTV (SonyTV)
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dinner party in our dataset because we wanted a diverse set of audio captured from different locations with
varying acoustic properties. For the C category, we considered a recording to be all of the audio collected from
a unique CHIiME-5 session. The CHiME-5 audio files were in the waveform audio file format (.wav), with a
recording rate of 16kHz. We chose CHiME-5 because it captured natural, social scenarios that one can expect to
find in a home environment. We input the CHiME-5 files directly into the classifier because this is how natural
audio would be captured by the robot. In total, category C contained 10,130 samples (1013 samples per recording).
This sample number is equivalent to approximately 1.4 hours per CHIME-5 session, for a total of almost 14 hours
of audio. Samples from the C category were used as our natural training data.

Natural Audio from Our Home Environments. We also captured natural audio from our own homes. We had
Institutional Review Board approval to record audio in homes and to extract and analyze acoustic features. There
were two categories that we experimented with, involving natural scenarios from 6 rooms in 3 different homes.
We left a recording microphone in locations that we deemed appropriate for an in-home robot or device to be
placed, recorded audio, and later inspected the audio. Audio from these two categories was used as our natural
testing data.

Category V captured audio from video calls taking place in a home’s office, dining room, and living room.
These recordings involved conversations between members of a family consisting of two children and three
adults. Members of the family congregated in their dining room and spoke over a video call on a laptop and
phone using Zoom or Facebook Messenger. The calls were all on speaker. As a result, voices were variably distant
from the microphone and the recordings captured by the Kinect included a mixture of voices coming from an
organic source (the person in the same room as the Kinect microphone) and from electronic sources (the people
on the video call). The same person was physically in the room with the Kinect for each of these recordings.
Category V included six separate recordings, with a total of 917 samples.

Category F consisted of audio collected from family conversations in kitchens and living rooms, in three
different homes. The microphone was placed close to where people were dining and conversing. An example
location for the microphone was on a counter in an open, spacious kitchen. The kitchen recordings included
some background noises such as the running sink, clanking utensils, and plates and glasses moving, while the
living room recordings happened with little to no noise in the background. Category F included 965 samples and
seven separate recordings, including voices from 11 different people.

There are multiple reasons that we decided to also collect natural audio that we recorded ourselves, despite
having an extensive corpus of in-home, natural audio from CHiME5. Even though we tried to collect our media
sample set with similar recording characteristics (i.e., microphone and sampling frequency) to CHiMES5, we
wanted to see whether or not classifiers trained solely on CHiME-5 could generalize to classifying other natural
audio from outside of that corpus. This could show that these classifiers are able to correctly disambiguate between
natural and media recorded by us, and that that the classification is not just a result of some discrepancies in how
CHiIME-5 was collected and how we recorded our audio. Lastly, we wanted to be able to experiment with the
case of social presence that includes a mixture of electronic audio and organic-sourced natural audio, captured
in the V dataset. This circumstance indicates social presence because at least one user that is co-located with
the robot is engaged in a natural conversation, while chatting on a call with others. Samples from the V and F
categories were used as our natural testing data.

3.2 Feature Extraction

We split our entire audio dataset into 5-second samples. From each sample, we extracted features to create an
input vector that was used to train machine learning classifiers. We used the LibRosa Python package [31] to
extract audio features. These are commonly used features in audio analysis (as mentioned in Section 2.3), which
was the motivation for using them.
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Table 1. Media Data Set Composition

Label | Room | Speaker | Kinect Distance | Total Samples | Recordings
A Bedroom Bose 1ft 617 6
B Bedroom Bose 9 ft 852 7
C Bedroom Mac 6 ft 2075 11
D Playroom Bose 1ft 627 5
E Playroom Bose 5 ft 517 9
F Playroom Bose 10 ft 332 3
G Playroom | iPhone 1ft 423 3
H Playroom | iPhone 4 ft 372 2
I Kitchen Bose 9 ft 543 2
J Kitchen | BigBose 9 ft 1185 5
K Kitchen | SonyTV 4 ft 1432 2
L Kitchen iPhone 6 ft 201 1
M Kitchen Mac 6 ft 551 3
N Kitchen Mac 1ft 411 1

In total, 83 features were extracted from each audio sample. We performed a standard transformation of each
feature to normalize the feature set. The input vector contained the features below for each audio sample:

o Mel-frequency cepstral coefficients (MFCCs): These are dominant features that have been historically used in
speech recognition and they have been explored in separating music and speech [27]. It is typical that 13
coefficients are used for speech representation [43], so we use the means and standard deviations for each
of the first 13 coeflicients over the sample, for a total of 26 features.

e Chroma Energy Normalized Statistics (CENS): These are features that have been used in audio analysis
research to match similar audio [34]. There are 12 chroma classes and we use the mean and standard
deviation for each chroma class over the sample, for a total of 24 features.

® Root-mean-square (RMS) energy values: Energy features are commonly used in audio analysis, with some
prior work finding that the combination of energy with MFCC is better than using MFCCs alone [23]. We
use the range, standard deviation, and skewness of this feature, for a total of 3 features.

o Zero-crossing rates: These are features that are commonly used in audio analysis [15] and can help provide
a measure of noisiness of the audio sample [43]. We use the mean, standard deviation, and skewness, for a
total of 3 features.

o Tempo: This feature estimates the beats per minute in the audio sample. The motivation behind adding this
is that music from TV or radio commercials typically have more tempo than conversational audio in the
home. This is 1 feature.

o Spectral centroid, flatness, rolloff, and bandwidth: These are also commonly used low-level components of
the audio signal [10, 43]. We use the mean, standard deviation, and skewness for each, for a total of 12
features.

o Spectral contrast: These are features that have been shown to discriminate among different music genres
[23], so we use the means and standard deviations for seven sub-bands, for a total of 14 features.

Note that none of these features involve transcription or semantic representation of dialogue/words in the audio
environment. This way, the audio is translated into a machine readable format that has little to no meaning to
a human, as opposed to words, which are used in lexical analysis in Natural Language Processing. This is an
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arguably less invasive and more privacy-sensitive approach than using words, especially if the robot is intending
on sending the input vector to the cloud to be analyzed.

3.3 Classification Algorithms

In our experiments to determine if our classification problem can be solved, we trained and tested different
models with six traditional machine learning classification algorithms, using the sci-kit learn Python library [37].
These are commonly used algorithms for audio classification tasks (see Section 2 for more details). We performed
an experimental evaluation of various approaches, to see which classifiers would be best suited to tackle the
problem. We experimented with the following algorithms:

e KNeighborsClassifier [18]

e DecisionTreeClassifier [7]

e QDA (Quadratic Discriminant Analysis) [21]
o LogisticRegression [49]

e GaussianNB (Gaussian Naive Bayes) [48]

e SVC (C-Support Vector Classification) [8, 16]

We use these traditional classifiers instead of deep learning techniques, which have gained popularity in recent
years in the audio analysis space, for multiple reasons. First, our dataset is modestly sized, and traditional ML
algorithms have a much better chance at performing successfully than deep learning when the dataset is not very
large. Second, we know the feature space that we want to use for this classification task. Lastly, we are hoping
to be able to use these trained classifiers on real-time systems, so the response time needs to be quick and the
complexity and space taken by the classifier needs to be reasonable (many social robots have limited compute
power).

A gridsearch on each classification algorithm measured what hyperparameter combination was the best for
each algorithm on our first experiment (described in Section 4.1). The different hyperparameter combinations for
each classifier that were experimented with can be found in Appendix A. The hyperparameters that led to the
highest performance, and were subsequently selected for the classifier in all of the following tests can be seen in
Appendix B.

4 EXPERIMENTS AND RESULTS

In this section, we describe how the various classifiers performed on experiments that tested the classifiers’
abilities to generalize to novel recordings, environments, and conditions. We test how well classifiers perform on
a leave-one-recording-out cross validation, where we test on recordings that were left out of the training set. We
also test how well the classifiers generalize to classifying natural recordings from outside of the training corpus
and to media recordings from (1) rooms, (2) speakers, (3) microphone positions, and (4) combinations of all three,
that they were not trained on.

4.1 Leave-One-Recording-Out Cross Validation

We performed an evaluation similar to a leave-one-out cross-validation (LOOCV), but in our case, leave-one-
recording-out cross-validation (LOROCV)*. To perform LOROCV, we trained models using natural recordings
from our CHiME-5 category (C) and media recordings from our media (M) recording set. For each fold of LOROCYV,

*A conventional splitting of all of the samples into a train, test, and validation set would not be very insightful because many of our data
samples were part of the same contiguously recorded audio clips (recordings). For any given recording in our dataset, there were at least 15
samples that were a part of the same original audio recording. When randomly shuffling the dataset for the train/test/validation splits, it
is likely that some of a recording’s 5-second samples land in each of the folds and the test and validation sets. Since audio from the same
recording is inherently similar, we performed a cross validation per recording.
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we trained on all recordings except for one from C and one from M. We did this for all possible pairs of recordings
from C and M, which resulted in 600 folds (the Cartesian product of the 10 recordings in C and the 60 recordings
in M). For each fold, we tested our classifier on the 1) left-out {C,M} recording pair, 2) left-out M recording and
natural audio sampled from V, 3) left-out M recording and natural audio sampled from F, and 4) left-out M
recording and natural audio sampled from both F and V. Because recordings can be of different lengths, we
randomly sampled from the larger recording to match the size of the smaller recording. This ensured that we had
balanced test sets each time.

The metrics that we recorded for all of our experiments are below. TP is a true positive, TN is a true negative,
FP is a false positive, and FN is a false negative.

e Accuracy=(TP+TN)/(TP+TN+FN+FP)

e Precision = TP/(TP+FP)

e Recall = TP/(TP+FN)

e F1 Score = (2*Precision*Recall)/(Precision+Recall)

We recorded the precision, recall, and F1 scores for both the media and the natural classes (i.e., we treated both
as the positive class). Both the macro averages (arithmetic mean) and micro averages (weighted average) were
recorded across all folds. The full results for LOROCV can be found in Table 13 in Appendix D, with a summary
in Table 4 in Appendix C.

With LOROCYV, we test on natural audio from left-out CHiME-5 sessions (new voices and rooms from new
homes within the CHiME-5 corpus), or better yet, on natural audio from the V or F categories that we recorded
ourselves. We also test on unseen media recordings that the classifiers have not trained on and that we have
recorded ourselves. This provides insight into how the trained algorithms can generalize to classifying novel
recordings of media and natural audio.

4.2 Leave Out Rooms, Speakers, and Microphone Positions in the Media Set

We can gain further insight into how robustly the classifiers can differentiate between natural and media audio,
if media in the training set contains recordings from different acoustic conditions (e.g., rooms, loudspeakers,
microphone distances) than media in the testing set. In the experiments in this section, we evaluate how our
classifiers perform when toggling which condition(s) of the media recording set to leave out of the training set.
We also use the natural audio from the C category to train our models. We test on the natural V and F categories
that we recorded ourselves and on the left-out media.

We left all of the media samples of a specific (1) room, (2) speaker, (3) microphone position, or (4) combinations
of the three, out of the training set, and tested on the left out media samples and on natural samples from the V
and F test categories. We matched the number of media samples in the training set with an equally distributed,
random sample of 5-second samples from each natural recording in category C. We randomly sampled from
all of the recordings in the larger test subset to match the size of the smaller subset. This ensured that we had
balanced test sets each time. We recorded the micro and macro averages of precision, recall, and F1 scores for
both the media and natural classes, as in LOROCV. The following paragraphs describe each experiment that we
performed.

In Leave One Label Out (LOLO), we wanted to see how well classifiers would perform when they trained
on media from specific labels, or specific room, speaker, and Kinect distance configurations (see Table 1), along
with natural from category C, and then were tested against configurations that they were not trained on. We
performed a Leave One Label Out (LOLO) experiment on all labels of our media data, where we trained different
models using all the recordings from all combinations of labels, and tested against the held out labels. The left
out media data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The full
results for each classifier can be found in Table 14 of Appendix D, with a summary in Table 5 of the Appendix C.
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In Leave One Room Out (LORO), we wanted to see how well classifiers would perform when they trained on
media from specific rooms, along with natural from category C, and then were tested against media from a room
they had not trained on. This is important because each room has a different acoustic environment and layout.
The classifiers should be able to make accurate predictions regardless of if they have trained on audio from the
room in which they are deployed. In LORO, classifiers test on media recordings from a room that they have not
trained on, but the test set includes loudspeakers and microphone distances that they have trained on. The left
out media data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The full
results for each classifier can be found in Table 15 of Appendix D, with a summary in Table 6 of Appendix C.

In Leave One Speaker Out (LOSO), we wanted to see how well classifiers would perform when they trained
on media from specific loudspeakers, along with natural from category C, and then were tested against media
from loudspeakers they had not trained on. This is important because each loudspeaker has different hardware
properties and the classifiers should be able to make accurate predictions regardless of if they have trained on
audio from the loudspeaker from which they hear audio. In LOSO, classifiers test on media recordings from a
loudspeaker that they have not trained on, but the test set includes rooms and microphone distances that they
have trained on. The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classifier can be found in Table 16 of Appendix D, with a summary in
Table 7 of Appendix C.

In Leave One Distance Out (LODO), we wanted to see how well classifiers would perform when they trained
on media from certain microphone distances from a loudspeaker, along with natural from category C, and then
were tested against media from microphone distances they had not trained on. This is important because the
robot might be at variable distances from the sound source. In LODO, classifiers test on media recordings from a
microphone distance that they have not trained on, but the test set includes loudspeakers and rooms that they
have trained on. The left out media data at each fold was tested along with natural audio from the category V, F,
and V+F datasets. The full results for each classifier can be found in Table 17 of Appendix D, with a summary in
Table 8 of Appendix C.

In Leave One Room and Speaker Out (LORSO), we wanted to see how well classifiers would perform when
they were tested on media rooms and speakers that they had not trained on. This is a more robust test than the
previous ones. In LORSO, classifiers test on media recordings from a room and speaker that they have not trained
on, but the test set includes microphone distances that they have trained on. The left out media data at each fold
was tested along with natural audio from the category V, F, and V+F datasets. The full results for each classifier
can be found in Table 18 of Appendix D, with a summary in Table 9 of Appendix C.

In Leave One Room and Distance Out (LORDO), we wanted to see how well classifiers would perform when
they were tested on media rooms and microphone distances that they had not trained on. In LORDO, classifiers
test on media recordings from a room and microphone distances that they have not trained on, but the test set
includes microphone distances that they have trained on. The left out media data at each fold was tested along
with natural audio from the category V, F, and V+F datasets. The full results for each classifier can be found in
Table 19 of Appendix D, with a summary in Table 10 of Appendix C.

In Leave One Speaker and Distance Out (LOSDO), we wanted to see how well classifiers would perform when
they were tested on media speakers and microphone distances that they had not trained on. In LOSDO, classifiers
test on media recordings from a loudspeaker and microphone distances that they have not trained on, but the test
set includes rooms that they have trained on. The left out media data at each fold was tested along with natural
audio from the category V, F, and V+F datasets. The full results for each classifier can be found in Table 20 of
Appendix D, with a summary in Table 11 of Appendix C.

In Leave One Room, Speaker, and Distance Out (LORSDO), we wanted to see how well classifiers would
perform when they were tested on media speakers, rooms, and microphone distances that they had not trained
on. This is the most challenging test that we perform for the classifier. In LORSDO, classifiers test on media
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recordings from a room, loudspeaker, and microphone distance that they have not trained on. The left out media
data at each fold was tested along with natural audio from the category V, F, and V+F datasets. The full results
for each classifier can be found in Table 21 of Appendix D, with a summary in Table 12 of Appendix C.

Table 2. Experiment Summary. The table shows the average of the macro average F1 scores ((Fyarural + Fmedia)/2) for each
classifier across all folds of each experiment. The table shows the average results of the trained classifiers being tested
on the left out media sets along with natural recordings from the V and F categories. The classifier with the best average
performance on each test set and experiment is in bold. More comprehensive results can be found in the Appendix.

Experiment TestSet KNN QDA DT GNB LR SVC

V+M 945 890 879 86.0 879 913
LOROCV F+M 87.1 99.5 989 962 989 96.6
F+V+M 913 933 928 90.5 92.8 93.7

V+M 785 993 960 904 917 931
LOLO F+M 85.6 888 779 824 829 90.4
F+V+M 825 934 858 855 864 917

V+M 774  99.2 943 81.0 850 949
LORO F+M 83.1 86.1 75.1 83,5 827 86.5
F+V+M 804 92.6 848 829 845 90.6

V+M 76.9 985 99.0 938 97.1 934
LOSO F+M 83.6 844 752 80.7 843 87.5
F+V+M 809 91.0 86.6 87.0 904 90.3

V+M 78.9 98.8 973 916 97.8 9438
LODO F+M 743 83.6 639 716 816 84.1
F+V+M 777 910 814 818 89.6 894

V+M 679 86.6 87.9 70.1 856 863
LORSO F+M 82.1 829 781 76.7 87.2 88.1
F+V+M  76.1 85.1 831 749 869 87.6

V+M 70.0 925 953 785 888 874
LORDO F+M 783 86.7 779 771 894 90.5
F+V+M 750 894 858 78.0 89.6 89.5

V+M 763 909 90.1 852 953 945
LOSDO F+M 79.1 80.8 766 783 833 84.8
F+Vv+M 779 855 828 814 89.0 89.5

V+M 65.8 824 87.2 700 865 853
LORSDO F+M 73.0 771 727 66.7 83.7 85.2
F+V+M 699 795 796 682 850 853
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4.3 Selecting a Classifier

In general, we see that most of the trained classification algorithms perform well on our experiments. We see
that most of the classifiers have average F1 scores in the 90s or 80s for a majority of the experiments. Table 2
summarizes the results for all our experiments, for each classifier.

4.3.1 Results. We see that SVC has the best performance on the most tests throughout our experiments. SVC
has the highest average F1 score on 12 out of the 27 tests, with the highest average F1 score on 7 out of the 12
more difficult tests (where two or three of the media parameters are left out of the test set in LORSO, LORDO,
LOSDO, and LORSDO). SVC has the highest performance on the F+V+M test sets on all but one of the more
difficult experiments, and SVC has the highest F1 score on the F+M test sets for almost all of the experiments. On
LORSDO, the most difficult experiment, SVC has the best performance on two out of three of the tests (V+M and
F+M). Despite not having the highest scores on V+M, it does consistently well on the test set; throughout all of
the experiments. Generally, SVC is the most consistent classifier across the different test sets and experiments,
and is always performing with high F1 scores.

The next best classifier in terms of leading F1 scores is QDA, which has 7 of the best F1 scores. For QDA, all
of these top results come in the first five experiments, where the training data includes more of the acoustic
environment and conditions than in the last four experiments. QDA performs very strongly on the V+M test
sets and on the F+V+M test sets for these experiments. This shows that if the training set has certain qualities
similar to the test set, QDA could be a legitimate option for classifying between natural and media. However,
the classifier that performs the best when the test data is most dissimilar to the training data is SVC. QDA does
reasonably well, but performs overall worse than SVC in the last four experiments, especially on the F+M and
the F+V+M datasets. QDA could be a good option alongside SVC if we know that the testing environment and
conditions will have similarities to the training set.

DT has the top average F1 scores on 4 of the tests: DT does very well when classifying the V+M test set, with
high scores on three out of four of the V+M tests in the more difficult experiments. Except for LOROCV, DT
performs very well on the V+M test sets on all of the experiments. However, there is a significant tradeoff seen in
how well DT performs on the F+M test sets. DT might be very good at classifying between natural and media
with natural video calls and media in the test set, but does very poorly at classifying natural family conversations.
In this regard, SVC is better overall for its consistency across both the V+M and F+M test sets.

LR has the top average F1 score on only 2 of the tests, however we see that LR is able to generalize well to new
media and natural audio. LR performs very well in many of the experiments, with F1 scores that are close to,
albeit slightly worse than, SVC in most of the experiments. Especially in LORSO, LORDO, LOSDO, and LORSDO,
we see that LR is able to perform consistently well on V and F data, with scores similar to that of SVC on the
F+V+M datasets. LR does a good job at generalizing to new environments that it has not trained on for left out
media data, and video calls and family conversations. However, QDA is better than LR when the training set is
more similar to the test set, and SVC is better than LR when the test set is more dissimilar.

KNN and GNB have the worst performances on our experiments. KNN performs the best on V+M in LOROCYV,
but besides that, KNN and GNB show substantially worse performance than the other classifiers. They perform
particularly poorly on LORSDO, which tests how well they can generalize when training on very dissimilar media
data to the test set. We would not recommend KNN or GNB, especially when compared to our other trained
classifier.

4.3.2 Discussion. Overall, SVC is best able to generalize to new recordings. We see this both in SVC’s ability to
perform well on natural data that we recorded in our own homes, which was outside of the natural audio from
the CHiME-5 corpus that the model was trained on, as well as good performance of the classifier to media from
loudspeakers, microphone distances, and rooms that it was not trained on (Table 21). SVC performs consistently

ACM Trans. Hum.-Robot Interact.



Is Someone There Or Is That The TV? Detecting Social Presence Using Sound « 13

well when tested on in-the-home, natural audio of both video calls (V) and family conversations (F). SVC performs
with accuracies of over 85% on LORSDO, with recall scores of over 90% for natural V or F audio, and recall of
over 81% for media data from a different room, loudspeaker, and microphone distance than it was trained on.
We believe that SVC is the best classification algorithm that we experimented with at disambiguating between
natural and media. It does the most consistently well across our tests sets in our experiments, and does the best
at generalizing to new environments and conditions that it has not trained on.

LR also performs well on both of the natural test sets and on many of the experiments, but performs worse
than SVC overall. QDA performs very well when tested against data with some similar characteristics to what it
is trained with, but does more poorly on stricter generalizability tests. DT performs very well on video calls, but
very poorly when tested against family conversations. KNN and GNB do not perform well.

Since QDA, LR, and SVC all perform well across all of our test sets and experiments, with QDA showing
particularly strong performance when the media testing conditions have some similarities to their training
coonditions, it could be an option to use an ensemble of classifiers in making the natural vs. media prediction.
We need to verify that the classifiers do not take too long to make predictions and that they do not take too much
space in memory. If these two statements hold true, it could be reasonable to use all three in predicting natural
vs. media. We perform these timing and size experiments in Section 5.1.

5 PROPOSED APPLICATION

A critical criterion when selecting a classification algorithm is that it can perform in close to real-time to be
suitable for a robot in the home or in the real world. A robot should provide a naturalistic and intuitive interaction
for human users, so real-time classifications and responses are essential: Taking too much time to analyze the
audio environment, extract features, make predictions, and act on those predictions may negatively affect the
overall interaction. Keeping these factors in mind, we (a) perform several timing and size tests on various steps
of the audio collection and decision-making process, (b) suggest an overall classification pipeline for a robot to
implement this approach, and (c) present ethics and privacy considerations that were taken into account for this
pipeline. For these timing and size experiments, we train the classifier on the entire natural C category that we
compiled, and all of our media recordings.

5.1 Timing and Size Experiments

We measured the speed of feature extraction and prediction using around 45 minutes of audio data (540 5-second
samples). Extracting features from each of the 540 audio samples took an average of 0.557 seconds (STD=0.0442
seconds) on a Dell Laptop with an Intel i5-5200U CPU @ 2.2GHz and 8GB RAM. To measure the average prediction
time for each audio sample, we measured the time that it took to standardize and predict the entire (540x83) input
vector and divided it by 540. The trained standardization scaler had a size of 4 kB. The average prediction times
and the sizes on disk for each trained classifier can be seen in Table 3 below.

Table 3. Classifier Size and Prediction Times

Model | Avg. Prediction Time (ms) | Size (kB)
KNN 2.524 13,545
QDA 0.01064 115

DT 0.00117 12
GNB 0.00312 4

LR 0.00366 4

SvC 0.17480 668
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Fig. 1. Proposed classification pipeline. See Section 5.2 for description.

We see that all of the classifiers that we trained have fast prediction times. DT and GNB are the fastest, with
LR and QDA next, then SVC, and KNN last. However, all the classifiers, except for KNN, are considerably faster
than a millisecond, so we believe that any of the classifiers would be sufficient in that respect.

With respect to size on disk, LR and GNB are the smallest, with DT as next smallest. SVC is the second largest,
but still not prohibitively big.

These sizes (and predictions) are also promising in that if the dataset were to get substantially larger, that most
of these classification algorithms seem like they would be able to scale and still be reasonable to use on-board and
real-time. This might not be true for KNN, but that was eliminated due to its poor performance on generalization.

This also means that after recording a 5-second sample, the whole classification process could be used on-board
a robot, even on one with little memory. The whole classification process, after recording a 5-second sample, can
take less than a second for feature extraction, standardization, and the prediction, making it possible to use this
in real-time.

Furthermore, a robot could reasonably include multiple trained classifiers on disk and require less than one
megabyte (MB) of space. If using an ensemble of classifiers, the prediction time still remains substantially lower
than one millisecond. Both the timing and size of the classifiers together allow for an ensemble to be used.

5.2 Classification Pipeline

In a real-world setting, we suggest our classifier be used as a part of a greater classification pipeline, shown
in Figure 1. A Kinect One microphone would be required®, along with minimal onboard computing power. All
audio collection, analysis, and computation can take place locally, without needing to offload any data to online
services.

The system begins by recording a 5-second raw audio stream of the environment and initializing the count
variables to 0. The system stores the recording and checks it for speech.® If speech is not detected, the system
should loop back to the start by resetting the counts, and deletes the recording. If speech is detected, the feature
extraction is performed, the audio is deleted, and a corresponding natural or media prediction is made. After
a prediction, the corresponding count is incremented, and the other count is reset to 0. Only after X, or Y,
consecutive predictions in a certain category will the decision be “final". Otherwise, the corresponding count is
reset to 0. Once a final decision is output by the pipeline, the process starts again, with both counts initialized to
0.

SWe did not test multiple microphones so we cannot say whether or not our classifier would have any success recording with a different
microphone.

6Speech could be checked for by using a voice activity detection (VAD) algorithm, trained on the Kinect, that can detect when human speech
is a part of the acoustic environment.
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Depending on how sensitive we want the system to be to the classifier’s predictions, we can alter the values
of X and Y. For example, with X = 3, the classifier will have to predict close to 15 consecutive seconds (three
decisions in a row) as media. This approach does not allow for one false positive to ruin the final classification,
but rather the classifier would have to get the audio scene wrong three times in a row in order to make a mistake.

An alternative approach is to set both X=1 and Y=1, in which case the pipeline will be returning a final
prediction on every 5-second audio sample, unless it does not detect speech. This will give a robot using this
pipeline more frequent data points to use in its final decision making.

After the system determines whether or not the speech that it hears in its environment is media or natural, it
can use this classification, along with other contextual information to make decisions on how to act. For example,
the robot could also have other tools available to it that can detect characteristics from human speech such as
tone, emotion, and intensity. The robot could also utilize context like the time of day, the day of the week, its
location in the home, the current weather, and more.

Another interesting contextual tool that could be incorporated into this pipeline is sound source localization
(SSL), which utilizes the microphone array of the Kinect. SSL could help the robot get an approximation of
where the speech is coming from. This extra context, combined with the natural vs. media classification, could
further assist the robot in making a more informed decision on social presence and providing it with a better
understanding its environment. VAD and SSL could be combined to localize and individually classify multiple
speakers in a noisy audio scene, but such VAD for multi-speaker diarization in real-world scenarios remains an
open research problem[32].

This classification pipeline can provide the robot with an understanding of if speech is natural or media in
its environment, helping it in inferring social presence. The robot can use this information, along with other
context, to make appropriate decisions about how to interact, or not, and to best accommodate its user(s) and to
reach its goals.

5.3 Ethics and Privacy Considerations

In home data is inherently sensitive, and the audio pipeline presented in our paper is considerate of that. We
believe our solution is minimally invasive. Using one modality (i.e., just audio) to make decisions is undoubtedly
less invasive than using more. In fact, our suggested solution is computed locally (it is lightweight and would
not require sending any sensitive data to online services), only needs to store a 5-second sample of audio at
a time (which can be deleted immediately after features are extracted from it), and does not use any semantic
representation or transcription of the audio (which could contain sensitive information) as a part of its decision
making. These are important factors that keep users’ privacy in mind.

6 LIMITATIONS

There are several limitations to this work that we believe are important to make clear. First, the dataset that we
compiled could be more diverse and representative. Our natural training data is only comprised of audio from
the CHiME-5 dataset, even though it does contain audio from different homes, rooms, and voices. Our media
dataset contains three different rooms from within one home and five different electronic devices. Obviously,
there are countless other possible devices from which audio can be emitted in the home, which were not included
in our training set. Despite these limitations, our results showed that classifiers were able to make accurate
media classifications on audio from recording devices, rooms, microphone distances, and combinations of the
three that they were not trained on, and the classifiers were able to classify natural audio from outside of the
CHIiME-5 training corpus, that included new rooms and voices in the V and F test sets. Another limitation is
that the recordings in our V and F categories could be more diverse and comprehensive, with the inclusion of
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audio from more homes, families, and people. Also, we only focus on audio from the home, when ideally, such a
classification tool should be able to make predictions in other dynamic, human environments as well.

Additionally, our dataset does not include examples of scenarios where media from television or radio shows is
playing at the same time that natural conversation (that includes at least one co-located person) is occurring.”
Further testing would be needed to see how our classifiers would perform when both media and natural audio
are overlaid. We did see that in situations where electronic and organic speakers are conversing with each other
in the audio scene (in our video calls test category), the classification algorithms classified the audio as natural. It
could be beneficial if a robot could garner more detailed context of identifying, indexing, and classifying between
each organic and electronic speaker engaged in the conversation, but we leave this as a future research direction.
Regardless, through our experimentation in this paper, we see that the classifiers can provide important context to
a robot by accurately differentiating between common speech scenarios in the home from which social presence
can be implied: popular genres in media originating from loudspeakers and natural conversation including a
co-located user.

7 CONCLUSIONS

Detecting social presence using sound involves being able to classify audio as containing either 1) natural
conversation including at least one co-located user or 2) media playing from electronic sources that does not
require a social response, such as television shows. It is important for in-home social robots to have such
a capability, as the additional context can help them in their decision making. We perform an experimental
evaluation that tests the robustness of several traditional machine learning classifiers on data from our compiled
natural vs. media dataset. We conclude that a C-Support Vector Classification (SVC) algorithm outperforms other
classifiers, and we propose a classification pipeline that can be utilized by social robots in the home to help them
in detecting social presence using sound.
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HYPERPARAMETERS USED FOR GRIDSEARCH ON LEAVE-ONE-RECORDING-OUT CROSS
VALIDATION

KNN
e "n_neighbors": [1,3,5,7,9]
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A2

A3

A4

A5

A6

QDA

Is Someone There Or Is That The TV? Detecting Social Presence Using Sound

o "weights": ["uniform’, *distance’]
e "p":[1,2]

e "reg_param": [0.00001, 0.0001, 0.001,0.01, 0.1
e "tol": [0.0001, 0.001,0.01, 0.1]

DT

GNB

"criterion": [ gini’,entropy’]
"max_depth": [1, 5,10,None]
"min_samples_split": [2,5,10]
"min_samples_leaf": [1,2,5]

e "var_smoothing": [1e-2, le-3, le-4, le-5, le-6, le-7, le-8, 1e-9, le-10, le-11, le-12, le-13; 1e-14, le-15]

LR

e "solver": ['Ibfgs’/liblinear’, 'newton-cg’]
o "penalty”: ['11’, ’12°]
e "C™ [0.001,0.01,0.1,1,10,100,1000]

SvC

e "kernel": ['linear’,rbf’]
e "gamma": [‘scale’, ‘auto’]
e "C": [0.1,1,10,1000]

HYPERPARAMETERS OF MODELS PRESENTED IN SECTION 4 RESULTS

Model | Hyperparameters
KNN | ‘algorithm’=‘auto’, = ‘leaf size’=30, ‘metric’="minkowski, ‘metric_params’=None,
‘n_jobs’=None, ‘n_neighbors’=8, ‘p’=1, ‘weights’=‘distance’
QDA | ‘priors’=None; ‘reg_param’=0.01, ‘store_covariance’=False, ‘to]’=0.0001.

DT | ‘ccp_alpha’=0.0, ‘class_weight’=None, ‘criterion’="entropy’, ‘max_depth’=None,
‘max_features’=None, ‘max_leaf nodes’=None, ‘min_impurity_decrease’=0.0,
‘min_impurity_split’=None, ‘min_samples_leaf’=2, ‘min_samples_split’=2,
‘min_weight_fraction_leaf’=0.0, ‘random_state’=0, ‘splitter’=‘best’

GNB | ‘priors’: None, ‘var_smoothing’: 0.001

LR ‘C’: 0.1, ‘class_weight’: None, ‘dual’: False, ‘fit_intercept’: True, ‘intercept_scaling’: 1,
‘11_ratio’: None, ‘max_iter’: 100, ‘multi_class’: ‘auto’, ‘'n_jobs’: None, ‘penalty’: 12, ‘ran-
dom_state’: None, ’solver’: ‘Ibfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: False.

SVC | ‘C’: 10, ‘break_ties’: False, ‘cache_size’: 200, ‘class_weight’: None, ‘coef0’: 0.0, ‘deci-
sion_function_shape’: ‘ovr’, 'degree’: 3, ‘gamma’: ‘scale’, ‘kernel’: “rbf”, ‘max_iter’: -1,
‘probability’: False, ‘random_state’: None, ‘shrinking’: True, ‘tol’: 0.001, ‘verbose’: False
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C EXPERIMENT F1 SCORE SUMMARIES

Leave-One-Recording-Out Cross Validation (LOROCV) Summary. We present the average F1 scores between each of the two
classes across all LOROCYV folds. For each fold, all of a room’s media recordings were held out of the training set, and used in
the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

Flpaturar 95.1 877 864 855 864 90.6
V+M  Flpegia 938 902 894 865 893 91.9
Avg. F1 945 890 879 86.0 879 913

Flugrurar 869 995 989 964 99.0 965
F+M Flyedia 872  99.5 988 959 988 96.6
Avg. F1 87.1 99.5 989 96.2. 989 96.6

Flpgwrar 917 931 923 904 923 934
F+V+M Flpegia 909 934 932905 932 93.9
Avg.F1 913 933 928 905 928 93.7

Leave-One-Label-Out (LOLO) Summary. We present the average F1 scores between each of the two classes across all 14
LOLO folds. For each fold, a media recording and natural C recording were held out of the training set, and used in the
testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

Flpgtwrar 8155  99.3 969 929 949 94.1
V+M  Flpegia 755 99.2 951 879 885 92.1
Avg.F1 785 993 960 904 917 93.1

Flparural 884 875 756 840 850 90.2
F+M  Flpeqia 827 900 802 80.7 80.8 90.6
Avg.F1 856 888 779 824 829 90.4

Floaturar 854 93.0 858 87.8 894 92.0
F+V+M Fl,eq, 795 93.8 858 832 833 913
Avg. F1 825 934 858 855 864 0917
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Leave-One-Room-Out (LORO) Summary. We present the average F1 scores between each of the two classes across all three
LORO folds. For each fold, all of a room’s media recordings were held out of the training set, and used in the testing set

along with the natural audio from our own homes.

TestSet Metrics KNN QDA DT GNB LR SVC
Flpgtwar 778 99.2 948 856 839 947

V+M  Flpegia 769 99.2 937 763 81.0 95.0
Avg. F1 774 99.2 943 810 850 949

Flpgwrar 852 843 718 829 825 86.5

F+M  Flpeqia 81.0 87.8 783 840 829 864
Avg.F1 831 861 751 835 827 86.5

Flpgwar 815 921 841 840 852 904

F+V+M  Flpege 793 93.0 854 817 837 907
Avg.F1 804 92.6 848 829 845 90.6

Leave-One-Speaker-Out (LOSO) Summary. We present the average F1 scores between each of the two classes across all five
LOSO folds. For each fold, all of a loudspeaker’s media recordings were held out of the training set, and used in the testing
set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC
Flparural 788 985 99.0 941 97.1 934

V+M  Flpegia 750 984 98.9 934 971 934
Avg.F1 769 985 99.0 938 97.1 934

Flpaurar 870 831 727 820 838 87.2

F+M  Flpegia 801 857 77.6 794 848 87.8
Avg.F1 836 844 752 807 843 87.5

Flpgwar 833 90.6 859 87.6 902 90.1

F+V+M Flpega 784 913 872 864 905 90.4
Avg.F1 809 91.0 866 87.0 904 903
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Leave-One-Distance-Out Cross Validation (LODO) Summary. We present the average F1 scores between each of the two
classes across all three LODO folds. For each fold, all of a microphone distance’s media recordings were held out of the
training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

Flpgtwrar 797 98.8 974 921 977 945
V+M  Flpegia 781 988 971 911 978 95.0
Avg.F1 789 98.8 973 916 978 948

Flpgrurar 8155 825 709 769 822 84.6
F+M  Flpeqa 670 846 568 663 809 83.6
Avg. F1 743 836 639 716 816 84.1

Flogturar 799 907 836 839 89.6 89.2
F+V+M Fl,eqqa 754 913 792 796 895 895
Avg. F1 777 91.0 814 818 89.6 894

Leave-One-Room and Speaker-Out (LORSO) Summary. We present the average F1 scores between each of the two classes
across all nine LORSO folds. For each fold, all of a room’s media recordings were held out of the training set, and used in the
testing set along with the natural audio from our own homes.

Test Set Metrics KNN ODA DT GNB LR SVC

Flpgwrar 755 922 917 814 89.0 89.5
V+M  Flpedgia 603 810 84.0 588 822 83.1
Avg.F1 679 866 87.9 701 856 863

Flpgtwrar 858 845 761 805 87.6 89.1
F+M  Flpegia 784 812 800 729 867 87.0
Avg. F1 821 829 781 767 872 88.1

Flpgrurar 811 882 836 80.6 881 89.0
F+V+M Flpeqa 710 819 825 691 857 86.2
Avg.F1 761 851 831 749 869 87.6
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Leave-One-Recording and Distance-Out (LORDO) Summary. We present the average F1 scores between each of the two
classes across all nine LORDO folds. For each fold, all of a room and microphone distance’s media recordings were held out
of the training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC
Flpgtwrar 761 940 964 854 915 896

V+M  Flpegia 638 909 94.2 716 860 85.1
Avg.F1 700 925 953 785 888 87.4

Flpgwa 839 863 756 803 89.2 90.5

F+M  Flpegia 727 870 802 738 89.6 90.5
Avg.F1 783 867 779 77.1 894 90.5

Flpgwrar 802 900 858 826 90.2 90.0

F+V+M Flpega 698 888 858 734 889 889
Avg.F1 750 894 858 780 89.6 895

Leave-One-Speaker and Distance-Out (LOSDO) Summary. We present the average F1 scores between each of the two classes
across all nine LOSDO folds. For each fold, all of a speaker and microphone distance combination’s media recordings were
held out of the training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC
Flpgwar 797 946 937 89.6 952 943

V+M  Flpegia 728 872 864 807 954 946
Avg.F1 763 909 90.1 852 953 945

Flpgtwrar 840 827 774 816 855 87.0

F+M  Flpeqia 742 789 757 750 81.0 825
Avg.F1 791 808 766 783 833 84.8

Flpguwrar 821 883 854 852 897 90.0

F+V+M Flpegia 737 826 802 775 883 89.0
Avg.F1 779 855 828 814 890 895
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Leave-One-Room and Speaker and Distance-Out (LORSDO) Summary. We present the average F1 scores between each of the
two classes across all 14 LORSDO folds. For each fold, all of a room, speaker, and microphone distance combination’s media
recordings were held out of the training set, and used in the testing set along with the natural audio from our own homes.

Test Set Metrics KNN QDA DT GNB LR SVC

Flpgtwar 741 896 911 812 89.1 88.1
V+M  Flpegia 574 751 833 588 838 825
Avg.F1 658 824 872 700 865 853

Flpgrurar 809 836 723 769 86.7 88.2
F+M  Flpeqia 650 705 731 564 80.6 82.1
Avg.F1 730 771 727 667 837 852

Flogturar 780 864 820 789 878 88.1
F+V+M Flyeqq 617 725 772 575 822 824
Avg. F1 699 795 796 682 850 853

D EXPERIMENT COMPREHENSIVE RESULTS
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Leave-One-Recording-Out CV Results. The table presents the macro and micro averages across all LOROCYV folds for each

classifier.

Our In-Home Natural Recordings
C+M F+M V+M V+F+M

Model Metrics Macro | Micro | Macro | Micro | Macro | Micro | Macro | Micro
Accuracy 96.8 96.3 94.7 94.0 87.3 86.9 91.5 90.9
Precisionn 95.7 94.8 95.7 94.7 94.8 93.7 95.3 94.2
Recalln 99.5 99.6 95.0 94.6 81.0 81.1 89.0 88.7
KNN Fin 97.3 96.8 95.1 94.4 86.9 86.5 91.7 91.1
Precisionas 99.4 94.8 94.1 93.7 82.5 82.3 88.7 88.4
Recallys 94.1 93.1 94.4 93.4 93.6 92.7 94.1 93.1
Fla 95.8 95.3 93.8 93.1 87.2 86.7 90.9 90.2
Accuracy 99.6 99.6 89.1 88.9 99.5 99.4 93.6 93.5
Precisionn 99.8 99.7 99.8 99.7 99.7 99.7 99.7 99.7
Recalln 99.5 99.5 78.4 78.0 99.3 99.1 87.3 87.2
QDA Fin 99.6 99.6 87.7 87.4 99.5 99.4 93.1 93.0
Precisionas 99.5 99.7 82.4 82.1 99.3 99.1 88.8 88.7
Recallys 99.8 99.7 99.8 99.8 99.7 99.7 99.8 99.7
Flp 99.6 99.6 90.2 90.0 99.5 99.4 93.4 93.4
Accuracy 99.0 99.0 88.2 88.3 98.9 98.8 92.8 92.9
Precisionn 99.2 99.2 99.0 99.1 99.3 99.3 99.1 99.2
Recalln 99.1 99.1 77.6 77.7 98.7 98.6 86.7 86.7
DT Fin 99.1 99.1 86.4 86.6 98.9 98.9 923 92.3
Precisionas 99.1 99.2 82.0 82.0 98.7 98.6 88.3 88.4
Recallpg 99.0 99.0 98.8 98.9 99.1 99.1 99.0 99.0
Flum 99.0 99.0 89.4 89.4 98.8 98.8 93.2 93.2
Accuracy 92.2 92.8 86.2 87.4 96.2 96.7 90.5 91.4
Precisionn 93.7 94.8 93.0 94.1 94.7 95.7 93.6 94.7
Recalln 91.2 91.1 79.7 80.8 98.5 98.4 87.8 88.4
GNB Fin 91.7 92.2 85.5 86.7 96.4 96.9 90.4 91.3
Precisionas 92.7 94.8 81.2 82.9 98.5 98.3 88.4 89.0
Recallyg 93.2 94.4 92.6 94.0 93.9 95.0 93.2 94.4
Fium 92.3 93.1 86.5 87.9 95.9 96.4 90.5 91.5
Accuracy 99.0 99.0 88.2 88.3 98.9 98.8 92.8 92.9
Precisionn 99.2 99.2 99.0 99.1 99.3 99.3 99.1 99.1
Recalln 99.1 99.1 77.5 77.7 98.7 98.6 86.7 86.7
LR Fin 99.1 99.1 86.4 86.6 99.0 98.9 92.3 92.3
Precisionas 99.1 99.2 82.0 82.0 98.7 98.6 88.3 88.4
Recallpr 98.9 99.0 98.8 98.9 99.1 99.0 98.9 99.0
Fium 98.9 98.9 89.3 89.4 98.8 98.8 93.2 93.2
Accuracy 99.4 99.4 914 91.5 96.6 96.5 93.6 93.7
Precisionn 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
Recalln 99.6 99.6 83.5 83.8 94.0 93.9 88.0 88.2
SvC Fin 99.4 99.5 90.6 90.9 96.5 96.5 93.3 93.4
Precisionps 99.6 99.4 85.5 86.0 94.4 94.2 89.3 89.4
Recallys 99.2 99.2 99.2 99.2 99.1 99.2 99.2 99.2
Finm 99.3 99.3 91.9 92.1 96.6 96.5 93.9 93.9
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Leave-One-Label-Out Results. The table presents the macro and micro averages across all LOLO folds for each classifier.

LOLO Average
V+M F+M V+F+M
Macro | Micro | Macro | Micro | Macro | Micro
Accuracy 79.5 78.8 86.4 86.1 83.4 82.9

Model Metrics

Precisiony 84.1 83.9 85 85.3 84.5 84.5
Recally 81.2 80.5 94 92.8 88.4 87.3
KNN | Fin 81.5 80.9 88.4 88 85.4 84.9
Precisiony; | 76.2 75.4 91.6 90.5 84.4 83.5
Recally, 77.8 77.2 78.8 79.4 78.3 78.4
Fly 75.5 74.7 82.7 82.6 79.5 79.1

Accuracy 99.2 99.2 88.9 87.7 93.4 92.8
Precisiony | 99.2 99.3 99.3 99.3 99.3 99.3

Recally 99.3 99.1 78.3 76 87.5 86.3
QDA | Fin 99.3 99.2 87.5 86 93 92.3
Precisiony | 99.3 99.1 82.2 80.7 88.9 87.9
Recally 99.2 99.3 99.5 99.5 99.3 99.4
Fiy 99.2 99.2 90 89 93.8 93.3
Accuracy 95.6 96.3 78.6 78 86.1 86.1
Precisiony | 94 94.8 93.2 93.4 93.6 94.1
Recally 99.8 99.8 64.9 63.1 80.2 79.5
DT | Fin 96.4 96.9 75.6 74.5 85.8 85.7
Precisiony | 99.6 99.7 71.9 71.1 81.8 81.4
Recallys 91.5 92.7 92.4 92.8 92 92.8
Flm 94.2 95.1 80.2 79.9 85.8 86
Accuracy 90.7 91.5 83.2 84 86.5 87.3
Precisiony | 88.4 89.4 87.1 88.9 87.5 89
Recally 98.2 97.9 82.4 81.7 89.3 88.9
GNB | Fly 92.4 92.9 84 84.5 87.8 88.4
Precisionys | 91.1 91.9 78 78.4 83.2 83.8
Recally 83.1 85 84 86.3 83.6 85.7
Fly 86.4 87.9 80.7 82 83.2 84.6
Accuracy 92.3 93.2 84.1 84 87.7 88.1
Precisiony | 92.6 93.3 92.6 93.4 92.6 93.3
Recally 98.3 98.2 80.5 79.2 88.4 87.7
LR | Fin 94.4 94.9 85 84.5 89.4 89.5
Precisiony | 92.5 93.3 76.6 76.4 82.2 82.6
Recally 86.4 88.1 87.6 88.8 87 88.5
Fiy 86.7 88.5 80.8 81.2 83.3 84.3

Accuracy 93.4 93.5 90.5 90.1 91.8 91.6
Precisiony 95.6 95.5 97.1 97.5 96.3 96.5

Recally 93.6 93.5 84.9 83.5 88.7 88
SVC | Fin 94.1 94.1 90.2 89.6 92 91.7
Precisiony | 92.7 92.8 86.4 85.4 89.1 88.5
Recally 93.3 93.5 96.2 96.7 94.9 95.3
Flpy 91.8 92.1 90.6 90.3 91.3 91.2
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Leave-One-Room-Out Results. The table presents the results of the three LORO folds (each room column is the left-out
room), and the macro averages across all LORO folds for each classifier. Only macro averages are presented because the test
sets were the same size (the left out room media set was larger than the natural testing subset, so media was sampled to
match the size of the natural sets).

Kitchen Bedroom Playroom Average
Model Metrics V+M | F+M | V+F+M | V+M | F+M | V+F+M | V+M | F+M | V+F+M | V+M | F+M | V+F+M
Accuracy 82.4 | 843 83.4 73.1 | 93.2 83.4 76.7 | 72.8 74.7 77.4 | 83.4 80.5

Precisiony | 82.1 | 77.4 79.4 714 | 97.3 83.6 76.3 | 67.1 71 76.6 | 80.6 78
Recally 82.9 | 97 90.1 77.2 | 88.8 83.2 77.4 | 89.5 83.6 79.2 | 91.8 85.6
KNN | Fiy 82.5 | 86.1 84.4 74.2 | 92.8 83.4 76.9 | 76.7 76.8 77.8 | 85.2 81.5
Precisionys | 82.7 | 96 88.6 75.2 | 89.7 83.2 77.1 | 84.3 80.1 78.3 | 90 84
Recally 81.9 | 71.6 76.6 69 97.5 83.6 76 56.2 65.8 75.6 | 75.1 75.4
Fiy 82.3 | 82 82.2 72 93.4 83.4 76.6 | 67.4 72.3 76.9 | 81 79.3

Accuracy 98.9 | 89.6 94.2 99.6 | 825 90.8 99 86.9 92.8 99.2 | 86.3 92.6
Precisiony | 99.7 | 99.1 99.4 100 | 99.7 99.9 98.3 | 944 96.5 99.3 | 97.7 98.6

Recally 98.1 | 80 88.8 99.2 | 65.2 81.8 99.7 | 78.4 88.8 99 74.5 86.5
QDA | F1n 98.9 | 88.5 93.8 99.6 | 78.8 89.9 99 85.7 92.5 99.2 | 843 92.1

Precisiony | 98.2 | 83.2 89.9 99.2 | 741 84.6 99.7 | 81.6 89.6 99 79.6 88
Recally 99.7 | 99.3 99.5 100 | 99.8 99.9 98.3 | 953 96.8 99.3 | 98.1 98.7

Flpy 98.9 | 90.5 94.5 99.6 | 85.1 91.6 99 87.9 93.1 99.2 | 87.8 93
Accuracy 98.4 | 81.7 89.8 86.3 | 72.4 79.2 98.4 | 73 85.3 943 | 75.7 84.8
Precisiony | 96.9 | 99 97.8 79.5 | 88.3 824 97.1 | 73.7 85.5 91.2 | 87 88.6
Recally 99.9 | 63.9 81.5 97.7 | 51.7 74.1 99.7 | 71.3 85.1 99.1 | 62.3 80.2
DT Fin 98.4 | 77.7 88.9 87.7 | 65.2 78.1 98.4 | 725 85.3 948 | 71.8 84.1
Precisionys | 99.9 | 73.4 84.1 97 65.9 76.5 99.7 | 72.2 85.2 98.9 | 70.5 81.9
Recally 96.8 | 99.4 98.1 74.8 | 93.2 84.2 97.1 | 74.6 85.5 89.6 | 89.1 89.3
Fly 98.3 | 844 90.6 84.5 | 77.2 80.2 98.3 | 734 85.4 93.7 | 783 85.4
Accuracy 87.9 | 825 85.1 64.1 | 85 74.8 95 83.1 88.9 82.4 | 835 82.9
Precisiony | 82.5 | 80.2 81.4 58.6 | 96.2 70.9 91.6 | 85.1 88.5 77.6 | 87.2 80.3
Recally 96.3 | 86.2 91.1 96.1 | 72.8 84.2 99 80.2 89.4 97.1 | 79.8 88.2

GNB | Fln 88.9 | 83.1 86 72.8 | 829 77 95.2 | 82.6 88.9 85.6 | 82.9 84
Precisionys | 95.5 | 85.1 89.9 89.1 | 78.1 80.5 98.9 | 81.3 89.3 945 | 815 86.6
Recally 79.6.| 78.8 79.2 322 | 971 65.5 90.9 | 859 88.4 67.6 | 87.3 77.7
Fly 86.9 | 81.8 84.2 47.3 | 86.6 72.2 94.8 | 83.5 88.8 76.3 | 84 81.7
Accuracy 98.5 | 87.9 93 66 87.9 77.2 943 | 72.8 83.3 86.3 | 82.9 84.5
Precisiony | 99.9 | 95.9 98 59.8 | 100 73 96.9 | 70 81.9 85.5 | 88.6 84.3
Recally 97.1 | 79.2 87.9 97.7 | 75.8 86.5 91.6 | 79.9 85.6 955 | 783 86.6
LR Fin 98.5 | 86.7 92.7 74.2 | 86.2 79.1 94.2 | 74.6 83.7 88.9 | 825 85.2
Precisionys | 97.1 | 82.3 89 93.7 | 80.5 83.4 92 76.6 84.9 943 | 79.8 85.8
Recally, 99.9 | 96.6 98.2 34.2 | 100 68 97.1 | 65.8 81 77.1 | 87.5 82.4
Fip 98.5 | 88.8 93.4 50.2 | 89.2 74.9 94.5 | 70.8 82.9 81 82.9 83.7

Accuracy 94.9 | 935 94.2 959 | 89.6 92.7 93.7 | 76.3 84.3 94.8 | 86.5 90.6
Precisiony | 98.6 | 95.3 96.8 100 100 100 96.4 | 73.6 83.7 98.3 | 89.6 93.5

Recally 91.2 | 915 91.3 91.7 | 79.3 85.3 90.8 | 82.2 86.4 91.2 | 843 87.7
SVC | Fln 94.7 | 93.3 94 95.7 | 88.4 92.1 935 | 77.6 85 94.7 | 86.5 90.4
Precisionys | 91.8 | 91.8 91.8 92.3 | 828 87.2 91.3 | 79.8 85.9 91.8 | 84.8 88.3
Recally 98.7 | 954 97 100 100 100 96.6 | 70.5 83.2 98.4 | 88.6 93.4
Fiy 95.1 | 93.6 94.3 96 90.6 93.2 939 | 74.8 84.6 95 86.4 90.7
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Leave-One-Speaker-Out Results. The table presents the results of the five LOSO folds (each speaker column is the left-out
speaker), and the macro (M) and micro (u) averages across all LOSO folds for each classifier.

Bose iPhone BigBose Sony Mac Average
Model | Metrics | V4M | F+M | V4F+M | VAM | F+M | V4F+M | V+M | F+M | V4F+M | V+M | F+M | V4F+M | V4M | F+M | V+E+M MWM” MF+MH A\A”F*Mu
Accuracy | 684 | 598 | 64 871 | 957 | 92 871 | 955 | 918 | 562 | 73.9 | 659 | 866 | 958 | 913 | 77.1 | 762 | 841825 |81 | 796
Precisiony | 662 | 561 | 60.2 | 911 | 100 | 961 | 967 | 98.9 | 98 542 | 679 | 614 | 891 | 967 | 931 | 794 |77.8 |83.9 | 818|817 |79.7
Recally 755 | 89.6 | 827 | 823 | 915 | 874 | 769 | 921 | 853 | 796 | 907 | 857 | 835 | 948 | 893 | 795|795 | 917|918 | 86.1 |86
KNN | F1y 705 | 69 697 | 864 | 955 | 916 | 856 | 954 | 912 | 645 | 776 | 715 | 862 | 958 | 912 | 787|779 |867|855 |83 |819
Precisiony | 71.4 | 743 | 724 | 838 | 921 | 885 | 808 | 926 | 87 616 | 86 763 | 845 | 949 | 897 |[764|76.1 |88 |87.3 828|821
Recally 614 | 299 | 453 | 919 | 100 | 965 | 973 | 989 | 982 | 328 | 571 | 461 | 897 | 968 | 934 | 746|729 | 765 | 733 | 75.9 | 73.1
Fly 66 | 427 | 557 | 877 | 959 | 923 | 883|957 | 923 | 428|686 | 575 |87 | 958 | 915 |744 734|797 | 774|779 |76

Accuracy 94.4 | 65.2 79.4 99.2 | 859 91.7 99.3 | 85.6 91.7 99.5 | 86.5 92.4 98.9 | 84.7 91.6 98.3 | 97.9 | 81.6 | 80.6 | 89.4 | 88.7
Precisiony | 90.1 | 61.2 73.8 99.8 | 99.8 99.8 99.8 | 99.2 99.5 100 | 100 100 99 98.8 98.9 97.7 | 97 91.8 | 90 944 | 929

Recally 99.8 | 83.1 91.2 98.6 | 71.9 83.5 98.9 | 71.7 83.8 99.1 | 73 84.8 98.8 | 70.3 84.2 99 99.1 | 74 74.4 | 855 | 85.9
QDA | Fly 94.7 | 70.5 81.6 99.2 | 83.6 90.9 99.3 | 83.2 91 99.5 | 84.4 91.8 98.9 | 82.1 91 98.3 | 98 80.8 | 80.1 | 89.2 | 88.7
Precisiony | 99.8 | 73.7 88.5 98.6 | 78 85.8 98.9 | 77.9 86 99.1 | 78.7 86.8 98.8 | 76.9 86.2 99 99.1 | 77.1 | 76.8 | 86.7 | 86.8
Recally 89 474 67.6 99.8 | 99.8 99.8 99.8 | 99.4 99.6 100 | 100 100 99 99.2 99.1 97.5|96.7 | 89.1 | 86.8 | 93.2 | 91.4
Fly 94.1 | 57.7 76.7 99.2 | 87.6 923 99.3 | 87.3 92.3 99.5 | 88.1 92.9 98.9 | 86.6 92.2 98.2 | 97.8 | 81.5 | 80.1 | 89.3 | 88.4

Accuracy 95.7 | 55.8 75.2 99.3 | 80.7 88.8 100 | 79.4 88.6 99.8 | 79.1 88.5 99 69.6 83.9 98.8 | 985|729 | 713 | 85 84
Precisiony | 92.2 | 54.6 71.5 98.6 | 99.7 99.1 100 | 100 100 99.7 | 100 99.8 98.2 | 729 86.3 97.7 | 97.2 | 85.4 | 82.2 | 91.3 | 89.1

Recally 100 | 68.8 84 100 | 61.6 783 100 | 58.8 771 100 | 58.2 771 99.8 | 62.3 80.6 100 | 99.9 | 61.9 | 62.4 | 79.4 | 79.9

DT | Fly 95.9 | 60.9 77.2 99.3 | 76.1 87.5 100 | 74.1 87.1 99.8 | 73.6 87 99 67.2 83.3 98.8 | 98.5 | 70.4 | 69.3 | 84.4 | 83.7

Precisiony | 100 | 57.8 80.6 100 | 72.2 82.1 100 | 70.8 81.4 100 | 70.5 81.3 99.8 | 67.1 81.8 100 | 99.9 | 67.7 | 66.8 | 81.4 | 81.4

Recally 915 | 42.7 66.5 98.6 | 99.8 99.3 100 | 100 100 99.7 | 100 99.9 98.1 | 76.9 87.2 97.6 | 97 83.9 | 80.3 | 90.6 | 88.1

Fly 95.6 | 49.1 72.9 99.3 | 83.8 89.9 100 | 82.9 89.7 99.8 | 82.7 89.7 99 71.7 84.4 98.7| 98.4 | 74 72 85.3 | 84.1

Accuracy 93.6 | 55.5 74.1 96.4 | 86.8 91 96.7 | 87.8 91.8 95.7 | 88.3 91.7 80.7 | 85.1 83 92.6 | 91.4 | 80.7 | 79.2 | 86.3 | 84.9

Precisiony | 88.9 | 53.8 68.7 94.3 | 92.6 93.4 96.1 | 95.9 96 94.6 | 98.5 96.5 732 | 83.1 771 89.4 | 87.6 | 84.8 | 82.5 | 86.5 | 84.1

Recally 99.7 | 77.8 88.5 98.8 | 80.1 88.3 973 | 79 87.2 97.1 | 77.8 86.5 96.8 | 88.2 92.4 98 98 80.6 | 80.9 | 88.6 | 88.9

GNB | Fly 94 63.6 77.3 96.5 | 85.9 90.8 96.7 | 86.7 91.4 95.8 | 87 91.2 83.4 | 85.6 84.4 933|922 | 81.7 | 80.7 | 87 85.9

Precisiony | 99.6 | 59.9 83.8 98.8 | 82.4 88.9 97.3 | 82.2 88.3 97 81.7 87.8 953 | 87.4 90.6 97.6 | 97.5 | 78.7 | 77.9 | 87.9 | 87.7

Recally 87.6 | 33.2 59.7 94 93.6 93.8 96 96.7 96.4 944 | 989 96.9 64.6 | 82.1 735 87.3 | 84.8 | 80.9 | 77.5 | 84 80.9

Fly 93.2 | 42.7 69.7 96.3 | 87.7 91.3 96.7 | 88.8 92.1 95.7 | 89.5 92.1 77 84.7 81.2 91.8 | 90.3 | 78.7 | 76.5 | 85.3 | 83.5
Accuracy 91.2 | 731 81.9 99.3 | 88.1 93 99.3 | 87.7 92.9 96.8 | 88.3 92.1 99.2 | 87.3 93.1 97.2 | 96.6 | 84.9 | 84.2 | 90.6 | 90
Precisiony | 91.7 | 69 78.9 100 | 100 100 99.8 | 100 99.9 95.1 | 99.8 97.3 99.5 | 99.6 99.5 97.2| 96.7 | 93.7 | 923 | 95.1 | 94

Recally 90.6 | 83.6 87 98.6 | 76.2 85.9 98.9 | 754 85.8 98.6 | 76.7 86.6 98.9 | 74.9 86.6 97.1|96.6 | 77.4 | 77.7 | 86.4 | 86.5

LR Fiy 91.2 | 75.6 82.8 99.3 | 86.5 924 99.3 | 86 923 96.8 | 86.7 91.6 99.2 | 855 92.6 97.2 | 96.6 | 84.1 | 83.5 | 90.4 | 89.9

Precisionys | 90.7 | 79.2 85.6 98.6 | 80.7 87.7 98.9 | 80.2 87.6 98.6 | 81.1 87.9 98.9 | 79.9 88.1 97.1 | 96.6 | 80.2 | 80.2 | 87.4 | 87.3

Recally 91.8 | 62,5 76.8 100 | 100 100 99.8 | 100 99.9 94.9 | 99.9 97.6 99.5 | 99.7 99.6 97.2 | 96.7 | 92.4 | 90.7 | 94.8 | 93.5

Fly 913 | 69.9 80.9 99.3 | 89.3 93.4 99.3 | 89 933 96.7 | 89.5 92.5 99.2 | 88.7 93.5 97.2 | 96.6 | 85.3 | 84.4 | 90.7 | 90.1

Accuracy 85.4 | 76 80.6 95.9 | 91.5 93.4 96.7 | 90.7 93.4 91.7 | 90.3 91 97.1 | 89.8 93.4 93.4 | 92.8 | 87.7 | 86.9 | 90.3 | 89.7

Precisiony | 85.6 | 72 78.1 100 | 100 100 100 | 100 100 89.8 | 100 94.7 100 | 100 100 95.1 | 943 | 94.4 | 93.1 | 94.6 | 93.4

Recally 85.1 | 85.1 85.1 91.7 | 83.1 86.8 934 | 815 86.8 94.1 | 80.6 86.7 94.2 | 79.7 86.8 91.7 | 91.3 | 82 82 86.4 | 86.3

SVC | Fly 853 | 78 81.4 95.7 | 90.8 93 96.6 | 89.8 92.9 919 | 89.3 90.6 97 88.7 929 93.3 | 92.7 | 87.3 | 86.7 | 90.2 | 89.5
Precisiony | 85.2 | 81.8 83.6 923 | 855 88.4 93.8 | 84.4 883 93.8 | 83.8 87.8 945 | 83.1 883 91.9 | 91.5 | 83.7 | 83.5 | 87.3 | 87
Recally 85.7 | 66.9 76.1 100 | 100 100 100 | 100 100 89.3 | 100 95.2 100 | 100 100 95 94.2 | 934|919 | 943 | 93

Fly 85.4 | 73.6 79.7 96 92.2 93.8 96.8 | 91.5 93.8 915 | 91.2 91.3 97.2 | 90.8 93.8 93.4 | 928 | 87.9 | 87 90.5 | 89.7
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Leave-One-Distance-Out Results. The table presents the results of the three LODO folds (each microphone distance is the
left-out distance), and the macro averages across all LODO folds for each classifier. Only macro averages are presented
because the test sets were the same size (the left out microphone distance media set was larger than the natural testing
subset, so media was sampled to match the size of the natural sets).

1ft 4-6 ft 8-10 ft LODO Average
Model Metrics V+M | F+M | V+F+M | V+M | F+M | V+F+M | V+M | F+M | V+F+M | V+M | F+M | V+F+M
Accuracy 83.3 | 55.3 68.9 87.9 | 84.4 86.1 65.8 | 91.6 79 79 771 78
Precisiony | 87.7 | 53 64 88.9 | 80.6 84.3 63.1 | 93.5 76.9 79.9 | 75.7 75.1
Recally 77.5 | 94.8 86.4 86.7 | 90.7 88.7 75.9 | 89.3 82.8 80 91.6 86
KNN | Fly 82.3 | 68 73.6 87.8 | 85.3 86.5 68.9 | 914 79.8 79.7 | 81.5 79.9
Precisiony; | 79.9 | 75.2 79.1 87 89.3 88.1 69.8 | 89.8 81.4 78.9 | 84.8 82.9
Recally 89.1 15.8 51.5 89.2 | 78.1 83.5 55.6 | 93.8 75.2 78 62.6 70.1
Fip 84.2 | 26 62.4 88.1 | 83.4 85.8 61.9 | 91.7 78.2 78.1 | 67 75.4
Accuracy 98.6 | 75.3 86.7 99.1 | 87 92.9 98.5 | 88.7 93.5 98.8 | 83.7 91
Precisiony | 97.5 | 76.2 86.9 99.6 | 98.8 99.2 98.8 | 99.5 99.1 98.6 | 91.5 95.1
Recally 99.8 | 73.5 86.3 98.7 | 749 86.5 98.3 | 77.8 87.8 98.9 | 754 86.9
QDA | F1n 98.7 | 74.8 86.6 99.1 | 85.2 92.4 98.5 | 87.3 93.1 98.8 | 82.5 90.7
Precisiony; | 99.8 | 74.4 86.4 98.7 | 79.8 88 98.3 | 81.8 89 98.9 | 78.7 87.8
Recally 97.5 | 77.1 87 99.6 | 99.1 99.3 98.8 | 99.6 99.2 98.6 | 91.9 95.2
Fly 98.6 | 75.7 86.7 99.1 | 884 93.3 98.5 | 89.8 93.8 98.8 | 84.6 91.3
Accuracy 93.2 | 41.1 66.5 99.5 | 794 89.2 99 82.6 90.6 97.2 | 67.7 82.1
Precisiony | 88.2 | 45 61.3 99.1 92.8 96.5 98.1 97.6 97.9 95.1 78.5 85.2
Recally 99.8 | 80.2 89.7 99.9 | 63.7 81.3 100 66.8 83 99.9 | 70.3 84.7
DT Fin 93.6 | 57.7 72.8 99.5 | 75.6 88.3 99 79.3 89.8 97.4 | 70.9 83.6
Precisiony; | 99.7 | 9.48 80.8 999 | 724 83.9 100 74.8 85.2 99.9 | 52.2 83.3
Recally 86.6 | 2.07 43.3 99.1 | 95 97 98 98.3 98.2 94.6 | 65.1 79.5
Fly 92.7 | 3.4 56.4 99.5 | 82.2 90 99 85 91.3 97.1 | 56.8 79.2
Accuracy 91.7 | 46 68.2 88.1 | 84.3 86.2 95 89.1 92 91.6 | 73.1 82.1
Precisiony | 86.1 | 47.4 63.4 83.6 | 82 82.8 93.8 | 964 95 87.8 | 75.3 80.4
Recally 99.3 | 73.7 86.2 949 | 879 91.3 96.5 | 81.1 88.6 96.9 | 80.9 88.7
GNB | Fin 92.3 | 57.7 73.1 88.9 | 84.8 86.8 95.1 | 88.1 91.7 92.1 | 76.9 83.9
Precisiony; | 99.2 | 40.9 78.4 94.1 | 86.9 90.3 96.4 | 83.7 89.3 96.6 | 70.5 86
Recally 84 18.2 50.3 81.4 | 80.7 81 93.6 | 97 95.3 86.3 | 65.3 75.5
Fly 91 25.2 61.3 87.3 | 83.7 85.4 95 89.9 92.2 91.1 | 66.3 79.6
Accuracy 95.6 | 67.3 81.1 98.8 | 88.8 93.7 98.8 | 89.3 93.9 97.7 | 81.8 89.6
Precisiony | 99.9 | 63.8 78.6 99 97.8 98.5 99 99.9 99.4 99.3 | 87.2 92.2
Recally 91.4 | 79.9 85.5 98.6 79.4 88.7 98.6 | 78.8 88.4 96.2 | 79.3 87.5
LR Fin 954 | 71 81.9 98.8 | 87.6 93.3 98.8 | 88.1 93.6 97.7 | 82.2 89.6
Precisiony; | 92.1 | 73.1 84.1 98.6 | 82.7 89.7 98.6 | 82.5 89.6 96.4 | 79.4 87.8
Recally 99.9 | 54.7 76.7 99 98.2 98.6 99 99.9 99.5 99.3 | 84.3 91.6
Flp 95.8 | 62.6 80.2 98.8 | 89.8 94 98.8 | 90.3 94.3 97.8 | 80.9 89.5
Accuracy 94 71.1 82.3 96.9 | 90.3 93.5 93.3 | 91.5 92.3 94.7 | 84.3 89.4
Precisiony | 99.8 | 67.4 80.6 100 99 99.5 96.6 | 99.4 98 98.8 | 88.6 92.7
Recally 88.2 | 81.9 85 939 | 813 87.5 89.7 | 834 86.5 90.6 | 82.2 86.3
SVC | Fiy 93.6 | 73.9 82.7 96.9 | 89.3 93.1 93 90.7 91.9 94.5 | 84.6 89.2
Precisiony; | 89.4 | 76.9 84.1 94.2 | 84.2 88.8 90.4 | 85.7 87.9 914 | 823 86.9
Recally 99.8 | 60.4 79.6 100 99.2 99.6 96.8 | 99.5 98.2 98.9 | 86.4 92.5
Fip 94.3 | 67.7 81.8 97 91.1 93.9 93.5 | 921 92.8 95 83.6 89.5
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Leave-One-Room+Speaker-Out Results. The table presents the macro and micro averages across all LORSO folds for each
classifier.

LORSO Average
. V+M F+M V+F+M
Model Metrics Macro | Micro | Macro | Micro | Macro | Micro
Accuracy 70.3 67 83 81.9 77.3 75.1
Precisiony 71.6 68.8 79.5 78.2 75.6 73.4
Recally 82.7 81.6 95.1 94 89.6 88.4
KNN | Fly 75.5 73.2 85.8 84.7 81.1 79.3
Precisionys 67.8 63 93.2 91.9 83.6 81.5
Recally, 57.9 52.3 71 69.8 65.1 61.9
Flp 60.3 54.6 78.4 77.4 71 68.1
Accuracy 89.1 90.1 84.2 85 86.4 87.3
Precisiony 88.4 89.3 92.5 94.5 90 91.2
Recally 99.3 99.2 80.3 77.5 88.9 87.4
QDA | Fin 92.2 92.8 84.5 84.1 88.2 88.3
Precisiony; | 99.3 99.2 80.8 80.3 87.3 86.8
Recally, 79 80.9 88.1 92.5 84 87.2
Fly 81 83 81.2 84.2 81.9 84.7

Accuracy 89.2 86.9 78.6 79.2 83.3 82.7
Precisiony | 86.3 83.6 90.2 90.2 87.3 85.8

Recally 100 100 67.4 67.5 82 82.2
DT Fln 91.7 90 76.1 76.6 83.6 83.2
Precisionys | 99.9 99.9 73.5 73.8 82.4 82.3
Recally 78.5 73.9 89.8 90.9 84.6 83.2
Fly 84 80.3 80 81 82.5 81.9

Accuracy 75.1 75.3 78.5 80.9 76.9 78.4
Precisionn 71.7 72.1 80.5 83.9 74.8 76.3

Recally 97.6 97.6 83.2 81.8 89.7 88.9

GNB | Fin 814 81.6 80.5 81.8 80.6 81.3

Precisiony; | 95.7 95.6 78.7 80.1 83.6 84.3

Recally, 52.5 53 73.7 80.1 64.1 67.8

Fiy 58.8 59 72.9 78 69.1 72.8

Accuracy 86.8 86.3 87.6 88 87.2 87.2

Precisiony | 86.3 85.7 93.9 95.4 89.4 89.7

Recally 93.5 94 83.6 81.6 88.1 87.2

LR Fin 89 88.9 87.6 87.4 88.1 87.9

Precisiony, 87.7 87 86 84.3 87.4 86.7

Recally, 80.1 78.7 91.5 944 86.3 87.3

Fiy 82.2 80.8 86.7 88 85.7 86.1

Accuracy 87.4 86.5 88.4 88.4 88 87.5

Precisiony 88.4 88 91.1 91.9 89.1 89.2

Recally 92.5 91.6 88.6 86.4 90.4 88.7

SVC | Fin 89.5 88.8 89.1 88.5 89 88.3
Precisiony, | 87.4 85.3 89.3 87.3 89.6 88

Recallys 824 814 88.3 90.4 85.6 86.3

Fiy 83.1 814 87 87.8 86.2 86.1
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Leave-One-Room+Distance-Out Results. The table presents the macro and micro averages across all LORDO folds for each

classifier.

LORDO Average
. V+M F+M V+F+M
Model Metrics Macro | Micro | Macro | Micro | Macro | Micro
Accuracy 71.7 74.2 80.2 81.4 76.4 78.1
Precisiony 71.8 74.1 77.3 79.2 74.2 76
Recally 83.3 83.9 94.2 94.3 89.3 89.5
KNN | Fly 76.1 77.8 83.9 84.9 80.2 81.3
Precisiony 72 75.1 90.7 92 83.1 84.8
Recally 60.2 64.6 66.2 68.6 63.6 66.7
Flpy 63.8 68.1 72.7 73.9 69.8 72.6
Accuracy 92.8 94.8 86.8 87.5 89.5 90.9
Precisiony 90.2 93.3 92.8 95.1 91.3 93.9
Recally 99.4 99.1 81.5 80.2 89.6 88.9
QDA | Fin 94 95.6 86.3 86.6 90 91
Precisiony | 99.4 99.1 83.1 82.7 89.2 89.1
Recallys 86.2 90.6 92 94.7 89.5 92.8
Fiy 90.9 93.5 87 88 88.8 90.5
Accuracy 95.6 96.3 78.6 78 86.1 86.1
Precisiony 94 94.8 93.2 93.4 93.6 94.1
Recally 99.8 99.8 64.9 63.1 80.2 79.5
DT Fln 96.4 96.9 75.6 74.5 85.8 85.7
Precisiony 99.6 99.7 71.9 71.1 81.8 81.4
Recally 915 92.7 92.4 92.8 92 92.8
Fip 94.2 95.1 80.2 79.9 85.8 86
Accuracy 81.4 81.3 78.5 80.3 79.7 80.8
Precisiony 77.9 78.2 80 81.6 78.5 79.3
Recally 97.2 95.7 82.6 83 89.1 88.9
GNB | Fin 85.4 85.1 80.3 81.5 82.6 83.1
Precisiony, 84.7 87.4 74 78 77.9 81.8
Recally 65.5 66.8 74.3 77.6 70.3 72.6
F1y 71.6 73.1 73.8 77.4 73.4 76.2
Accuracy 89.9 91.6 89.4 88.9 89.7 90.1
Precisiony 91.3 92.4 92.8 93.4 91.7 92.5
Recally 93.2 95 86.4 84.5 89.6 89.4
LR Fin 91.5 93.1 89.2 88.5 90.2 90.5
Precisionys | 88.3 90.4 87.3 85.9 89.1 89
Recallys 86.7 88.1 92.5 93.3 89.9 90.9
Fiy 86 87.9 89.6 89.2 88.9 89.4
Accuracy 88.2 90 90.6 91 89.6 90.5
Precisiony 90.3 92.5 92.5 93.5 91.1 92.5
Recally 90.3 91.2 89.1 88.8 89.7 89.9
SVC | Fin 89.6 91.2 90.5 90.9 90 90.9
Precisiony 86.9 88.2 89.5 89.4 89.3 89.7
Recally 86 88.8 92.1 93.3 89.5 91.2
Fip 85.1 87.2 90.5 91.1 88.9 90
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Leave-One-Speaker+Distance-Out Results. The table presents the macro and micro averages across all LOSDO folds for each
classifier.

LOSDO Average
V+M F+M V+F+M
Macro | Micro | Macro | Micro | Macro | Micro
Accuracy 77.5 74.7 80.8 78.5 79.3 76.7
Precisiony 78.7 75.4 77.4 75.1 77.7 75

Model Metrics

Recally 82.7 82 93.6 93 88.7 88
KNN | Fln 79.7 77.6 84 82.3 82.1 80.2
Precisiony; | 75.9 73.5 85.9 83.5 80.6 78.1
Recally 72.2 67.4 68 63.9 69.8 65.5
Flpy 72.8 69 74.2 70.5 73.7 70

Accuracy 92.6 92.3 81.8 81.1 86.6 86.2
Precisiony 91.7 91.8 88.6 88.1 89.9 89.8

Recally 99.5 99.3 80.2 79.4 88.9 88.5
QDA | Fin 94.6 94.4 82.7 82.1 88.3 88
Precisiony; | 98.4 98 78.6 77 84.9 83.6
Recally, 85.8 85.3 83.3 82.8 84.4 83.9
Fly 87.2 86.1 78.9 77.9 82.6 81.7

Accuracy 91.8 914 77.8 74.8 84.2 82.4
Precisiony | 91.3 90.5 87.4 85.9 89.3 88.2

Recally 97.9 98.9 71.9 68.1 83.7 82.1
DT Fln 93.7 93.6 77.4 74.1 85.4 83.9
Precisionys | 98 98.9 70.1 66 77.3 74.5
Recally 85.7 84 83.7 81.6 84.6 82.7
Fly 86.4 85.1 75.7 72.4 80.2 77.7

Accuracy 87.1 85.5 79.6 78.8 82.9 81.9
Precisiony | 83.8 82.4 81.5 81.1 82.4 81.6

Recally 98 97.5 83.8 83.2 90.1 89.7
GNB | Fln 89.6 88.4 81.6 81 85.2 84.5
Precisionys |  86.6 84.1 75.7 73.5 80.4 78.2
Recally 76.1 73.5 75.4 74.4 75.7 74
F1y 80.7 78 75 73.4 77.5 75.5

Accuracy 95.3 95.3 84.2 82.9 89.2 88.6
Precisiony 97.2 96.3 89.6 88.7 92.2 91.5

Recally 93.5 94.4 84 82.5 88.3 87.9
LR Fin 95.2 95.3 85.5 84.2 89.7 89.1
Precisionyr | 93.8 94.6 80.9 78.7 88 87.5
Recallys 97.1 96.3 84.5 83.2 90.1 89.2
Fiy 95.4 95.4 81 79.1 88.3 87.5

Accuracy 94.5 93.6 85.7 83.9 89.6 88.3
Precisiony | 97.2 96.1 89.5 88.1 91.8 90.5

Recally 91.7 91.2 86.7 85.3 89 88
SVC | Fin 94.3 93.5 87 85.5 90 88.8
Precisiony | 92.2 91.7 83.8 81.6 88.9 87.7
Recally 97.2 96.1 84.7 82.5 90.2 88.7
Fly 94.6 93.8 82.5 80 89 87.6
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Leave-One-Room+Speaker+Distance-Out Results. The table presents the macro and micro averages across all LORSDO folds

for each classifier.

LORSDO Average
. V+M F+M V+F+M
Model Metrics Macro | Micro | Macro | Micro | Macro | Micro
Accuracy 68.5 69.3 75.8 77.2 72.6 73.7
Precisiony 67.2 68.4 71.2 72.7 69.4 70.8
Recally 84.9 85.1 95.9 96.4 91.1 914
KNN | Fly 74.1 74.8 80.9 82.1 78 78.9
Precisionys 69 68.4 88.8 90 79.4 80.2
Recally, 52 53.5 55.6 58.1 54 56
Flp 57.4 57.8 65 67 61.7 63
Accuracy 85.6 88.7 80 81.1 82.5 84.5
Precisiony 83.9 87.5 84.1 87 84 87.2
Recally 99.5 99.5 87.5 84.9 92.9 91.4
QDA | Fin 89.6 91.8 83.6 83.8 86.4 87.6
Precisiony; | 99.5 99.5 79.2 78.6 85 85
Recally, 71.7 77.9 72.4 77.3 72.1 77.6
Fly 75.1 80.4 70.5 73.4 72.5 76.4
Accuracy 88.7 89.2 74.4 71.2 80.8 79.3
Precisiony 85.6 85.8 81.1 78.3 83.9 83.2
Recally 99.5 99.5 69.8 62.7 83 79.1
DT Fin 91.1 91.4 72.3 67 82 79.8
Precisiony 99.4 99.5 71.6 68.1 80.3 77.8
Recally 78 79 78.9 79.7 78.5 79.4
Fiy 83.3 84.5 73.1 71.5 77.2 76.6
Accuracy 74.9 78.7 71 74.8 72.7 76.5
Precisiony 71.2 75 72 75.9 71.5 75.3
Recally 97.7 96.6 87.1 86.5 91.8 91
GNB | Fin 81.2 83.4 76.9 79.2 78.9 81.1
Precisiony, 85 86.8 68 71.9 73.1 76.6
Recally, 52.1 60.8 54.9 63.2 53.6 62.1
Fly 58.8 67 56.4 64 57.5 65.3
Accuracy 87.5 89.1 85 86.1 86.1 87.4
Precisiony 87.9 89.2 87.3 89.9 87.2 89.2
Recally 91.6 93.1 88.7 87.3 90 89.9
LR Fin 89.1 90.5 86.7 87.4 87.8 88.8
Precisiony, 86.4 88.6 85 84.5 85.3 85.9
Recally, 83.3 85.2 81.3 84.8 82.1 85
Fly 83.8 86 80.6 82.5 82.2 84.2
Accuracy 86.2 86.9 86.3 87.6 86.3 87.3
Precisiony 86.3 87.6 87.4 89.8 86.7 88.5
Recally 91.4 90.9 91.3 90.4 91.4 90.6
SvVC Fln 88.1 88.5 88.2 89.1 88.1 88.7
Precisiony 85.6 86.1 88 87.7 86.8 86.8
Recally, 81 82.9 81.2 84.8 81.1 84
Fiy 82.5 83.7 82.1 84.1 824 84.1

ACM Trans. Hum.-Robot Interact.



	Abstract
	1 Introduction
	2 Background
	2.1 In-Home Virtual Assistants
	2.2 Using Audio for Activity and Event Detection in the Home
	2.3 Audio Classification of Media

	3 METHODOLOGY
	3.1 Audio Sample Collection
	3.2 Feature Extraction
	3.3 Classification Algorithms

	4 Experiments and Results
	4.1 Leave-One-Recording-Out Cross Validation
	4.2 Leave Out Rooms, Speakers, and Microphone Positions in the Media Set
	4.3 Selecting a Classifier

	5 Proposed Application
	5.1 Timing and Size Experiments
	5.2 Classification Pipeline
	5.3 Ethics and Privacy Considerations

	6 Limitations
	7 Conclusions
	8 ACKNOWLEDGMENTS
	References
	A Hyperparameters Used for Gridsearch on Leave-One-Recording-Out Cross Validation
	A.1 KNN
	A.2 QDA
	A.3 DT
	A.4 GNB
	A.5 LR
	A.6 SVC

	B Hyperparameters of Models Presented in Section 4 Results
	C Experiment F1 Score Summaries
	D Experiment Comprehensive Results

