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ABSTRACT
An overarching goal of Arti�cial Intelligence (AI) is creating au-
tonomous, social agents that help people. Two important challenges,
though, are that di�erent people prefer di�erent assistance from
agents and that preferences can change over time. Thus, helping
behaviors should be tailored to how an individual feels during the
interaction. We hypothesize that human nonverbal behavior can
give clues about users’ preferences for an agent’s helping behaviors,
augmenting an agent’s ability to computationally predict such pref-
erences with machine learning models. To investigate our hypothe-
sis, we collected data from 194 participants via an online survey in
which participants were recorded while playing a multiplayer game.
We evaluated whether the inclusion of nonverbal human signals,
as well as additional context (e.g., via game or personality informa-
tion), led to improved prediction of user preferences between agent
behaviors compared to explicitly provided survey responses. Our
results suggest that nonverbal communication – a common type of
human implicit feedback – can aid in understanding how people
want computational agents to interact with them.
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1 INTRODUCTION
An overarching goal of Arti�cial Intelligence (AI) is creating au-
tonomous, social agents that help people [10, 14, 25, 43, 68]; yet,
human-agent interactions are often scripted and rigid, lacking the
adaptability typical of human social encounters. One common ap-
proach to address this limitation is through eliciting explicit pref-
erences (e.g., [23, 63]) because di�erent people prefer di�erent
assistance from autonomous agents. In the future, it would be ad-
vantageous if autonomous agents understood some of the factors
in�uencing user preferences such that they could not only adapt
in a post-hoc manner but more proactively change their behavior
to �t users’ desires. Even more, it would be useful if autonomous
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agents could understand implicit social cues provided by people
during interactions. Information inferred from these cues could
augment explicitly provided feedback, improving an agent’s ability
to model human preferences and adapt their behavior accordingly.

In contrast to existing autonomous agents, people are often able
to adapt their behavior to other people by interpreting social cues
provided in human-human interactions. For example, expert teach-
ers are able to recognize students’ a�ective states so they can then
adjust the pace and content of the learning material [49]. Elder
adults infer which caregivers are available to provide assistance
based on body orientation, head position, and gaze [74]. Individuals
select acceptable partners for di�erent social goals based on ob-
servable nonverbal behavior [66]. But in human-agent interaction
scenarios, it is unclear whether humans would provide useful non-
verbal cues in response to an agent’s actions. People may behave
di�erently when interacting with an autonomous agent than when
interacting with another person [2, 18, 20, 21, 28, 53, 58]. For in-
stance, people have been found to provide fewer nonverbal signals
when interacting with a robot if there are no other humans present
[29] and show fewer physiological signs of emotion in response to
agents compared to humans [62, 70].

Another challenge in creating autonomous agents that reason
about implicit social cues from people is that these cues can be hard
to understand at times. For example, when a person is engaged
in solving a task with an agent, are human social cues due to the
agent’s behavior or due to the person’s own actions in the task?
Also, social cues may have di�erent meanings in di�erent situa-
tions. Smiles, for instance, are often considered an expression of
enjoyment [27]. Nonetheless, people have been shown to smile in
response to robot mistakes [29], for which we may naturally ex-
pect expressions of surprise, disappointment or disapproval instead.
Even if people do emit nonverbal signals when collaborating with
an autonomous agent, will the signals be useful to the agent?

Despite the above challenges, we hypothesize that nonverbal
human signals can provide clues about how people want compu-
tational agents to interact with them. To investigate this idea, we
conducted an online study in which participants interacted with an
autonomous agent in a fast-paced collaborative task. As shown in
Figure 1, the participants played two games of a multi-player video
game with di�erent agent behaviors. We did not prime participants
for cooperation (nor competition) in the game because we wanted
to see how they would naturally react to an agent that tried to help
them in the game when this help was not necessarily expected a
priori. Also, we recorded participants via their webcams during
interactions to later analyze their nonverbal signals.

https://orcid.org/0000-0002-0152-053X
https://orcid.org/0000-0001-8772-1123
https://orcid.org/0000-0001-5314-0398
https://orcid.org/0000-0001-5121-543X
https://orcid.org/0000-0003-0823-4859
https://orcid.org/0000-0003-0698-5472


Webcam image 

(a) Experimental setup: Participants played an online, multi-player version
of Space Invaders. Their faces were recorded while playing the game.

(b) Participants (purple spaceship) experienced two types of helping
behaviors by the co-player (orange spaceship) in the study.

Early-assistance behavior Late-assistance behavior

Figure 1: We collected data from an online human-agent interaction to investigate the usefulness of including human nonverbal
signals into models for predicting which agent behavior participants preferred. In our study, the participants were recorded
while playing the game with an autonomous agent via their webcams.

We present results from multiple analyses to understand how
di�erent sources of information impact the prediction of user pref-
erences for agent behaviors in the multi-player game scenario.
First, we study the possibility of predicting preferences based on
impressions of the interaction reported via surveys. These types
of subjective impressions are commonly gathered in user studies
[5, 47, 50] and survey data can help understand key factors that
in�uence preferences. Then, we investigate whether the inclusion
of nonverbal human signals improves preference predictions, per
our hypothesis. Finally, we investigate whether additional context
information, like information about the state of the game, further
helps infer preferences over agent behaviors. To the best of our
knowledge, this is the �rst study to investigate the usefulness of
nonverbal human signals in predicting user preferences in a fast-
paced and collaborative human-agent interaction scenario. The
anonymized data that we used for our analyses can be found in
https://github.com/yale-img/collabHAI_pref to facilitate fu-
ture replication e�orts and more complex preference modeling.

Overall, our �ndings provide insights for creating real-time
adaptable autonomous agent behavior that leverages spontaneous
nonverbal human reactions in the future. This could potentially
help reduce the need to query users often in order to understand
which agent behaviors work well in comparison to others.

2 RELATEDWORK
Implicit human feedback encompasses a wide range of spontaneous
behavior and reactions humans provide during interactions [65].
Understanding implicit human cues has been a longstanding goal in
a�ective computing [26, 57]. Researchers have leveraged nonverbal
human signals to adapt the behavior of in-home devices [15, 75],
improve generative deep learning models [40], and better support
virtual negotiations [71]. Gaze has also been studied as a replace-
ment for a “wake word” for a smart speaker [54] or to provide clues
about a person’s intent [1], and facial and bodily expressions have
been used to measure engagement in game tasks [31].

Work in a�ective computing has used nonverbal behavior to
adapt agent behavior, but is typically focused on speci�c a�ective
states or event detection. For example, Guerdan et al. [35] use
human responses to explanations provided by an agent, focusing on
speci�c a�ective states such as perceived challenge or competence.

Leite et al. [48] proposed an empathetic social robot that behaved
di�erently based on perceived user boredom, interest, or frustration.
Also, nonverbal human signals have been used to detect agent
errors [44, 67, 72]. Unlike the previous corpus of work, we are not
focused on speci�c emotion or event recognition. Rather, our work
investigates if nonverbal reactions provide insight into a user’s
preferences for helping behaviors by an autonomous agent.

We acknowledge that there are limitations to interpreting facial
expressions, such as di�erent representations of emotions across
di�erent cultures [4, 39]. However, we posit there is useful infor-
mation about participant preferences to be gleaned from analysis
of nonverbal behavior. Nonverbal signals could provide feedback
to an agent without burdening participants for explicit feedback
[52], e.g., via a think-aloud protocol.

Our motivation for studying nonverbal human reactions dur-
ing human-agent interactions stems from recent work on adapting
agent behavior based on implicit feedback with reinforcement learn-
ing [17, 51]. Di�erent to these prior e�orts, though, we do not bias
humans’ internal goals or rewards in our study. Nor do we ask
our participants to be expressive in a particular manner during
human-agent interactions [51, 75] because this can result in fatigue.
Our goal is to instead understand if their natural reactions while
playing a collaborative game with an agent are useful for predicting
user preferences for agent behaviors.

Research has shown that agents can learn to adjust their behavior
based on explicit user preferences [7, 22, 32, 42, 61]. Querying users
for preferences involves interaction costs, so previous work has
investigated how to ask for preferences in a way that minimizes
annoyance [34] and reduces the number of queries needed for
adaptation [9, 73]. To complement this line of work, we investigate:
RQ1: Can natural, nonverbal human reactions be leveraged to better
predict user preferences for an agent’s helping behaviors compared to
only using explicit survey responses about game and agent attributes?
Because recent work in psychology suggests that context is key
when interpreting nonverbal human behavior [4, 39], we also ask:
RQ2: Does the inclusion of additional context, beyond human nonver-
bal reactions, help predict human preferences over agent behaviors?
Following Schilit and Theimer [64], we broadly consider context
to be any element providing information about the environment
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(a) Introduction to the participant player (b) Introduction to the co-player (with AI identity)

Figure 2: Participants were introduced to the game as shown above. The explanation included explicit pointers to the scores and
number of remaining lives for each player, where the enemies would appear, and how to move the spaceship and shoot bullets.

in which an agent is situated. Nonverbal human reactions can
be considered as context for an agent in our multi-player game.
Furthermore, the background and personality traits of users as
well as task (or activity) statistics are additional contextual factors
relevant to the human-agent interactions studied in this work.

3 METHOD
In order to investigate the research questions outlined in the prior
Section, we collected data through an exploratory online interac-
tion. For the interaction, the participants completed a web survey
through which they interacted with an agent in a two-player ver-
sion of the Space Invaders game (Figure 1). The participant con-
trolled one spaceship and the other spaceship, referred to as the
co-player, was algorithmically controlled using simple heuristic
behaviors. With their consent, we recorded participants during the
games of Space Invaders via their webcams. The online study that
we conducted for this data collection was approved by our local
Institutional Review Board. We used the collected data to build
models that predicted which co-player behavior was preferred by
the participants, which is the focus of this paper. For additional
motivations, details, and results of the user study, please refer to
the work by Candon et al. [12].

3.1 Data Collection
3.1.1 Participants. We recruited 360 participants for the study
through Proli�c [55]. The recruitment criteria required participants
to be 18 years of age or older, be �uent in English, reside in the
United States, and have normal or corrected-to-normal vision.

Out of the 360 participants, 194 participants were included in
the �nal dataset, and 166 participants were excluded. Participants
were excluded if they asked to withdraw, if their game logs indi-
cated poor Internet connection, or if there was insu�cient webcam
data captured during the game. More details about our participant
exclusion criteria are in Section A of the Supplementary Material.

Of the 194 �nal participants, 78% identi�ed as female, 20% iden-
ti�ed as male, 1% identi�ed as nonbinary, and 1% preferred not to

say. The participants’ ages ranged from 18 to 66 years old, with an
average age of 26.87 years ((⇡ = 9.30). Participants indicated using
computers often: 93% of participants used a computer daily, 6% used
a computer 4-6 times a week, and 1% used a computer 2-3 times a
week. A little more than half of the participants (53%) played video
games once a week. When asked speci�cally about Space Invaders,
45% of the participants reported that they had played the game
before, 46% reported they had not played it, and 8% were unsure.

3.1.2 Space Invaders Game. The Space Invaders game was intro-
duced to participants as shown in Figure 2. The participant con-
trolled a purple spaceship and the participant’s co-player was an
orange spaceship. The participant’s spaceship started on the left
side of the screen, and the co-player’s spaceship started on the
right side of the screen, but both could move left and right within
the full bounds of the game screen. Both spaceships could shoot
upwards to destroy enemies, and each was assigned points indi-
vidually for enemies destroyed on the side of the screen on which
they originally started, regardless of whose bullet destroyed the
enemy. Both the participant and co-player started the game with
four lives. A player lost a life when hit by an enemy or a bullet from
the enemies. Enemies moved left and right across the screen and
slowly downwards, closer to the spaceships, until they were hit by
a bullet or reached the bottom of the game screen. A game over
screen appeared showing the �nal scores once all enemies were
destroyed, both players lost all their lives, or an enemy reached the
bottom of the game screen.

3.1.3 Co-player Behaviors. Because we were interested in predict-
ing preferences between agent behaviors, we created two di�erent
co-player behaviors: early-assistance and late-assistance. In our
game, the co-player could provide assistance to the participant by
travelling to the participant’s side of the game screen. Once on
the participant’s side, the co-player could help destroy enemies for
which the co-player received points. We designed the two behaviors
so they di�ered by the timing of when the co-player travelled to the
participant’s side of the screen to provide assistance. In the early-
assistance behavior, the co-player went over to the participant’s



side of the screen on two occasions during the game while there
were still enemies on the co-player’s side of the screen (Figure 1b,
left). In the late-assistance behavior, the co-player only when to
the participant’s side of the screen after all of the enemies on the
co-player’s side were already destroyed (Figure 1b, right).

3.1.4 Procedure. For the interaction, participants completed an
online Qualtrics survey, which included two games of Space In-
vaders. The participant �rst consented to participate in the study,
to have their video recorded, and to have their images and video
clips shared publicly. The survey then included a video check to
ensure that their webcam was working and that their face could be
detected in the webcam images. The participants then completed
a demographic section of the survey, as discussed in Section 3.1.1.
This section also included personality data via the Revised Compet-
itiveness Index [38] and the Ten Item Personality Measure (TIPI)
[30]. The survey then introduced the Space Invaders game with
a combination of text explanations and visual instructions, as il-
lustrated in Figure 2. We purposefully did not prime participants
for cooperation nor competition with the co-player. The partici-
pants experienced two games of Space Invaders, each followed by
a post-game survey about their perceptions of the game and of the
co-player. Each game involved a di�erent co-player behavior, as
described in Section 3.1.3. Participants were not informed of the
order in which they experienced the two behaviors, and the order of
behaviors was counterbalanced between participants. After playing
two games of Space Invaders and answering both sets of post-game
questions, participants were asked a �nal set of questions about the
di�erences between the games and their preferences. Participants
were presented with an optional Berkeley Expressivity Question-
naire (BEQ) [33]. The study took about 18 minutes to complete.
Individuals were paid $3.60 for participating.

3.2 Preference Prediction Task
In this work, we study the problem of predicting which co-player
behavior a participant reported that they preferred at the end of
their session. We consider this problem a multi-class classi�cation
problem because the �nal section of our survey asked the partici-
pants to state whether they preferred the �rst co-player behavior,
the second one, or did not prefer one over the other. Based on which
order the participant experienced the two behaviors, we encoded
the targets as either Early, Late, or No Preference.

3.2.1 Inputs to Preference Classifiers. We considered di�erent com-
binations of four types of input features for preference classi�ers.
These feature types corresponded to 1) features derived from post-
game survey responses, 2) nonverbal reaction data, 3) participant
demographic data, and 4) game context. These four types of data
were selected for di�erent reasons. First, survey data is commonly
used for understanding human preferences over agent behaviors
(e.g., [16, 24, 69]). Second, nonverbal reaction data corresponded
to implicit feedback that we hoped could be leveraged to better
understand human preferences (per RQ1). Third, we suspected in-
dividual human factors would a�ect preferences, so we included
demographic data (per RQ2). Finally, because our interaction do-
main was dynamic, it was important to consider game data to
understand what the user and agent were doing and the state of

the environment (per RQ2). While it is rare to consider all four data
types in conjunction, we believe that there is value in systematically
studying how they can all be used to predict user preferences.

For our analysis, we considered a variety of preference classi�er
models that di�ered in terms of the features they received as input.
First, we considered models that took as input survey features only
(Survey). These models were regarded as baselines because survey
responses are commonly used to understand human perceptions
of an interaction (e.g., [5, 47, 50]). Second, we added nonverbal
reaction data (Survey+Nonverbal). Comparing Survey and Sur-
vey+Nonverbal allowed us to experimentally investigate whether
nonverbal data helped predict user preferences (RQ1). Third, we
considered models that also took as input demographics and game
data, to incorporate additional context. This led to three more sets of
inputs: Survey+Nonverbal+Demo, Survey+Nonverbal+Game, and
Survey+Nonverbal+Demo/Game. These feature combinations al-
lowed us to experimentally investigate whether additional context
further helped predict user preferences (RQ2). The next sections
provide more detail about each speci�c feature type.

Post-Game Survey Responses: Our �rst set of input data was en-
coded from survey questions participants were asked after playing
each game of Space Invaders. The questions were about the game
experience, the perception of the co-player, and whether or not
the participant thought they had helped the co-player. Game expe-
rience questions included agreement with statements from Large
et al. [46] about whether the game was enjoyable, di�cult, boring,
and fun. Co-player perception questions included agreement with
statements from Large et al. [46] about whether the co-player was
helpful, pro�cient, intelligent, and annoying. Co-player perception
questions also included if the participant liked the behavior of the
co-player or if they thought anything about the behavior of the
co-player seemed unusual. In addition, the participants evaluated
the level of competence, warmth, and discomfort of the co-player
using the 18 attributes from the Robotic Social Attributes Scale
(RoSAS) [13]. More details about survey questions are included in
Section B.1 of the Supplementary Material.

We considered both a Full set of survey features and a Selected
set of survey features, which we experimentally found to be most
important for preference prediction. For the Full set of survey fea-
tures, we processed the raw data (e.g., via scaling and one-hot
encoding) for 14 survey questions to arrive at 18 features encoding
survey information for each game (as detailed in Section B.1 of the
Supplementary Material). We additionally explored reducing the
number of included survey features using the notion of Gini impor-
tance [11] from a trained Random Forest model, as implemented by
the scikit-learn Python Library [56]. In particular, we selected the
six post-game survey features with importance greater than 0.05:
liked behavior, competence, annoyingness, helpfulness, warmth,
and discomfort. Additionally, both sets of survey features included
a feature encoding the order in which the participant experienced
the two games, as well as a one-hot encoding for which of three
co-player identities the participant experienced. We provided the
survey data to a classi�er in two ways: passing features for both
games by concatenating them (Concat), and passing the di�erence
between the value from the gamewith the early-assistance behavior
and the game with the late-assistance behavior (Di�).



Nonverbal Reactions:We analyzed human facial and body reac-
tions captured while the participants played Space Invaders. Our
version of the Space Invaders game captured images of a participant
via the participant’s own webcam at a framerate of 15 frames per
second. We analyzed the images automatically using OpenFace 2.0
[3], a open-source toolkit for automatic behavior analysis. For each
image, OpenFace 2.0 [3] extracted information about head pose,
eye gaze, facial landmarks, and facial action units.

We explored di�erent ways to incorporate nonverbal reaction
data. Table 1 describes the features and the summary statistics
that we used to arrive at 59 nonverbal reaction features for each
game. For this set of features, we considered four approaches to
provide them to a classi�er: Full, Visit-Split, Visit-Di�, and Visit-
Hadamard. In the Full case, we concatenated the summary features
for both games and input them into the model. In the other cases,
we computed summary features for when the co-player visited the
participant’s side of the screen (“co-player visit”), and when it was
on its side (“no co-player visit”).1 In the Visit-Split case, both subsets
of summary statistics for both games were concatenated and input
to the model. In the Visit-Di� case, we computed the di�erence be-
tween the “co-player visit” and “no co-player visit” statistics within
each game, concatenated the results, and then input them into to
the model. Lastly, for Visit-Hadamard, we computed the element-
wise product between the “co-player visit” and “no co-player visit”
statistics within each game, concatenated the results, and passed
the output to the classi�er. Because the Nonverbal feature sets were
much larger than the other feature sets, we considered a reduced
set of nonverbal features derived by applying Principal Compo-
nent Analysis (PCA) with 5, 10, 20, and 40 principal components in
addition to the full set of original features.

Demographics: We preprocessed raw self-reported demographics
information from the survey to arrive at 20 features describing the
personality, age and gender of each participant as well as how often
this person played video games, used a computer, and whether they
had played Space Invaders before (as detailed in Section B.2 of the
Supplementary Material). Similar to the survey data, we considered
a Selected set of �ve demographic features, again with Gini impor-
tance from a trained RF model. The Selected set of demographic
features included: how often the participant played video games,
competiveness index [38], negative expressivity from BEQ [33], and
the extroversion and emotional stability dimensions of TIPI [30].

1We grouped data based on the location of the co-player because we suspected that
participants would react di�erently when it was on their side of the game screen. Also,
in order to capture facial reactions as the co-player was traveling to or back from
the participant’s side, we included 100 frames before and after a co-player visit when
splitting the facial features into the “co-player visit” and “no co-player visit” sets.

Game Context: To enable classi�er models to reason about con-
textual factors related to what occurred during Space Invaders, we
included information from game logs. These game logs contained
information about the state of the game, participant actions, and
co-player actions for each rendered frame of Space Invaders. In par-
ticular, we extracted and analyzed: number of times the co-player
and the participant moved to opposite sides of the game screen,
the total number of frames in which the co-player and the par-
ticipant stayed on opposite sides of the game screen, the number
of participant enemies destroyed by the co-player, the number of
co-player enemies destroyed by the participant, and the participant
and co-player’s �nal scores and number of lives remaining. We
provided the game data to a classi�er in two ways: passing features
for both games by concatenating them (Concat), and passing the
di�erence between features for the two games (Di�).

3.2.2 Models for Predicting Participant Preferences. We considered
various popular Machine Learning (ML) algorithms from the scikit-
learn Python library [56]: Support Vector Machines (SVM), Random
Forests (RF), K-Nearest Neighbors (KNN), and Multi-Layer Percep-
tron (MLP). We selected these simple, well-established classi�ers
because more complex models are likely to over�t on our small
dataset and also tend to be more opaque. For each classi�er, we
performed a gridsearch over a range of suitable hyperparameters
with survey data as inputs. We then used those hyperparameters
for all models trained on di�erent permutations of input feature
sets. Details of the gridsearch procedure are presented in Section C
of the Supplementary Material.

3.2.3 Evaluation of Preference Classifier Performance. We evalu-
ated the classi�ers using �1-Score = 2(precision�1 + recall�1)�1
because it balances di�erent kinds of prediction errors and is less
biased by class imbalance [36]. Precision= |TP |/( |TP | + |FP |) is the
proportion of positive predictions that are true positive targets,
where |TP | is the number of true positives and |FP | is the number of
false positives. Recall= |TP |/( |TP | + |FN |) is the proportion of true
positive targets that are correctly identi�ed, where |TP | is the num-
ber of true positives and |FN | is the number of false negatives. We
use the macro notion of �1-Score. That is, we calculate the �1-Score
for each of the three target classes and take the average.

In order to make the most use of our limited number of samples,
we evaluated models using leave-one-out cross validation (LOOCV),
rather than dividing the dataset into static training and testing sets.
For each participant, we trained a model on the data from the
other 193 participants and made a single test prediction. We then
calculated �1-Score from the confusion matrix created from the 194
individual predictions (i.e., from the 194 folds of LOOCV).

Table 1: Description of Open Face 2.0 [3] attributes used and which summary statistics (standard deviation (stdev), mean, and/or
maximum value) from the capture frames were included.

Attribute Description Summary Statistics

Gaze Averaged gaze direction for both eyes in left-right and up-down directions stdev
Translational Pose Location of head with respect to camera stdev

Rotational Pose Pitch, yaw, roll for head stdev
Facial Action Unit Intensity Intensities (from 0 to 5) of 17 action units stdev, mean, maximum



4 RESULTS
This section presents our evaluation of ML algorithms to predict
which co-player behavior the participants preferred.We �rst discuss
three naive baselines for predicting preferences. Then, we describe
our analysis on whether or not nonverbal signals aid in modeling
co-player behavior preferences (RQ1). Finally, we discuss results
about incorporating additional context into our models (RQ2) and
investigate feature importance values to gain insights into what
kind of information is being leveraged by our preference classi�ers.

4.1 Naive Baselines for Predicting Preferences
Of our 194 participants, 116 (60%) preferred the late-assistance co-
player behavior, 50 (26%) preferred the early-assistance co-player
behavior, and 28 (14%) did not prefer one over the other. With this
distribution, always selecting the most dominant class results in
an �1-Score of 0.25. Randomly sampling from the three classes and
running the sampling # = 10 times results in an F1-score of" =
0.29 ((⇡ = 0.02). Weighted sampling from the distribution of the
true labels results in an �1-Score of" = 0.33 (()⇡ = 0.03,# = 10).

4.2 Nonverbal Reactions Can Help Model
Preferences

We �rst investigated whether nonverbal human reactions can help
predict user preferences for an agent’s helping behaviors compared
to only using explicit survey responses (RQ1). Table 2 shows the
highest �1-Scores for the ML algorithms that were trained on both
the Survey and Survey+Nonverbal input permutations described in
Section 3.2.1. All �1-Scores are notably higher than the �1-Scores
from naive baselines in Section 4.1. For each of the SVM, RF, and
MLP algorithms, the highest �1-Score was from the set of models
that incorporated nonverbal information. For KNN, the Survey only
inputs resulted in a higher �1-Score than Survey+Nonverbal inputs.
However, KNN was the lowest performing classi�er among the
ML algorithms considered in this work. We suspect that the low
performance of KNN is related to the algorithm’s known trouble
with the presence of outliers in training data [8] since nonverbal
reactions can vary greatly. KNN’s low performance could also be
due to the increase in dimensionality of input features with the
addition of nonverbal data given our limited-sized dataset.

4.3 Incorporating Additional Context
Driven by the question of whether additional context information
can help predict human preferences (RQ2), we analyzed the per-
formance of preference classi�ers with additional permutations of
input data (Section 3.2.1). In particular, we considered demographic
information, game context, and the combination of the two as addi-
tional context that could help reason about human perceptions of
the agent. Figure 3 presents the highest �1-Score within each of the
�ve permutations of input data for each ML algorithm considered
in this analysis. Table 1 of the Supplementary Material includes
information about the input features that resulted in the highest
�1-Score for each type of classi�er.

For each type of classi�er, the highest �1-Score was from a set
of models that included nonverbal reaction data and at least one
other kind of additional context. Across all classi�ers and all input

Table 2: Best �1-Scores for each classi�er for Survey and Sur-
vey+Nonverbal input combinations. �1-Score was calculated
over a confusion matrix derived from individual predictions
of 194 folds of LOOCV.

Classi�er Survey Survey+Nonverbal

Support Vector Machine 0.50 0.56
Random Forest 0.52 0.55
Multi-Layer Perceptron 0.51 0.54
K-Nearest Neighbors 0.50 0.47

permutations, SVM with Survey+Nonverbal+Game had the high-
est �1-Score (0.60). For both RF and MLP, the set of models with
Survey+Nonverbal+Demographics/Game inputs had the highest �1-
Scores of 0.59 and 0.57, respectively. The highest �1-Score for KNN
(0.54) was obtained with the Survey+Nonverbal+Demographics
data. Once again, KNN underperformed the other classi�ers. Again,
all �1-Scores are notably higher than the �1-Scores from naive
baselines in Section 4.1.

Notably, including both kinds of additional contextual informa-
tion did not always result in the highest �1-Score (see results for
SVM and KNN in Figure 3). This means that one cannot take for
granted that including more features will result in higher perfor-
mance. Rather, it is important to further explore how to incorporate
additional context when reasoning about internal human states.

In addition to classi�er performance, wewere interested in under-
standing which features played a key role in predicting participant
preferences for agent helping behaviors. First, we considered doing
this analysis with the SVM model because it had the top perfor-
mance; but it employed a radial basis function kernel, making it
hard to disentangle feature importances. Thus, we instead analyzed
feature importance values with the RF algorithm. The RF models
had good performance. Also, the high-level of interpretability of
the underlying decision trees used for the preference predictions
made it easy to understand what features mattered.

We compared the importance of features for a model consider-
ing Survey+Nonverbal inputs and Survey+Nonverbal+Demo/Game
inputs. Instead of using LOOCV as for the prior results, we trained
one RF model for each input combination with the data from all 194
participants for this analysis. This resulted in two models for which
we then calculated Gini feature importance values [11]. Gini im-
portance indicates the total decrease in node impurity, weighted by
the probability of reaching that node in the tree, averaged over all
trees of the forest. Intuitively, this importance value can be thought
of as a measure of a features’ contribution to the homogeneity of
the nodes and leaves in the forest.

Figure 4 illustrates the feature importance across the four types
of input features considered by the RF with Survey+Nonverbal and
Survey+Nonverbal+Demo/Game input combinations. In both cases,
survey features were the most important to classi�ers. Additionally,
the results con�rm our prior �ndings suggesting that the inclu-
sion of additional context, via demographic and game information,
contributes to improving classi�er performance.

To investigate individual features, we examined feature impor-
tance with the Survey+Nonverbal+Demo/Game model. The three
most important features were from survey responses: howmuch the



Figure 3: Best �1-Scores for each input combination. �1-Score was calculated over a confusion matrix derived from individual
predictions of 194 folds of LOOCV. Dots on left indicate which information was considered in the model. Machine learning
algorithms (SVM, RF, MLP, KNN) are ordered left-to-right in decreasing order of highest �1-Score. The darkest bar highlights
the highest �1-Score for each algorithm. Dotted lines separate input combinations into: Survey only (original baseline), Survey
+ Nonverbal (new baseline), Survey + Nonverbal + one type of additional interaction context, and Survey + Nonverbal + both
types of additional interaction context.

Figure 4: Feature importance by type of input feature.

participant liked the behavior of the agent (1st: 0.16), how annoying
the participant found the agent (2nd: 0.15), and the competence of
the agent (3rd: 0.08). The fourth (0.08) and �fth (0.05) most impor-
tant features were principal components from the PCA analysis of
nonverbal features. These principal components were driven by
features describing AU45 (the “blink” action unit) for the game with
the late-assistance co-player behavior as well as features describing
AU2 (“outer brow raiser”), AU15 (“lip corner depressor”), and AU20
(“lip stretcher”) in the game with the early-assistance co-player
behavior. The most important game feature was the number of
frames the co-player was on the left side of the game screen (7th:
0.04). The most important demographic feature was how often the
participant reported that they played video games (9th: 0.03).

5 DISCUSSION
Our results support the idea that implicit feedback in the form of
nonverbal behavior can help model user preferences. We trained a
variety of ML classi�ers to predict co-player behavior preferences
and evaluated them based on �1-Score. Across four di�erent types
of ML algorithms, the three with the highest �1-Score all had better
performance when implicit nonverbal clues were included as inputs
in addition to explicitly provided survey responses. All four ML

algorithms outperformed naive baselines based on the distribution
of true labels. Repeatedly asking participants for their preferences
can be annoying [34] or cause participants to lose interest in the in-
teraction [59], so it is encouraging that analyzing nonverbal human
signals can provide information about their preferences.

Figure 5 provides illustrative examples to highlight the value
of implicit feedback, and why including it might help us better
understand participant preferences. Participant P0354Z preferred
the late-assistive behavior, which they experienced after the early-
assistive behavior. This participant was very expressive as can be
seen in Figure 5(a) and 5(b). They moved their eyebrows, changed
the expression of their mouth, and opened their eyes wide. A simi-
lar image highlighting implicit feedback provided by another, less
expressive participant is included in Section F of the Supplementary
Material. Additional examples are included in our supplementary
video. We are excited about the potential for computational agents
to leverage this kind of information to better render prosocial be-
havior and proactively cooperate with users in the future.

Additionally, our results suggest that considering additional con-
text (participant and game information in our case) is important to
interpret nonverbal behavior. For all four ML algorithms, the set of
models with the highest �1-Score not only included nonverbal data,
but also included additional context via demographic data, game
data, or both. This aligns with research in psychology that contests
the assumption that emotions are recognized and communicated
universally with particular facial expressions and argues for the
importance of considering the context of interactions [4, 39].

At �rst it may appear obvious that more features would lead to
better predictions, but that is not necessarily the case. Jensen and
Shen [41] argue against the notion that more features in datasets
translates to better performance due to feature redundancy and
relevancy [19, 45] as well as the curse of dimensionality [6]. Thus, it
is important to carefully study what information predictive models
should include when an autonomous agent is reasoning about how
favorably a user is viewing their behavior.

Being able to predict user preferences over agent behaviors
would open up doors for agents to reason about which behaviors
are “better” for a given user and, thus, incorporate more of those
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(a) First game for P0354Z (early-assistive behavior). (b) Second game for P0354Z (late-assistive behavior).

co-player visit

frame 332 frame 1306 frame 1999 frame 2648 frame 146 frame 684 frame 1313 frame 1682

Figure 5: Visualization of data for participant P0354Z. Each plot shows game data (top) and webcam data (bottom). Game data
includes six game events: co-player destroys enemy on the left side of the game screen (CL) or right side (CR), co-player dies
(CD), participant destroys enemy on the left side (PL) or right side (PL), and participant dies (PD). The orange highlight identi�es
when the co-player is on the participants’ side (left side). Webcam data includes predicted action units (AU) by OpenFace: AU02
(outer brow raiser), AU05 (upper eyelid raiser), AU12 (lip corner puller), and AU15 (lip corner depressor). The x-axis corresponds
to frame number as the game progresses from start to �nish. All participants consented to having their images shared publicly.

behaviors into their interactions. Going forward, a better under-
standing of implicit human signals could also help human-agent
interactions in other ways, e.g., enabling agents to learn how and
when to ask a human collaborator for help [60].

6 LIMITATIONS AND FUTUREWORK
Our work has limitations, which motivate interesting future re-
search directions. First, our analysis is bound to the domain of
Space Invaders. It would be interesting to investigate predicting
preferences using human nonverbal reactions in other interactive
scenarios, including human-agent interactions that occur in person
(e.g., with embodied virtual agents or robots).

Second, future work could explore a richer utilization of implicit
feedback. We found encouraging results from simple ML models
using summary statistics of nonverbal reaction features over frames
of a game, but stronger results may be discovered if we consider
the temporal nature of implicit feedback with more powerful ML
algorithms (such as recurrent neural network models [37]).

Lastly, while this line of work is exciting, we must be cognisant
of the ethical implications of designing autonomous agents able to
analyze our nonverbal behavior andmake inferences about our pref-
erences. Going forward, it will be important to respect individual
privacy and ensure individuals interacting with such autonomous
agents are aware of the capabilities of the agents. Limitations on

the social manipulation of autonomous agents will also be critical
as agents become better able to understand humans in interactions.

7 CONCLUSION
This work investigated the usefulness of natural nonverbal human
signals to predict preferences between two agent behaviors. We
collected data via an online interaction in which participants played
two games of Space Invaders with an autonomous co-player ex-
hibiting di�erent behaviors. We built models to predict which of the
two games was preferred by the participant and analyzed results
from di�erent combinations of input data for the models. Without
biasing humans to be expressive, we found that we could leverage
“free” information that they provided via nonverbal reactions to
improve our ability to predict their preferences for agent behaviors.

Based on our �ndings, we propose two key recommendations
for future interactive agents. First, we recommend designing agents
with the capability to reason about nonverbal human reactions.
This capability can improve the speed at which interactive agents
adapt to personal preferences because nonverbal signals are readily
available during interactions. Second, it is important to incorporate
additional types of context, such as user personality or task statistics,
into models that interpret nonverbal human signals. In our future
work, we plan to take advantage of these insights to design better
cooperative agents that reason about and adapt to the preferences
of users with whom they interact.
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