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Abstract: Large corporations, government entities and institutions such as hospitals and census
bureaus routinely collect our personal and sensitive information for providing services. A key
technological challenge is designing algorithms for these services that provide useful results, while
simultaneously maintaining the privacy of the individuals whose data are being shared. Differential
privacy (DP) is a cryptographically motivated and mathematically rigorous approach for addressing
this challenge. Under DP, a randomized algorithm provides privacy guarantees by approximating
the desired functionality, leading to a privacy–utility trade-off. Strong (pure DP) privacy guarantees
are often costly in terms of utility. Motivated by the need for a more efficient mechanism with better
privacy–utility trade-off, we propose Gaussian FM, an improvement to the functional mechanism
(FM) that offers higher utility at the expense of a weakened (approximate) DP guarantee. We
analytically show that the proposed Gaussian FM algorithm can offer orders of magnitude smaller
noise compared to the existing FM algorithms. We further extend our Gaussian FM algorithm to
decentralized-data settings by incorporating the CAPE protocol and propose capeFM. Our method
can offer the same level of utility as its centralized counterparts for a range of parameter choices. We
empirically show that our proposed algorithms outperform existing state-of-the-art approaches on
synthetic and real datasets.

Keywords: differential privacy; functional mechanism; decentralized-data systems

1. Introduction
Differential privacy (DP) [1] has emerged as a de facto standard for privacy-preserving

technologies in research and practice due to the quantifiable privacy guarantee it provides.
DP involves randomizing the outputs of an algorithm in such a way that the presence or
absence of a single individual’s information within a database does not significantly affect
the outcome of the algorithm. DP typically introduces randomness in the form of additive
noise, ensuring that an adversary cannot infer any information about a particular record
with high confidence. The key challenge is to keep the performance or utility of the noisy
algorithm close enough to the unperturbed one to be useful in practice [2].

In its pure form, DP measures privacy risk by a parameter e, which can be interpreted
as the privacy budget, that bounds the log-likelihood ratio of the output of a private algorithm
under two datasets differing in a single individual’s data. The smaller e used, the greater
the privacy ensured, but at the cost of worse performance. In privacy-preserving machine
learning models, higher values of e are generally chosen to achieve acceptable utility.
However, setting e to arbitrarily large values severely undermines privacy, although there
are no hard threshold values for e above which formal guarantees provided by DP become
meaningless in practice [3]. In order to improve utility for a given privacy budget, a relaxed
definition of differential privacy, referred to as (e, d)-DP, was proposed [4]. Under this

Entropy 2023, 25, 825. https://doi.org/10.3390/e25050825 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25050825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0004-3404-0956
https://orcid.org/0009-0000-7141-2107
https://orcid.org/0000-0001-6123-5282
https://orcid.org/0000-0002-2042-5941
https://doi.org/10.3390/e25050825
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25050825?type=check_update&version=1


Entropy 2023, 25, 825 2 of 32

privacy notion, a randomized algorithm is considered privacy-preserving if the privacy
loss of the output is smaller than exp(e) with a high probability (i.e., with probability at
least 1 � d) [5].

Our current work is motivated by the necessity of a decentralized differentially private
algorithm to efficiently solve practical signal estimation and learning problems that (i) offers
better privacy–utility trade-off compared to existing approaches, and (ii) offers similar
utility as the pooled-data (or centralized) scenario. Some noteworthy real-world examples
of systems that may need such differentially private decentralized solutions include [6]:
(i) medical research consortium of healthcare centers and labs, (ii) decentralized speech
processing systems for learning model parameters for speaker recognition, (iii) multi-party
cyber-physical systems. To this end, we first focus on improving the privacy–utility trade-
off of a well known DP mechanism, called the functional mechanism (FM) [7]. The FM
approach is more general and requires fewer assumptions on the objective function than
other objective perturbation approaches [8,9].

The functional mechanism was originally proposed for “pure” e-DP. However, it involves
an additive noise with very large variance for datasets with even moderate ambient dimension,
leading to a severe degradation in utility. We propose a natural “approximate” (e, d)-DP
variant using Gaussian noise and show that the proposed Gaussian FM scheme significantly
reduces the additive noise variance. A recent work by Ding et al. [10] proposed relaxed
FM using the Extended Gaussian mechanism [11], which also guarantees approximate
(e, d)-DP instead of pure DP. However, we will show analytically and empirically that, just
like the original FM, the relaxed FM also suffers from prohibitively large noise variance
even for moderate ambient dimensions. Our tighter sensitivity analysis for the Gaussian
FM, which is different from the technique used in [10], allows us to achieve much better
utility for the same privacy guarantee. We further extend the proposed Gaussian FM
framework to the decentralized or “federated” learning setting using the CAPE protocol [6].
Our capeFM algorithm can offer the same level of utility as the centralized case over a range
of parameters. Our empirical evaluation of the proposed algorithms on synthetic and real
datasets demonstrates the superiority of the proposed schemes over the existing methods.
We now review the relevant existing research works in this area before summarizing our
contributions.

Related Works. There is a vast literature on the perturbation techniques to ensure
DP in machine learning algorithms. The simplest method for ensuring that an algorithm
satisfies DP is input perturbation, where noise is introduced to the input of the algorithm [2].
Another common approach is output perturbation, which obtains DP by adding noise to the
output of the problem. In many machine learning algorithms, the underlying objective
function is minimized with gradient descent. As the gradient is dependent on the privacy-
sensitive data, randomization is introduced at each step of the gradient descent [9,12]. The
amount of noise we need to add at each step depends on the sensitivity of the function to
changes in its input [4]. Objective perturbation [8,9,13] is another state-of-the-art method to
obtain DP, where noise is added to the underlying objective function of the machine learning
algorithm, rather than its solutions. A newly proposed take on output perturbation [14]
injects noise after model convergence, which imposes some additional constraints. In
addition to optimization problems, Smith [15] proposed a general approach for computing
summary statistics using the sample-and-aggregate framework and both the Laplace and
Exponential mechanisms [16].

Zhang et al. originally proposed functional mechanism (FM) [7] as an extension to the
Laplace mechanism. FM has been used in numerous studies to ensure DP in practical
settings. Jorgensen et al. applied FM in personalized differential privacy (PDP) [17], where
the privacy requirements are specified at the user-level, rather than by a single, global
privacy parameter. FM has also been combined with homomorphic encryption [18] to
obtain both data secrecy and output privacy, as well as with fairness-aware learning [10,19]
in classification models. The work of Fredrikson et al. [20], which demonstrated privacy
in pharmacogenetics using FM and other DP mechanisms, is of particular interest to us.
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Pharmacogenetic models [21–24] contain sensitive clinical and genomic data that need
to be protected. However, poor utility of differentially private pharmacogenetic models
can expose patients to increased risk of disease. Fredrikson et al. [20] tested the efficacy
of such models against attribute inference by using a model inversion technique. Their
study shows that, although not explicitly designed to protect attribute privacy, DP can
prevent attackers from accurately predicting genetic markers if e is sufficiently small (1).
However, the small value of e results in poor utility of the models due to excessive noise
addition, leading them to conclude that when utility cannot be compromised much, the
existing methods do not give an e for which state-of-the-art DP mechanisms can be reasonably
employed. As mentioned before, Ding et al. [10] recently proposed relaxed FM in an attempt
to improve upon the original FM using the Extended Gaussian mechanism [11], which
offered approximate DP guarantee.

DP algorithms provide different guarantees than Secure Multi-party Computation
(SMC)-based methods. Several studies [25–27] applied a combination of SMC and DP for
distributed learning. Gade and Vaidya [25] demonstrated one such method in which each
site adds and subtracts arbitrary functions to confuse the adversary. Heikkilä et al. [26]
also studied the relationship of additive noise and sample size in a distributed setting.
In their model, S data holders communicate their data to M computation nodes to com-
pute a function. Tajeddine et al. [27] used DP-SMC on vertically partitioned data, i.e.,
where data of the same participants are distributed across multiple parties or data holders.
Bonawitz et al. [28] proposed a communication-efficient method for federated learning
over a large number of mobile devices. More recently, Heikkilä et al. [29] considered DP in
a cross-silo federated learning setting by combining it with additive homomorphic secure
summation protocols. Xu et al. [30] investigated DP for multiparty learning in vertically
partitioned data setting. Their proposed framework dissects the objective function into
single-party and cross-party sub-functions, and applies functional mechanisms and secure
aggregation to achieve the same utility as the centralized DP model. Inspired by the sem-
inal work of Dwork et al. [31] that proposed distributed noise generation for preserving
privacy, Imtiaz et al. [6] proposed the Correlation Private Estimation (CAPE) protocol. CAPE
employs a similar principle as Anandan and Clifton [32] to reduce the noise added for DP
in decentralized-data settings.

Our Contributions. As mentioned before, we are motivated by the necessity of a
decentralized differentially private algorithm that injects a smaller amount of noise (com-
pared to existing approaches) to efficiently solve practical signal estimation and learning
problems. To that end, we first propose an improvement to the existing functional mecha-
nism. We achieve this by performing a tighter characterization of the sensitivity analysis,
which significantly reduces the additive noise variance. As we utilize the Gaussian mech-
anism [33] to ensure (e, d)-DP, we call our improved functional mechanism Gaussian FM.
Using our novel sensitivity analysis, we show that the proposed Gaussian FM injects a
much smaller amount of additive noise compared to the original FM [7] and the relaxed
FM [10] algorithms. We empirically show the superiority of Gaussian FM in terms of
privacy guarantee and utility by comparing it with the corresponding non-private algo-
rithm, the original FM [7], the relaxed FM [10], the objective perturbation [8], and the noisy
gradient descent [12] methods. Note that the original FM [7] and the objective perturba-
tion [8] methods guarantee pure DP, whereas the other methods guarantee approximate
DP. We compare our (e, d)-DP Gaussian FM with the pure DP algorithms as a means for
investigating how much performance/utility gain one can achieve by trading off pure
the DP guarantee with an approximate DP guarantee. Additionally, the noisy gradient
descent method is a multi-round algorithm. Due to the composition theorem of differential
privacy [33], the privacy budgets in multi-round algorithms accumulate across the number
of iterations during training. In order to perform better accounting for the total privacy
loss in the noisy gradient descent algorithm, we use Rényi differential privacy [34].

Considering the fact that machine learning algorithms are often used in decentral-
ized/federated data settings, we adapt our proposed Gaussian FM algorithm to decen-
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tralized/federated data settings following the (CAPE) [6] protocol, and propose capeFM.
In many signal processing and machine learning applications, where privacy regulations
prevent sites from sharing the local raw data, joint learning across datasets can yield discov-
eries that are impossible to obtain from a single site. Motivated by scientific collaborations
that are common in human health research, CAPE improves upon the conventional de-
centralized DP schemes and achieves the same level of utility as the pooled-data scenario
in certain regimes. It has been shown [6] that CAPE can benefit computations with sen-
sitivies satisfying some conditions. Many functions of interest in machine learning and
deep neural networks have sensitivites that satisfy these conditions. Our proposed capeFM
algorithm utilizes the Stone–Weierstrass theorem [35] to approximate a cost function in the
decentralized-data setting and employs the CAPE protocol.

To summarize, the goal of our work is to improve the privacy–utility trade-off and
reduce the amount of noise in the functional mechanism at the expense of approximate DP
guarantee for applications of machine learning in decentralized/federated data settings,
similar to those found in research consortia. Our main contributions are:

• We propose Gaussian FM as an improvement over the existing functional mechanism
by performing a tighter sensitivity analysis. Our novel analysis has two major features:
(i) the sensitivity parameters of the data-dependent (hence, privacy-sensitive) polyno-
mial coefficients of the Stone–Weierstrass decomposition of the objective function are
free of the dataset dimensionality; and (ii) the additive noise for privacy is tailored
for the order of the polynomial coefficient of the Stone–Weierstrass decomposition of
the objective function, rather than being the same for all coefficients. These features
give our proposed Gaussian FM a significant advantage by offering much less noisy
function computation compared to both the original FM [7] and the relaxed FM [10],
as shown for linear and logistic regression problems. We also empirically validate this
on real and synthetic data.

• We extend our Gaussian FM to decentralized/federated data settings to propose
capeFM, a novel extension of the functional mechanism for decentralized-data. To this
end, we note another significant advantage of our proposed Gaussian FM over the
original FM: the Gaussian FM can be readily extended to decentralized/federated data
settings by exploiting the fact that the sum of a number of Gaussian random variables
is another Gaussian random variable, which is not true for Laplace random variables.
We show that the proposed capeFM can achieve the same utility as the pooled-data
scenario for some parameter choices. To the best of our knowledge, our work is the
first functional mechanism for decentralized-data settings.

• We demonstrate the effectiveness of our algorithms with varying privacy and dataset
parameters. Our privacy analysis and empirical results on real and synthetic datasets
show that the proposed algorithms can achieve much better utility than the existing
state-of-the-art algorithms.

2. Definitions and Preliminaries
Notation. We denote vectors, matrices, and scalars with bold lower case letters (x),

bold upper case letters (X), and unbolded letters (N), respectively. We denote indices
with lower case letters and they typically run from 1 to their upper case versions (d 2
1, 2, . . . , D , [D]). The n-th column of a matrix X is denoted as xn. We denote the Euclidean
(or L2) norm of a vector and the spectral norm of a matrix with k · k2. Finally, we denote
the inner product of two matrices A and B as hA, Bi = tr(A>B).

2.1. Definitions
Definition 1 ((e, d)-Differential Privacy [4]). Let us consider a domain D of datasets consisting
of N records, and D, D0 2 D where D and D0 differ in a single record (neighboring datasets). Then,
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for all measurable S ✓ T and all neighboring data sets D, D0 2 D, an algorithm A : D 7! T
provides (e, d)-differential privacy ((e, d)-DP) if

Pr[A(D) 2 S]  exp(e)Pr[A(D0) 2 S] + d.

This definition is also known as bounded differential privacy (as opposed to unbounded
differential privacy [1]). One way to interpret this is that an algorithm A satisfies (e, d)-DP
if the probability distribution of the output of A does not change significantly if the input
database is changed by one sample. That is to say, whether or not a particular individual
takes part in a differentially private study, the outcome of the study is not changed by
much. An adversary attempting to identify an individual will not be able to verify the
individual’s presence or absence in the study with high confidence. The privacy of the
individual is thus preserved by plausible deniability. In the definition of DP, (e, d) are
privacy parameters, where lower (e, d) ensure more privacy. The parameter d can be
interpreted as the probability that the algorithm fails to provide privacy risk e. Note
that (e, d)-DP is known as approximate differential privacy whereas e-differential privacy
(e-DP) is known as pure differential privacy. In general, we denote approximate (bounded)
differentially private algorithms with DP. An important feature of DP is that post-processing
of the output does not change the privacy guarantee, as long as that post-processing does
not use the original data [33]. Among the most commonly used mechanisms for formulating
a DP algorithm are additive noise mechanisms such as the Gaussian [4] or Laplace [33]
mechanisms, and random sampling using the exponential mechanism [16]. For additive
noise mechanisms, the standard deviation of the additive noise is scaled to the sensitivity of
the computation.

Definition 2 (Lp-Sensitivity [4]). Given neighboring datasets D and D0, the Lp-sensitivity of a
vector-valued function f (D) is

D := max
D,D0

k f (D)� f (D0) kp .

We focus on p = 1 and 2 in this paper.

Definition 3 (Gaussian Mechanism [33]). Let f : D 7! RD be an arbitrary function with
L2-sensitivity D. The Gaussian mechanism with parameter t adds noise scaled to N (0, t2) to each
of the D entries of the output and satisfies (e, d)-differential privacy for e 2 (0, 1) if

t � D
e

r
2 log

1.25
d

.

Note that, for any given (e, d) pair, we can calculate a noise variance t2 such that addition of
a noise term drawn from N (0, t2) guarantees (e, d)-differential privacy. There are infinitely
many (e, d) pairs that yield the same t2. Therefore, we parameterize our methods using
t2 [36] in this paper. We refer the reader to [37–39] for a broader discussion of privacy
parameter e.

Definition 4 (Rényi Differential Privacy (RDP) [34]). A randomized mechanism A : D 7! T is
(a, er)-Rényi differentially private if, for any adjacent D, D0 2 D, the following holds:

Da(A(D) k A(D0))  er

Here, Da(P(x) k Q(x)) = 1
a�1 logEx⇠Q

⇣
P(x)
Q(x)

⌘a
, and P(x) and Q(x) are probability density

functions defined on T.
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Analyzing the total privacy loss of a multi-round algorithm, each stage of which is DP,
is a challenging task. It has been shown [34,40] that the advanced composition theorem [33]
for (e, d)-differential privacy can be loose. Hence, we use RDP, which offers a much simpler
composition rule that is shown to be tight. Here, we review the properties of RDP [34] that
we utilize in our analysis in Section 3.

Proposition 1 (From RDP to Differential Privacy [34]). If A is an (a, er)-RDP mechanism,

then it also satisfies
⇣

er +
log 1

dr
a�1 , dr

⌘
-differential privacy for any 0 < dr < 1.

Proposition 2 (Composition of RDP [34]). Let A : D 7! T1 be (a, er1)-RDP and B : D 7! T2
be (a, er2)-RDP. Then the mechanism defined as (X, Y), where X ⇠ A(D) and Y ⇠ B(X, D),
satisfies (a, er1 + er2)-RDP.

Proposition 3 (RDP and Gaussian Mechanism [34]). If A has L2-sensitivity 1, then the
Gaussian mechanism GsA(D) = A(D) + E, where E ⇠ N (0, s2) satisfies

⇣
a, a

2s2

⌘
-RDP.

Additionally, a composition of T Gaussian mechanisms satisfies
⇣

a, aT
2s2

⌘
-RDP.

Correlation Assisted Private Estimation (CAPE) [6]. As mentioned before, we uti-
lize the CAPE protocol for developing capeFM. In Section 5.2 we describe the CAPE
trust/collusion model in detail, and discuss how the correlated noise in a decentralized-
data setting is used to reduce the excess noise introduced in conventional decentralized DP
algorithms. We use the terms “distributed” and “decentralized” interchangeably in this
paper. Note that the CAPE scheme, and consequently the proposed capeFM algorithm can
be readily extended (see Section III.C of Imtiaz et al. [6]) for federated learning [29] settings.

The CAPE protocol considers a decentralized data setting with S sites and a central
aggregator node in an “honest but curious” threat model [6]. For simplicity, we consider the
symmetric setting: each site s 2 [S] holds a dataset of Ns = N

S disjoint data samples, where
the total number of samples across all sites is N. CAPE overcomes the utility degradation
in conventional decentralized DP schemes and achieves the same noise variance as that
of the pooled-data scenario in certain parameter regimes. The privacy of CAPE is given
by Theorem 1 and the claim that the noise variance of the estimator is exactly the same
as if all data were present at the aggregator is formalized in Lemma 1. Here, we review
the relevant properties of the CAPE scheme for extending our proposed Gaussian FM to
the decentralized-data setting. We refer the reader to Imtiaz et al. [6] for the proofs of
these properties.

Theorem 1 (Privacy of CAPE scheme [6]). In a decentralized data setting with Ns = N
S and

t2
s = t2 for all sites s 2 [S], if at most SC = d S

3 e� 1 collude after execution, then CAPE guarantees

(e, d)-differential privacy for each site, where (e, d) satisfy the relation d = 2 sz
e�µz

f
⇣

e�µz
sz

⌘
,

e 2 (0, 1) and (µz, sz) are given by

µz =
S3

2t2N2(1 + S)

✓
S � SC + 2

S � SC
+

9
S�SC

S2
C

S(1 + S)� 3S2
C

◆
,

sz = 2µz.

Lemma 1 ([6]). Consider the symmetric setting: Ns = N
S and t2

s = t2 for all sites s 2 [S]. Let the

variances of the noise terms es and gs be t2
e =

⇣
1 � 1

S

⌘
t2

s and t2
g = t2

s
S , respectively. If we denote

the variance of the additive noise (for preserving privacy) in the pooled-data scenario by t2
pool and

the variance of the estimator acape by t2
cape then CAPE protocol achieves the same noise variance as

the pooled-data scenario (i.e., t2
pool = t2

cape).
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Proposition 4 (Performance improvement using CAPE [6]). If the local noise variances are
{t2

s } for s 2 [S] then the CAPE scheme provides a reduction G = t2
conv

t2
cape

= S in noise variance

over the conventional decentralized DP scheme in the symmetric setting (Ns = N
S and t2

s = t2 8
s 2 [S]), where t2

conv and t2
cape are the noise variances of the final estimate at the aggregator in the

conventional scheme and the CAPE scheme, respectively.

Proposition 5 (Scope of CAPE [6]). Consider a decentralized setting with S > 1 sites in which site
s 2 [S] has a dataset Ds of Ns samples and ÂS

s=1 Ns = N. Suppose the sites are employing the CAPE
scheme to compute a function f (D) with L2-sensitivity D(N). Denote n = [N1, N2, . . . , NS] and

observe the ratio H(n) =
t2

cape
t2

pool
= ÂS

s=1 D2(Ns)
S3D2(N)

. Then the CAPE protocol achieves H(n) = 1, if (i)

D
⇣

N
S

⌘
= SD(N) for convex D(N); and (ii) S3D2(N) = ÂS

s=1 D2(Ns) for general D(N).

2.2. Functional Mechanism [7]
In this section, we first review the existing functional mechanism through a regression

model following [7] before describing our proposed improvement. Let D be a dataset that
contains N samples of the form (xn, yn), where xn 2 RD is the feature vector and yn 2 R
is the response for n 2 [N]. Without loss of generality, we assume for each sample that��xn

��
2  1. The objective is to construct a regression model that enables one to predict

any yn based on xn. Depending on the regression model, the mapping function can be of
various types. Without loss of generality, it can be parameterized with a D-dimensional
vector w of real numbers. To evaluate whether w leads to an accurate model, a cost function
f is defined to measure the deviation between the original and predicted values of yn, given
w as the model parameters. The optimal model parameter w⇤ is defined as

w⇤ = arg min
w

fD(w),

where the empirical average cost function is

fD(w) =
1
N

N

Â
n=1

f (xn, w). (1)

Note that fD(w) depends on the data samples. In cases where the data are privacy-
sensitive, the empirical average cost function fD(w) (or any function computed from
it, such as its gradient or the optimizer w⇤) may reveal private information about the
members of the dataset. To make the model differentially private, one approach is to add
noise to the gradients of the cost function at every iteration [12]. We refer to this approach
as noisy gradient descent in this paper. Another approach is the to perturb the objective
function [7–10]. In particular, the original FM [7] and the relaxed FM [10] use a randomized
approximation of the objective function.

Now, recall that w 2 RD contains the model parameters w = [w1, w2, . . . , wD]
>. We

define f(w) = wc1
1 wc2

2 . . . wcD
D for some c1, c2, . . . , cD 2 N. Let Fj denote the set of all f(w)

with degree j 2 N, i.e.,

Fj =

⇢
wc1

1 wc2
2 . . . wcD

D

���
D

Â
d=1

cd = j
�

.

For example, F0 = {1}, F1 = {w1, w2, . . . , wD}, and F2 = {wd1 wd2 | d1, d2 2 [D]}. By
the Stone–Weierstrass Theorem [35], any continuous and differentiable f (xn, w) can be
always written as a (potentially infinite) sum of monomials of {wd}, i.e., for some J 2 [0, •),
we have

f (xn, w) =
J

Â
j=0

Â
f2Fj

lfnf(w),
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where lfn 2 R denotes the coefficient of f(w) in the polynomial. Note that lfn is a function
of the n-th data sample. Consequently, the f (xn, w) as expressed above depends on the
model parameters through f(w) and on the data samples through lfn. The expression for
average cost in (1) can now be written as

fD(w) =
1
N

N

Â
n=1

J

Â
j=0

Â
f2Fj

lfnf(w) =
J

Â
j=0

Â
f2Fj

✓
1
N

N

Â
n=1

lfn

◆
f(w). (2)

For regression analysis on two neighboring datasets D and D0 differing in a single sample,
the L1-sensitivity of the data-dependent term in (2) is computed as [7]:

J

Â
j=0

Â
f2Fj

1
N

����

✓
Â
D

lfn � Â
D0

lfn

◆����
1
 2

N
max

n

J

Â
j=0

Â
f2Fj

��lfn
��

1 , D f m.

In FM, Zhang et al. [7] proposed to perturb fD(w) by injecting Laplace noise with variance
2
�D f m

e

�2 into each coefficient of the polynomial. FM achieves e-DP by obtaining the optimal
model parameters ŵ⇤ that minimize the noise-perturbed function f̂D(w).

As mentioned before, decomposition such as (2) can be performed for any contin-
uous and differentiable cost function f (xn, w). However, depending on the complexity
of f (xn, w), the decomposition may be non-trivial. In Section 4, we show how such de-
composition can be performed on linear regression and logistic regression problems, as
illustrative examples.

3. Functional Mechanism with Approximate Differential Privacy: Gaussian FM
Zhang et al. [7] computed the L1-sensitivity D f m of the data-dependent terms for linear

regression and logistic regression problems. The D f m is shown to be 2
N (1 + D)2 for linear

regression, and 1
N

⇣
D2

4 + 3D
⌘

for logistic regression. We note that D f m grows quadratically
with the ambient dimension of the data samples, resulting in a excessively large amount
of noise to be injected into the objective function. Additionally, Ding et al. [10] proposed
relaxed FM, a “utility-enhancement scheme”, by replacing the Laplace mechanism with
the Extended Gaussian mechanism [11], and thus achieving slightly better utility than the
original FM at the expense of an approximate DP guarantee instead of a pure DP guarantee.
However, Ding et al. [10] showed that the L2-sensitivity of the data-dependent terms for

the logistic regression problem is Drlx- f m = 1
N

q
D2
16 + D. Additionally, using the technique

outlined in [10], it can be shown that the L2-sensitivity of the data-dependent terms is
Drlx- f m = 2

N
p

1 + 4D + D2 for the linear regression problem (please see Appendix A for
details). For both cases, we observe that Drlx- f m grows linearly with the ambient dimension
of the data samples. Therefore, the privacy-preserving additive noise variances in both the
original FM and relaxed FM schemes are data-dimensionality dependent, and therefore,
can be prohibitively large even for moderate D. Moreover, both FM and relaxed FM
schemes add the same amount of noise to each polynomial coefficient lfn irrespective of
the order j. With a tighter characterization, we show in Section 4 that the sensitivities of
these coefficients are different for different order j. We reduce the amount of added noise
by addressing these issues and performing a novel sensitivity analysis. The key points are
as follows:
• Instead of computing the e-DP approximation of the objective function using the

Laplace mechanism, we use the Gaussian mechanism to compute the (e, d)-DP approx-
imation of fD(w). This gives a weaker privacy guarantee than the pure differential
privacy, but provides much better utility.

• Recall that the original FM achieves e-DP by adding Laplace noise scaled to the L1-
sensitivity of the data-dependent terms of the objective function fD(w) in (2). As
we use the Gaussian mechanism, we require L2-sensitivity analysis. To compute the
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L2-sensitivity of the data-dependent terms of the objective function fD(w) in (2), we
first define an array Lj that contains 1

N ÂN
n=1 lfn as its entries for all f(w) 2 Fj. The

term “array” is used because the dimension of Lj depends on the cardinality of Fj. For
example, for j = 0, L0 is a scalar because F0 = {1}; for j = 1, L1 can be expressed as
a D-dimensional vector because F1 = {w1, w2, ..., wD}; for j = 2, L2 can be expressed
as a D ⇥ D matrix because F2 = {wd1 wd2 | d1, d2 2 [D]}.

We rewrite the objective function as

fD(w) =
J

Â
j=0

Â
f2Fj

✓
1
N

N

Â
n=1

lfn

◆
f(w) =

J

Â
j=0

⌦
Lj, f̄j

↵
, (3)

where f̄j is the array containing all f(w) 2 Fj as its entries. Note that f̄j and Lj have the
same dimensions and number of elements. We define the L2-sensitivity of Lj as

Dj = max
D,D0

��LD
j � LD0

j
��

2, (4)

where LD
j and LD0

j are computed on neighboring datasets D and D0, respectively. Following
the Gaussian mechanism [33], we can calculate the (e, d) differentially private estimate of
Lj, denoted L̂j as

L̂j = Lj + ej, (5)

where the noise array ej has the same dimension as Lj, and contains entries drawn i.i.d.

from N (0, t2
j ) with tj =

Dj
e

q
2 log 1.25

d . Finally, we have

f̂D(w) =
J

Â
j=0

⌦
L̂j, f̄j

↵
. (6)

As the function fD(w) depends on the data only through
�

Lj
 

, this computation satisfies
(e, d)-differential privacy. Our proposed Gaussian FM is shown in detail in Algorithm 1.

Theorem 2 (Privacy of the Gaussian FM (Algorithm 1)). Consider Algorithm 1 with privacy
parameters (e, d), and the empirical average cost function fD(w) represented as in (3). Then
Algorithm 1 computes an (e, d) differentially private approximation f̂D(w) to fD(w). Conse-
quently, the minimizer ŵ⇤ = arg minw f̂D(w) satisfies (e, d)-differential privacy.

Algorithm 1 Gaussian FM

Require: Data samples (xn, yn) for n 2 [N]; cost function fD(w) represented as in (3);
privacy parameters (e, d).

1: for 0  j  J do
2: Compute Lj as shown in Section 4
3: Compute Dj = maxD,D0

��LD
j � LD0

j
��

2

4: Compute tj =
Dj
e

q
2 log 1.25

d

5: Compute ej ⇠ N (0, t2
j ) with the same dimension as Lj

6: Release L̂j = Lj + ej
7: end for
8: Compute f̂D(w) = ÂJ

j=0
⌦
L̂j, f̄j

↵

9: return Perturbed objective function f̂D(w)
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Proof. The proof of Theorem 2 follows from the fact that the function f̂D(w) depends on the
data samples only through {L̂j}. The computation of {L̂j} is (e, d)-differentially private by
the Gaussian mechanism [4,33]. Therefore, the release of f̂D(w) satisfies (e, d)-differential
privacy. One way to rationalize this is to consider that the probability of the event of
selecting a particular set of {L̂j} is the same as the event of formulating a function f̂D(w)

with that set of {L̂j}. Therefore, it suffices to consider the joint density of the {L̂j} and
find an upper bound on the ratio of the joint densities of the {L̂j} under two neighboring
datasets D and D0. As we employ the Gaussian mechanism to compute {L̂j}, the ratio is
upper bounded by exp(e) with probability at least 1 � d. Therefore, the release of f̂D(w)
satisfies (e, d)-differential privacy. Furthermore, differential privacy is post-processing
invariant. Therefore, the computation of the minimizer ŵ⇤ = arg minw f̂D(w) also satisfies
(e, d)-differential privacy.

Privacy Analysis of Noisy Gradient Descent [12] using Rényi Differential Privacy.
One of the most crucial qualitative properties of DP is that it allows us to evaluate the
cumulative privacy loss over multiple computations [33]. Cumulative, or total, privacy
loss is different from (e, d)-DP in multi-round machine learning algorithms. In order to
demonstrate the superior privacy guarantee of the proposed Gaussian FM, we compare it to
the existing functional mechanism [7], the relaxed functional mechanism [10], the objective
perturbation [8], and the noisy gradient descent [12] method. Note that, similar to objective
perturbation, FM and relaxed FM, the proposed Gaussian FM injects randomness in a single
round, and therefore does not require privacy accounting. However, the noisy gradient
descent method involves addition of noise in each step the gradient is computed. That is,
noise is added to the computed gradients of the parameters of the objective function during
optimization. Since it is a multi-round algorithm, the overall e used during optimization is
different from the e for every iteration. We follow the analysis procedure outlined in [6] for
the privacy accounting of the noisy gradient descent algorithm. Note that Proposition 3
described in Section 2.1 is defined for functions with unit L2-sensitivity. Therefore, if a
noise from N(0, t2) is added to a function with sensitivity D, then the resulting mechanism
satisfies (a, a

2 t2
D2
)-RDP. Now, according to Proposition 3, the T-fold composition of Gaussian

mechanisms satisfies (a, aT
2 t2

D2
)-RDP. Finally, according to Proposition 1, it also satisfies

(er +
log 1

dr
a�1 , dr)-differential privacy for any 0  dr  1, where er = aT

2 t2
D2

. For a given value

of dr, we can express the value of the optimal overall eopt as a function of aopt:

eopt =
aoptT

2 t2

D2

+
log 1

dr

aopt � 1
, (7)

where aopt is given by

aopt = 1 +

s
2
T

t2

D2 log
1
dr

. (8)

We compute the overall e following this procedure for the noisy gradient descent algo-
rithm [12] in our experiments in Section 6.

4. Application of Gaussian FM in Regression Analysis
In this section, we demonstrate how our proposed Gaussian FM can be applied to lin-

ear and logistic regression problems to achieve (e, d)-DP. For both cases, we first decompose
the objective function (i.e., the empirical average cost function) into a finite series of poly-
nomials, inject noise into the coefficients (i.e., the only data-dependent components in the
decomposition) using Gaussian mechanism, and finally minimize the (e, d)-differentially
private objective function. As before, we assume that we have a dataset D with N samples
of the form (xn, yn), where for each sample n 2 [N], the D-dimensional feature vector is
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xn =
⇥
xn1 xn2 · · · xnD

⇤> (normalized to ensure
��xn
��

2  1) and the corresponding output
is yn.

4.1. Linear Regression
For our linear regression problem, we assume yn 2 [�1, 1]. Let w 2 RD be the

parameter vector. The goal of linear regression is to find the optimal w⇤ so that x>n w⇤ ⇡ yn.
The empirical average cost function is defined as

fD(w) =
1
N

N

Â
n=1

⇣
yn � x>n w

⌘2
. (9)

Using simple algebra, this equation can be decomposed into a series of polynomials as

fD(w) =

✓
1
N

N

Â
n=1

y2
n

◆
+

D

Â
d=1

✓
� 2

N

N

Â
n=1

ynxnd

◆
wd +

D

Â
d1=1

D

Â
d2=1

✓
1
N

N

Â
n=1

xnd1 xnd2

◆
wd1 wd2 .

As we intend to compute the differentially private minimizer ŵ⇤, we observe that the
representation of fD(w) is of the form fD(w) = ÂJ

j=0
⌦
Lj, f̄j

↵
with J = 2. The expressions

for Lj are

L0 =
1
N

N

Â
n=1

y2
n,

L1 = � 2
N

2

6664

ÂN
n=1 ynxn1

ÂN
n=1 ynxn2

...
ÂN

n=1 ynxnD

3

7775
,

L2 =
1
N

2

64
ÂN

n=1 x2
n1 · · · ÂN

n=1 xn1xnD
...

. . .
...

ÂN
n=1 xnDxn1 · · · ÂN

n=1 x2
nD

3

75 =
1
N
�
XX>�.

Here, L0 is a scalar, L1 is a D-dimensional vector, and L2 is a D ⇥ D symmetric matrix,
since X is an D ⇥ N matrix containing xn as its columns. The expressions for f̄j are

f̄0 = 1,

f̄1 =

2

6664

w1
w2
...

wD

3

7775
,

f̄2 =

2

6664

w2
1 w1w2 · · · w1wD

w2w1 w2
2 · · · w2wD

...
...

. . .
...

wDw1 wDw2 · · · w2
D

3

7775
.

The next step is finding the sensitivities of
�

Lj
 

using (4). Let D and D0 be two neighboring
datasets differing in only one sample, e.g., the last samples (xN , yN) and (x0N , y0N). Now,
the L2-sensitivity of L0 is
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D0 = max
D,D0

����
1
N

N

Â
n=1

y2
n �

1
N

N

Â
n=1

y02n

����
2

=
1
N

max
D,D0

��y2
N � y02N

��
2

 1
N

,

since yn 2 [�1, 1] and hence y2
n 2 [0, 1]. Next, the L2-sensitivity of L1 is

D1 = max
D,D0

�����
2
N

yNxN +
2
N

y0Nx0N

����
2

 2
N

max
D,D0

✓��yNxN
��

2 +
��y0Nx0N

��
2

◆

=
2
N

max
D,D0

✓��yN
����xN

��
2 +

��y0N
����x0N

��
2

◆

 4
N

,

where the second line follows from the triangle inequality, and the last line follows from
the assumptions that yn 2 [�1, 1] and

��xn
��

2  1. Finally, the L2-sensitivity of L2 is

D2 = max
D,D0

����
1
N
�
XX>�� 1

N
�
X0X0>�

����
2

=
1
N

max
D,D0

��xNx>N � x0Nx0>N
��

2

 1
N

.

The proof of the inequality in the last line is as follows:

Proof. The term
⇣

xNx>N � x0Nx0>N
⌘

is a D ⇥ D symmetric matrix, whose norm can be ex-

pressed [41] as sup
⇢

u>⇥xNx>N � x0Nx0>N
⇤
v
���� u = v,

��u
��

2 =
��v
��

2 = 1
�

. It follows that

��xNx>N � x0Nx0>N
��

2 = sup
⇢

u>xNx>Nu � u>x0Nx0>N u
�

= sup
⇢⇣

x>Nu
⌘>⇣

x>Nu
⌘
�
⇣

x0>N u
⌘>⇣

x0>N u
⌘�

= sup
⇢��x>Nu

��2
2 �

��x0>N u
��2

2

�

 sup
⇢��x>N

��2
2

��u
��2

2 �
��x0>N

��2
2

��u
��2

2

�
 1.

After computing the L2-sensitivity of Lj for j = 0, 1, and 2, we can now compute the

noise array ej ⇠ N (0, t2
j ), where tj =

Dj
e

q
2 log 1.25

d , and then compute
�

L̂j
 

following (5).
Using these, we can compute the (e, d) differentially private f̂D(w) according to (6), and
consequently, the minimizer ŵ⇤ = arg minw f̂D(w). Note that, unlike the existing FM and
relaxed FM, the additive noise variances of our proposed Gaussian FM do not depend
on the sample dimension D. More specifically, for the linear regression problem, the L1-
sensitivity of the coefficients in FM [7] is D f m = 2

N (1 + D)2 and the L2-sensitivity of the
coefficients in relaxed FM [10] is Drlx- f m = 2

N
p

1 + 4D + D2 (see Appendix A for the proof).
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Both of these sensitivities are orders of magnitude larger than Dj that we achieved for
j 2 {0, 1, 2}, and for practical values of D and N. Thus, the proposed Gaussian FM can offer
the (e, d)-differentially private approximation f̂D(w) with much less noise, which results in
a (e, d)-differentially private model ŵ⇤ that is much closer to the true model w⇤. We show
empirical validation on synthetic and real datasets in Section 6.

4.2. Logistic Regression
For the logistic regression problem, we assume yn 2

�
0, 1
 

to be the class labels. The
class label is approximated using the sigmoid function defined as fsig(z) = 1

1+exp(�z) . Let
w 2 RD be the parameter vector. The goal of logistic regression is to find the optimal
w⇤ so that fsig(x>n w⇤) ⇡ yn. The empirical average cost function for logistic regression is
defined as

fD(w) = � 1
N

N

Â
n=1

yn log
�

fsig(x>n w)
�
+ (1 � yn) log

�
1 � fsig(x>n w)

�

=
1
N

N

Â
n=1

log
�
1 + exp(x>n w)

�
� ynx>n w.

(10)

Unlike linear regression, the simplified form of fD(w) in the second line cannot be rep-
resented with a finite series of polynomials. Zhang et al. [7] proposed an approximate
polynomial form of fD(w) using Taylor series expansion, written as

f̃D(w) =
1
N

N

Â
n=1

2

Â
k=0

f (k)1 (0)
k!

�
x>n w

�k � 1
N

N

Â
n=1

ynx>n w.

Using simple algebra and the values of f (k)1 (0) for k = 0, 1, and 2, i.e., f (0)1 (0) = log 2,
f (1)1 (0) = 1

2 , and f (k)1 (0) = 1
4 , we obtain

f̃D(w) = log 2 +
D

Â
d=1

 
1
N

N

Â
n=1

⇣1
2
� yn

⌘
xnd

!
wd +

D

Â
d1=1

D

Â
d2=1

✓
1

8N

N

Â
n=1

xnd1 xnd2

◆
wd1 wd2 .

As before, we intend to compute the differentially private minimizer ŵ⇤, and we observe
that the representation of f̃D(w) is of the form fD(w) = ÂJ

j=0
⌦
Lj, f̄j

↵
with J = 2. The

expressions for Lj are

L0 = log 2,

L1 =
1
N

2

6664

ÂN
n=1

� 1
2 � yn

�
xn1

ÂN
n=1

� 1
2 � yn

�
xn2

...
ÂN

n=1
� 1

2 � yn
�

xnD

3

7775
,

L2 =
1

8N

2

64
ÂN

n=1 x2
n1 · · · ÂN

n=1 xn1xnD
...

. . .
...

ÂN
n=1 xnDxn1 · · · ÂN

n=1 x2
nD

3

75 =
1

8N
�
XX>�.

Again, Lj is a scalar, a D-dimensional vector, and a D ⇥ D matrix for j = 0, 1, and 2,
respectively. We can express f̄j for j = 0, 1, and 2 the same way as we did for linear
regression in Section 4.1. To compute the sensitivities of

�
Lj
 

using (4), let D and D0 be two
neighboring datasets differing in only the last samples, which are (xN , yN) and (x0N , y0N),

respectively. Now, the L2-sensitivity of L0 is D0 = maxD,D0

���� log 2 � log 2
����

2
= 0. The

L2-sensitivity of L1 is
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D1 = max
D,D0

����
1
N

⇣1
2
� yN

⌘
xN � 1

N

⇣1
2
� y0N

⌘
x0N

����
2

 1
N

max
D,D0

 ����
1
2
� yN

����

����xN

����
2
+

����
1
2
� y0N

����

����x0N

����
2

!

 1
N

,

where
��� 1

2 � yN

���  1
2 , since yn 2

�
0, 1
 

, and
��xn
��

2  1. Finally, the L2-sensitivity of L2 is

D2 = max
D,D0

����
1

8N
�
XX>�� 1

8N
�
X0X0>�

����
2

=
1

8N
max
D,D0

��xNx>N � x0Nx0>N
��

2

 1
8N

,

where the inequality follows from the expression for the norm of a symmetric matrix,
as shown in Section 4.1. After computing the L2-sensitivity of Lj for j = 0, 1, and 2,

we can now compute the noise array ej ⇠ N (0, t2
j ), where tj =

Dj
e

q
2 log 1.25

d , and then
compute

�
L̂j
 

following (5). Using these, we can compute the (e, d) differentially-private
f̂D(w) according to (6), and consequently, the minimizer ŵ⇤ = arg minw f̂D(w). Again

we note that the L1-sensitivity of the coefficients in FM [7] is D f m = 1
N

⇣
D2

4 + 3D
⌘

and the

L2-sensitivity of the coefficients in relaxed FM [10] is Drlx- f m = 1
N

q
D2
16 + D for logistic

regression. As in the case of linear regression, both of these sensitivities are orders of
magnitude larger than Dj that we achieved for j 2 {1, 2}, and for practical values of D
and N. Since additive noise variances of our proposed Gaussian FM do not depend on the
sample dimension D, we obtain f̂D(w), the (e, d)-differentially private approximation to
f̃D(w), with much less noise. As mentioned before, we validate our analysis empirically
using synthetic and real datasets in Section 6.

4.3. Avoiding Unbounded Noisy Objective Functions
Our proposed Gaussian FM achieves (e,d)-DP by injecting noise drawn from a Gaus-

sian distribution into the coefficients of the Stone–Weierstrass decomposition of the empiri-
cal average objective function. However, the injection of noise may render the objective
function unbounded, which means there may not exist any optimal solution for the noisy
objective function. As shown in Sections 4.1 and 4.2, the Stone–Weierstrass decomposi-
tion would transform the objective functions of linear and logistic regression problems
into quadratic polynomials in our Gaussian FM. Let f̂D(w) = w>Mw + a>w + b be the
matrix representation of the quadratic polynomial, where M is a symmetric and positive
semi-definite matrix, a is a D-dimensional vector and b is a scalar. After injection of noise,
the noisy objective function becomes f̂D(w) = w>M̂w + â>w + b̂. In order to ensure that
f̂D(w) is bounded after introducing noise, it suffices to make sure M̂ is also symmetric and
positive semi-definite [42].

We follow the seminal work of Dwork et al. [43] in our implementation—the symmetry
of M̂ is ensured by constructing the noise matrix in such a way that noise is first drawn
from the Gaussian distribution to form an upper triangular matrix, and the elements of
the upper triangle part of the matrix (excluding the diagonal elements) are then copied to
its lower triangle part. Adding the symmetric noise matrix to M results in a symmetric
M̂. However, f̂D(w) may still be unbounded if M̂ is not positive semi-definite. To resolve
this, we perform eigen-decomposition of M̂ to obtain the eigenvalues and corresponding
eigenvectors. We then project the eigenvalues onto the non-negative orthant. Let Q>SQ be
the eigen-decomposition of M̂, where Q is a D ⇥ D matrix containing an eigenvector of M̂
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in each row, and S is a diagonal matrix where the i-th diagonal element is the eigenvalue of
M̂ corresponding to the eigenvector in the i-th row of Q. We can write

f̂D(w) = w>(Q>SQ)w + â>w + b̂.

If the i-th diagonal element of S is negative, we turn that entry to zero. After this projection
onto the non-negative orthant, let the resulting matrix be Ŝ, where any i-th diagonal element
is bigger than or equal to zero. The noisy objective function then becomes

f̂D(w) = w>(Q>ŜQ)w + â>w + b̂,

where (Q>ŜQ) is symmetric positive semi-definite. Thus, f̂D(w) is bounded. Since all
of these are performed after the differentially-private noise addition, we can invoke the
post-processing invariability of differential privacy and guarantee that f̂D(w) is (e,d)-
differentially private. Consequently, the minimizer ŵ⇤ also satisfies (e,d) differential privacy.
Note that it is possible for all the eigenvalues of the differentially private estimate of the M
matrix to be negative. We leave the solution to such cases for future work.

5. Extension of Gaussian FM to Decentralized-Data Setting: capeFM
In many signal processing and machine learning applications, the privacy-sensitive

user data being collected/used are of decentralized nature. Training machine learning and
neural-network-based models on such a huge amount of data is certainly lucrative from an
algorithmic perspective, but privacy constraints often make it challenging to share such
datasets with a central aggregator. However, training locally at one node/site is infeasible
due to the number of samples in each node/site could be too small for meaningful model
training. Decentralized DP can benefit such research work by allowing data owners to
share information while maintaining local privacy. The conventional decentralized DP
scheme, however, always results in a degradation in performance compared to that of
the pooled-data scenario. In this section, we first describe the problem with conventional
decentralized DP. Then we review the CAPE scheme [6] in brief, as we employ the CAPE
scheme into our Gaussian FM to propose capeFM.

The Decentralized-data Setting. In line with our discussions in Section 2.2, let us
consider a decentralized data setting with S sites and a central aggregator node. We assume
an “honest but curious” threat model [6]: all parties follow the protocol honestly, but a
subset are “curious” and can collude (maybe with an external adversary) to learn other sites’
data/function outputs. For simplicity, we consider the symmetric setting: each site s 2 [S]
holds a dataset Ds of Ns = N

S disjoint data samples (xs,n, ys,n), where the total number of
samples across all sites is N, and xs,n 2 RD. The cost incurred by the model parameters
w 2 RD due to one data sample is f (xs,n; w) : RD ⇥RD 7! R. We need to minimize the
average cost to find the optimal w⇤. The empirical average cost for a particular w over all
the samples is expressed as

fD(w) =
1
N

S

Â
s=1

Ns

Â
n=1

f (xs,n; w) =
1
S

S

Â
s=1

1
Ns

Ns

Â
n=1

f (xs,n; w).

According to (3), the above expression can be written as

fD(w) =
1
S

S

Â
s=1

J

Â
j=0

⌦
Ls

j , f̄j
↵
=

J

Â
j=0

⌦
Lj, f̄j

↵
,

where Ls
j contains 1

Ns ÂNs
n=1 lfs,n as its entries for all f(w) 2 Fj at site s, Lj =

1
S ÂS

s=1 Ls
j ,

and f̄j is the array containing all f(w) 2 Fj as its entries. Finally, we can compute the
minimizer:
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w⇤ = arg min
w

fD(w) = arg min
w

J

Â
j=0

⌦
Lj, f̄j

↵
.

5.1. Problems with Conventional Decentralized DP Computations
In this section, we discuss the problems with conventional decentralized DP schemes [6].

Consider estimating the mean f (x) = 1
N ÂN

n=1 xn of N scalars x = [x1, . . . , xN�1, xN ]>,
where each xn 2 [0, 1]. The L2-sensitivity of the function f (x) is 1

N . Therefore, for com-
puting the (e, d)-DP estimate of the average a = f (x), we can follow the Gaussian mecha-

nism [4] to release âpool = a + epool , where epool ⇠ N (0, t2
pool) and tpool =

1
Ne

q
2 log 1.25

d .
Suppose now that the N samples are equally distributed among S sites. An aggregator

wishes to estimate and publish the mean of all the samples. For preserving privacy, the
conventional DP approach is for each site s to release (or send to the aggregator node)
an (e, d)-DP estimate of the function as = f (xs) as: âs = f (xs) + es, where es ⇠ N (0, t2

s )

and ts = 1
Nse

q
2 log 1.25

d = S
Ne

q
2 log 1.25

d . The aggregator can then compute the (e, d)-DP
approximate average as

âconv =
1
S

S

Â
s=1

âs =
1
S

S

Â
s=1

as +
1
S

S

Â
s=1

es.

The variance of the estimator âconv is S · t2
s

S2 = t2
s
S , t2

conv. We observe the ratio

t2
pool

t2
conv

=
t2

s /S2

t2
s /S

=
1
S

.

That is, the decentralized DP averaging scheme will always result in a poorer performance
than the pooled-data case. Imtiaz et al. [6] proposed the CAPE protocol that improves the
performance of such systems by assuming the availability of some reasonable resources.

5.2. Correlation Assisted Private Estimation (CAPE)
Trust/Collusion Model. In order to incorporate the CAPE scheme to our proposed

Gaussian FM in a decentralized data setting, we assume a similar trust model as in [6]. As
mentioned before, we assume all of the S sites and the central aggregator node to be honest-
but-curious. That is, the sites and central node can collude with an adversary to learn about
the data or function output of some other site. We assume that up to SC = d S

3 e � 1 sites, as
well as the central node can collude with an adversary. In addition to having access to the
outputs from each site and the aggregator, the adversary can know everything about the
SC colluding sites, including their private data. Denoting the non-colluding sites with SH ,
we have S = SC + SH .

Correlated Noise and the CAPE Protocol. Imtiaz et al. [6] proposed a novel frame-
work that ensures (e, d)-DP guarantee of the output from each site, while achieving the same
noise level of the pooled-data scenario in the final output from the aggregator. In the CAPE
scheme, each site s 2 [S] first generates two noise terms: gs ⇠ N (0, t2

g ) locally, and es ⇠
N (0, t2

e ) jointly with all other sites such that ÂS
s=1 es = 0. The correlated noise term es is gen-

erated by employing the secure aggregation protocol (SecureAgg) by Bonawitz et al. [28],
which utilizes Shamir’s t-out-of-n secret sharing [44] and is communication-efficient. The
procedure is outlined in Algorithm 2.
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Algorithm 2 Generate Zero-Sum Noise

Require: Local noise variances {t2
s }; security parameter l; threshold value t

1: Each site generates ês ⇠ N (0, t2
s )

2: Aggregator computes ÂS
s=1 ês according to SecureAgg(l, t) [28]

3: Aggregator broadcasts ÂS
s=1 ês to all sites s 2 [S]

4: Each site computes es = ês � 1
S ÂS

s0=1 ês0
5: return es

Note that neither of the terms es and gs has large enough variance to provide an
acceptable (e, d)-DP guarantee. However, the variances of es and gs are chosen in such a
way that the noise es + gs is sufficient to ensure a stringent DP guarantee to f (xs) at site s.

We observe that the variance of es is given by t2
e =

✓
1 � 1

S

◆
t2

s and the variance of gs is set

to t2
g = t2

s
S [6]. Considering the decentralized mean computation problem of Section 5.1,

under the CAPE scheme, each site sends âs = f (xs) + es + gs to the aggregator. We can
then compute the following at the aggregator

acape =
1
S

S

Â
s=1

âs =
1
S

S

Â
s=1

f (xs) +
1
S

S

Â
s=1

gs,

where we used ÂS
s=1 es = 0. The variance of the estimator acape is t2

cape = S · t2
g

S2 = t2
pool ,

which is exactly the same as if all the data were present at the aggregator. This claim is
formalized in Lemma 1 [6] in Section 2.1. That is, the CAPE protocol achieves the same
noise variance as the pooled-data scenario in the symmetric decentralized-data setting.

5.3. Proposed Gaussian FM for Decentralized Data (capeFM)

For employing the CAPE scheme to extend our proposed Gaussian FM for decentralized-
data setting, we need to generate the zero-sum noise. We can readily extend Algorithm 2 to
generate array-valued zero-sum noise terms for each of the Lj terms of the decomposition (3).
That is, according to the CAPE scheme, the sites generate the noise es

j using Algorithm 2,
such that ÂS

s=1 es
j = 0 holds for all j 2 {0, . . . , J}. The sites also generate noise gs

j with

entries i.i.d. ⇠ N (0, ts
jg

2). The sites then compute the perturbed coefficient arrays locally
as L̂s

j = Ls
j + es

j + gs
j for all j 2 {0, . . . , J} and send L̂s

j to the central aggregator. Note that
es

j and gs
j are arrays of the same dimension as Ls

j . Now, the aggregator simply computes
the average of each coefficient term for all j 2 {0, . . . , J} as

L̂j =
1
S

S

Â
s=1

L̂s
j =

1
S

S

Â
s=1

Ls
j +

1
S

S

Â
s=1

gs
j ,

because Âs es
j = 0. The aggregator then uses these {L̂j} to compute f̂D(w) = ÂJ

j=0
⌦
L̂j, f̄j

↵

and release ŵ⇤ = arg minw f̂D(w). The privacy of capeFM follows directly from Theorem 1
and Theorem 2. It follows from Lemma 1 [6] that in the symmetric setting (i.e., Ns = N

S
and ts

j = tj for all sites s 2 [S] and all j 2 {0, 1, . . . , J}), the noise variance achieved at the
aggregator is the same as that of the pooled-data scenario. Additionally, the performance
gain of capeFM over any conventional decentralized functional mechanism is given by
Proposition 4. We refer to our proposed decentralized functional mechanism as capeFM,
shown in Algorithm 3.
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Algorithm 3 Proposed Decentralized Gaussian FM (capeFM)

Require: Data samples (xs,n, ys,n) for s 2 [S]; cost function fD(w) as in (3); local noise
variances {t2

j } for all j 2 {0, . . . , J}
1: for 0  s  S do
2: for 0  j  J do
3: Compute Ls

j as shown in Section 4
4: Generate es

j according to Algorithm 2 (entrywise)

5: Compute ts
jg

2 =
ts

j
2

S

6: Generate gs
j with entries i.i.d. ⇠ N (0, ts

jg
2)

7: Compute L̂s
j = Ls

j + es
j + gs

j
8: end for
9: end for

10: At the central aggregator, compute for all j 2 {0, . . . , J}: L̂j =
1
S ÂS

s=1 L̂s
j

11: Compute f̂D(w) = ÂJ
j=0
⌦
L̂j, f̄j

↵

12: return Perturbed objective function f̂D(w)

5.4. Computation and Communication Overhead of capeFM
We analyze the computation and communication costs associated with the proposed

capeFM algorithm according to [6,28] for the decentralized linear regression and logistic
regression problems. At each iteration round, we need to generate the zero-sum noise
terms es

j , which entails O(S + D2) communication complexity of the sites and O(S2 + SD2)
communication complexity of the aggregator [28]. Each site computes the noisy coefficient
arrays Ls

j and sends those to the aggregator, incurring an O(D2) communication cost for the
sites. Therefore, the total communication cost is O(S+ D2) for the sites and O(S2 + SD2) for
the aggregator node. On the other hand, the zero-sum noise generation entails O(S2 + SD2)
computation cost at the sites and O(S2D2) computation cost at the aggregator [28]. This is
expected since the largest coefficient arrays we are computing/sending are D ⇥ D matrices
in the decentralized setting. Note that we are not incorporating the computation cost of
ŵ⇤ = arg minw f̂D(w).

6. Experimental Results
In this section, we empirically compare the performance of our proposed Gaussian

FM algorithm (gauss-fm) with those of some state-of-the-art differentially private linear
and logistic regression algorithms, namely noisy gradient descent (noisy-gd) [12], objective
perturbation (obj-pert) [8], original functional mechanism (fm) [7], and relaxed functional
mechanism (rlx-fm) [10]. We also compare the performance of these algorithms with non-
private linear and logistic regression (non-priv). As mentioned before, we compute the
overall e using RDP for the multi-round noisy-gd algorithm. Additionally, we show how
our proposed decentralized functional mechanism (cape-fm) can improve a decentralized
computation if the target function has sensitivity satisfying the conditions of Proposition 5 in
Section 2.1. We show the variation in performance with privacy parameters and number of
training samples. For the decentralized setting, we further show the empirical performance
comparison by varying the number of sites.

Performance Indices. For the linear regression task, we use the mean squared error
(MSE) as the performance index. Let the test dataset be Dtest = {(xn, yn) 2 X ⇥ Y : n 2
[Ntest]}. Then the MSE can be defined as: MSE = 1

Ntest ÂNtest
n=1 (ŷn � yn)2, where ŷn is the pre-

diction from the algorithm. For the classification task, we use accuracy as the performance
index. The accuracy can be defined as: Accuracy = 1

Ntest ÂNtest
n=1 I(round(ŷn) = yn), where

I(·) is the indicator function, and ŷn is the prediction from the algorithm. Note that, in
addition to a small MSE or large accuracy, we want to attain a strict privacy guarantee, i.e.,
small overall (e, d) values. Recall from Section 3 that the overall e for multi-shot algorithms
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is a function of the number of iterations, the target d, the additive noise variance t2 and the
L2 sensitivity D. To demonstrate the overall e guarantee for a fixed target d, we plotted the
overall e (with dotted red lines on the right y-axis) along with MSE/accuracy (with solid
blue lines on the left y-axis) as a means for visualizing how the privacy–utility trade-off
varies with different parameters. For a given privacy budget (or performance require-
ment), the user can use the overall e plot on the right y-axis, shown with dotted lines, (or
MSE/accuracy plot on the left y-axis, shown with solid lines) to find the required noise
standard deviation t on the x-axis and, thereby, find the corresponding performance (or
overall e). We compute the overall e for the noisy-gd algorithm using the RDP technique
shown in Section 3.

6.1. Linear Regression
For the linear regression problem, we perform experiments on three real datasets (and

a synthetic dataset, as shown in Appendix B). The pharmacogenetic dataset was collected by
the International Warfarin Pharmacogenetics Consortium (IWPC) [23] for the purpose of esti-
mating personalized warfarin dose based on clinical and genotype information of a patient.
The data used for this study have ambient dimension D = 9, and features are collected
from N = 5052 patients. Out of the wide variety of numerical modeling methods used
in [23], linear regression provided the most accurate dose estimates. Fredrikson et al. [20]
later implemented an attack model assuming an adversary who employed an inference
algorithm to discover the genotype of a target individual, and showed that an existing func-
tional mechanism (fm) failed to provide a meaningful privacy guarantee to prevent such
attacks. We perform privacy-preserving linear regression on the IWPC dataset (Figure 1a–c)
to show the effectiveness of our proposed gauss-fm over fm, rlx-fm, and other existing
approaches. Additionally, we use the Communities and Crime dataset (crime) [45], which
has a larger dimensionality D = 101 (Figure 1d–f), and the Buzz in Social Media dataset
(twitter) [46] with D = 77 and a large sample size N = 10, 000 (Figure 1g–i). We refer the
reader to [47] for a detailed description of these real datasets. For all the experiments, we
pre-process the data so that the samples satisfy the assumptions

��xn
��

2  1 and yn 2 [�1, 1]
8 n 2 [N]. We divide each dataset into train and test partitions with a ratio of 90:10. We
show the average performance over 10 independent runs.

Performance Comparison with Varying t. We first investigate the variation of MSE
with the DP additive noise standard deviation t. We plot MSE against t in Figure 1a,d,g.
Recall from Definition 3 that, in the Gaussian mechanism, the noise is drawn from a
Gaussian distribution with standard deviation t = D

e

q
2 log 1.25

d . We keep d fixed at 10�5.
Note that one can vary e to vary t. Since noise standard deviation is inversely proportional
to e, increasing e means decreasing t, i.e., smaller noise variance. We observe from the plots
that smaller t leads to smaller MSE for all DP algorithms, indicating better utility at the
expense of higher privacy loss. It is evident from these MSE vs. t plots that our proposed
method gauss-fm has much smaller MSE compared to all the other methods for the same t
values for all datasets. The obj-pert and fm algorithms offer pure DP by trading off utility,
whereas gauss-fm and rlx-fm algorithms offer approximate DP. Although rlx-fm improves
upon fm, the excess noise due to linear dependence on data dimension D leads to higher
MSE than gauss-fm. Our proposed gauss-fm outperforms all of these methods by reducing
the additive noise with the novel sensitivity analysis as shown in Section 4. We recall that
the overall privacy loss for noisy-gd is calculated using the RDP approach, since noise is
injected into the gradients in every iteration during optimization, with target d = 10�5. On
the other hand, gauss-fm, rlx-fm, and fm add noise to the polynomial coefficients of the
cost function fD(w) before optimization, and obj-pert injects noise into the regularized
cost function [8]. We plot the total privacy loss for all of the algorithms against t. We
observe from the y-axis on the right that the total privacy loss of the multi-round noisy-gd
is considerably higher than the single-shot algorithms.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Linear regression performance comparison in terms of MSE and overall e for IWPC (D = 9),
crime (D = 101), and twitter (D = 77) datasets with varying noise standard deviation t in (a,d,g) the
number of training samples Ntrain in (b,e,h), and privacy parameter d in (c,f,i).

Performance Comparison with Varying Ntrain. Next, we investigate the variation of
MSE with the number of training samples Ntrain. For this task, we shuffle and divide the
total number of samples N into smaller partitions and perform the same pre-processing
steps, while keeping the test partition untouched. We kept the values of the privacy
parameters fixed: e = 0.5 and d = 10�5. We plot MSE against Ntrain in Figure 1b,e,h. We
observe that performance generally improves with the increase in Ntrain, which indicates
that it is easier to ensure the same level of privacy when the training dataset cardinality is
higher. We also observe from the MSE vs. Ntrain plots that our proposed method gauss-fm
offers MSE very close to that of non-priv even for moderate sample sizes, outperforming
fm, rlx-fm, noisy-gd, and obj-pert. Again, we compute the overall e spent using RDP
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for noisy-gd, and show that the multi-round algorithm suffers from larger privacy loss.
Recall from (7) in Section 3 that the overall e depends on sensitivity D, and the number of
iterations T. In the computation of t2

D2 , the number of training samples Ntrain is cancelled
out. Thus, the overall e depends only on T for noisy-gd. We keep T fixed at 1000 iterations
for noisy-gd and observe that the overall privacy risk exceeds 20. Note that we set the
value of the target dr in (7) to be equal to d in our computations.

Performance Comparison with Varying d. Recall that we can interpret the privacy
parameter d as the probability that an algorithm fails to provide privacy risk e. The obj-
pert and fm algorithms offer pure e-DP, where the additional privacy parameter d is zero.
Hence, we compare our proposed gauss-fm method with the rlx-fm and noisy-gd methods,
which also guarantee (e,d)-DP. In the Gaussian mechanism, d is in the denominator of the
logarithmic term within the square root in the expression of t. Therefore, the noise variance
t2 is not significantly changed by varying d. We keep privacy parameter e fixed at 0.5
and observe from the MSE vs. d plots in Figure 1c,f,i show that the performance of our
algorithm does not degrade much for smaller d. For the IWPC dataset in Figure 1c, for a
value of d as small as 10�2 (indicating 1% probability of the algorithm failing to provide
e-differential privacy), the MSE of gauss-fm is almost the same as that of the non-priv case.
For the other datasets, our proposed method also gives better performance and overall e,
and thus a better privacy–utility trade-off than rlx-fm and noisy-gd.

6.2. Logistic Regression
For the logistic regression problem, we again perform experiments on three real

datasets (and a synthetic dataset, as shown in Appendix B): the Phishing Websites dataset
(phishing) [47] with dimensionality D = 30 (Figure 2a–c), the Census Income dataset
(adult) [47] with D = 13 (Figure 2d–f), and the KDD Cup ’99 dataset (kdd) [47] with
D = 36 (Figure 2g–i). As before, we pre-process the data so that the feature vectors
satisfy

��xn
��

2  1, and yn 2
�

0, 1
 
8 n 2 [N]. Note for obj-pert that the cost function is

regularized and the labels are assumed to be
�
� 1, 1

 
in [8]. We divide each dataset into

train and test partitions with a ratio of 90:10. We use percent accuracy on the test dataset
as the performance index for logistic regression, and show the average performance over
10 independent runs.

Performance Comparison with Varying t. We plot accuracy against the DP additive
noise standard deviation t in Figure 2a,d,g. We observe that accuracy degrades when the
additive DP noise standard deviation t increases, indicating a greater privacy guarantee
at the cost of performance. When noise is too high, privacy-preserving logistic regression
may not learn a meaningful w at all, and provide random results. Depending on the
class distribution, this may not be obvious and the accuracy score may be misleading. We
observe this for the kdd dataset in Figure 2g, where the classes are highly imbalanced,
with ⇠80% positive labels. Although the existing fm performs poorly on this dataset, our
proposed gauss-fm provides significantly higher accuracy for all datasets, outperforming
fm, as well as rlx-fm, obj-pert, and noisy-gd. As before, we observe the total privacy loss,
i.e., overall e spent, from the y-axis on the right.

Performance Comparison with Varying Ntrain. We perform the same steps described
in Section 6.1 and observe the variation in performance with the number of training samples,
Ntrain while keeping the privacy parameters fixed in Figure 2b,e,h. Accuracy generally
improves with increasing Ntrain. We observe that the same DP algorithm does not perform
equally well for different datasets. For example, obj-pert performs better than noisy-gd
on the adult dataset (Figure 2e), whereas noisy-gd performs better than obj-pert on the
phishing dataset (Figure 2b). In general, fm and rlx-fm suffer from too much noise due to
the quadratic and linear dependence on D of their sensitivities, respectively. However, our
proposed gauss-fm overcomes this issue and consistently achieves accuracy close to the
non-priv case even for moderate sample sizes. We also show the overall privacy guarantee,
as before.
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Performance Comparison with Varying d. Similar to the linear regression experi-
ments shown in Section 6.1, we keep e and Ntrain fixed for this task and vary the other
privacy parameter d. Figure 2c,f,i show that percent accuracy improves with increased d.
For sufficiently large d (indicating 1–5% probability of the algorithm failing to provide e
privacy risk), gauss-fm accuracy can reach that of the non-priv algorithm in some datasets
(e.g., Figure 2i). Although the accuracy of noisy-gd also improves, it comes at the cost of
additional privacy risk, as shown in the overall e vs. d plots along the y-axes on the right.
Due to the higher noise variance, rlx-fm achieves much inferior accuracy compared to both
gauss-fm and noisy-gd.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Logistic regression performance comparison in terms of accuracy and overall e for phishing
(D = 30), adult (D = 13), and kdd (D = 36) datasets with varying noise standard deviation t

in (a,d,g), the number of training samples Ntrain in (b,e,h), and privacy parameter d in (c,f,i).
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6.3. Decentralized Functional Mechanism (capeFM)
In this section, we empirically show the effectiveness of capeFM, our proposed decen-

tralized Gaussian FM which utilizes the CAPE [6] protocol. We implement differentially
private linear and logistic regression for the decentralized-data setting using the same
datasets described in Sections 6.1 and 6.2, respectively. Note that the IWPC [23] data
were collected from 21 sites across 9 countries. After obtaining informed consent to use
de-identified data from patients prior to the study, the Pharmacogenetics Knowledge Base
has since made the dataset publicly available for research purpose. As mentioned before,
the type of data contained in the IWPC dataset is similar to many other medical datasets
containing private information [20].

We implement our proposed cape-fm according to Algorithm 3, along with fm, rlx-fm,
obj-pert, and noisy-gd according to the conventional decentralized DP approach. We
compare the performance of these methods in Figures 3 and 4. Similar to the pooled-data
scenario, we also compare performance of these algorithms with non-private linear and
logistic regression (non-priv). For these experiments, we assume Ns = N

S and ts = t.
Recall that the CAPE scheme achieves the same noise variance as the pooled-data scenario
in the symmetric setting (see Lemma 1 [6] in Section 2.1). As our proposed capeFM algo-
rithm follows the CAPE scheme, we attain the same advantages. When varying privacy
parameters and Ntrain, we keep the number of sites S fixed. Additionally, we show the
variation in performance due to change in the number of sites in Figure 5. We pre-process
each dataset as before, and use MSE and percent accuracy on test dataset as performance
indices of the decentralized linear and logistic regression problems, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3. Cont.
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(g) (h) (i)

Figure 3. Decentralized linear regression performance comparison in terms of MSE and overall e for
IWPC (D = 9), crime (D = 101), and twitter (D = 77) datasets with varying noise standard deviation
t in (a,d,g), the number of training samples Ntrain in (b,e,h), and privacy parameter d in (c,f,i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Decentralized logistic regression performance comparison in terms of accuracy and overall e

for phishing (D = 30), adult (D = 13), and kdd (D = 36) datasets with varying noise standard deviation
t in (a,d,g), the number of training samples Ntrain in (b,e,h), and privacy parameter d in (c,f,i).
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Performance Comparison by Varying t. For this experiment, we keep the total
number of samples N, privacy parameter d, and the number of sites S fixed. We observe
from the plots (a), (d), and (g) in both Figures 3 and 4 that as t increases, the performance
degrades. The proposed cape-fm outperforms conventional decentralized noisy-gd, obj-
pert, fm, and rlx-fm by a larger margin than the pooled-data case. The reason for this is
that we can achieve a much smaller noise variance at the aggregator due to the correlated
noise scheme detailed in Section 5.3. The utility of cape-fm thus stays the same as the
centralized case in the decentralized-data setting, whereas the conventional scheme’s utility
always degrades by a factor of S (see Section 5.1). The overall e usage vs. t plots on the
right y-axes for each site show that noisy-gd suffers from much higher privacy loss.

Performance Comparison by Varying Ntrain. We keep e, d, and S fixed while investi-
gating variation in performance with respect to Ntrain. As the sensitivities we computed
in Sections 4.1 and 4.2 are inversely proportional to the sample size, it is straightforward
to infer that guaranteeing smaller privacy risk and higher utility is much easier when the
sample size is large. Similar to the pooled-data cases in Sections 6.1 and 6.2, we again
observe from the plots (b), (e), and (h) in both Figures 3 and 4 that, for sufficiently large
Ntrain = SNs,train, utility of cape-fm can reach that of the non-priv case. Note that the
non-priv algorithms are the same as the pooled-data scenario, because if privacy is not a
concern, all sites can send the data to aggregator for learning.

(a) (b) (c)

(d) (e) (f)

Figure 5. Decentralized linear and logistic regression performance comparison and overall e with
varying number of sites S for the datasets (a) IWPC (D = 9), (b) crime (D = 101), (c) twitter (D = 77),
(d) phishing (D = 30), (e) adult (D = 13), and (f) kdd (D = 36).

Performance Comparison by Varying d. For this task, we keep e, Ntrain, and S fixed.
Note according to the CAPE scheme that the proposed cape-fm algorithm guarantees (e, d)-
DP where (e, d) satisfy the relation d = 2 sz

e�µz
f
⇣

e�µz
sz

⌘
. Recall that d is the probability

that the algorithm fails to provide privacy risk e, and that we assumed a fixed number
of colluding sites SC = d S

3 e � 1. From the plots (c), (f), and (i) in both Figures 3 and 4,
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we observe that even for moderate values of d, cape-fm easily outperforms rlx-fm and
noisy-gd. Moreover, as seen from the overall e plots, noisy-gd provides a much weaker
privacy guarantee. Thus, our proposed cape-fm algorithm offers superior performance
and privacy–utility trade-off in the decentralized setting.

Performance Comparison by Varying S. Finally, we investigate performance varia-
tion with the number of sites S, keeping the privacy and dataset parameters fixed. This
automatically varies the number of samples Ns at each site s 2 [S], as we consider the
symmetric setting. Figure 5a–c shows the results for decentralized linear regression, and
Figure 5d–f shows the results for decentralized logistic regression. We observe that the
variation in S does not affect the utility of cape-fm, as long as the number of colluding sites
meets the condition SC  d S

3 e � 1. However, increasing S leads to significant degradation
in performance for conventional decentralized DP mechanisms, since the additive noise
variance increases as Ns decreases. We show additional experimental results on synthetic
datasets in Appendix B.

7. Conclusions and Future Work
In this paper, we proposed Gaussian FM that offers a significant improvement over

the existing FM to compute functions that are commonly used in signal processing and ma-
chine learning applications, satisfying differential privacy. Our improvement stems from a
novel sensitivity analysis that resulted in an orders-of-magnitude reduction in the amount of
noise added to the coefficients of the Stone–Weierstrass decomposition of the functions. We
showed two common regression problems—linear and logistic regression—as examples to
demonstrate our analyses. Additionally, we experimentally showed the superior privacy
guarantee and utility of our proposed method over existing methods by varying privacy pa-
rameters and relevant dataset parameters for both synthetic and real datasets. We extended
our Gaussian FM algorithm to decentralized data settings by taking advantage of a corre-
lated noise protocol, CAPE, and proposed capeFM, which ensures the same utility as the
pooled-data scenario in certain regimes. We empirically compared the performance of the
proposed capeFM with that of existing and conventional algorithms for decentralized linear
and logistic regression problems. In addition to varying privacy and dataset parameters, we
showed performance comparison by varying the number of sites, which further proves the
superior privacy guarantee and improved utility of our proposed method. For future work,
we plan to extend our research to more complex algorithms and neural networks to ensure
differential privacy on other challenging signal processing and machine learning problems.

Author Contributions: Conceptualization, methodology, formal analysis, N.T., J.M., A.D.S. and H.I.;
software, data curation, N.T. and H.I.; supervision, H.I.; writing—original draft preparation, N.T.;
writing—review and editing, H.I., J.M. and A.D.S.; funding acquisition, A.D.S. All authors have read
and agreed to the published version of the manuscript.

Funding: The work of A.D. Sarwate was funded in part by the US National Science Foundation
under awards CNS-2148104 and CIF-1453432 and by the US National Institutes of Health under
award 2R01DA040487-01A1.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The experimental data used to evaluate the performance of the algo-
rithms proposed in this paper are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Comparison of Sensitivity and Noise Standard Deviation
To provide further details and rationale behind the superior performance of our pro-

posed Gaussian FM (gauss-fm) over the original FM [7] (fm) and the relaxed FM [10]
(rlx-fm) algorithms, we compare the additive noise standard deviation t for each mecha-
nism by varying the privacy parameter e for different values of data dimension D. Recall
that t is scaled to the sensitivity of the data-dependent terms in the Stone–Weierstrass [35]
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decomposition of the objective function. The computed sensitivities for each of the three
mechanisms are shown in Table A1.

Table A1. Comparison of sensitivities for various DP mechanisms.

D f m Drlx- f m Dgauss- f m

Linear Regression
j = 0 2

N (1 + D)2 2
N
p

1 + 4D + D2 1
N

j = 1 2
N (1 + D)2 2

N
p

1 + 4D + D2 4
N

j = 2 2
N (1 + D)2 2

N
p

1 + 4D + D2 1
N

Logistic Regression
j = 1 1

N

⇣
D2

4 + 3D
⌘

1
N

q
D2

16 + D 1
N

j = 2 1
N

⇣
D2

4 + 3D
⌘

1
N

q
D2

16 + D 1
8N

As mentioned before, the sensitivity terms for our proposed gauss-fm are tailored
to the order j, and do not depend on the ambient dimension D. On the other hand, the
sensitivity terms for both fm and rlx-fm depend on D. This results in injecting prohibitively
large amounts of noise into the function computation. The proofs of the L1-sensitivity
terms D f m for fm are provided in [7], and the proof of the L2-sensitivity Drlx- f m for rlx-fm
for the logistic regression is shown in [10]. We can follow the similar procedure out-
lined by Ding et al. [10] to obtain the L2-sensitivity for the linear regression problem as
2
N
p

1 + 4D + D2. The proof is as follows:

Proof. Let the n-th sample of a dataset D be denoted by a tuple tn = (xn, yn), where
xn 2 RD is the feature vector and yn 2 R is the response for n 2 [N]. Let us assume that
two neighboring datasets D and D0 differ in the last tuple tN and tN0 . For linear regression
we have
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where x(c) represents the c-th element in the feature vector x. Now, the L2-sensitivity of
linear regression for the relaxed FM algorithm can be expressed as

D2 =
��A1 �A2

��
2

=

����
n 1

N

N

Â
n=1
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1
N

N

Â
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����
2
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1
N

����
n
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f2[2
j=0Fj

����
2

 2
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max
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��C
��

2

=
2
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t=(x,y)

vuuty2 +
D

Â
d=1

�
�2yx(d)

�2
+

D

Â
d1=1

D

Â
d2=2

�
x(d1)x(d2)

�2

=
2
N

p
1 + 4D + D2 , Drlx- f m,

where t is an arbitrary tuple.

We now empirically compare the additive noise standard deviation t for gauss-fm,
fm, and rlx-fm. In Figure A1, we show t of the additive noise for the coefficient terms for
different j and different data dimensionality D. We set the number of samples N = 10,000
and privacy parameter d = 10�5. From the figure, we observe that the noise standard
deviation for gauss-fm is significantly lower than the noise standard deviation for both fm
and rlx-fm algorithms. We achieve this by our novel sensitivity analysis, which is tailored
to different coefficient terms (i.e., the order j) as shown in Section 4 and Algorithm 1.

(a) (b) (c)

Figure A1. Standard deviation t of the additive noise for (a) j = 0, (b) j = 1, and (c) j = 2 for
different values of dimensionality D for differentially private linear regression using fm, rlx-fm, and
gauss-fm.
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(a) (b)
Figure A2. Standard deviation t of the additive noise for (a) j = 1 and (b) j = 2 for different values
of dimensionality D for differentially private logistic regression using fm, rlx-fm, and gauss-fm.

Appendix B. Additional Experimental Results on Synthetic Data
In addition to the real datasets, we perform experiments on synthetic datasets while

keeping the setup identical to the one described in Section 6. We generate random samples
X and outputs y with dimensionality D = 20 for the linear regression problems in pooled-
data (Figure A3a–c) and distributed-data settings ((Figure A3d–f). For logistic regression
in pooled-data (Figure A3g–i) and distributed-data settings (Figure A3j–l), we generate
another synthetic dataset with dimensionality D = 50 where outputs y are class labels.

Similar to the results observed in Section 6, performance generally improves with
lower noise variance and a weaker privacy guarantee. Our proposed gauss-fm and cape-fm
algorithms consistently outperform existing fm, rlx-fm, noisy-gd, and obj-pert methods.
We also show variation in performance with number of sites S in Figure A4. The empirical
results verify that the utility of cape-fm does not degrade with increased S, and thus
provides a better privacy guarantee over conventional decentralized DP schemes.

(a) (b) (c)

(d) (e) (f)

Figure A3. Cont.
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(g) (h) (i)

(j) (k) (l)

Figure A3. Performance comparison and overall e for synthetic datasets with varying noise standard
deviation t in (a,d,g,j) , number of training samples Ntrain in (b,e,h,k), and privacy parameter d

in (c,f,i,l).

(a) (b)
Figure A4. Decentralized linear and logistic regression performance comparison and overall e with
varying number of sites S for the datasets (a) synth (D = 20) and (b) synth (D = 50).

References
1. Dwork, C. Differential Privacy. In Automata, Languages and Programming. ICALP 2006; Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 2006; Volume 4052, pp. 1–12.
2. Sarwate, A.D.; Chaudhuri, K. Signal processing and machine learning with differential privacy: Algorithms and challenges for

continuous data. IEEE Signal Process. Mag. 2013, 30, 86–94. [CrossRef] [PubMed]
3. Jayaraman, B.; Evans, D. Evaluating differentially private machine learning in practice. In Proceedings of the 28th USENIX

Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1895–1912.
4. Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography

Conference; Springer: Berlin/Heidelberg, Germany, 2006; pp. 265–284.
5. Desfontaines, D.; Pejó, B. Sok: Differential privacies. Proc. Priv. Enhancing Technol. 2020, 2020, 288–313. [CrossRef]

http://doi.org/10.1109/MSP.2013.2259911
http://www.ncbi.nlm.nih.gov/pubmed/24737929
http://dx.doi.org/10.2478/popets-2020-0028


Entropy 2023, 25, 825 31 of 32

6. Imtiaz, H.; Mohammadi, J.; Silva, R.; Baker, B.; Plis, S.M.; Sarwate, A.D.; Calhoun, V.D. A Correlated Noise-Assisted Decentralized
Differentially Private Estimation Protocol, and its Application to fMRI Source Separation. IEEE Trans. Signal Process. 2021,
69, 6355–6370. [CrossRef] [PubMed]

7. Zhang, J.; Zhang, Z.; Xiao, X.; Yang, Y.; Winslett, M. Functional mechanism: Regression analysis under differential privacy. arXiv
2012, arXiv:1208.0219.

8. Chaudhuri, K.; Monteleoni, C.; Sarwate, A.D. Differentially private empirical risk minimization. J. Mach. Learn. Res. 2011, 12,
1069–1109.

9. Bassily, R.; Smith, A.; Thakurta, A. Private empirical risk minimization: Efficient algorithms and tight error bounds. In
Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, Philadelphia, PA, USA, 18–21
October 2014; pp. 464–473.

10. Ding, J.; Zhang, X.; Li, X.; Wang, J.; Yu, R.; Pan, M. Differentially private and fair classification via calibrated functional mechanism.
Proc. AAAI Conf. Artif. Intell. 2020, 34, 622–629. [CrossRef]

11. Phan, N.; Vu, M.; Liu, Y.; Jin, R.; Dou, D.; Wu, X.; Thai, M.T. Heterogeneous Gaussian mechanism: Preserving differential privacy
in deep learning with provable robustness. arXiv 2019, arXiv:1906.01444.

12. Song, S.; Chaudhuri, K.; Sarwate, A.D. Stochastic gradient descent with differentially private updates. In Proceedings of the 2013
IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 245–248.

13. Nozari, E.; Tallapragada, P.; Cortés, J. Differentially private distributed convex optimization via objective perturbation. In
Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 2061–2066.

14. Wu, X.; Li, F.; Kumar, A.; Chaudhuri, K.; Jha, S.; Naughton, J. Bolt-on differential privacy for scalable stochastic gradient
descent-based analytics. In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA,
14–19 May 2017; pp. 1307–1322.

15. Smith, A. Privacy-preserving statistical estimation with optimal convergence rates. In Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011; pp. 813–822.

16. McSherry, F.; Talwar, K. Mechanism design via differential privacy. In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), Providence, RI, USA, 21–23 October 2007; pp. 94–103.

17. Jorgensen, Z.; Yu, T.; Cormode, G. Conservative or liberal? Personalized differential privacy. In Proceedings of the 2015 IEEE 31st
International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015; pp. 1023–1034.

18. Aono, Y.; Hayashi, T.; Trieu Phong, L.; Wang, L. Scalable and secure logistic regression via homomorphic encryption. In
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 9–11 March
2016; pp. 142–144.

19. Xu, D.; Yuan, S.; Wu, X. Achieving differential privacy and fairness in logistic regression. In Proceedings of the Companion
Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 594–599.

20. Fredrikson, M.; Lantz, E.; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Privacy in pharmacogenetics: An End-to-End case study of
personalized Warfarin dosing. In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA,
USA, 20–22 August 2014; pp. 17–32.

21. Anderson, J.L.; Horne, B.D.; Stevens, S.M.; Grove, A.S.; Barton, S.; Nicholas, Z.P.; Kahn, S.F.; May, H.T.; Samuelson, K.M.;
Muhlestein, J.B.; et al. Randomized trial of genotype-guided versus standard Warfarin dosing in patients initiating oral
anticoagulation. Circulation 2007, 116, 2563–2570. [CrossRef]

22. Fusaro, V.A.; Patil, P.; Chi, C.L.; Contant, C.F.; Tonellato, P.J. A systems approach to designing effective clinical trials using
simulations. Circulation 2013, 127, 517–526. [CrossRef]

23. Consortium, I.W.P. Estimation of the Warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 2009, 360, 753–764.
24. Sconce, E.A.; Khan, T.I.; Wynne, H.A.; Avery, P.; Monkhouse, L.; King, B.P.; Wood, P.; Kesteven, P.; Daly, A.K.; Kamali, F. The

impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon Warfarin dose requirements: Proposal
for a new dosing regimen. Blood 2005, 106, 2329–2333. [CrossRef] [PubMed]

25. Gade, S.; Vaidya, N.H. Private learning on networks. arXiv 2016, arXiv:1612.05236.
26. Heikkilä, M.; Lagerspetz, E.; Kaski, S.; Shimizu, K.; Tarkoma, S.; Honkela, A. Differentially private Bayesian learning on

distributed data. Adv. Neural Inf. Process. Syst. 2017, 30, 3229–3238.
27. Tajeddine, R.; Jälkö, J.; Kaski, S.; Honkela, A. Privacy-preserving data sharing on vertically partitioned data. arXiv 2020,

arXiv:2010.09293.
28. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure

aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

29. Heikkilä, M.A.; Koskela, A.; Shimizu, K.; Kaski, S.; Honkela, A. Differentially private cross-silo federated learning. arXiv 2020,
arXiv:2007.05553.

30. Xu, D.; Yuan, S.; Wu, X. Achieving differential privacy in vertically partitioned multiparty learning. In Proceedings of the 2021
IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 5474–5483.

31. Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; Naor, M. Our data, ourselves: Privacy via distributed noise generation. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany,
2006; pp. 486–503.

http://dx.doi.org/10.1109/TSP.2021.3126546
http://www.ncbi.nlm.nih.gov/pubmed/35755147
http://dx.doi.org/10.1609/aaai.v34i01.5402
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.737312
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.123034
http://dx.doi.org/10.1182/blood-2005-03-1108
http://www.ncbi.nlm.nih.gov/pubmed/15947090


Entropy 2023, 25, 825 32 of 32

32. Anandan, B.; Clifton, C. Laplace noise generation for two-party computational differential privacy. In Proceedings of the 2015
13th Annual Conference on Privacy, Security and Trust (PST), Izmir, Turkey, 21–23 July 2015; pp. 54–61.

33. Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407.
[CrossRef]

34. Mironov, I. Rényi differential privacy. In Proceedings of the 2017 IEEE 30th Computer Security Foundations Symposium (CSF),
Santa Barbara, CA, USA, 21–25 August 2017; pp. 263–275.

35. Rudin, W. Principles of Mathematical Analysis; International Series in Pure and Applied Mathematics; McGraw-Hill: New York,
NY, USA, 1976.

36. Imtiaz, H.; Sarwate, A.D. Distributed differentially private algorithms for matrix and tensor factorization. IEEE J. Sel. Top. Signal
Process. 2018, 12, 1449–1464. [CrossRef]

37. Balle, B.; Wang, Y.X. Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising.
In International Conference on Machine Learning; PMLR: Cambridge, MA, USA, 2018; pp. 394–403.

38. Holohan, N.; Antonatos, S.; Braghin, S.; Mac Aonghusa, P. The bounded Laplace mechanism in differential privacy. arXiv 2018,
arXiv:1808.10410.

39. Dong, J.; Roth, A.; Su, W.J. Gaussian differential privacy. arXiv 2019, arXiv:1905.02383.
40. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 308–318.

41. Ergün, G. Random Matrix Theory. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY,
USA, 2009; pp. 7505–7520. [CrossRef]

42. Strang, G. Introduction to Linear Algebra; Wellesley-Cambridge Press: Wellesley, MA, USA, 1993; Volume 3.
43. Dwork, C.; Talwar, K.; Thakurta, A.; Zhang, L. Analyze Gauss: Optimal Bounds for Privacy-Preserving Principal Component

Analysis. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, New York, NY, USA,
31 May–3 June 2014. [CrossRef]

44. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
45. Redmond, M.; Baveja, A. A data-driven software tool for enabling cooperative information sharing among police departments.

Eur. J. Oper. Res. 2002, 141, 660–678. [CrossRef]
46. Kawala, F.; Douzal-Chouakria, A.; Gaussier, E.; Dimert, E. Prédictions d’activité dans les réseaux sociaux en ligne. In Proceedings

of the 4ième Conférence sur les Modèles et l’Analyse des réseaux: Approches Mathématiques et Informatiques, Saint-Etienne,
France, 16–18 October 2013; p. 16.

47. Dua, D.; Graff, C. UCI Machine Learning Repository, 2017. University of California, Irvine, School of Information and Computer
Sciences. Available online: http://archive.ics.uci.edu/ml (accessed on 15 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1109/JSTSP.2018.2877842
http://dx.doi.org/10.1007/978-0-387-30440-3_443
http://dx.doi.org/10.1145/2591796.2591883
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1016/S0377-2217(01)00264-8
http://archive.ics.uci.edu/ml

	Introduction
	Definitions and Preliminaries
	Definitions
	Functional Mechanism zhang2012functional

	Functional Mechanism with Approximate Differential Privacy: Gaussian FM
	Application of Gaussian FM in Regression Analysis
	Linear Regression
	Logistic Regression
	Avoiding Unbounded Noisy Objective Functions

	Extension of Gaussian FM to Decentralized-Data Setting: capeFM
	Problems with Conventional Decentralized DP Computations
	Correlation Assisted Private Estimation (CAPE)
	Proposed Gaussian FM for Decentralized Data (capeFM)
	Computation and Communication Overhead of capeFM

	Experimental Results
	Linear Regression
	Logistic Regression
	Decentralized Functional Mechanism (capeFM)

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

