Optimal Learning Rate of Sending One Bit Over
Arbitrary Acyclic BISO-Channel Networks

Chih-Chun Wang and David J. Love
Purdue ECE, Email: {chihw,djlove}@purdue.edu

Abstract—This work considers the problem of sending a 1-bit
message over an acyclic network, where the ‘“edge” connecting
any two nodes is a memoryless binary-input/symmetric-output
(BISO) channel. For any arbitrary acyclic network topology
and constituent channel models, a min-cut-based converse of the
learning rate, denoted by ", is derived. It is then shown that
for any » < r”, one can design a scheme with learning rate .
Capable of approaching the optimal »*, the proposed scheme
is thus the asymptotically fastest for sending one bit over any
acyclic BISO-channel network. The construction is based on a
new concept of Lossless Amplify-&-Forward, a sharp departure
from existing multi-hop communication scheme designs.

I. PROBLEM FORMULATION

We model a network by a finite directed acyclic graph
(V, E). A source s € V likes to communicate a 1-bit message
O € {0,1} to a destination d € V. The “channel” along
each edge e = (u,v) is a memoryless point-to-point binary-
input/symmetric-output (BISO) channel [1], [2]. There is no
other restriction in our model, e.g., the network may be a line
network [3]-[7] or other configurations [8]-[11]. The channel
may be a Binary Symmetric Channel (BSC) for one edge [2]
and be a binary-input additive white Gaussian channel for the
other edge(s). While the input is always binary, the output of
the channel can be a high dimensional vector if desired.

For each discrete time ¢ € [1,00), source s transmits a bit

X(s,w) (t) = ft,(s,w)(®) (1)

to its downstream neighbor w based on the message ©. Any
node v # s transmits a bit to its downstream neighbor w:

X(v,w)(t) = ft,(v,w)({yv(u,v) (7—) (VT <t 'LL}) ()

based on Y{, .)(7), the signal received at v from node u at
time 7 < t. For any e = (u, v), the distribution of Y, (¢) given
X.(t) follows the specified BISO channel models. Destination
d then finds the Maximum Likelihood (ML) detector of © by

O(t) = arg maxP({Y(uyd)(T) :Vr < t,u}‘@ = 9) 3)
0e{0,1}

Define the error probability (of destination d) at time ¢ by

pelt) £ max P(O(1) # 610 = 0) @)
The achievable learning rate of a scheme {f; . : Vt, e} is
oo —log(p(A))
r= hAIrig:éf A . )

The optimal learning rate r* is the supremum of the achiev-
able learning rates r of all possible schemes {f; . : V¢, e}.

Denote the delay needed to achieve a target error probability
pe by A(pe). By (5), we have

Afpo) = P

+ O(_ log(pe)) when Pe — O, (6)

As a result, we say any scheme that achieves or approaches the
largest r* is the asymptotically fastest (when p. — 0). With
the goal of designing ultra-low-latency multi-hop communi-
cation schemes for delay sensitive applications, e.g., remote
surgery, this work characterizes the r* value.

A. Existing Results

If the network is a single hop from s to d, it is known that
the optimal learning rate of a BISO channel e = (s, d) is

ri=—log| > \/Pyvix.wl0) Pryx )| @

YyEYVe

if the output alphabet ). is discrete [12]. The formula can be
readily generalized for continuous alphabet ), as well.

If the network is a 2-hop line network s — r — d and both
channels are discrete, [4] showed that for any

r < min (T?s,’r')’ 7’ﬁ(k’r',d)) ’ (®)

where 7} is the optimal learning rate over a single hop e
as defined in (7), one can design an achievability scheme of
learning rate r. The results [4] were a major breakthrough after
several earlier attempts of designing (suboptimal) achievability
schemes [5], [7].

This work generalizes the characterization of r* from 2-hop
networks [4] to arbitrary acyclic multi-hop networks, a non-
trivial extension that requires many new analysis tools and
innovations. In addition, our result is based on a new concept
called Lossless Amplify-&-Forward (AF). The philosophy of
lossless AF is to effectively eliminate error accumulation when
concatenating two channels via AF, which allows us to harvest
the ultra-low-latency benefits of AF without its fatal draw-
back and is fundamentally different from existing multi-hop
schemes like decode-&-forward, compress-&-forward [13],
[14], quantize-&-forward [15], compute-&-forward [16].

II. THE CONVERSE

Proposition 1: The achievable learning rate r of any scheme
over an acyclic network must satisfy

> ©)

e€cut(s,d)

A .
r<r*= min
cut(s,d)



where the minimization is over all edge cuts cut(s,d) sepa-
rating s and d, and 7} was defined in (7).

The proof of Proposition 1 is a standard reduction-based
cutset bound argument. The detailed proof is thus omitted.

III. ACHIEVABILITY FOR 7*-UNIFORM LINE NETWORKS

The greatest challenge of designing an achievability scheme
is to devise a systematic construction that is applicable to
any acyclic network topology while still admitting provable
performance. To that end, we first design an achievability
scheme for any L-hop line network with edges e; to er
satisfying

* * * *
Tey =Tey =77 er

(10)

and show that the scheme can achieve learning rate » for
any r < r*. We call such a network r*-uniform L-hop line
network. Note that we require the same 7} for each hop e but
the individual channel models can still be different. In Sec. IV,
we discuss how the “modularity” of our construction can be
used to achieve the converse (9) for general acyclic networks.

A. Construction of Abstract Binary-Input/5-Output Channels

We denote any BISO channel with distribution Py, x, by
CH.. For any integer ¥ > 1, we first discuss how we can
convert m uses of CH, to a binary-input/y-output (BI-y-out)
abstract channel. This “abstract channel” is a key building
block of our scheme.

To that end, we define a “)]"*-to-7y-ary-output quantizer” (or
just “¥-ary quantizer” as shorthand) 7r,,,, which is a mapping'
from V7" to {0,1,--- ,7— 1}. The construction is as follows.
For any given m,,, suppose the abstract channel receives an
input bit b. We first repeat the input bit b by m times, and
send the resulting 0 or 1 vector over m uses of CH,. After
receiving the m outputs ¢ € V.*, we pass it through the 7-
ary quantizer and output I' = m,,(7). The construction is
complete. It is worth noting that regardless of the m value, the
abstract channel is always of binary input and ¥-ary output.

Definition 1: A quantizer 7, is symmetric if the resulting
BI-7-out channel is of binary-input symmetric-output (BISO).

B. LLR of the New Abstract Channels

Suppose the output of the abstract channel is I' = ~y, we
compute the LLR of the abstract (abs) channel by

(m) & P(I' = ~[b = 0)

L log| ————% 11
abs <P(F:W|b— D o
Py (mal) =)
= log (12)

PYET"'|X;" (ﬂ'm( = ‘ )

where (12) is due to the construction of the abstract chan-
nel. When evaluating (12), we define log(p/0) = oo and

'The mapping can be either deterministic or randomized. The most rigorous
definition is to treat 7, as a “channel” from Y™ to {0,1,---,5 — 1}.
However, because the purpose of 7y, is mainly to quantize Y e VI, we
describe it herein as a deterministic mapping for the ease of notation.

log(0/p) = —oo for any p > 0. Since the event Lgls) =
log(0/0) is of probability zero, it is ignored/excluded from
our discussion.

Definition 2: For any given ,,,, we define the sample space
of the LLR L( ) by L, Since there are exactly 7 possible
output values F < {0, -- — 1}, we can assume that £,, is
discrete and contains exactly 7 distinct elements without loss
of generality.? We denote L, by

where £, is the LLR value in (11) if I' = ~. Without loss of
generality, we also assume the elements of £,, satisfying

o>y > > by (14)

by relabeling the v indices according to the order of /..
Many stochastic properties of a binary-input channel can
be characterized by its LLR distributions. For our BI-7-
out abstract channel, the probability mass function (pmf) of
P(L") = ¢,|b), conditioning on the input b € {0,1}, can be
computed by finding the value of Py xm(Y € 7,1 (7)[D),
see (12). Assuming 7, is symmetric, we introduce an alter-
native way of describing® the conditional pmf of Lgbg .

Definition 3: For any symmetric 7r,,, define the LLR Rate
Function (LLR.rf) of the abstract channel as

~1og(P(LY) = (o= 1))

LLR.rf,,(p) £
m

if p= £ for some £ € L,, (15)
m

and we say LLR.rf,,(p) is undefined for other p values.

The intuition behind the LLR.rf definition is that since we
are interested in the learning rate, we take — log(+) of the pmf
values. Because each abstract channel consists of m uses of
CH., we normalize both the LLR and the — log(pmf) values
by 1/m to quantify the average impact of each CH, usage.

Because both — log(+) and the normalization 1/m are bijec-
tive mappings, knowing the LLR.rf,,(-) function is equivalent
to knowing the conditional pmf of ng;) given b = 1.

C. Analysis of the New Abstract Channels

With all the definitions of ngs) and LLR.rf,,(p), we now
analyze the properties of this BI-y-out abstract channel. Firstly,
we quantify the learning rate, see (5), of using this abstract
channel (repeatedly) to send a single-bit message:

Lemma 1: For any symmetric J-ary quantizer 7r,,, the m-
normalized learning rate of the resulting abstract channel is

~1og (X725 VPT =l = 0)PT =fb=1))

m

Tm =

(16)

2Sometimes L, contains strictly less than 7 elements if L;’;) = log(0/0)
for some I = . If two 71 # -2 result in the same L;?s) value, the number
of distinct elements of L,, also decrements. Our results still hold for those
corner cases after some detailed and straightforward case discussion.

3With symmetric 7t,,, the resulting abstract channel is BISO. Therefore,
Definition 3 focuses exclusively on the conditional distribution given b = 1.
The conditional distribution given b = 0 can be obtained/defined by symmetry.



0.8

= 1(p)=0.5p+ d
0

067

in =16

Py m=7
o

om = 24,50 |

m =16 -
m = "Th

/m — 00
m = 16, 2428
0.2 H

L E m — 0o
m = 504
m — 0o
"= 7!: m — po
0 b g |

-1 -0.5 0 0.5 1

0.4 B o

LLR.rf_(p)

Fig. 1. Trajectories of LLR.rfy,(p) for m = 7, 16, 24, 50, and oo,
respectively. When m = 7, the four points spread the widest. As m
increases, the trajectories move inward and eventually converge to the line
f(p) =0.5p+0.174.
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Fig. 2. The trajectory of the m-normalized learning rate #,,; and the upper
bound r§4(0.2).

of which the numerator is a straightforward application of (7).
Since our abstract channel consists of m uses of CH,., we add
the 1/m term to quantify the average impact of each CH..

Definition 4: For any fixed d > 0 and 7 values, we say a
class of symmetric J-ary quantizers {m,, : m € {1,2,---}}is
asymptotically d-linear, if all 7 points of the limiting function
lim,;, 00 LLR.rf,, (p) fall onto the line f(p) = 0.5p + d.

For example, suppose the constituent channel CH, is a BSC
with cross probability p = 0.2. We have numerically found
a class of symmetric 4-ary quantizers {m,, : m € N} that
is asymptotically d-linear with d = 0.174. Fig. 1 plots the
trajectories of the 5 = 4 points of LLR.rf,,,(p) for various m.
As can be seen, all 4 points of LLR.rf,,,(p) eventually converge
to the same line f(p) = 0.5p + 0.174.

We now present our first main result of achievability.

Proposition 2: For any d > 0, any 7 > 2, and any class
of symmetric J-ary quantizers {,,} that is asymptotically
d-linear, the m-normalized learning rate 7,, in (16) satisfies

A7)

lim #,, =d.
m— o0

Continue our example of using BSC(0.2) as the constituent

channel. We have numerically found a symmetric ¥ = 8-ary
quantizer class {7, : m} that is asymptotically d-linear with
d = 0.204. Fig. 2 plots the corresponding 7,, (numerically
computed by (16)) for m = 2 to 50. As predicted, the m-
normalized learning rate converges to d = 0.204 as m — oo.

By the data processing inequality, the m-normalized learn-
ing rate 7, after y-ary quantization m,, must be less than
the native, before-quantization learning rate of BSC, denoted
by r55c(0.2) = 0.223 as computed by (7). That said, the
simple 3-bit quantization v € {0,---,7} of the m,, used
in Fig. 2 already achieves 92% of the upper bound, since
d = 0.204 = 0.92r54-(0.2). In fact, we have numerically
found a ¥ = 16-ary symmetric quantizer class {7m,, : m}
that is asymptotically d-linear with d = 0.977555-(0.2). This
shows that the price one pays for compressing an unboundedly
large m-dimensional observation Y € Y into a mere 4-bit
T value is only 3% of the normalized learning rate, even if
we let m — oo!

The introduction of {r,,} greatly simplifies the analysis
since the resulting abstract channel is BI-y-out (thus having
fixed input and output alphabets) regardless of m. Further-
more, the conversion is almost lossless in the following sense.

Proposition 3: Consider any CH, with single-hop learning
rate ;. For any d < r} that can be arbitrarily close to 7},
there exist a 7 value and a symmetric y-ary quantizer class
{7 : m} that is asymptotically d-linear.

Proposition 2 is proven by plugging (15) into (16) and
using Definition 4. Proposition 3 is proven by first choosing
a sufficiently large 7 for the given d < r} and then explicitly
devising either a deterministic or a randomized mapping 7.
The detailed proofs are omitted due to space constraints.

D. The New Concept of Lossless Amplify-&-Forward

We now describe how one can serially concatenate two
abstract channels in an almost lossless fashion. Consider
two arbitrary physical channels CH., and CH.,, and the
corresponding two symmetric quantizer classes {n—L}J} and
{71'%21]}, respectively. We assume that both {71'%11]} and {71'%]}
are asymptotically dp-linear with the same dy, and the first
quantizer class is 7y, -ary and the second quantizer class is 7y-
ary, where 7]] and 7y, may be different.

Since {mhi : m} is 7,-ary, its LLR.rf"1(.) has 7, “valid
points” and we denote their m — oo limits by

(wo,90), (T1,91), -+, (T3, -1, Y5,-1)- (18)

where (x.,y,) is the x- and y-coordinates of the limiting
point corresponding to the event {I" = ~}. For example, the
trajectories of LLR.rf,,(-) in Fig. 1 converge to four different
points when m — oo, and these four limiting points are
denoted by (18).
By (14), I' = 0 corresponds to the largest LLR Lgfs) and
thus the largest x-coordinate. This implies
To > T1 > > Ty, -1 (19)
By Definition 4, we have y., = 0.52 +dg, which then implies

Yo > Y1 > > Yy, 1 (20)



Corollary 1: Without loss of generality, we may further
assume

(20, Y0) = (2do, 2do) and (25, -1, Y5, -1) = (—2do, 0).

Corollary 1 is derived from the explicit construction of {7, }
that is used to prove Proposition 3.
For example, the four limiting points in Fig. 1 are

(0, 0) = (0.348,0.348), (z1,1) = (0.0986,0.223)

(22,y2) = (—0.0986,0.125), (z3,y3) = (—0.348,0) (21)

and they satisfy Corollary 1 since d = 0.174.

We now describe our construction. Suppose the first abstract
channel uses CH., for m times and outputs I' = . We then
construct a bit string b1by - - - by, 1 satisfying

bi:{o
1

Recall that we have been given a class of symmetric 7,-ary
quantizers {wﬁ] : m} for the physical channel CH,.,. We then
send bit b; over an abstract channel created by m; uses of
CH., using the symmetric quantizer 71'%21]1,, where

A{W%(%—l—yﬁJ

m; =
Yo

Namely, we “split” a single abstract channel that uses CH., for
m times to (7; — 1) abstract (sub-)channels, each uses CH,,
for m, times to send a single bit b;. This is possible since

Z;Il m; < m by (23). This concludes our concatenation of
m uses of physical channel CH., and ) m; uses of physical
channel CH., to create an end-to-end (e2e) new abstract
channel.

Three observations are in order. Firstly, the new e2e abstract
channel is of binary input since the m uses of CH,, create a
binary-input abstract channel. The output of the e2e abstract
channel is of order (7,)71~L. The reason is that sending each
b; through a BI-¥,-out abstract channel (that uses CH., for
m; times) will have an output I'; € {0,--- ,7, — 1}. We have
(7; — 1) bits b; and the overall output is thus a (; — 1)-
dimensional vector in {0,---,75, — 1}7171. Secondly, it is
possible that m > > m;. Note that the m uses of CH,, can
be viewed as a budget of how many times we are allowed to
use the physical channel CH.,. If m > Y m;, then we do
not use CH,, to its full extent and simply discard/ignore the
excess m — y . m; channel uses. Thirdly, we have

Lemma 2: The new e2e abstract channel is BISO.

The proof of this lemma is done by verifying the symmetry
between sending b = 0 versus sending b = 1.

To demonstrate our construction, suppose 7; = 4 and the
four limiting points of {wEJ : m} are as described in (21).
For any m, say m = 1000, we use the symmetric quantizer
71'[11(100 to create a BI-4-out abstract channel from 1000 uses of
CH,,. Suppose the output of the abstract channel is I' = 1,
then we construct a 3-bit string b1b2bs = 001 according to
(22). Bit by = 0 will be sent through an abstract channel that
uses CH., for m; = 1000 - (0.348 — 0.223)/0.348] = 359

ifi<¥y, —vyandie{l,---,5, — 1}

22
ifi>%, —yandie{l,---,7, — 1} @2)

(23)

(2]

times based on 7r,259. Bit b, = 0 will be sent by using CH,,
for my = {1000 - (0.223 — 0.125)/0.348| = 281 times based
on 71'[225;1. Bit b3 = 1 will be sent by using CH,, for ms =
11000 - (0.125 — 0)/0.348| = 359 times based on 7.2.

Suppose both symmetric quantizer classes {ﬂ}ﬁ :m} and
{m[%] : m} are asymptotically do-linear. We compute, using*
(11)—(15), the LLR.rf‘:nQe(p) function of our new e2e abstract
channel. We then have:

Proposition 4: When m — oo, all (75)7:~! limiting points
of LLR.rf>*(p) will fall onto the same line f(p) = 0.5p + do
as the limiting points of LLR.rf"!(p) and LLR.rf<2(p) of the
individual channels. Herein we slightly abuse the notation and
say the e2e abstract channel is also asymptotically dy-linear.

We call this new design lossless Amplify-&-Forward (loss-
less AF). The reason is that the output of abstract channel 1
is converted to a bit string by - - - by, _1 by (22) in a reversible
fashion. The relay then sends each b; directly over a split
version of abstract channel 2 with zero additional processing.
Therefore, it is along the spirit of AF, for which the received
signal from the previous hop is directly used as the input to
the next hop without any active processing that cleans up the
noise (such as decode-&-forward) or judiciously compresses’
the observations (such as compress-&-forward, quantize-&-
forward, compute-&-forward).

The reason that our new design is called lossless is that
Propositions 2 and 4 jointly imply:

lim 72 = (24)

do = lim 7Y = lim #lh2]
m—0Q 0 m— 00 m m

m—r o0
Therefore, our AF design is (asymptotically) lossless in terms
of the m-normalized learning rate.

E. From Abstract Channels To Physical Implementation

We now explain how this exercise of creating abstract
channels and the corresponding lossless AF can be converted
to a new scheme for any r*-uniform L-hop line network with
learning rate 7 arbitrarily close to the min-cut r*, see (10).

For any given € > 0, we first construct L symmetric quan-
tizer classes {ﬂm : m}, one for each physical channel CH,,
such that all of them are asymptotically dy-linear satisfying
do £ r* — 0.5¢, which is feasible by Proposition 3. We then
concatenate the first two abstract channels using lossless AF.
The combined abstract channel is asymptotically dy-linear by
Proposition 4. We then apply lossless AF again to combine the
new channel with the third abstract channel. This is possible
since our construction is a black-box design that uses only the
locations of the limiting points (z-,%,), see (22)—(23), and
is oblivious of the construction of the abstract channel. By
repeatedly applying lossless AF, the e2e abstract channel is

4Eq. (11) was described for scalar I'. Since the e2e abstract channel is
of vector output, one can first relabel each vector output by an integer in
{0,-++,(F2)71~1 — 1} and then apply the formulas.

5Qur abstract channels do involve quantizers 7,,. However, the quantizers
T, in our designs are part of the abstract channels, not part of the
concatenation mechanism. The mechanism in (22) that “concatenates two
abstract channels” is bijective and reversible, a defining feature of AF schemes.
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Fig. 3. Illustration for a 2-hop line network.

still asymptotically dy-linear. We then choose an m such that
the e2e abstract channel’s normalized learning rate satisfies

P2l > dy — 0.5e = (r* — 0.5e) — 0.5e =r* —¢  (25)

which is doable because of Proposition 2. The chosen mg
value is then fixed throughout the rest of the discussion.

The next step is to let the physical L-hop network “simu-
late” the concatenation of the abstract channels we have just
designed. See Fig. 3 for illustration. E.g., the [-th relay will
carry out the “back-end” computation of the I-th BI-7¥;-out
channel, followed by the lossless AF concatenation, followed
by the “front-end” of the (I + 1)-th BI-¥, ;-out channel.
For simplicity, Fig. 3 does not illustrate the detailed channel
splitting operations (22) and (23) of lossless AF concatnation.

Each simulation will take mg channel uses, and we group
the corresponding mq channel uses (also known as time slots)
as a “sub-block”. Because of the strict causality requirement in
(2), the beginning of a sub-block of the /-th hop can only start
after the end of the corresponding sub-block of the previous
hop. This can be achieved by shifting the time axis of the
[-th relay by [ - mg time slots. The operation is repeated and
pipelined for K times. That is, each node will spend a sub-
block of my slots and collectively they (one source plus (L—1)
relays) will simulate one copy of the e2e abstract channel. We
then let the network simulate K copies of the e2e channel,
i.e., s uses slots [1, K - mg] and the [-th relay uses slots [({ —
1)mo+1, (K+1)my] for all I € [1, L—1]. The destination will
finish receiving the observations by time (K + (L — 1))my.
This pipelined, sub-block-based operations are standard in the
literature, see the detailed description in [3], [4].

Since the optimal scheme (over these K copies of the
e2e abstract channel) is just a simple repetition code, we let
source s repeat the message bit © € {0,1} for K times,
and send each of them over the K parallel copies of the e2e
abstract channels, respectively. Destination d will receive K
outputs, one from each copy of the e2e abstract channel, and
it then performs ML decoding described in (3). By letting
K — oo while keeping my fixed, this scheme thus achieves
the desired fﬁie] in (25), which has already been normalized
over mg uses of the physical channels, see (16). The slight
delay increase from Kmg to (K + (L — 1))mg caused by
the time-shift at each relay is negligible in our learning-
rate analysis, which has K — oo while using a fixed myg.

Comparing (25) and Proposition 1, the converse bound of the
r*-uniform L-hop network can thus be approached arbitrarily
closely regardless how large L is.

IV. ACHIEVABILITY FOR GENERAL ACYCLIC NETWORKS

For a general acyclic network, let r* denote the min-
cut bound in Proposition 1. By the max-flow/min-cut the-
orem, one can find a finite set of s-to-d directed paths
{pathy,--- ,path}, where each path; is associated with a
rate Tpath > 0 satisfying

Ve € E, > Tpam, <7 (26)
path,:pathSe
and Z Tpath, =T 27)

pathf

We now consider two cases. Case 1: All F' paths are edge
disjoint. In this case, each path £ can be viewed as an indepen-
dent 7path f-uniform Ly-hop line network. By the discussion
in Sec. III-E, each line network can “simulate” an e2e BISO
abstract channel, of which the normalized learning rate is
arbitrarily close to Tpath ;- Since we have F' independent e2e
BISO abstract channels, the learning rate of the combined
F-dimensional vector abstract channel is the sum of the
individual learning rates. By the same sub-block-based im-
plementation in Sec. III-E that sends a repetition code over K
copies of the F-dimensional e2e vector abstract channel for
a sufficiently large K, our scheme achieves a learning rate r
arbitrarily close to r*, also see (27).

Case 2: Some of the F' paths share an edge e. We address
this case by temporal multiplexing. For example, suppose
path; and path, share an edge e and they happen to have
Tpath, = Tpath, = 0.577. We then use the odd (resp. even)
time slots of CH. to carry out the traffic over path; (resp.
pathy). Since only 0.5m time slots of CH, are used to carry
out the traffic over path;, when normalized over the original
m value, it is as if we are creating a new edge €; with learning
rate r% = 0.5r; for i € {1,2}. Since lossless AF is a black-
box design that uses only the locations of the limiting points
of LLR.rf(p) and is oblivious of the actual construction of the
abstract channel, the new €; can be readily concatenated with
the next hop of path,. Case 2 is essentially reduced back to
Case 1 via this temporal multiplexing technique. By carefully
formulating it for general acyclic networks and by reusing the
arguments of Case 1, one can design a scheme that achieves
a learning rate r arbitrarily close to r* in Case 2 as well.

V. CONCLUSION

This work has characterized the optimal learning rate r* of
sending a one-bit message over any arbitrary acyclic BISO-
channel network.
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