
P t

DOI: 10.1002/sta4.571

D  I S C  U S S I O  N

A Discussion of “A Note on Universal Inference” by Tse and
Davison

Minge Xie

Department of Statistics, Rutgers University, Piscataway, New Jersey, 08854, USA

Correspondence
Minge Xie, Department of Statistics, Rutgers University, Piscataway, NJ 08854, USA.
Email: mxie@stat.rutgers.edu

Congratulations to Timmy and Anthony for the in-depth note that provides a great insight for understanding of the performance of the recently

developed universal inference method by Wasserman et al. (2020). Based on my own reading and research experiences on irregular inference

approaches including universal inference, I echo the messages that Timmy and Anthony have presented so clearly, some of which I tried to con-vert

to my students but could not do as nicely and convincingly. Beside the messages by Timmy and Anthony, I would like to comment on that the

universal inference method has a unique advantage for sequential testing problems. I will also provide some additional remarks on tackling irregular

inference problems.

The universal inference framework is a novel development that can provide a performance-guaranteed finite-sample inference without

(amazingly) any regularity conditions (Wasserman et al., 2020). The method typically requires a tractable likelihood function and data splitting, and the

validity (guaranteed test size) of the method is justified by an Markov inequality. However, as demonstrated by Timmy and Anthony in their eqs.

(5)–(7) of the standard mean test using the simple normal example, the method systemically suffers loss of power due to the use of the Markov

inequality and sample splitting. In addition, Timmy and Anthony used a multivariate normal mean example (with a known variance matrix) to show

the impact of the number of nuisance parameters on power and provided an a simple correction to mitigate the problem. The discussion is extended

to some other cases but relies on asymptotics. Finally, the impact on the testing power for different numbers of folders of data split-ting is also

studied, again using the Gaussian example. These discussions on testing power provided a full picture of the universal inference method, in

complementary to its validity result under the regular inference settings.

The universal inference is particularly effective for sequential testing problems. For instance, consider a setting described in Ramdas et al.

(2020): we have a sequence of observations yt, t ¼ 1,2,…, and we would like to do a sequential test and make a simultaneous inference for

fμt , t ¼ 1,2,…g, where μt ¼ EðYtÞ and yt ¼ t1        
s¼1ys. Ramdas et al. (2020) outlined the issues encountered in the standard approaches and showed that

the universal inference method can derive a stronger result of anytime-valid simultaneous inference. The universal inference method for

sequential tests also has close connections to the probabilistic game-theoretic approach of sequential optimal betting (Ramdas et al., 2022). These

developments have stimulated an emerging development of the so-called e-value concept and its sequential analogue e-processes, which provide a

useful alternative to the traditional p value and other notions for anytime-valid inference (Turner et al., 2021; Vovk & Wang, 2021; Wang &

Ramdas, 2020).

Another attraction of the universal inference method is that it is readily applicable for many irregular inference problems where inference

solutions are either unavailable or difficult to obtain by the traditional methods. Here, following Wasserman et al. (2020), the irregular inference

problems refer to those problems for which the regular statistical inference conditions and large-sample theories do not apply. The universal infer-

ence development is invaluable for irregular inference problems (even though it may loss some power), since these problems are prevalent in data

science. For instance, inherently discrete parameters are routinely seen, for example, model indices in model selection problems, number of clus-ters

and membership in tree partition and other classifications/clustering problems, and architecture parameters (numbers of layers and vertices) in a

deep neural network. For these irregular problems, point estimators (if they exist) do not provide uncertainty quantification; bootstrap

approaches lack theoretical support and often underperform; Bayesian credible sets tend to be highly sensitive to the (additional) prior choices and

their frequency coverage is often poor even with a large-sample size. These difficulties arise because the central limit theorem and
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Bernstein–von Mises theorem do not apply on an intrinsically discrete parameter space. The universal inference is perhaps the first general frame-

work that can possibly provide validity guarantees for such irregular inference problems.

Speaking of irregular inference problems, our group is also developing a new artificial-sample-based approach, called a repro samples method,

to tackle these problems (cf. Xie & Wang, 2022). Our method, developed under the frequentist framework, borrows the ideas of “inversion” and

“matching of artificial and observed samples” that are deeply rooted in fiducial inference and approximate Bayesian computing (ABC) method. It

provides guaranteed inference without the need to rely on a likelihood function or the large-sample central limit theorem. It is especially effective

for difficult inference problems such as those involving discrete/non-numerical parameters and/or non-numerical data. The repro samples method

has been used to provide a finite-sample two-sided confidence set for the (smallest possible) unknown number of components in a Gaussian mix-

ture (Xie & Wang, 2022), noting that the universal inference method of Wasserman et al. (2020) does not give an upper bound for the unknown

number of component. The repro samples method has also been used to provide performance-guaranteed (finite- and large-sample) confidence

sets for the unknown true model (and other model parameters) in a high-dimensional regression setting (Wang et al., 2022). Compared with the

universal inference method, the repro samples method does not systemically suffer a loss of power. However, it has the same issues encountered

in the standard approaches and does not typically provide an anytime-valid simultaneous inference for sequential testing problems.
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