
Verified Path Following Using Neural Control

Lyapunov Functions

Alec Reed Guillaume Berger Sriram Sankaranarayanan Christoffer Heckman

Department of Computer Science
University of Colorado Boulder, USA.
first.lastname@colorado.edu

Abstract: We present a framework that uses control Lyapunov functions (CLFs)
to implement provably stable path-following controllers for autonomous mobile
platforms. Our approach is based on learning a guaranteed CLF for path follow-
ing by using recent approaches — combining machine learning with automated
theorem proving — to train a neural network feedback law along with a CLF that
guarantees stabilization for driving along low-curvature reference paths. We dis-
cuss how key properties of the CLF can be exploited to extend the range of the
curvatures for which the stability guarantees remain valid. We then demonstrate
that our approach yields a controller that obeys theoretical guarantees in simula-
tion, but also performs well in practice. We show our method is both a verified
method of control and better than a common MPC implementation in compu-
tation time. Additionally, we implement the controller on-board on a 1

8 -scale
autonomous vehicle testing platform and present results for various robust path
following scenarios.

Keywords: Path Following, Trajectory Tracking, Control Lyapunov Functions,
Plan Execution, Verified Autonomy.

1 Introduction
V✓

Verifier

Verified V✓

Learning Loop

Motion Samples

C.E.

CLF Theory

Guaranteed Controls

Control Extraction and CLF Properties

- Verified path

- Bounded state
construction

deviation

Figure 1: Learning CLFs. Motion samples consist
of state-control pairs used to train the neural net-
work V✓ with parameter ✓. The Verifier produces
counterexamples (C.E.) until V✓ satisfies the spec-
ifications. The green box contains our contribu-
tions: 1) extraction of control inputs from V✓ that
ensure bounded path deviation, 2) constructing
advanced maneuvers using a single CLF, and 3)
demonstration on a real platform.

Path following is a fundamental primitive for
autonomous robotic platforms, wherein the
goal is to steer the platform along a desired path
in the workspace. This is important for mobile
platforms since many approaches to platform
design rely on the separation between high-
level planners that search over paths without
considering platform dynamics and lower-level
plan execution which implements path follow-
ing [1, 2]. However, path following is a chal-
lenging problem since platform models of in-
terest are nonlinear. Popular approaches such
as the “Stanley” controller (originally proposed
by Hoffman et al. for the 2005 DARPA grand
challenge [3]) can become unstable depending
on the choice of the controller’s parameters and
the curvature of the path [4]. Similarly, feed-
back controllers based on linearization can also
be unstable if the deviation is too large [5].

Control Lyapunov functions (CLFs) are a general approach for controller design, typically for steer-
ing a control system towards an equilibrium point [6, 7]. A CLF is a positive definite function such
that for any state within a well-defined basin of attraction, there exists a control input that causes
its derivative to be negative. Thus, CLFs naturally define stabilizing controllers [8, 9]. However,
the generation of CLFs has remained a challenging problem for researchers, and various CLF gen-

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

eration methods have been developed. Neural networks have recently become a popular method
for designing CLFs given their ability to converge even on systems with sophisticated dynamics.
The idea is to use machine learning algorithms to infer candidate CLFs by minimizing a special
loss function called “Lyapunov risk” in combination with automated theorem-proving algorithms to
verify the results of the learning algorithm. As a result, if successful, the approach yields a CLF as
well as a stabilizing controller. Thus, neural CLF generation is a promising approach for designing
controllers for nonlinear systems. Nevertheless, its use has been limited to stabilization to fixed
equilibria, whereas our application seeks to stabilize along a path. Secondly, empirical validation on
an actual robotic test platform has not been publicly performed.

In this paper, we address the path-following problem for a path in the workspace whose curvature
(s) varies with the distance s along the path. For (s) ⌘ 0, which corresponds to a straight-line
path, the problem is amenable to existing neural CLF synthesis tools, but it becomes progressively
harder as the path curvature increases and becomes dependent on s.

To address this, we exploit key properties of the system and the generated CLF to design a formalism
wherein the controller derived for a straight-line path can be used for paths with non-zero, varying
curvature. We derive bounds on the maximum path curvature for which the controller is valid and
we show that we can construct complex maneuvers using this approach.

Next, we demonstrate our approach on a 1
8 -scale vehicle platform. Our demonstrations show that (a)

the model-based design approach transfers to a real robotic platform even though the model used for
learning the CLF is a simpler model; and (b) the resulting approach is favorable compared to other
verified and unverified path-following methods in both curved and straight path-following scenarios.

1.1 Related Work

Numerous methods have been studied for generating CLFs. Certain nonlinear control design meth-
ods such as backstepping automatically synthesize CLFs but are not widely applicable. Tan and
Packard studied an approach using bilinear constraints that are hard to solve in practice [10]. Ma-
jumdar et al. propose a similar approach for path following but use a control feedback law derived
through linearization as a heuristic initialization to solve bilinear constraints efficiently in prac-
tice [11]. Data-driven approaches for CLFs were first studied by Khansarizadeh et al. [12]. How-
ever, a lot of data is potentially needed to generate CLFs and the final result needs to be verified
against the system dynamics. Previous work by Ravanbakhsh et al. [13] showed an active approach
for deriving CLFs for nonlinear systems that was adapted to path following using the idea of control
funnel functions [14, 15]. Furthermore, their approach was shown to be effective on a autonomous
vehicle testbed in the lab. However, the techniques described so far focus mostly on deriving poly-
nomial CLFs. It is well known that CLFs can be non-polynomial even for polynomial dynamical
systems. Recently, neural networks have been used to generate CLFs for systems with complex,
non-polynomial dynamics. Introduced by Richards et al. [16] and Chang et al. [17], neural networks
have been shown to be an effective method for generating CLFs for a variety of systems.

Majumdar et al. [18] provide the framework of “funnel libraries” in which a set of funnels F and
associated feedback controllers are generated. This library of funnels can be sequenced together
to form complex vehicle maneuvers. Bouyer et al. [19] showed that this approach can reduce the
reach-avoid problem to that of a timed automata by switching between appropriate controllers based
on state measurements. Funnel libraries are an interesting approach towards a more rigorous plan
execution that supports a motion planner which can restrict itself to maneuvers available in the
library. However, maintaining such a library can be cumbersome. In particular, a large number of
controllers may be needed to cover the space of possible maneuvers. The approach presented in this
paper can simplify funnel libraries by covering a larger set of trajectories with fewer controllers.

2 Preliminaries: Problem Definition and CLF Learning

Consider the problem of stabilizing a dynamical system ẋ = f(x, u), wherein x 2 D ✓ Rn and
u 2 U ✓ Rm, to the equilibrium point x = 0 without loss of generality. This is a typical control
problem, e.g., where a mobile platform has command inputs that can lead it to follow a specific
trajectory which may be parametrized by a point in time. Let V : D ! R be a control Lyapunov
function (CLF) for f on D. Formally, a CLF is defined in Definition 1.

2

Definition 1. A CLF is a continuously differentiable function V : D ! R that is positive definite,

i.e., V (0) = 0 and V (x) > 0 for all x 6= 0, and satisfies the following decrease condition

8x 2 D \ {0}, 9u 2 U : rV (x) · f(x, u) < 0. (1)

Rather than requiring that the system reaches an equilibrium, we are often interested in region sta-
bility, wherein we define a neighborhood I of 0, and require that the Lyapunov condition Eq. (1) is
satisfied in the region D \ I, called the Lyapunov (satisfiability) region. Using the CLF V , control
inputs can be generated for any state x that belongs to the largest level set of V contained completely
within D to drive the system to the smallest level set of V that contains I, in finite time [19].

The synthesis of CLFs is known to be very challenging, and the complexity increases rapidly with
that of the system dynamics and the control task. The core idea of this work is to synthesize CLFs for
simple maneuvres for the robot platform (namely, straight-path following) and then extend these to
more complex maneuvres. To synthesize the “simple-task” CLFs, we used the approach discussed
in Chang et al. [17], which is a neural network based learning solution for generating CLFs. In
this framework potential neural CLFs are trained using state-control samples from the defined Lya-
punov region D \ I and then verified by an SMT solver to ensure that the candidate CLF meets the
conditions in Definition 1. Details of the CLF generation process are provided in appendix A.

Region of Attraction While the target of CLF training is to generate a CLF that is valid inside the
Lyapunov region, an important metric is the region of attraction (ROA) [20].
Definition 2. Let V be a CLF with domain D for a system f(x, u). Any level set of V completely

contained in D defines a region of attraction. That is, for any � > 0, if {V (x)  �} ✓ D, then

{V (x)  �} is an ROA for the system. The maximal region of attraction is the maximum level set of

V contained within D.

Note that it is important to consider the largest level set contained in D. Lyapunov conditions do not
directly ensure safety (i.e., infinite-time horizon containment) for any states in the verified Lyapunov
region since large level sets of V may exit D while descending the gradient. Upon exiting D there
is no guarantee that actions will be available to reduce V . To ensure safety, a system’s initial state
must be contained within the maximal region of attraction.

2.0.1 Vehicle Model

Figure 2: Diagram of the states of the
wheeled vehicle described in Equation
2, s being the parameterized curve.

To train the system we use a path-following model with a
fixed velocity. The model consists of two states: de and
✓e, where de is the distance from the line as measured
from the rear axle and ✓e is the theta offset from nearest
point on the target line (see Figure 2). The dynamics of
this system are:

ḋe = v sin(✓e)

✓̇e =
v tan(u)

L
� v (s) cos(✓e)

1� de(s)
, (2)

where ✓e = ✓ � ✓p and (s) is the curvature of the refer-
ence path at the nearest point. Note that (s) is 0 for the
straight-line path shown in Figure 2.

To learn a neural CLF using the approach in Appendix A, state-control samples are generated for
the learning algorithm. To calculate u at any given sample (de, ✓e), we use an LQR controller.

2.1 Straight Path to Curved Path Following

Finding CLFs for the vehicle model described in Eq. (2) for paths of various curvature would (a)
be expensive and potentially infeasible (as the neural CLF training algorithm offers no guarantee
of finding a CLF and the problem becomes more difficult as the curvature increases); and (b) lead
to only a finite set of curves that the vehicle can execute. Instead, our approach consists of finding

3

a single CLF for the straight-line path, and compute the maximum curvature for which the CLF is
valid, in order to extend the CLF to paths with nonzero, possibly varying, curvature.

If the minimal required steering input for the straight-path CLF is smaller than the maximum allowed
steering input umax, we can derive a curved-path CLF. More precisely, given a CLF V for a straight-
line path, i.e., for (s) = 0 in Eq. (2), with ROA contained in the region de 2 [�dmax, dmax], we
define the minimal required input ureq for V as the smallest value of u satisfying that for all state x
in the Lyapunov region, there exists a steering input u with |u|  ureq that decreases the value of V ,
i.e., rV (x) · f(x, u) < 0. If ureq < umax, then one can exploit the gap tan(umax) � tan(ureq) to
follow a path with curvature (s) bounded as follows.

Proposition 1. If |(s)|  tan(umax)�tan(ureq)
L+dmax

, then V is a CLF for Eq. (2).

Proof. Note that for all de 2 [�dmax, dmax], |(s) cos(✓e)1�de(s)
| < |(s)|

1�dmax|(s)| . Thus, if |(s)|
1�dmax|(s)| <

tan(umax)�tan(ureq)
L , one can use the steering input u(s) = arctan(tan(u) + L|(s)|

1�dmax|(s)|), where
u 2 [�ureq, ureq] satisfies rV (x) · f(x, u) < 0. It holds that |u(s)|  umax. Moreover, with this
input the second equation of Eq. (2) becomes ✓̇ = v tan(u)

L . Since u is a decreasing input for V with
(s) = 0, it is clear that V is a CLF for curved-path following with input u(s).

Similar to a library of funnels [18], the CLF generated for straight-path following can be used for
any path with curvature |(s)|  tan(umax)�tan(ureq)

L+dmax
per Proposition 1. However, while previous

works require switching controllers [19, 18], our solution relies on a single CLF for the duration of
the maneuver.

2.2 Control Extraction

Algorithm 1 Vehicle Rollout CLF Minimization
import CLF, set vehicle model parameters, generate target path, discretize steering action space,
set dt (time step), set Kv (control cost)
while sim == true do

for steer in steeringAngles do

✓e, de calcError(updateState(currentState, steer))
vxRollouts.append(calcV x(✓e, de))

end for

u steeringAngles[argmin(square(steeringAngles) ⇤Kv + vxRollouts)]
end while

The definition of a CLF (Definition 1) guarantees the existence, at any state in the Lyapunov do-
main, of a control input causing the CLF to decrease over infinitesimal time horizon (negative Lie
derivative). A simple control strategy is then to simply execute the control that minimizes the Lie
derivative at the current state. One can plot a theoretically executable path to descend the CLF as
quickly as possible using this method. However this approach usually results in saturation of the
control surface. In our system, this holds true as the Lie derivative is a monotonic function of u, so
that the control that minimizes the Lie derivative of the CLF is always the maximum or minimum
u 2 U . Such a bang–bang controller [21] is not desirable in practice because abrupt changes in the
input can damage the platform, and requires a high actuation frequency.

A better practical method for control extraction is to simulate some actions and select the action that
causes the largest reduction of V (x). Given Eq. (1) and provided the time horizon is small enough,
there always exists a control action to reduce the CLF if the vehicle is in the Lyapunov region of the
CLF. The addition of a small control cost can be included for smoother operation. This approach
allows for stabilization to the origin, as well as more realistic models to be introduced to compute
realistic maneuvers. A simple, functional implementation of this idea is outlined in Algorithm 1.
This algorithm can be expanded to operate like a traditional MPC [22] by increasing the look-ahead,
and minimizing a cost function balancing future V (x) value, control cost, and terminal V (x) value.

4

�0.8 �0.4 0 0.4 0.8
�0.8

�0.4

0

0.4

0.8

de

✓
e

(a)

�2 �1 0 1
�1

�0.5

0

0.5

1

x (m)

y
(m

)

(b)

Figure 4: Results of CLF minimization on the testing platform. (a) Colored points are sampled plat-
form trajectories given various starting positions and orientations, black lines define the Lyapunov
region and the red line the maximal ROA. Surface colors show the value of V (x), orange being
larger, blue smaller. (b) Vehicle paths at starting states (de, ✓e): (0.4, 0.4), (0.4,�0.4), (0.0, 0.4),
(0.0,�0.4), (�0.4, 0.4), (�0.4,�0.4). The cyan area contains the ROA in the direction of de, the
green area is the lower bound of the Lyapunov region of de and the red line is the target path and
black lines are platform paths.

3 Implementation and Experimental Evaluation

3.1 CLF Generation

Our neural Lyapunov control framework was successful in generating CLFs for various target paths
and vehicle parameters. Figure 4(a) shows a generated CLF for a straight-line path. The CLF is
verified inside the Lyapunov region defined by an inner and outer radius of 0.2 and 0.8 respectively.
Note that while the CLF is valid in those bounds, the maximal ROA is the only region in which we
can guarantee safety, although in practice we observe success, in both converging to the minimum
and remaining in the Lyapunov region, outside the ROA.

3.2 Controller Implementation and Evaluation

Figure 3: Vehicle Testing Platform

Platform To test our approach in the real world we use
a 1

8 -scale vehicle platform in a motion capture space. The
wheel base of the vehicle is 34 cm and the velocity for
all tests is fixed at 0.5 m/s. The vehicle includes an on-
board computer for real-time computation and receives
pose estimates from the motion capture system through a
WiFi connection. After computation, the control action
is transmitted to a control unit which controls the steer-
ing servos and motor of the vehicle. Remarkably, each
iteration of Algorithm 1 is executed in less than 150 µs.

Control Extraction in Real Time The test objective is
to use the generated CLF to stabilize the platform to a straight-line path from x = �2.5 m to
x = 1 m at a constant velocity of 0.5 m/s. On the real-world platform the Lie derivative minimization
control extraction method is unable to stabilize the platform to a straight-line path: since the control
surface is always saturated, the platform continuously overshoots the distance to the target path, and
therefore is unable to stabilize.

Using Algorithm 1 we simulate potential rollouts for the platform and execute the lowest-cost action.
We discretize the continuous action space [�⇡

4 ,
⇡
4] to 31 equally-spaced steering values. We use the

kinematic bicycle model to project our current state a single time-step into the future, setting the
time-step to be equal to our system average update rate dt = 150 µs.

5

�0.5 0 0.5

�0.5

0

0.5

de

✓
e

(a)

�2 �1 0 1
�1

�0.5

0

0.5

1

x (m)

y
(m

)

(b)

Figure 5: (a) Reduced invariant region based on starting point (0,�0.4) where the solid red line is
the maximal ROA and the dashed red line is the reduced invariant region at (0,�0.4). (b) Computed
de boundary when platform starts at de = 0, ✓e = �0.4.

Figure 4(a) shows the convergence to the minimum of the CLF using Algorithm 1, starting from
various positions in the Lyapunov region. In practice, while not guaranteed to converge, we see that
even positions starting outside the maximal ROA converge to V (x) = 0.

Given any starting point in the maximal ROA we can plot the guaranteed maximum de and ✓e by
computing the level-set of V (xstart) and taking the max ✓e and max de of the computed set. Figure
5(a) shows a reduced invariant region based on x0 = (0,�0.4). For this particular starting position
we can guarantee the platform will deviate no further than [�48, 44] cm from the target path (a 27%
de reduction when compared to the maximal ROA maximum de of 0.66).

Maximum Curvature Computation In Subsection 2.1, we showed that a CLF for straight-path
following can be extended to curved-path following if the range of input required for straight-path
following is smaller than the maximum available steering input umax = ⇡

4 . The maximum allowed
curvature depends on gap = tan(umax) � tan(ureq), where ureq is the smallest range required for
straight-path following. Given the CLF V computed Subsection 3.1, ureq can be computed as:

ureq = max
de,✓e

min

⇢
|u| : @V

@de
(de, ✓e)v sin(✓e) +

@V

@✓e
(de, ✓e)

v tan(u)

L
< 0

�
, (3)

where the maximum is taken for de, ✓e in the Lyapunov region. Eq. (3) can be rewritten as a single
maximization problem:

1

L
tan(ureq) = max

de,✓e

�����

@V
@de

(de, ✓e) sin(✓e)
@V
@✓e

(de, ✓e)

����� . (4)

Eq. (4) has only two variables (de, ✓e), so that it can be solved easily using for instance grid search,
or nonlinear solvers like Ipopt [23]. We compute the value 1

L tan(ureq) = 0.496. With L = 0.3,
we get that gap = 0.8512. By Proposition 1, with dmax = 0.8, it follows that V can be extended
to curved-path following for any path with curvature (s)  gap

L+dmax
= 0.774, i.e., with radius of

curvature R � 1.3 m.

Using the approach discussed in Section 2.1 we can execute a complex object avoidance maneuver.
The maneuver is a curved path with varying curvature, bounded by 0.4 m�1 (the minimal radius of
curvature is 2.5 m); see Figure 6. The figure shows platform paths of various starting positions and
orientations after executing Algorithm 1 on the constructed path.

3.3 Side-by-side comparison with alternative techniques

We compare our control method against two MPC implementations [22] (a non-verified controller)
as well as the “deep learned” controller trained when computing the neural CLF (DLC) (a verified

6

�6 �4 �2 0 2
�1
�0.5

0
0.5
1

1.5
2

2.5

x (m)

y
(m

)
Figure 6: Experimental results where colors are as in Figure 4a. It is shown that if the platform’s
initial position is contained in the maximal ROA the platform will never exit the teal region.

controller as discussed in Chang et al. [17]). One MPC has a low cost of applying controls (MPCL)
while the other one has a high cost of applying controls (MPCH). We compare our control method
in straight- and curved-path following problems. The straight target path shown in Figure 7(a) is a
straight line from 0 to 30 m, with an obstacle in the initial direction of the vehicle, just outside of
the vehicle control funnel (as defined by the computed CLF in Figures 4 and 5). The initial position
of the vehicle is on the target path, but oriented in yaw by the largest ✓e contained in the maximal
ROA in Figure 4(a). This is an adversarial condition for non-verified controllers as we are unable
to calculate the maximum path deviation. Rather, the amount of deviation from the target path will
depend on design parameters such as control costs, MPC horizon and tuning constants. The curved
target path is a circle with a radius of 4 m. The vehicle begins at (0, 4) and completes one full lap of
the path. Figure 7(b) shows the vehicle’s deviation from the target path as a time series.

0 5 10 15 20 25
�1

�0.5

0

x (m)

y
(m

)

MPCL
MPCH
DLC

Our Method

(a)

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

Simulation time

d e
(m

)

(b)

Figure 7: Comparison of control methods for (a) straight and (b) curved paths. (a) The red box
represents an obstacle. (b) The y-axis represents the average deviation from the target path.

For each controller, we run 50 simulations with Gaussian noise (µ = 0, � = 0.1) added to the initial
conditions ✓e and de. Figure 7 shows the test setup and simulated runs. Figure 7(a) shows the target
paths with each colored area being the empirical average path (solid line in the middle) plus/minus
one standard deviation.

As shown in Figure 7 and Table 1, our method is the only method that is both a verified method
of control (guaranteed to avoid the obstacle outside of the control funnel) and able to stabilize to
the target path (small steady state error). In particular, one will note that the other verified control
method (DLC) oscillates around the target path, resulting in a large mean steady state error. Addi-
tionally our method provides the fastest convergence to the target, with a small maximum deviation,
and is more than 2 orders of magnitude faster than the MPC implementation, making it a reasonable
control choice even when verified control is not mandatory.

7

Table 1: Comparing performance and safety of verified and non-verified controllers over 50 simula-
tions. “Average X” refers to the empirical average value of X over the 50 simulations, while “max
X” and “mean X” refer to the maximum and mean value of X over a given simulation. The steady
state error is calculated as the L1 error upon the vehicle reaching steady state (after approximately
10 m as shown in Figure 7).

Average mean
controller
computation
time (ms)

Safe
paths

Average
max de
(meters)

Maximum
max de
(meters)

Average
mean steady
state error

Straight Path (Figure 7(a))

Our Method 0.75 50/50 0.39 0.56 0.0003
DLC [17] 0.08 50/50 0.42 0.49 0.0171
MPCL [22] 102 50/50 0.43 0.54 0.0046
MPCH [22] 99 12/50 0.74 0.98 0.0569

Curved Path (Figure 7(b))

Our Method 1.25 – 0.16 0.29 0.16
DLC [17] 0.09 – 0.42 0.68 0.62
MPCL [22] 120 – 0.31 0.31 0.31
MPCH [22] 110 – 1.00 1.04 0.85

4 Limitations

The primary limitation of this work is the method to generate verified CLFs. Some desirable CLFs
do not converge to a solution (such as CLFs with larger Lyapunov regions). The limiting factor is
likely the verification phase, specifically the verification of Eq. (1). Rather than verifying 9u 2 U
for whichrV (x) · f(x, u) < 0, we write u in terms of our LQR controller (a function of the system
state) to provide a single u for each state. Of course this greatly constrains the problem and means
that the LQR controller constants must be trained simultaneously to the CLF parameters [17]. In
theory SMT solvers should be able to directly check Eq. (1) as it is a first-order logic inequality,
however in practice the control spaces are often too large. In future work one may be able to reduce
the space by bounding U to some neighborhood of a sampled control. Additionally these verification
techniques are conditioned on how well-represented a system is by the model f(x, u). Namely, a
model which is developed to represent certain behaviors of our system limit the extent of maneuvers
that are verified and may be executed by the platform. This crucial limitation exists at the interface
of model validation, wherein the adequacy of the model is evaluated. Possible next steps to address
this limitation may be to consider online model synthesis and the extension of verification to these
new models.

5 Conclusion

In this work we show the ability to generate CLFs using neural networks [17], extract executable
controls to stabilize the system, and construct safe trajectories using a single CLF. Future work will
seek improvements to CLF generation and verification. Additionally, CLFs can be used inside a
receding horizon formulation in Algorithm 1 to provide potentially smoother control experience and
faster stabilization to the target. Finally the feasibility of non-smooth maneuvering in this framework
would provide another layer of robustness when operating in less ideal conditions.

Acknowledgments

This work was funded by NSF award #1932189 and the Belgian American Education Foundation
(BAEF). All opinions expressed are those of the authors and not necessarily of the NSF or BAEF.

8

References

[1] E. Gat. On three-layer architectures. In Artificial Intelligence and Mobile Robots. MIT Press,
1998.

[2] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser. A Review of Motion Planning for
Highway Autonomous Driving. IEEE Trans. Intell. Transp. Syst., 21(5):1826–1848, May 2019.
ISSN 1558-0016. doi:10.1109/TITS.2019.2913998.

[3] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun. Autonomous automobile
trajectory tracking for off-road driving: Controller design, experimental validation and rac-
ing. In 2007 American Control Conference, pages 2296–2301, 2007. doi:10.1109/ACC.2007.
4282788.

[4] J. M. Snider. Automatic steering methods for autonomous automobile path tracking. Robotics

Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009.

[5] H. Ravanbakhsh, S. Sankaranarayanan, and S. A. Seshia. Formal policy learning from demon-
strations. In International Conference on Robotics and Automation (ICRA), pages 6037–6043.
IEEE Press, 2019.

[6] E. Sontag. A lyapunov-like characterization of asymptotic controllability. SIAM Journal on

Control and Optimization, 21:462–471, 1983.

[7] Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods & Ap-

plications, 7(11):1163 – 1173, 1983. ISSN 0362-546X. doi:10.1016/0362-546X(83)90049-4.

[8] E. Sontag. A ’universal’ construction of artstein’s theorem on nonlinear stabilization. Systems

and Control Letters, 13(2):117–123, Aug. 1989. ISSN 0167-6911. doi:10.1016/0167-6911(89)
90028-5. Funding Information: * Research supported in part by US Air Force Grant 88-0235.

[9] Y. Lin and E. D. Sontag. A universal formula for stabilization with bounded controls. Systems

& Control Letters, 16(6):393 – 397, 1991. ISSN 0167-6911. doi:10.1016/0167-6911(91)
90111-Q.

[10] W. Tan and A. Packard. Searching for control lyapunov functions using sums of squares pro-
gramming. sibi, 1(1).

[11] A. Majumdar, A. Ahmadi, and R. Tedrake. Control design along trajectories with sums of
squares programming. In IEEE International Conference on Robotics and Automation, ICRA

2013, pages 4054–4061, 2013.

[12] S. Mohammad Khansari-Zadeh and Aude Billard. Learning control lyapunov function to en-
sure stability of dynamical system-based robot reaching motions. Robotics and Autonomous

Systems, 62(6):752 – 765, 2014. ISSN 0921-8890. doi:10.1016/j.robot.2014.03.001.

[13] H. Ravanbakhsh and S. Sankaranarayanan. Learning control lyapunov functions from coun-
terexamples and demonstrations. Autonomous Robots, 43(2):275–307, aug 2018. doi:
10.1007/s10514-018-9791-9. URL https://doi.org/10.1007%2Fs10514-018-9791-9.

[14] M. Mason. The mechanics of manipulation. In Proceedings. 1985 IEEE International Con-

ference on Robotics and Automation, volume 2, pages 544–548, 1985. doi:10.1109/ROBOT.
1985.1087242.

[15] H. Ravanbakhsh, S. Aghli, C. Heckman, and S. Sankaranarayanan. Path-following through
control funnel functions. In 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 401–408, 2018. doi:10.1109/IROS.2018.8593637.

[16] S. M. Richards, F. Berkenkamp, and A. Krause. The lyapunov neural network: Adaptive
stability certification for safe learning of dynamical systems. In A. Billard, A. Dragan, J. Peters,
and J. Morimoto, editors, Proceedings of The 2nd Conference on Robot Learning, volume 87
of Proceedings of Machine Learning Research, pages 466–476. PMLR, 29–31 Oct 2018. URL
https://proceedings.mlr.press/v87/richards18a.html.

9

http://dx.doi.org/10.1109/TITS.2019.2913998
http://dx.doi.org/10.1109/ACC.2007.4282788
http://dx.doi.org/10.1109/ACC.2007.4282788
http://dx.doi.org/10.1016/0362-546X(83)90049-4
http://dx.doi.org/10.1016/0167-6911(89)90028-5
http://dx.doi.org/10.1016/0167-6911(89)90028-5
http://dx.doi.org/10.1016/0167-6911(91)90111-Q
http://dx.doi.org/10.1016/0167-6911(91)90111-Q
http://dx.doi.org/10.1016/j.robot.2014.03.001
http://dx.doi.org/10.1007/s10514-018-9791-9
http://dx.doi.org/10.1007/s10514-018-9791-9
https://doi.org/10.1007%2Fs10514-018-9791-9
http://dx.doi.org/10.1109/ROBOT.1985.1087242
http://dx.doi.org/10.1109/ROBOT.1985.1087242
http://dx.doi.org/10.1109/IROS.2018.8593637
https://proceedings.mlr.press/v87/richards18a.html

[17] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. Advances in neural information

processing systems, 32, 2019.

[18] A. Majumdar and R. Tedrake. Funnel libraries for real-time robust feedback motion planning.
CoRR, abs/1601.04037, 2016. URL http://arxiv.org/abs/1601.04037.

[19] P. Bouyer, N. Markey, N. Perrin, and P. schlehuber caissier. Timed-automata abstraction of
switched dynamical systems using control invariants. Real-Time Systems, 53, 05 2017. doi:
10.1007/s11241-016-9262-3.

[20] J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[21] H. Hermes et al. Functional analysis and time optimal control. 1969.

[22] R. Rajamani. Vehicle Dynamics and Control. Mechanical Engineering Series. Springer
US, 2011. ISBN 9781461414339. URL https://books.google.com/books?id=
cZJFDox4KuUC.

[23] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57,
2006.

10

http://arxiv.org/abs/1601.04037
http://dx.doi.org/10.1007/s11241-016-9262-3
http://dx.doi.org/10.1007/s11241-016-9262-3
https://books.google.com/books?id=cZJFDox4KuUC
https://books.google.com/books?id=cZJFDox4KuUC

	Introduction
	Related Work

	Preliminaries: Problem Definition and CLF Learning
	Vehicle Model
	Straight Path to Curved Path Following
	Control Extraction

	Implementation and Experimental Evaluation
	CLF Generation
	Controller Implementation and Evaluation
	Side-by-side comparison with alternative techniques

	Limitations
	Conclusion

