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The production of prompt AF baryons at midrapidity (|y| < 0.5) was measured in central (0-10%) and
mid-central (30-50%) Pb-Pb collisions at the center-of-mass energy per nucleon-nucleon pair /Sny =
5.02 TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach
much lower transverse momentum (pr =1 GeéV/c) with respect to previous measurements performed
by the ALICE, STAR, and CMS Collaborations in nucleus-nucleus collisions, allowing for an extrapolation

down to pr = 0. The pr-differential Azf/D0 ratio is enhanced with respect to the pp measurement for
4 < pt < 8 GeV/c by 3.7 standard deviations (o), while the pr-integrated ratios are compatible within 1o.
The observed trend is similar to that observed in the strange sector for the A/K(SJ ratio. Model calculations
including coalescence or statistical hadronization for charm-hadron formation are compared with the

data.
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1. Introduction

Heavy-ion collisions at LHC energies produce a phase of
strongly-interacting matter, known as the quark-gluon plasma
(QGP), in which quarks and gluons are deconfined [1]. The existing
measurements indicate that the QGP behaves as a strongly-coupled
low-viscosity liquid-like system [2]. Heavy quarks, produced at the
start of the collision, experience the full evolution of the sys-
tem and constitute a unique probe of the QGP properties [3].
The hadronization of heavy quarks into open heavy-flavor hadrons
is expected to be influenced by the presence of a deconfined
medium. Theoretical calculations that include modified hadroniza-
tion via quark coalescence or via a resonance recombination ap-
proach [4-9] predict a significant enhancement of the A} /DO yield
ratio in heavy-ion collisions compared to the expected ratio in
pp collisions. In addition, the collective radial expansion of the
system determines a flow-velocity profile common to all thermal-
ized particles, that could increase the A} /DO ratio at intermediate
transverse momentum, ie. 2 < pr < 8 GeV/c [7,8,10]. The study
of such a potential enhancement requires a good understanding of
AJ production in smaller collision systems, which showed surpris-
ing features at LHC energies. The production of A baryons was
measured at the LHC in pp collisions by the ALICE Collaboration
at /s =5.02, 7, and 13 TeV [11-14], by the CMS Collaboration
at 5.02 TeV [15], and by the LHCb Collaboration at 7 TeV [16].
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At midrapidity, the ALICE and CMS results show a significant
enhancement in the AC+/D0 yield ratio (up to a factor 2-5 for
pr <8 GeV/c) compared to ete™ and e”p measurements [17-22]
and QCD-inspired theoretical predictions [23-26] where charm
fragmentation is tuned on ete~ and e”p measurements [27,28].
Models that introduce new color-reconnection topologies in string
fragmentation [29] or hadron production via coalescence [30] as
well as models that are based on statistical hadronization including
feed-down from unobserved charm-baryon states [31] are able to
describe the AT /DO ratio at midrapidity. The values of the AT /DO
ratio measured at forward rapidity by the LHCb Collaboration are
smaller than those at midrapidity, indicating a non-negligible ra-
pidity dependence.

A recent measurement performed by ALICE in intervals of
charged-particle multiplicity dNq,/dn in pp collisions at /s =
13 TeV [32] showed that in a hadronic collision, even at rel-
atively small multiplicities, charm-quark hadronization proceeds
differently than in eTe~ collisions. The pr-dependence of the
AF /DO ratio evolves with multiplicity and the maximum of the
ratio increases for the higher multiplicity intervals, while the pt-
integrated AC+/D0 ratios do not show a significant dependence
on multiplicity up to (dN¢,/dn) &~ 40. Whether the pr-differential
A;r/D0 ratio keeps evolving with multiplicity up to the typi-
cal multiplicities of Pb-Pb collisions, and whether an overall pr-
integrated enhancement of Al production relative to the DO one is
present at higher multiplicities, as proposed by coalescence mod-
els including light diquark states [4,5,9], are open questions and
fundamental to the understanding of charm-quark hadronization.
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The A production in nucleus-nucleus collisions was mea-
sured for the first time at the LHC by ALICE in Pb-Pb collisions
at /sny = 5.02 TeV in the 0-80% centrality interval for 6 < pr <
12 GeV/c [33]. The AF/D° ratio was found to be close to unity,
larger than the corresponding ratio measured in pp collisions, and
well described by calculations including hadronization via coales-
cence mechanisms [7,8]. The Aj’/DO ratio measured in the interval
3 < pr < 6 GeV/c by the STAR Collaboration in Au-Au collisions
at /snn = 200 GeV [34] shows an increasing trend towards more
central collisions and is also described by model calculations in-
cluding hadronization via coalescence [5,7,8,35-37]. Considering
together the values calculated by STAR in 10-80% Au-Au colli-
sions and by ALICE in pp and p-Pb collisions [11,32] a possi-
ble increase of the pr-integrated AF/DP ratio at high multiplic-
ity is neither excluded nor confirmed. The CMS measurement in
Pb-Pb collisions at /sy = 5.02 TeV [15], performed in the inter-
val 10 < pr < 20 GeV/c, is consistent with the pp result within
uncertainties as well as with predictions considering only string
fragmentation [29], suggesting that coalescence has no signifi-
cant effect in this pr range. The production of A} baryons was
also measured in p-Pb collisions at ,/syy = 5.02 TeV by the AL-
ICE and LHCb Collaborations [11,12,38]. The current measurements
do, however, not allow to draw conclusions on the role of differ-
ent cold-nuclear matter effects and the possible presence of hot-
medium effects. Recently, LHCb also measured the A} /DO ratio in
peripheral (65-90%) Pb-Pb collisions at ./syny = 5.02 TeV, which
was observed to be consistent with the LHCb ratio in p-Pb colli-
sions [39].

In this letter, the measurement of the pr-differential production
yields of prompt AF baryons in central (0-10%) and mid-central
(30-50%) collisions using the 2018 Pb-Pb at /sy = 5.02 TeV are
reported down to pr =1 GeV/c. The results are more precise
and more differential in pr and centrality with respect to pre-
vious measurements [15,33,34]. The AC+/D0 yield ratios and the
nuclear modification factor Ras, which is defined as the ratio of
the production yield in Pb-Pb collisions and the cross section in
pp collisions scaled by the average nuclear overlap function (Taa)
(proportional to the number of nucleon-nucleon collisions), are
reported as function of pt and compared with theoretical predic-
tions. The pr-integrated A} production yield and A}/DP ratio,
extrapolated to pr = 0, are also presented for the first time in
Pb-Pb collisions.

2. Experimental apparatus and data sample

The ALICE apparatus is described in detail in [40,41]. The data
were collected using triggers based on the signal in the VO de-
tectors [42]. A minimum bias trigger, which required coincident
signals in both detecting components of the VO detector along the
beam axis on opposite sides of the interaction point, was exploited.
In addition, and differently with respect to the previous Pb-Pb
data taking period at the same ./sNn, two new trigger selections
were introduced to enrich the sample of central and mid-central
collisions via an online event selection based on the V0-signal
amplitude. Events were further selected offline using timing in-
formation from the VO detectors and the neutron Zero Degree
Calorimeters [43] to reject events due to the interaction of one of
the beams with residual gas in the vacuum tube. Furthermore, only
events with a primary vertex reconstructed within £10 cm from
the center of the detector along the beam axis were considered in
the analysis. Collisions were classified into centrality intervals, de-
fined in terms of percentiles of the hadronic Pb-Pb cross section,
using the VO-signal amplitudes [44]. The number of events in the
centrality classes 0-10% and 30-50% considered for this analysis
is about 100 x 10° and 85 x 108, respectively, corresponding to a
luminosity of (130.540.5) wb~! and (55.540.2) ub~! [45].
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The Monte Carlo (MC) simulations utilized in this analysis were
obtained using the HIJING 1.36 event generator [46] to simulate
Pb-Pb collisions at /sy = 5.02 TeV. In each simulated event, A
signals were added by injecting cC or bb pairs generated with the
PYTHIA 8.243 event generator [23] with the Monash tune [47]. The
AJ baryons were forced to decay into the hadronic decay channel
of interest, A — pK? followed by K2 — 7 +7~, using PYTHIA. All
generated particles were transported through the ALICE detector
using the GEANT3 package [48]. The conditions of all the ALICE
detectors in terms of active channels, gain, noise level, and align-
ment, and their evolution with time during the data taking, were
taken into account in the simulations.

3. Data analysis

The AJ baryon and its charge conjugate were reconstructed by
exploiting the topology of the hadronic decay channel AF — pI((S)
(branching ratio BR = 1.59 4 0.08%), followed by the subsequent
decay Kg — 77~ (BR = 69.20 & 0.05%) [28]. Charged-particle
tracks used to define the A candidates are reconstructed us-
ing the Inner Tracking System (ITS) [49] and the Time Projection
Chamber (TPC) [50], located in a solenoid magnet that provides
a 0.5 T field parallel to the beam direction. The A} — pl(g can-
didates combine a proton-candidate track with a I(g—meson candi-
date, reconstructed in the l(‘sJ — T~ decay channel. Only proton
(pion) tracks with |n| < 0.8, pt > 0.4 (0.1) GeV/c, at least 70 out
of 159 associated crossed TPC pad rows, a ratio of crossed rows
to findable clusters in the TPC larger than 0.8, at least 50 clus-
ters in the TPC available for particle identification (PID), and a
x2/ndf < 1.25 in the TPC (where ndf is the number of degrees
of freedom involved in the track fit procedure) were considered
for the analysis. Moreover, a minimum number of two hits (out of
six) in the ITS, with at least one in the inner two layers, were re-
quired for the proton track. The selection of tracks with || < 0.8
limits the A} acceptance in rapidity. For this reason a fiducial
acceptance selection was applied on the rapidity of the A can-
didates, |yiab| < yd(pT), Where ygqq increases from 0.6 to 0.8 in
1 <pr<5GeV/c, and yqq = 0.8 for pr > 5 GeV/c.

Unlike the previous analysis based on linear selections [33], the
Af-candidate selection was performed using multivariate tech-
niques based on the Boosted Decision Tree (BDT) algorithm pro-
vided by the XGBoost package [51]. Before the training, loose kine-
matic and topological selections were applied to the I<2-meson
candidate together with the particle identification of the proton-
candidate track. The PID was performed using the specific ioniza-
tion energy loss dE/dx in the TPC gas and the time of flight from
the interaction point to the Time-Of-Flight (TOF) detector [52,53].
The BDT training was performed considering as signal candidates
prompt (not coming from beauty-hadron decays) Al decays from
MC simulations. Background candidates were taken from the side-
bands of the invariant mass distribution in data (defined to be
outside a 80 MeV/c?> window around the A} mass value reported
by the PDG [28]).

The variables that were most important in the training were the
PID-related variables of the proton-candidate track, the displace-
ment of the proton-candidate track from the primary vertex, the
distance between the Kg—meson decay vertex and the primary ver-
tex, and the cosine of the pointing angle between the Kg-meson
candidate line of flight and its reconstructed momentum vector.
Independent BDTs were trained for the different pt and centrality
intervals.

The selection on the BDT output was tuned in each pr in-
terval to maximize the expected statistical significance, which is
estimated using i) the expected signal obtained from FONLL cal-
culations [54,55] scaled by the corresponding (Taa) [45] and mul-
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tiplied by the BDT selection efficiency and ii) the expected back-
ground estimated from an invariant mass sideband fit using a frac-
tion of the data.

After applying selections on the BDT output, the yields of AF
baryons were extracted in each pr interval via binned maximum-
likelihood fits to the candidate invariant mass distributions. The
fitting function consisted of a Gaussian term to estimate the signal
and a second-, third-, or fourth-order polynomial function (de-
pending on the pt interval) to estimate the background. The de-
fault background fitting function was chosen after dedicated stud-
ies to obtain a good description of the invariant mass distribution
in the sidebands. The other functions were considered for evaluat-
ing the systematic uncertainty.

The raw-yield extraction is challenging, especially at low pr
with signal-to-background ratios below one per mille and relative
statistical uncertainties on the extracted raw yield varying between
15-35%, as presented in Appendix A. Given the critical signal ex-
traction due to the low signal-to-background ratios, the width of
the Gaussian term for the signal was fixed to the value obtained
from simulations. It was verified that the widths from the simula-
tion were consistent within uncertainties to those extracted from
fits to data without constraints on the width of the Gaussian (with
a relative uncertainty of 1-2% in simulation and 20-30% in data).
In addition, the stability of the signal extraction was further ver-
ified by i) fitting purely background candidates from simulations
and ii) by repeating the fit after subtracting a background compo-
nent estimated with an event-mixing technique. For the latter, the
events were grouped in pools based on the primary-vertex posi-
tion along z and the estimated centrality. For the first study, none
of the invariant mass fits allowed to extract a signal in the A}
invariant mass region. For the second study, fits to the background-
subtracted invariant mass distributions resulted in compatible A7
raw yields to the ones extracted from the default fits.

The corrected yields of prompt Al baryons were obtained in
each centrality interval as

f L N

+ X = <

dNAC _ prompt 2 “Nraw lyl<ysa (1)
dpr Apt X cay X (A X &)prompt X BR X Ney

ly|<0.5

The raw yield values Néff,, extracted in a given pr interval of width
Aprt, were divided by a factor two and multiplied by the prompt
fraction fprompt to obtain the charge-averaged yields of prompt
A{. Furthermore, they were divided by cay x (A x &), enclosing
the rapidity coverage and the acceptance-times-efficiency, by the
BR of the decay channel, and by the number of analyzed events
Nev.

The (A x &) correction was determined from MC simulations,
using samples not employed in the BDT training. The generated
pr spectrum used to calculate the efficiencies was reweighted to
reproduce the shape obtained from the D measurement [56] mul-
tiplied by A;r/D0 calculations from the TAMU model [8] in 0-10%
and 30-50% Pb-Pb collisions at ,/syy = 5.02 TeV. The (A x €) in-
creases from 1% (3%) at low pr to about 12% (16%) at high pr
for central (mid-central) collisions. The correction factor for the
rapidity acceptance, cay, was computed as the ratio between the
generated Al -baryon yield in Ay =2ygq(pr) and that in |y| < 0.5
using the reweighted pt shape and the rapidity distribution from
PYTHIA 8 simulations [23]. It was verified in [56] that for D
mesons the calculation of cay is only weakly sensitive to the ra-
pidity distribution used for its calculation.

The fprompt fraction of the reconstructed signal was estimated
using a similar strategy as described in [33]. In particular, the
beauty-hadron production cross section was estimated with FONLL
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Table 1
Relative systematic uncertainties of the prompt Al -baryon corrected yield in Pb-Pb
collisions for central and mid-central events in representative pr intervals.

Centrality interval 0-10% 30-50%

pr (GeV/c) 4-6 12-24 1-2 6-8
Yield extraction 11% 17% 14% 12%
Tracking efficiency 10% 9% 12% 8%
Selection efficiency 8% 8% 7% 7%
Prompt fraction Jjg% Jjg% Jjg% f;z%
MC pr shape 2% negl. 2% 1%
Centrality limits <0.1% 2%
Branching ratio 5.5%

Total syst. unc. 20y 2y ] 21y 21y

calculations [54,55], the fraction of beauty quarks that fragment
into A was estimated from the AJ/(B® +B") ratio measured by
LHCb in pp collisions at /s =13 TeV [57] following the same strat-
egy as used in [11], and the kinematics of the decay of beauty
hadrons Hy, — A + X simulated with PYTHIA 8 [23]. The branch-
ing ratios were taken as implemented in PYTHIA 8.243, corre-
sponding to approximately 82% for Ag baryons and 2% for either
B, B+, and B} mesons. In addition, the forompt fraction is modi-
fied to account for the nuclear modification factor of Al baryons
from beauty-hadron decays. The central correction is chosen such
that Ryy PO =2 x RR™" as predicted by the “Catania” theo-
retical calculation [6]. The resulting fprompt fraction was found to
be about 0.97 at low pt and about 0.81 at high pr.

The systematic uncertainties of the Al corrected yields include
contributions from i) the extraction of the raw yield, ii) the track-
ing efficiency, iii) the A selection efficiency, iv) the MC generated
pr spectra, v) the statistical uncertainty of the efficiency, and vi)
the subtraction of feed-down AF baryons from b-hadron decays.
The estimated values of these systematic uncertainties are summa-
rized for representative pr intervals in Table 1. In addition, a global
systematic uncertainty due to the centrality interval definition (2%
for mid-central, negligible for central) [56] and the branching ratio
(5.5%) [28] was assigned. For the Raa observable, the uncertainty
of the pp cross section normalization uncertainty (2.1%) [11] and
of the average nuclear overlap function (0.7% for central, 1.6% for
mid-central) [45] are included in the global normalization uncer-
tainty.

The systematic uncertainty of the raw-yield extraction was es-
timated by repeating the invariant mass fits varying the lower and
upper limits of the fit range, the functional form of the background
fit function, and considering the Gaussian width (mean) as a free
(fixed) parameter in the fit. In order to test the sensitivity to the
line shape of the signal, a bin-counting method was used, in which
the signal yield was obtained by integrating the invariant-mass
distribution after subtracting the background estimated from the
sideband fit, as well as by studying the signal shape in the MC sim-
ulations using multiple stacked Gaussian functions rather than a
single one. The procedure to estimate the systematic uncertainty of
the track-reconstruction efficiency includes variations of the track-
quality selection criteria for all decay tracks and studies on the
probability to match TPC tracks to the ITS clusters in data and sim-
ulation for the proton-candidate track. The latter comparison was
performed after weighting the relative abundances of primary and
secondary particles in simulation to those in data [33]. The sys-
tematic uncertainty of the A} selection efficiency was estimated
by repeating the analysis with different selections on the BDT out-
put, resulting in up to 50% lower and 20-50% higher efficiency
values. Possible systematic effects due to the loose PID selection,
applied prior to the BDT one, were investigated by comparing the
PID-selection efficiencies in data and in simulations and found to
be negligible. Both the tracking- and PID-efficiency studies were
performed using pure samples of pions (from l((S) decays) and pro-
tons (from A decays). An additional contribution derives from the
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Fig. 1. Left: pr-differential production yields of prompt A7 in central (0-10%) and mid-central (30-50%) Pb-Pb collisions at ,/sny = 5.02 TeV compared to the pp refer-
ence [11] scaled by the (Taa) of the corresponding centrality interval [45]. Right: A;*'/D0 ratio in central and mid-central Pb-Pb collisions at ,/syy = 5.02 TeV compared with

the results obtained from pp collisions [11].

pr spectra of AF generated in the simulation, which was esti-
mated by using the Azr/D0 predictions of the Catania model [7]
and the SHMc [10] instead of the TAMU prediction [8] in the pr-
shape reweighting procedure, as well as by an iterative method
using a parametrization of the measured pr-differential production
yields. Finally, the systematic uncertainty of the feed-down sub-
traction was estimated by varying the FONLL parameters as pre-
scribed in [55] and the function describing the Ag fragmentation
fraction within the quoted experimental uncertainty as reported
in [11], as well as by varying the hypothesis on Rjy "™, For the

latter, an interval 1/3 < Rja P! /RE™" < 3 was considered,
wider with respect to that used for non-strange D mesons [56]
to cover possible yet unmeasured differences between the modifi-
cation of charm- and beauty-baryon production in Pb-Pb collisions
with respect to the one in pp collisions.

The sources of systematic uncertainty considered in this anal-
ysis are assumed to be uncorrelated among each other and the
total systematic uncertainty in each pr and centrality interval is
calculated as the quadratic sum of the individual uncertainties. For
the AT /DO ratio, the AT and D° uncertainties were considered as
uncorrelated except for the tracking efficiency and the feed-down
contribution, which are assumed correlated and thus partially can-
cel in the ratio, and the systematic uncertainty of the centrality
interval definition, which fully cancels. For the Raa, the pp and
Pb-Pb uncertainties were considered as uncorrelated except for
the branching ratio uncertainty and the feed-down contribution,
which both partially cancel out (the former because the pp mea-
surement considers additional decay modes). Finally, in case of
the pr-integrated AF /DO ratio, there is a correlation between the
extrapolation uncertainty of the Al baryon and the measured un-
certainties of the AF and D° hadrons. To treat this correlation,
the extrapolation uncertainty is divided into a correlated part (es-
timated as the extrapolation uncertainty when considering only
the shape predicted by TAMU) and an uncorrelated part (the to-
tal extrapolation uncertainty subtracting the correlated part) with
respect to the measured uncertainties. The uncorrelated part is
summed in quadrature with the measured uncertainties, while the
correlated part is added linearly.

4. Results

The pr-differential production yields of prompt A baryons are
shown in Fig. 1 (left panel). The statistical and total systematic
uncertainties are shown as uncertainty bars and boxes, respec-
tively, for all figures. The results are compared with the pp refer-
ence cross section [11] multiplied by the corresponding (Taa) [45],
i.e. the denominator of the Raa observable that is discussed later.

In the right panel of Fig. 1, the ratio of the production yields of
A7} baryons to that of D mesons, measured in the same central-
ity intervals [56], are presented together with the pp measurement
at the same collision energy [11]. The ratios increase from pp to
mid-central and central Pb-Pb collisions for 4 < pt < 8 GeéV/c with
a significance of 2.0 and 3.7 standard deviations, respectively. This
trend is qualitatively similar to what is observed for the p/m [58]
and A /I(g [59] ratios, which both show a distinct peak at interme-
diate p7 that increases in magnitude (by about a factor 2 for mid-
central and a factor 3 for central Pb-Pb collisions with respect to
minimum-bias pp collisions) and shifts to higher pr values (from
about 2 GéV/c in pp to 4 GeV/c in central Pb-Pb collisions) with
increasing multiplicity. The central and mid-central AF /DO ratios
in 12 < pr < 24 GeV/c are compatible with the measurement by
CMS in 0-100% Pb-Pb collisions in pt > 10 GeV/c region [15]. The
central AF/D? ratio in 6 < pr <8 Ge&V/c is in agreement with
the previous measurement of ALICE in the 0-80% centrality inter-
val [33]. For pr > 4 GéV/c, the ratio measured in central collisions
resembles in magnitude and pr trend the one reported by STAR in
2.5 < pr <8 GeV/c in 10-80% Au-Au collisions at ,/syy =200 GeV
[34]. Note that the large centrality classes of the previous measure-
ments are dominated by the production in the most central events
(given the scaling of the A yields with Neo x Raa), hence they
are compared to the measurement in 0-10%.

The nuclear modification factor Raa of prompt A7 is compared
with the Raa of prompt D mesons [60] and the average Raa
of prompt D°, DT, and D** mesons [56] in Fig. 2 for the 0-10%
and 30-50% centrality intervals. The pr-differential Al cross sec-
tion in pp collisions at /s =5.02 TeV in the 1 < pr < 12 GeV/c
interval from [11] was used as the pp reference. In the interval
12 < pr < 24 GeV/c, the A} and D° measurements at /s = 5.02
and 13 TeV [14,61] were exploited, assuming no /s dependence
for the AgL/D0 ratio as observed within uncertainties in 1 < pt <
12 GeéV/c [14]. The total uncertainty of the pp reference in the
12 < pr < 24 GeV/c interval is 23%, combining in quadrature the
measured statistical and systematic uncertainties on the A} /D
ratio at /s =13 TeéV and DO cross section at /s = 5.02 TeV.

The suppression of all charm-meson (baryon) species from pt 2
3(6) GeV/c is understood as being primarily due to the interac-
tion of charm quarks with the quark-gluon plasma, which modifies
their momentum spectra, as discussed extensively for the non-
strange D mesons in [56]. In central collisions in the region 4 <
pr < 8 GéV/c, there is a hint of a hierarchy Raa(D) < Raa(D™Ts) <
Raa(AT). In mid-central collisions, this hierarchy is less pro-
nounced. In the pt = 10 GéV/c region, where the hadronization is
expected to occur mainly via fragmentation, the Raa of the various
charm-hadron species are compatible within uncertainties.
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Fig. 2. Nuclear modification factor Raa of prompt A baryons in central (0-10%; left) and mid-central (30-50%; right) Pb-Pb collisions at /syy = 5.02 TeV, compared with
the Raa of prompt D [60] and the average of prompt non-strange D mesons [56]. The normalization uncertainties are shown as boxes around unity.
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Fig. 3. The Aj/D0 yield ratio as a function of pr in 0-10% (left) and 30-50% (middle) Pb-Pb and pp (right) collisions at ,/syy = 5.02 TeV compared with predictions of

different theoretical calculations [7,8,10,30,31,64].

Fig. 3 compares the pr-differential Aj/DO ratios with differ-
ent theoretical predictions: Catania [7], TAMU [8], and the GSI-
Heidelberg statistical hadronization model (SHMc) [10]. The pre-
dictions of Catania and TAMU for pp collisions [30,31] are also
compared with the existing measurement in pp collisions [11].
The Catania model [7,30] assumes that a QGP is formed in both
pp and Pb-Pb collisions. In Pb-Pb collisions heavy-quark trans-
port is implemented via the Boltzmann equation, and in both
pp and Pb-Pb collisions hadronization occurs either via coales-
cence, implemented through the Wigner formalism, or via frag-
mentation in case the quarks do not undergo coalescence. The
TAMU model [8] describes charm-quark transport in an expanding
medium with the Langevin equation and hadronization proceeds
primarily via coalescence, implemented with a Resonance Recom-
bination Model (RRM) [62]. Left-over charm quarks not undergoing
coalescence are hadronized via fragmentation. In pp collisions, the
charm-hadron abundances are instead determined with a statis-
tical hadronization approach [31]. In both collision systems the
underlying charm-baryon spectrum includes unobserved excited
states [28] predicted by the Relativistic Quark Model (RQM) [63]
and lattice QCD [31]. Finally, for the SHMc predictions [10], which
include only charm mesons and baryons established experimen-
tally, the charm-hadron pr spectra are modeled within a core-
corona approach. The core contribution represents the central re-
gion of the colliding nuclei where charm quarks achieve local
thermal equilibrium in a hydrodynamically expanding QGP. The
charm-hadron spectra in the corona contribution are, instead, pa-
rameterized from measurements in pp collisions. The pr-spectra
modification due to resonance decays is computed using the Fas-
tReso package [64]. The theoretical uncertainty bands shown in

Fig. 3 derive from: an assumed range of branching ratios (50-100%)
for the decays of the RQM-augmented excited states into Al for
the TAMU model; the variation of about 10% of the Wigner func-
tion widths in the Catania calculations; and mainly the uncer-
tainties on the pp spectra fits in the SHMc predictions at high
Pt

The SHMc describes the Azr /D0 ratio in mid-central collisions,
but underpredicts the ratio in 4 < pr < 8 GéV/c in central colli-
sions by about 2.50 of the combined statistical, systematic, and
theoretical uncertainties. The prediction of the Catania model in
central collisions underestimates the A7 /DP ratio at intermediate
pr, although the deviation is at maximum 2.5¢. The TAMU pre-
dictions reproduce the magnitude and shape of the A /DO ratios.
While both these fragmentation plus coalescence model calcula-
tions are able to describe the AF/D° ratio in Au-Au collisions
at /sN\Ny = 200 GeV in the 10-80% centrality interval [34], the
TAMU model better reproduces the data in central Pb-Pb colli-
sions. A pure coalescence scenario from an older version of the
Catania model was reproducing better the previous ALICE mea-
surement in 0-80% Pb-Pb collisions [33]. The Catania and TAMU
predictions also describe both the magnitude and pt shape of the
measured Aé‘/D0 ratio in pp collisions. Instead, at forward rapidity,
the TAMU model predicts a systematically higher AF /DO ratio than
measured by LHCb in 65-90% Pb-Pb collisions at /sy = 5.02 TeV
[39].

The Al production yield for pr > 0 was estimated by sum-
ming up the measured pr-differential yields and the extrapo-
lated AF yield for pr <1 GeéV/c. The Af yield in 0 < pr <
1 GeéV/c was obtained as the product of the A;“/D0 ratio value
estimated by interpolating the ratio in the measured pt interval



ALICE Collaboration

2 2-ALICE ly| < 0.5
18 pp, Vs =13 TeV —— stat. 2 SHMc
1.6V pp, (s =5.02Tev [ ]syst. * Catania

E A p-Pb, \s, =5.02 TeV extr. < TAMU
1.4 o po_pp, Sy = 5.02 TeV total & PYTHIAS
1.2 0 Au-Au, s, = 200 GeV
STAR, PRL 124 (2020) 172301

i
0.8F
0.6F o W N
C 7 W]
04~ ® wg § 3
0.2F
£ | R | L
1 10 10? 10°
(AN /A0

Fig. 4. The pr-integrated and to pr > O extrapolated Aj/D0 ratios in central and
mid-central Pb-Pb collisions at /SNy = 5.02 TeV compared to the same ratio at pp
and p-Pb [11,32] and Au-Au [34] multiplicities. Predictions from theoretical calcu-
lations are shown as well [7,8,10,23,30,31].

with model expectations and the measured D° yield [56]. The in-
terpolation procedure was performed using the shape predicted
by TAMU [8], Catania [7] (not available for 30-50%), SHMc [10],
and blast-wave [65] calculations, leaving the normalization as a
free parameter. The shape from TAMU was chosen as the central
value based on the x?2/ndf values, while the difference between
the obtained yields was considered in the systematic uncertainty
due to the extrapolation. The results for the prompt Af produc-
tion yields per unit of rapidity in |y| < 0.5 are dN/dy = 3.27 &+
0.42 (stat) = 0.45 (syst) = 0.16 (BR) 7055 (extr) for central collisions

and dN/dy = 0.70 4 0.09 (stat) = 0.09 (syst) & 0.04 (BR) *{.0f (extr)
for mid-central collisions, where the visible yield is about 81% of
the total for both centrality classes. The SHMc [10] predicts lower
values, dN/dy = 1.55 4+ 0.23 and dN/dy = 0.316 £ 0.036, respec-
tively.

The measured A /DO ratios, obtained dividing the pr-integrated
A} and DO yields [56], are presented in Fig. 4, taking into account
the correlation between the measured and extrapolated uncertain-
ties. Similarly to what is observed for the A/K(SJ ratio [59,66],
the Ac+/D0 ratios in Pb-Pb collisions are compatible with the
pr-integrated AgL/DO ratios at pp and p-Pb multiplicities [11,32]
within one standard deviation of the combined uncertainties. This
observation, together with the significant enhancement of the
AT /DO ratio at intermediate py with increasing multiplicity, seen
here and in pp collisions [32], suggests a modified (and perhaps
similar) mechanism of hadronization in all hadronic collision sys-
tems with respect to charm fragmentation tuned on eTe~ and e™p
measurements (PYTHIA 8 point in Fig. 4). The coalescence mod-
els of [4,5,9], in which the Aj/DO ratio depends on the balance of
quark and diquark densities at hadronization time, expect a depen-
dence of the pr-integrated A /DO ratio on multiplicity (leading to
an increase by about a factor 3-10 in nuclear collisions compared
with their pp baseline), which is not observed. The measured pr-
differential enhancement may, instead, predominantly be caused
by altered production ratios for baryons and mesons following
from the phase-space distribution of the quarks. This can arise
from the collective radial expansion of the system, for which, in
the coalescence picture (Catania and TAMU Pb-Pb points in Fig. 4),
the accounting of space-momentum correlations in the procedure
have been observed to be fundamental in [8,9]. Interactions in the
hadronic phase are, on the contrary, expected to have a small effect
on the Azr/DO ratio [6,67]. The statistical hadronization approach
(SHMc and TAMU pp points in Fig. 4), can also describe both the
pr-differential and pr-integrated observations with the, currently
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debated, caveat that for the proper normalization yet unobserved
charm-baryon states need to be assumed [10,31]. Note that the au-
thors of the TAMU model include these additional states already
in their predictions, while for the SHMc model it is not the base-
line. The uncertainty of the pr-integrated yield in Pb-Pb collisions
is still relatively large, and more precise measurements at low pr
will help to further discriminate between charm-baryon formation
scenarios.

Finally, Fig. 5 shows the Raa of prompt A baryons compared
with the previously introduced theoretical models [7,8,10]. The
Catania Raa predictions are from an earlier version of the model
than the Af /DO predictions and they do not have an uncertainty
band. The TAMU model provides a good description of the Raa,
over the whole pr range, in both central and mid-central colli-
sions. The Catania model describes the data in both central and
mid-central collisions for pr > 2 GéV/c, however for pr <2 GeV/c
the model predicts a Raa higher than unity which is disfavored by
data. Both these models do not include charm-quark interactions
with medium constituents via radiative processes, hence are not
expected to describe the Ras for pr > 8 GeV/c. The SHMc model
instead significantly underestimates the A7 Raa over the whole
pr range.

5. Conclusions

In summary, the measurements of the production yield of
prompt Al baryons in central (0-10%) and mid-central (30-50%)
Pb-Pb collisions at a center-of-mass energy per nucleon pair
A/SNN = 5.02 TeV were presented. The yield could be extrapolated
to pr =0 in the two centrality classes with significantly smaller
uncertainties than the previous measurement by STAR in 10-80%
Au-Au collisions at ,/syy = 200 GeV, exploring not only a new
energy regime but also higher multiplicities. The pr-differential
AEL/D0 ratios increase from pp to central Pb-Pb collisions for
4 < pt < 8 GeV/c with a significance of 3.7 standard deviations,
while the pr-integrated ratios are compatible within one standard
deviation. Both observations are in qualitative agreement with the
baryon-to-meson ratio for strange hadrons. The measurements are
described by theoretical calculations that include both coalescence
and fragmentation processes when describing the hadronization of
heavy flavors in the QGP. The upgraded ALICE detector for the LHC
Runs 3 and 4 will increase its acquisition rate by up to a factor of
about 50 in Pb-Pb collisions and the tracking precision by a fac-
tor 3-6, meaning future measurements of Af-baryon production
will allow for stronger constraints on the heavy-quark hadroniza-
tion mechanisms in heavy-ion collisions [68].
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Appendix A. Raw-yield extraction

Examples of the invariant mass distributions from which the
A7 raw yields are extracted are reported in Fig. A.1. The spec-
tra together with the result of the fits in 1 < ptr <2 GeéV/c and
4 < p1 <6 GeV/c for central (0-10%) and 2 < pr <4 GeéV/c and
8 < pr < 12 GeéV/c for mid-central (30-50%) Pb-Pb collisions are
shown.
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