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Abstract

Structure solution of nanostructured materials that have limited long-range remains a bottleneck in materials
development. We present a deep learning algorithm, DeepStruc, that can solve a simple nanoparticle structure
directly from a Pair Distribution Function obtained from total scattering data by using a conditional variational

autoencoder (CVAE). We first apply DeepStruc to PDFs from seven different structure types of monometallic
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nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including
PDFs from nanoparticles that are not present in the training distribution. We also apply DeepStruc to a system
of hcp, fce and stacking faulted nanoparticles, where DeepStruc recognizes stacking faulted nanoparticles as an
interpolation between /cp and fcc nanoparticles and is able to solve stacking faulted structures from PDFs. Our

findings suggests that DeepStruc is a step towards a general approach for structure solution of nanomaterials.

Introduction

Crystallographic methods, such as single crystal and powder diffraction, have been foundational in the
development of functional materials over the past century. They yield atomic-scale structural models for
crystalline materials and allow establishing the links between material structure and properties that are at the
heart of materials development.!> However, other approaches for structure determination are needed for
nanostructured materials that have limited long-range order, and total scattering methods such as atomic pair
distribution function (PDF) analysis have in recent decades become increasingly important tools.*” Currently,
PDF analysis is mainly done by fitting a known starting model to an experimental PDF, a process known as
structure refinement. Recent developments in automated modelling®!'® have made it possible to extend the
searched structural space, but identifying a model or solving a structure de novo, from a PDF, is still an enormous
challenge. So far, only highly symmetrical nanostructures such as the Ceo buckyball have been solved ab initio
from a PDF.!!"!> Determining the structure of less symmetrical nanostructures is limited by the lost information
caused by PDF peak overlap, which challenges the use of PDF for structure solution of more complicated
nanomaterials.

An approach to handle the challenges due to the information barrier in PDFs is to employ supervised machine
learning (ML) methods that can learn from well-known PDF-structure pairs. In this work, we use deep generative

models (DGMs). DGMs are a class of ML models that can estimate the underlying data distribution from a



reasonably small set of training examples. A well-known use case of DGMs is in the generation of synthetic
‘deep-fake’ images'®!” based on large datasets of real images. In this work, we train our DGM to identify new
structure models by training on known chemical structures. The DGM learns the relation between PDF and
atomic structure, which enables it to solve a structure given a PDF it has not seen before, based on the PDF and
its learned chemical knowledge.

We apply our DMG, which we refer to as ‘DeepStruc’, for structural analysis of a model system of monometallic
nanoparticles (MMNPs) with seven different structure types (Fig. 1a) and demonstrate the method for both
simulated and experimental PDFs. DeepStruc is generative, which means that it can be used to construct
structures that are not in the training set, i.e., solve a structure from a PDF. We demonstrate this capability on a
dataset of face-centered cubic (fcc), hexagonal closed packed (hcp) and stacking faulted structures, where
DeepStruc can recognize the stacking faulted structures as an interpolation between fcc and hcp and construct

new structural models based on a PDF.

Results

Training DeepStruc to determine the structure of MMNPs from PDF data

DeepStruc, illustrated in Fig. la and discussed below, is a conditional variational autoencoder (CVAE).
Autoencoders are a class of deep learning (DL) methods where high-dimensional inputs, such as chemical

structures,'®!?

are reduced in dimensionality. The transformation into 2 or 3 dimensional vectors is achieved
using an information bottleneck by an encoder neural network (NN),!32%2! and the resulting lower-dimensional,
compressed feature space is known as the latent space. A decoder NN can reconstruct the input from these low-
dimensional representations. When the latent space is regularized (smoothed) using normal distributions instead

of discrete points we obtain a variational autoencoder (VAE). The VAE can be made to be dependent

(conditioned) on additional information by the prior NN resulting in a CVAE.?!



We here use MMNP structures (Fig. 1b) as input, and condition them on their simulated PDFs (Fig. 1c). The
MMNP structures span seven different structure types with varying metals to emulate the differences in bond
lengths. The structure types are simple cubic (sc), body-centered cubic (bcc), face-centered cubic (fcc),
hexagonal closed packed (hcp), decahedral, icosahedral, and octahedral, and all structure types have been
constructed in sizes from 5 to 200 atoms. We used 3743 MNNP structures, which were split into training- (60
%), validation- (20 %) and test sets (20 %). A histogram of the distribution of the seven structure types are
provided in section A in the Supplementary Information. During the training process (blue + green region Fig.
la), DeepStruc learns to map the conditioning PDFs to their structures in the latent space. After the training
process is complete, DeepStruc can be used on data that have not been part of the training set, which is referred

to as ‘inference’. Further details about the DeepStruc network can be found in the Method section.
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Fig. 1 | Training DeepStruc to determine the structure of MMNPs from PDFs. a) DeepStruc predicts the
xyz-coordinates of the MMNP structure with conditional input provided in the form of a PDF. The encoder uses
the structure and its PDF as input while the prior only takes the PDF as input. To obtain the structural output a
latent space embedding is given as input to the decoder which produces the corresponding MMNP xyz-

coordinates. During training of DeepStruc both the blue and green regions are used, while only the green region



is used for structure prediction during the inference process. b) Examples of the seven different structure types
which are used as input to DeepStruc together with their ¢) simulated PDFs used as conditioning in DeepStruc.
Each structure type has been included in the training set with varying sizes of 5 to 200 atoms and with varying
lattice constants. The 3743 structures were split into training- (60 %), validation- (20 %), and test set (20 %).
Note that the shown structures are used in the test set to evaluate DeepStruc and not reconstructed during

inference.

Mapping of structures in a latent space

We first evaluate DeepStruc’s ability to map the MMNP structures in a low-dimensional latent space by
investigating structural trends and clustering. Fig. 2 shows a visualization of the two-dimensional latent space
with selected MMNP reconstructions indicated. The colour of the points indicates the structure type, and the
relative point size indicates the size of the MMNP cluster. We observe that DeepStruc learns to map the chemical
structures in the latent space by size and symmetry. It maps the cubic structure types (sc, bce, and fec) together,
and it learns that the octahedral MMNPs are closely related to the fcc structure type. Interestingly, DeepStruc
also allocates the decahedral structures to be in between the fcc and hcp structures. This can be rationalized by
considering that decahedral structures are constructed from five tetrahedrally shaped fcc crystals which are
separated by {111} twin boundaries that resemble stacking faults.”?*?* The twin boundaries will resemble

stacking faulted regions of fcc justifying that they exist in the latent space between fcc and hcp.
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Fig. 2 | The two-dimensional latent space with structure reconstructions. The points in the latent space
correspond to a structure and its simulated PDF. Data points from the test set are shown in solid colour and
outlined. The points from the training and validation sets are shown as semi-transparent. The size of the points
relates to the size of the embedded MMNP, and the orange background indicates the general size increase
throughout the latent space. The colour of each point resemblances its structure type, fcc (light blue), octahedral
(dark grey), decahedral (orange), bcc (green), icosahedral (dark blue), Acp (pink), and sc (red). Note that the

shown structures are reconstructed by DeepStruc during inference on the test set.



DeepStruc for structure determination from PDF

We now move on to identify structures directly from a PDF. The results of using DeepStruc on seven simulated
PDFs of MMNPs, not used in the training process, are illustrated in Fig 3. Here, we show the structure that the
input PDF was calculated from (left), the reconstructed structure (right), and its agreement with the input PDF
after structure refinement (middle, discussed below). In all seven cases, the structures are correctly reconstructed
from the PDF input. Before structure refinement, the mean absolute error (MAE) of the atom positions is 0.128
+ 0.073 A for the seven reconstructed structures as described in section B in the SI. However, the MAE is
artificially high due to a common aberration by DeepStruc, where it predicts the right geometric atomic
arrangement, but isotropically contracted or expanded compared to the original structure. After refining the
structure to the PDF?* by fitting a contraction/expansion factor, a scale factor and an isotropic atomic
displacement parameter (ADP), as described in section B in the Supplementary Information, the MAE of the
atom positions is reduced to 0.093 + 0.058 A. The inference is thus robust against moderate changes in lattice
parameter between a provided PDF and the structures that DeepStruc were trained on. The structures
reconstructed by DeepStruc exhibit some artificial positional atomic disorder that broadens the PDF peaks, as
can be seen in the fits in Fig. 3. As a result, the fitted ADP values (section B in the SI) are lower than the ADP

values of the conditioning PDFs (described in the Method section).
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Fig. 3 | Structure determination of PDFs with fits. Calculated PDFs (grey) from the original structures of the
seven different structure types (left) are used during inference for structure prediction (right). The middle column
shows the fitted PDFs of the predicted structures to the simulated PDFs of the original structures. Only the scale-

factor, contraction/expansion-factor, and ADP are refined, see section B in the SI.



Having established that DeepStruc works for structures highly resembling those in the training set, we now
consider more challenging cases and explore the capabilities of DeepStruc on data which is far from the training
distribution. As described above, the largest structures in the training set contained only 200 atoms. We now
evaluate it on a test set of simulated MMNPs with 5 to 1000 atoms, i.e., including much larger structures. The
latent space obtained from this new test set is plotted using diamond markers in Fig. 4, where the latent space
from the training process is shown with semi-transparent markers. We observe that the trends in the training area
are comparable for the training set and the test set of larger MMNPs. Notably, the trends of both the size and the
structure types continue beyond the training are to structures containing about 400 atoms. Beyond 400 atoms, all
structure types collapse onto a line, however a size estimate of the structure can still be obtained from DeepStruc.
Of course, DeepStruc could be retrained on a larger training set if reconstructions are desired on clusters larger
than 200 atoms. However, this test shows that DeepStruc can extrapolate significantly in the latent space and
thereby gives useful information about outliers from the training distribution. This can be compared to, for
example, a tree-based ML-classifier, which is limited to a predefined structural database and cannot extrapolate.
The capability of DeepStruc to extrapolate arises from each structure in the latent space being predicted as a
normal distribution instead of a discrete point. We have previously demonstrated that by using a VAE instead of

a deterministic AE, VAEs can do a better job interpolating the latent space.'®
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Fig. 4 | DeepStruc applied on PDFs of structures up to 1000 atoms. Each point is coloured after its structure
type, i.e. fcc (light blue), octahedral (dark grey), decahedral (orange), bcc (green), icosahedral (dark blue), hcp
(pink), and sc (red). Each point in the latent space corresponds to a structure based on its simulated PDF. Test
PDFs from structures up to 1000 atoms are plotted as diamond markers on top of the training and validation data
which are made semi-transparent. Note that the training set latent space in is identical to that plotted in Fig. 2.
DeepStruc has only been trained on structures up to 200 atoms. Three experimental PDFs (shown in section C
in the Supplementary Information) obtained from differently sized fcc nanocrystals estimated to contain 203
(cross marker 1), 371 (cross marker 2), and 1368 (cross marker 3) atoms are illustrated as purple cross markers

in the latent space.

In practice DeepStruc must work to yield reconstructed structures from experimental data that contain noise and
other aberrations. We therefore use DeepStruc to infer structures from experimental PDFs from previously

published MMNP datasets. Fig. 5a shows the latent space with the predicted location of structures from three
11



experimental PDFs. Here, the location in the latent space is represented as distributions rather than as discrete
points, and multiple structures are sampled from each distribution and compared to the experimental PDF to
select the best candidate. The mean of the experimental PDF distributions is represented as a black diamond with
three ellipsoids indicating different confidence intervals measured at : 3, 5 and 7 regions, where o is the standard
deviation of the normal distribution.

The first experimental dataset that we evaluate was published by Jensen et al.,”> who identified a decahedral
structure as the core motif of Aui44(p-MBA )s0 nanoparticles. DeepStruc locates the Aui44(p-MBA)so PDF (Fig.
5b) in a decahedral region (orange distributions in Fig. 5a) in the latent space. Given the generative capabilities
of DeepStruc, in theory, we can sample an unlimited number of structures for a given PDF. As described in
section D of the Supplementary Information, we here sampled up to 1000 structures from the three normal
distributions (o: 3, 5, and 7), and compared their fit to the experimental PDF. Fig. 5b shows the fit of the best
structural prediction, which was among the structures sampled from the o: 3 distributions. DeepStruc predicts a
decahedral structure, which agrees well with the literature.? Other structures sampled from the three distributions
are shown in Section E of the Supplementary information, where we also compared the DeepStruc analysis to
two baseline methods, a brute-force structure-mining method, and a tree-based ML classifier.

The second dataset that we evaluate, published by Quinson et al.,?® are from 1.8 nm Pt nanoparticles with the fcc
structure (described further in Section C in the Supplementary Information). This size corresponds to ca. 203
atoms, i.e. the number of atoms in the particle goes slightly beyond the fcc structures in the training set that
contain only 165 atoms.?® The location of the predicted mean is again shown as a black diamond in Fig. 5a,
enclosed by three blue ellipsoids illustrating different magnitudes of standard deviation. The mean of the
predicted structure is placed near the largest sc structures. If DeepStruc only favoured symmetry it would be
placed directly on the fcc structures. Interestingly, DeepStruc does not purely favour size either, as it does not

position the PDF near the largest structures which are /cp structures of 200 atoms. Instead, we observe that
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DeepStruc takes both symmetry and size into account by placing the mean predicted structure adjacent to the
largest sc structures containing 185 atoms. To identify the structure from the experimental PDF, we again sample
1000 structures from the o: 3, 5 and 7 distributions. When fitting these sampled structures to the dataset, we
obtain the best fit from an fcc structure of 146 atoms that is visualized in Fig. 5¢ and which agrees with the
baseline models (section E in the Supplementary Information). DeepStruc thus identifies an fcc structure even
though the size of the MMNP is outside the training set distribution.

We also attempted to input PDFs from even larger fcc nanoparticles, estimated to have diameters of 2.2 and 3.4
nm, corresponding to 371 and 1368 atoms, respectively (section C in the Supplementary Information).?® Their
positions in the latent space are shown in Fig. 4 along with the 1.8 nm fcc nanoparticles using cross markers
labelled 1, 2, and 3 for increasing size. We observe that they follow the trend of the simulated fcc structures, as
discussed above: while it is possible to estimate both size and symmetry for the 2.2 nm particles through
extrapolation, DeepStruc can only estimate size for the 3.4 nm particle. Overall, the ability of DeepStruc to
predict on experimental data for structures beyond those in the training set is promising for structure solution

from PDF.

While DeepStruc only has been trained on simple MMNPs, we finally evaluate it on a PDF from Aui44(PET)e0
nanoparticles, consisting of an icosahedral core of 54 atoms surrounded by a rhombicosidodecahedron shell of
60 atoms (Fig. 5d and e).>>*” We show the predicted mean position of the structure with a black diamond enclosed
by pink ellipsoids. DeepStruc positions the PDF in the Acp region of the latent space, and when sampling 1000
structures from the distribution with o: 7, the best fitting structures is an Acp structure with 40 atoms for the
Aui44(PET)e0 nanoparticle (Fig. 5d). Similar structures are found when sampling from the o: 3 and o: 5
distributions. However, the PDF fit reveals that the reconstructed structure does not capture all the peaks in the

experimental PDF. When considering further the latent space, icosahedral structures are strongly
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underrepresented in our dataset (section A in the Supplementary Information) which results in an inconsistency
when placing icosahedral structures in the latent space. DeepStruc is thus challenged when solving the
icosahedral core structure of the nanoparticle. However, we observe that one of the test icosahedral structures is
placed near the experimental PDF in latent space within the o: 5 distribution. Therefore, we again try to sample
1000 structures by moving the mean of the o: 3 distribution to the nearest cluster of icosahedral structures in the
latent space, which are located right outside the o: 7 distribution. The best fitting structure (Fig. Se) captures all
main peaks of the experimental PDF. Strategies for sampling of underrepresented structures is discussed further

in section D in the Supplementary Information.
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Fig. 5 | Fitting experimental PDFs with structures obtained by DeepStruc. a) The DeepStruc latent space
showing predicted latent space positions for structures from three experimental PDFs. The predicted means are
shown as diamond markers, which are enclosed by three rings, indicating the sampling regions for c: 3, 5, and
7. b) PDF fit of the reconstructed structure from the Aui4(p-MBA)so PDF? ¢) PDF fit of the reconstructed
structure from the 1.8 nm Pt nanoparticle PDF from Quinson et al.?®, d) PDF fit of the reconstructed structure
from the Aui44(PET)s0 PDF? using a hcp structure. €) PDF fit of the reconstructed structure from the
Au144(PET)s0 PDF?® using an icosahedral structure. Note that the shown structures are reconstructed by

DeepStruc during inference on experimental PDFs.
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Structure determination from PDF: fce, hep, and stacking faulted nanoparticles

To obtain a deeper understanding of the latent space’s behaviour, we investigate a simpler dataset only containing
fece, hep, and stacking faulted structures. Fiec and hcp structures are distinguished by the stacking sequence of
closed packed layers in their structures: while fcc structures can be described by ABCABC stacking, hcp
structures are characterized by ABABAB stacking. Structures with other sequences are stacking faulted
structures. We hypothesize that stacking faulted structures can be considered an ‘interpolation’ in the discrete
space between the fcc and hcp structure type.?®

Examples of reconstructed fcc (blue), hcp (pink), and different stacking faulted structures (purple) and their
position in the new latent space are illustrated in Fig. 6a. The MMNPs cluster in size, whilst we also observe that
fcce and hep structures separate in the latent space. It is evident that the stacking faulted structures are located in
between the fcc and Acp structures in the latent space as hypothesized. It is chemically reasonable that they are
positioned in this exact order based on their similarity to fcc and hcp. For example, the structure with ABCABA
layers, shown in Fig. 6 with a purple star is structurally close fcc. We see that it is also located closer to the fcc
structures in the latent space. On the other hand, the structure with ABCBCB layers (marked as a purple diamond
in Fig. 6) can be considered structurally closer related to /cp than fcc. DeepStruc places this structure adjacent
to hcp structures of the same size in the latent space. DeepStruc can thus insert stacking faulted structures
between fcc and Acp into the latent space in a chemically meaningful way.

Fig. 6b illustrates the fits of the reconstructed structures to the PDF data. The difference curves indicate that the
predicted and true structures are very close to being identical, which is supported by the MAE (section G in the
Supplementary Information). While disorder causes a broadening of the peaks, the disorder in the generated
structures is minor and structures with distinct difference between the layers and in the correct sequence can be

reconstructed to a satisfying degree. This is a promising result, showing that a CVAE can be used as a tool to
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determine the structure of stacking faulted nanoparticles from PDFs,**** which is a topic of significant current
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Fig. 6 | Latent space and reconstructions of stacking faulted nanoparticles. a) The latent space and

reconstructed structures shown with their stacking sequence. The structures are shown in two dimensions, and
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the size (number of atoms) in the third dimension is given as ‘depth’. The semi-transparent dots in the latent
space represent the training and validation data, and the solid dots represent the test data. Fcc structures are
plotted in blue, Acp in pink, and the stacking faulted structures in purple. The marker size represents the size of
the structures. B) Fits from reconstructed structures from the test PDF from a fcc (ABCABC stacking), a hcp
(ABABAB stacking), and two stacking faulted structures. The original conditioning PDFs are shown in grey,
while the PDFs of the generated structures are coloured according to their structure type. The difference curves
are shown in green. The latent space is two-dimensional, hence allowing it to be directly visualized. Note that

the shown structures are reconstructed by DeepStruc during inference on the test set.

Discussion

In conclusion, we have shown the potential of using a DGM for structure determination from simulated and
experimental PDFs. Our CVAE algorithm DeepStruc provides valuable information through its latent space, as
the MMNP structures cluster after symmetry and size in agreement with their structural chemistry. Using
experimental data, the Auia4(p-MBA)so nanoparticle was determined to be decahedral, Pt nanoparticles were
determined to be fcc and the Aui44(PET)s0 was determined to have an icosahedral core structure, all in agreement
with previous literature.

Our approach is only restricted by the distribution of the structural training set. When DeepStruc is trained on
fce, hep, and stacking faulted structures, it will locate the stacking faulted structures in between the fcc and hcp
structures. We have successfully determined the structure of stacking faulted nanoparticles, and we therefore
hypothesize that training DeepStruc on an extension of chemical systems would allow determination of more
complex structures.

We plan to implement DeepStruc as part of PDF-in-the-cloud (PDFitc.org),>® where the training data can

gradually be expanded over time. Combining the PDF conditioning with data from complimentary
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characterization techniques could prove important for structure determination of more complex systems. Such
studies would both enable structure determination from a combined modelling perspective, but it would also

reveal fundamental aspects of the information content of the different datasets for solving the structure problem.
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Method
In the following sections, we briefly explain what a PDF is, how we obtained the simulated PDFs and their
structures, and finally we elaborate on the CVAE method developed here to analyse PDF data. A more detailed

description of the PDF is given elsewhere.’’

The Pair Distribution Function (PDF)

The PDF is the Fourier transform of total scattering data, which can be obtained through x-ray, neutron, or
electron scattering. In this work we focus on the usage of x-ray total scattering data. The scattering vector Q is
defined as follows, where A is the radiation wavelength, and 6 is the scattering angle:

_ 4nsin(0)
B A

The measured scattering intensities are denoted I(Q), which are corrected for incoherent scattering, fluorescence,

etc. and normalized such that the total scattering structure function S(Q) is obtained.

1(Q) = {(f(@* +{f (@)
(f(@)?

SQ) =

Here f is the atomic form factor. To obtain the structural real-space information, the total scattering structure

function is Fourier transformed over the truncated Q-range, hence yielding the reduced PDF also known as G(r):

Qmax
6y = 2/m [ QIS@ - 11sin@ - 1o
Qmin
G(r) can be interpreted as a histogram of real-space interatomic distances and the information is equivalent to
that of an unassigned distance matrix (uDM). Simulated PDFs are shown in Fig. 1b and all simulation parameters

can be found in section H in the Supplementary Information. The PDFs used in this project are normalised to

have I(G(r)) = 1 as illustrated in section I in the Supplementary Information.

Simulated and experimental data
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To simulate the nanoparticles used in the training process of DeepStruc, the Python library atomic simulation
environment (ASE) was used.*® The seven different structure types: fcc, bee, sc, hep, icosahedral, decahedral,
and octahedral were constructed with the cluster module in ASE in the same manner as described by Banerjee
etal.? and Anker & Kjer et al.'"® All MMNPs were generated in sizes ranging from 5 to 200 atoms. Each MMNP
was then populated with different atoms hence changing the lattice spacing/bond distances in the MMNP. To
ensure that there were no duplicate MMNPs within the dataset, all MMNPs were decomposed into a distance list
of all atom-atom distances. The distance lists are a reduced format of the xyz representation as they are rotation-
and translation-invariant in Euclidean space. All the distance-lists were sorted and structures with equivalent
distance lists had one of the structures removed. This yielded a total of 3742 unique MMNPs, see section A in
the Supplementary Information for the distribution of the seven structure types. The xyz-coordinates will be the
label that DeepStruc has to reconstruct. One nanoparticle from each of the seven structure types can be seen in
Fig. 1b along with its simulated PDF, Fig. 1a. All the simulation parameters used can been seen in section H in
the Supplementary Information.

To further investigate the latent space behaviour of DeepStruc, a more chemically simple and intuitive dataset
was made of fcc, hep, and stacking faulted structures. Fec and hcp can be considered layered structures that are
only differentiated by the repetition of layers within the structure. Fcc consists of a repeated ABCABC layered
structure where scp is an ABABAB layered structure. A 5 layered stacking fault structure could then be described
as ABCAC, as it does not satisfy either of the fcc or hcp stacking criteria, see Fig. 6. A total of 1620 stacking

fault structures were generated.

Data representation

In this work, the structures from ASE are converted into a graph-based representation in order to capture the

interatomic relationships, as the original representation generated with ASE are not optimal as input to
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DeepStruc. Graph representations have seen increasing success in machine learning applications related to
materials science as the interatomic relations in graphs are invariant to transformations of the structure such as
solid translations and rotations.*>** Each structure in graph representation can be described as, G = (X,A), where
X € RV is the node feature matrix which contains F features that can describe each of the N atoms in the
structure. We use F = 3 comprising only the Euclidean coordinates of the atom in a 3-dimensional space. The
interatomic relationships are captured using the adjacency matrix A € RNN. In our case, the entries of the
adjacency matrix are the Euclidean distance between each pair of atoms, resulting in a soft adjacency matrix.
However, to make the adjacency matrix sparse, when the distance between any pair of nodes is larger than the
lattice constant the corresponding edge weight is set to zero. When the edge weight is zero this corresponds to
absence of an edge between the pair of nodes, and in other cases the edges have a weight given by the interatomic
distance. Section J in the Supplementary Information shows a decahedron consisting of seven atoms alongside
the components describing it in our chosen graph representation. Atoms 3 and 4 are connected through an edge,
indicated by a yellow square in the adjacency matrix. Atoms being further than the lattice constant, such as atoms
3 and 5, do not have an edge indicated by the black square in the adjacency matrix. Further, the edges in our
graphs are undirected as we consider them to be bonds, hence the flow of information through bonded atoms are

independent of direction.

The Conditional Deep Generative Model (DGM)

DGMs such as variational autoencoders (VAEs) are commonly used to synthesize novel, synthetic data by
approximating the underlying data-generating processes based on the training data.*! In this work, we are
interested in generating structures based on properties such as the PDF resulting in the conditional DGM
scenario. The specific formulation of the conditional DGM used in this work is the CVAE, initially proposed for

computer vision tasks*? and more recently it has also been explored for synthesizing novel drug molecules.'® The
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CVAE in this work is trained to solve the unassigned distance geometry problem*® (uUDGP) as it solves the task
of converting the distances within a PDF to a chemical structure. In the uDGP the problem of taking a starting
point of a list of distances and reconstructing it into a structure is broken down into two discrete problems. First,
is to discover the graph that connects pairs of atoms, with the edges labelled by the distances from the distance
list (the assignment problem). Second is to embed this graph into Euclidian space. An illustration of the CVAE
can be seen in Fig. l1a. Here, the blue area is the training process, and the green area is the prediction/inference
process. During training of the CVAE, the encoder takes pairs of structures and their corresponding PDFs as
input. The encoder learns to map the structure-PDF pairs into a low-dimensional, latent Gaussian distribution,
known as the encoder distribution. Each structure-PDF pair is mapped to certain regions of the latent space.
When trained with large amounts of diverse data, the latent space is able to capture relationships between
different structures and PDF pairs so that similar structures are closer in this latent space than very different
structures. CVAEs are different from classical autoencoders in that the latent space is probabilistic, which makes
it possible to sample structures from these latent encoder distributions. This is achieved during training by forcing
the encoder distributions to align with a simpler prior distribution which only takes the PDF as input. The two
distributions are matched by minimizing the Kullback-Leibler Divergence between the encoder and prior
distributions and is interpreted as the regularization term, Lreg.

The prior NN gets the PDF as input and maps it to the low-dimensional prior distribution. The low-dimensional
latent vector conditioned on the PDF is then input to the decoder, which is tasked to predict the xyz-coordinates
of the structural input. During the training process, the mean squared error (MSE) between the xyz-coordinates
of the input and output are computed to force the decoder to predict xyx-coordinates from the latent
representations. The MSE is defined as the reconstruction loss, Lrec. The CVAE is trained by jointly optimizing

these two loss components:

Levag = Lyec +B - Lreg
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where B is a scaling factor that controls the relative influence of the regularization- and reconstruction-terms. In
our training process, at initialization f is set to 0 which allows the model to focus on minimizing Lrec. Each time
Lrec gets below a certain threshold f is increased. This helps keep the model from falling into a local minimum
and the process is repeated until convergence has been reached. Similar strategies for annealing § in VAEs have
been attempted.*** At inference (test) time, the prior NN receives the PDF as input which is then mapped to the
low-dimensional latent space which during training has been trained to match the encoder distribution. A
sufficiently well trained CVAE is then able to predict structures from the latent space based on the PDF input.
A simplified version of the CVAE used for this work, DeepStruc, can be seen in Fig. 1a. The CVAE is presented

more formally in our earlier work.'8

Graph Conditional Variational Autoencoder (CVAE)

In this work, two types of CVAEs were utilized depending on the type of encoder. In the conventional CVAE,
the encoder was based on Multi-Layered Perceptrons which operate on a tabular format of the node features, and
the adjacency matrix populated with atom—atom distances. For the second type of CVAE — that we call the graph
CVAE — the encoder consists of a graph neural network (GNN)**#¢ and is able to process graph structured data,
taking the neighbourhood information into consideration. GNNs are generalized message passing methods that
can aggregate information from the neighbourhood of a node by passing messages along the edges. These
messages are learned during training and can summarize the information present at the node necessary for the
downstream tasks. Further, by making the encoder deep, i.e. adding additional GNN layers, nodes can get access
to information from nodes that are farther from them. For instance, in a k-layered GNN each node had access to
information from nodes that are k-hops away. In our experiments, we observed that the generative capabilities
of the graph CVAE was better than the conventional CVAE, part E in the Supplementary Information. Further,

we were able to obtain comparable reconstruction quality from the graph CVAE with only two latent dimensions
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compared to using eight dimensions for the conventional CVAE. This indicates that the graph encoder is able to
better compress the information present in the node and adjacency matrices. A minor technical detail in our
CVAE models is that the predictions from the decoder do not exactly match the input features. That is, the
decoder reconstructs the full input comprising node features and adjacency matrix but only the node features.

The algorithm we refer to as DeepStruc refers to the graph based CVAE.

Data availability
Code for the baseline models and DeepStruc is available at:

https://github.com/EmilSkaaning/DeepStruc

https://github.com/AndyNano/Brute-force-PDF-modelling

https://github.com/AndyNano/MetalFinder

https://github.com/AndyNano/CVAE
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