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The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion
collisions is presented. The measurements are carried out at midrapidity (|| < 0.8) as a function of
collision centrality in Pb-Pb collisions at ,/syy = 5.02 TeV using the ALICE detector. A significant
negative correlation between the produced antiprotons and antideuterons is observed in all collision
centralities. The results are compared with a state-of-the-art coalescence calculation. While it describes the
ratio of higher order cumulants of the antideuteron multiplicity distribution, it fails to describe
quantitatively the magnitude of the correlation between antiproton and antideuteron production. On the
other hand, thermal-statistical model calculations describe all the measured observables within un-
certainties only for correlation volumes that are different with respect to those describing proton yields and
a similar measurement of net-proton number fluctuations.
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The production of nuclei and antinuclei in heavy-ion
collisions has been extensively studied in the last two
decades. Nevertheless, this wealth of results is still not able
to clarify the mechanism behind nuclei and antinuclei
formation in heavy-ion collisions. Indeed, the two best
fitting models, the coalescence [1-3] and the statistical
hadronization models (SHM) [4,5], give very similar
predictions for the production rates of nuclei and antinuclei
in heavy-ion collisions. This similarity calls for new
observables to decisively discriminate between these two
approaches.

The SHM describes the system as a hadron-resonance
gas in thermal equilibrium at hadron emission, hence it
predicts particle yields starting from the volume (V) and the
temperature of the system at chemical freeze-out (7 em)-
The grand canonical ensemble (GCE) formulation of the
SHM fits the measured production yields of light hadrons
and nuclei in central Pb-Pb collisions at center-of-mass
energy (/snn) of 2.76 TeV with Ty, = 156.5 MeV [6].
The coalescence model uses a different approach to explain
the production of nuclei: the size of the nucleon-emitting
source, accessible through the analysis of femtoscopic
correlations [7], the momentum distribution of the nucle-
ons, as well as the nuclear wave function, are inputs that
determine the formation probability of bound states [3,8].
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While using statistical hadronization it is possible to
compute directly the absolute yields of particles, in the
hadron coalescence model the yield of bound states can be
computed only relative to the production of its components
and as a function of system size.

In a recent model study [9], it is shown that the higher
order cumulants of the deuteron yield distribution and
correlation between proton (p) and deuteron (d) production
can be used to distinguish between coalescence and SHM.
Higher order cumulants «,, of the multiplicity distribution
for m <4 and the Pearson correlation coefficient (pg,)
between different identified particles a and b can be
expressed as

ki = (n), (1)
K = ((n = (n))"), (2)
Pab = ((ny — (1)) (ny — <nb>)>/\/’<2a’<2b’ (3)

where n, (n), and m are the event-by-event particle
numbers, event average of particle numbers, and order
of the cumulants, respectively. The (n,) ((ny)) and k5, (k2p)
are the first and second order cumulants of the multiplicity
distribution of particle a (b). In the GCE formulation of the
SHM, the event-by-event deuteron multiplicity distribution
is expected to follow the Poisson distribution [10].
Therefore various ratios between cumulants of different
order of the deuteron multiplicity distribution such as
Ky/K1, K3/Kky are equal to unity in the GCE SHM. In a
simple coalescence scenario, if deuterons are produced
by the coalescence of thermally produced protons and
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neutrons, then the event-by-event deuteron distribution is
expected to deviate from the Poisson baseline [9]. By
definition, the coalescence model also introduces a negative
correlation between the measured proton and deuteron
numbers in the absence of any initial correlation between
proton and neutron. On the other hand, one does not expect
any correlation between the measured p and d in the GCE
SHM as the baryon productions from a thermal source are
independent from each other. However, in the canonical
ensemble (CE) formulation of the SHM, particle produc-
tion is constrained by the conservation of the net baryon
numbers on an event-by-event basis, which can also
introduce a negative correlation between measured proton
and deuteron in SHM and a deviation of cumulant ratios
from the Poisson baseline [10,11].

In this Letter, the first measurements of the x, /k, ratio of
antideuteron (antiparticles are used throughout the analysis
to avoid the contamination from secondary deuterons
coming from spallation processes in the beam pipe)
multiplicity distribution and correlation (p;;) between

measured antideuterons (d) and antiprotons (p) are pre-
sented. Measurements are compared with predictions from
the SHM and coalescence model in order to shed light on
the deuteron synthesis mechanism. The results presented in
this Letter are obtained using data collected during the 2015
Pb-Pb LHC run at /sy = 5.02 TeV.

The ALICE detector and its performance are described in
detail in Refs. [12,13]. Collision events are selected by
using the information from the VOC and VOA scintillator
arrays [14], located on both sides of the interaction point,
covering the pseudorapidity intervals —3.7 < n < —1.6 and
2.8 <n < 5.1, respectively. Events are selected with a
minimum-bias (MB) trigger which requires at least one
hit in both the VOA and the VOC detectors. In addition, only
events with the primary vertex position within 10 cm along
the beam axis to the nominal interaction point are selected
to benefit from the full acceptance of the detector.
Furthermore, to ensure the best possible performance of
the detector and proper normalisation of the results, events
with more than one reconstructed primary interaction
vertex (pile-up events) are rejected. In total, about 100 x
10° MB events are selected for analysis. Furthermore, the
selected events are divided into centrality classes based on
the measured amplitude distribution in the VOA and VOC
counters as described in Ref. [15]. Central Pb-Pb collisions
(head-on collisions) are obtained from the top 10% of the
amplitude distribution corresponding to hadronic inter-
actions and peripheral Pb-Pb collisions are obtained from
the 70%—-80% region of the same distribution.

The charged-particle tracks are reconstructed in the
ALICE central barrel with the inner tracking system
(ITS) [13] and the time projection chamber (TPC) [16],
which are located within a solenoid that provides a
homogeneous magnetic field of up to 0.5 T in the direction
of the beam axis. These two subsystems provide full

azimuthal coverage for charged-particle trajectories in
the pseudorapidity interval || < 0.8. The transverse
momentum range is restricted to 0.4 < pr < 1.8 GeV/c
to select the p and 4 with high purity. Moreover, to
guarantee a track-momentum resolution of 2% in the
relevant p; range and an energy loss (dE/dx) resolution
in the TPC of 5%, the selected tracks are required to have at
least 70 out of a maximum possible 159 reconstructed
space points in the TPC, and at least one hit in the two
innermost layers of the ITS. This selection also assures a
resolution better than 300 um [13] on the distance of the
closest approach to the primary vertex in the plane
perpendicular (DCA,,) and parallel (DCA,) to the beam
axis for the selected tracks. In addition, the y> per space
point in the TPC and the ITS from the track fit are required
to be less than 4 and 36, respectively. Daughter tracks from
reconstructed secondary weak-decay kink topologies were
rejected and a suppression of the weak-decay particles are
obtained by selecting tracks with [DCA_| and [DCA,, | less
than 1.0 and 0.1 cm, respectively.

The d and p are identified via the specific energy loss
dE/dx in the gas volume of the TPC and the flight time of a
particle from the primary vertex of the collision to the time-
of-flight (TOF) detector. The n(s}FC) variable represents
the particle identification (PID) response in the TPC
expressed in terms of the deviation between the measured
and the expected dE/dx for a particle species i, normalized
by the detector resolution o. The expected dE/dx is
computed with a parameterised Bethe-Bloch function
[13]. The p and d are identified using —2 < |n(c1FC)| <
4 in the range 0.4 < py < 0.6 GeV/c and 0.8 < py <
1.0 GeV/c, respectively. Particle identification on a track-
by-track basis using the TPC is limited to low momenta.
Therefore, to identify d (p) in the range 1.0 < py <
1.8 GeV/c (0.6 < pr < 0.9 GeV/c), an additional selec-
tion of 3.0 <m? <4.2GeV?/c* (0.6 <m? <1.2GeV?/c*)
using the Time-of-Flight (TOF) [17] detector is applied,
where the square of the particle mass, m?, is obtained by
combining the information of the flight time with the
trajectory length of the particle. The selection of d is
restricted to the range 0.8 < p; < 1.8 GeV/c in order to
keep the overall d purity above 90%. The p selection is
restricted to exactly half of the p; range of d according to
the coalescence mechanism. This selection results in a
purity of the selected p sample above 95%. The impurity in
d selection can lead to an autocorrelation with the selected
p and affect the p;;. The effect is negligible in our

measurement as the d and p are mostly selected in
separated pr regions and in the common py interval the
d purity is ~99%. Selected d and p numbers in each event
are further used to obtain the higher order cumulants and
correlation.

Measured cumulants are corrected for the d and p
efficiencies assuming a binomial response of the detectors.
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The binomial-based method of efficiency correction [18] is
a two-step method. First, the efficiency of d and p
reconstruction in the ALICE detector is obtained using a
simulation based on GEANT4, which correctly describes the
interaction of p and d with the material of the detectors
[19]. Then, the cumulants and correlation coefficient
are corrected for the reconstruction efficiencies using
analytic expressions as discussed in Ref. [18]. Typical
reconstruction efficiencies of both p and d in the studied py
ranges are about 70% and 25% in the TPC and TOF,
respectively. The efficiency-corrected cumulants and cor-
relation are further corrected for the centrality bin width
effect [20] to suppress the initial volume fluctuations which
arise from the initial state (size and shape) fluctuations.

The statistical uncertainties on the efficiency corrected
K,/x; ratio and p;,; are obtained by the subsample method
[21]. The systematic uncertainties on the observables are
estimated by varying the track selection and PID criteria.
The systematic uncertainties due to track selection include
the variation of the selection criteria on DCA,,, DCA_, the
number of reconstructed space points in the TPC, and
the quality of the track fit from their nominal values. The
systematic uncertainties due to PID are calculated by
varying the default n(6™%) and m? criteria. Systematic
uncertainties due to each of these sources are considered as
uncorrelated and the total systematic uncertainty on the
observables is obtained by adding all the contributions in
quadrature.

The resulting ratio of the second to first order cumulant
for d is shown in Fig. 1 for different centrality classes. The
data is found to be consistent with unity within uncertain-
ties as expected from a Poisson distribution and does not
exhibit a significant centrality dependence. Measurements
are also compared with estimations from the CE version of
the SHM [22] for two different correlation volumes (V) for
baryon number conservation, V.= 4.8 dV/dy (orange
band in figures) and V.= 1.6 dV/dy (green band in
figures). The choice of two different V. is discussed below.
In the SHM model the temperature is fixed to T =
155 MeV [5], the volume fitted to the published pion,
kaon, and proton yields at midrapidity [23], and the net-
baryon number set to 0. Measurements are found to be
consistent with the SHM model for both of the V.. In
contrast to the corresponding ratio for p and p [24,25], no
strong dependence on the V, is seen due to the fact that
only a small fraction of the total antibaryon number is
carried by d [10,26]. Remarkably, the data differs from the
calculations of the coalescence model, which predicts a
deviation larger than 1% from the Poisson baseline as
explained in Ref. [9]. Two shaded bands are shown for the
coalescence model: the purple one assumes full correlation
among protons and neutrons produced in the collision
(model A), while the blue one assumes completely
independent proton and neutron production fluctuations
(model B). On the other hand, a state of art model
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FIG. 1. Second order to first order cumulant ratio of the d
multiplicity distribution as a function of collision centrality in
Pb-Pb collisions at /sy = 5.02 TeV. Statistical and systematic
uncertainties are shown by the bars and boxes, respectively.
Measured cumulant ratios are compared with estimations from
the CE version of the SHM, from a simple coalescence model and
from a MUSIC + UrQMD + Coalescence simulation. The width
of the SHM model and MUSIC + UrQMD -+ Coalescence bands
corresponds to the statistical uncertainty of the model estimation,
whereas the width of the bands for the coalescence model
corresponds to the uncertainty coming from the variation of
the coalescence parameters.

calculation coupling coalescence to a hydrodynamical
model with hadronic interactions in the final state
(MUSIC 4+ UrQMD + COAL) [27] predicts k,/k; ratio ~1,
in agreement with the experimental data (note that these
predictions were updated after acceptance of this Letter). As
discussed in [27], the main difference between the coales-
cence predictions in Fig. 1 and the MUSIC + UrQMD +
COAL calculation is due to the different method of imple-
menting baryon number conservation.

Figure 2 shows p;; as a function of the collision
centrality. A small negative correlation of 0(0.1%) is
observed, i.e., in events with at least one d, there are
0(0.1%) less p observed than in an average event. A
negative correlation as observed in data is expected by the
coalescence model (shown by the blue band in Fig. 2)
where p and 7 from two independent sources coalesce to
produce d. The same behavior is observed for the
MUSIC + UrQMD + COAL calculation. It has to be noted
that models based on fully correlated proton and neutron
fluctuations (Model A in Ref. [9]) predict values of p
around 6% and are ruled out by data. On the other hand, the
measured negative correlation between p and d is also
expected by the CE version of the SHM which introduces a
negative correlation between p and d through the con-
servation of a fixed net-baryon number. The predicted
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FIG. 2. Pearson correlation between the measured p and d
as a function of collision centrality in Pb-Pb collisions at
V/Snn = 5.02 TeV. Bars and boxes represent statistical and
systematic uncertainties, respectively. Measured correlations
are compared with estimations from the CE version of the
SHM for two different baryon number conservation volumes,
from coalescence model and from MUSIC + UrQMD + COAL.

correlation in the SHM increases with decreasing correla-
tion volume V. for baryon number conservation which is
used in the following for a determination of V. In order to
determine the correlation volume for the baryon quantum
number, a y*> minimization is performed by varying the V,
parameter in the SHM model and comparing the result to
the measured correlation as a function of centrality. The V.
interval probed in this case spans from 1 to 5 units of
rapidity, and the value that describes best the measurement
is V. = 1.6 £ 0.3 dV /dy with a fit probability of 85%. The
SHM configuration with V.= 4.8 dV/dy that correctly

describes the net-proton number fluctuations in central
Pb-Pb collisions [26,28] is compatible within uncer-
tainties with the measured p;; only in central collisions.
Conversely, this configuration is excluded with a 46 confi-
dence level when compared with the measurements in all
centrality classes.

Several consistency checks such as the correlation
between p and d from different events, the correlation
between antibaryon (d) and baryon (p) were performed for
a better understanding of the observed correlation. The
correlation between p and d from mixed events is served as
a null hypothesis test of the measurements and the obtained
results are consistent with zero as expected. However, a
positive correlation is observed between antibaryon and
baryon. This positive correlation is expected due to baryon
number conservation [10], whereas in simple coalescence
model no correlation between baryon and antibaryon is
expected as d is not produced from the coalescence of p.

Figure 3 shows the same Pearson correlation coefficient
in three centrality intervals as a function of the # acceptance
of p and d selection. The observed anticorrelation is
increasing with acceptance, and the effect is more pro-
nounced for peripheral collisions. Simple coalescence
calculations do not capture this trend. On the other hand,
this measurement should motivate further calculations with
more refined coalescence models. The decreasing trend
seen in the SHM with V.= 1.6 dV/dy describes the
experimental data. In the CE version of SHM model,
anticorrelation between antibaryons depends on the frac-
tion of antibaryon number in the acceptance out of the total
conserved antibaryon numbers [10,11,25,28]. Therefore,
the increased negative correlation magnitude with increas-
ing acceptance can be understood as a consequence of
baryon number conservation.

In summary, the measurement of d production fluc-
tuation is a valuable tool to challenge the nucleosynthesis
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FIG. 3. Dependence of p—d correlation on pseudorapidity acceptance of p and d selection in Pb-Pb collisions at /syy = 5.02 TeV
for three different centrality classes. Measurements are compared with calculations from the CE version of the SHM, coalescence

model and MUSIC + UrQMD + COAL.
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models used for hadronic collisions. Simple coalescence
models, as well as state-of-the-art MUSIC + UrQMD +
COAL calculations, fail to fit simultaneously the measure-
ment of the cumulant ratios and the correlation coefficient
ppa- These models show a great sensitivity to the initial
correlation between the proton and the neutron production,
hence further theoretical developments might improve the
comparison with the measurement. In recent studies, state-
of-the-art CE SHM models are describing simultaneously
proton yields and net-proton fluctuation measurements
finding large V.= 3-5dV/dy [26,28,29]. Surprisingly,
deuteron production measurements [5] as well as the
fluctuation measurements presented here indicate a signifi-
cantly smaller correlation volume for the baryon number.
Under the assumption that V. is independent of collision
centrality, the value V. =1.6+0.3 dV/dy is obtained.
This discrepancy might indicate a different production
mechanism for light flavored hadrons and light nuclei.
However, more sophisticated approaches including partial
chemical equilibrium [30] or the implementation of the
interaction of hadrons through phase shift [31,32] could help
in resolving this conundrum. The results of this Letter
present a severe challenge to the current understanding of
nuclei production in heavy-ion collisions at the LHC
energies.
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