



**Woody plant-soil relationships in interstitial spaces have implications for future forests within and beyond urban areas**

|                               |                                                                                                                               |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Journal:                      | <i>Ecosystems</i>                                                                                                             |
| Manuscript ID                 | Draft                                                                                                                         |
| Types:                        | Original Article                                                                                                              |
| Date Submitted by the Author: | n/a                                                                                                                           |
| Complete List of Authors:     | Mejía, Gisselle; Dartmouth College, Environmental Studies; CUNY Graduate Center, Earth and Environmental Sciences             |
| Key Words:                    | Nitrogen cycling, Carbon cycling, Woody plant community, Urban land-use change, Urban-residential interface, Novel ecosystems |
|                               |                                                                                                                               |

**SCHOLARONE™**  
Manuscripts

## 1 Journal: Ecosystems

## 2 **Manuscript type:** Article

**Title:** Woody plant-soil relationships in interstitial spaces have implications for future forests within and beyond urban areas

## **Shortened version:** Woody plant-soil relationships in urban areas

Gisselle A. Mejía<sup>1,2\*</sup>, Peter M. Groffman<sup>2,3,4</sup>, Meghan L. Avolio<sup>5</sup>, Anika R. Bratt<sup>6,7</sup>, Jeannine Cavender-Bares<sup>8</sup>, Noortje H. Grijseels<sup>9</sup>, Sharon J. Hall<sup>10</sup>, James Heffernan<sup>6</sup>, Sarah E. Hobbie<sup>8</sup>, Susannah B. Lerman<sup>11</sup>, Jennifer L. Morse<sup>12</sup>, Desiree L. Narango<sup>13</sup>, Christopher Neill<sup>14</sup>, Josep Padullés Cubino<sup>15</sup>, Tara L.E. Trammell<sup>16</sup>

<sup>1</sup>Department of Environmental Studies, Dartmouth College, 6182 Steele Hall Hanover, NH 03755, USA, gisselle.a.mejia@dartmouth.edu.

<sup>2</sup>Department of Earth and Environmental Sciences, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA

<sup>3</sup>Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA, [pgroffman@gc.cuny.edu](mailto:pgroffman@gc.cuny.edu)

<sup>4</sup>Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA

<sup>5</sup>Department of Earth and Planetary Sciences, Johns Hopkins University, 227 Olin Hall,

Baltimore, MD, USA, [meghan.avolio@jhu.edu](mailto:meghan.avolio@jhu.edu)

<sup>6</sup>Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham,

7Department of Environmental Studies, Macalester College, Olin-Rice 158A, St. Paul, MN, 55105-1099, USA; [james.heffernan@duke.edu](mailto:james.heffernan@duke.edu)

55105-1899, USA [abratt@macalester.edu](mailto:abratt@macalester.edu)  
8Department of Ecology, Evolution & Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA, Jeannine Cavender-Bares: [cavender@umn.edu](mailto:cavender@umn.edu); Sarah Hobbie: [shobbie@umn.edu](mailto:shobbie@umn.edu)

<sup>9</sup>School of Sustainability, Arizona State University, Walton Center for Planetary Health, 777 E University Dr, Tempe, AZ 85281, USA, noortjegrijseels@gmail.com

<sup>10</sup>School of Life Sciences, Arizona State University, P.O. Box 874601, Tempe, AZ 85287–4601, [sharonjhall@asu.edu](mailto:sharonjhall@asu.edu)

<sup>11</sup>USDA Forest Service Northern Research Station, 160 Holdsworth Way, Amherst, MA 01003,

<sup>12</sup>Department of Environmental Science and Management, Portland State University, 1825 SW

<sup>13</sup>Vermont Center for Ecostudies, PO Box 420, Norwich, VT 05055, dnarango@vtecostudies.org

<sup>14</sup>Woodwell Climate Research Center, 149 Woods Hole Road Falmouth, MA, 02540-1644, USA,  
[cneill@woodwellclimate.org](mailto:cneill@woodwellclimate.org)

<sup>13</sup>Centre for Ecological Research and Applied Forestries (CREAF), Campus de Bellaterra Edifici

1  
2  
3 43 C 0819, Cerdanyola del Vallès, Spain, [padullesj@gmail.com](mailto:padullesj@gmail.com)  
4 44 <sup>16</sup>Department of Plant and Soil Sciences, University of Delaware, 161 Townsend Hall  
5 45 Newark, DE 19716, USA, [ttram@udel.edu](mailto:ttram@udel.edu)  
6  
7  
8 47 \*Corresponding author  
9 48 Gisselle A. Mejía  
10 49 [mejia.gisselle@gmail.com](mailto:mejia.gisselle@gmail.com)  
11  
12  
13  
14 51 **Author contributions**  
15  
16 52 Gisselle A. Mejía and Peter M. Groffman, equally conceived of study methodology, conducted  
17 formal analysis, data visualization and writing – original draft.  
18  
19 54 Meghan L. Avolio, Jeannine Cavender-Bares, Sharon J. Hall, James Heffernan, Sarah E. Hobbie,  
20 Susannah B. Lerman, Jennifer L. Morse, Christopher Neill, and Tara L.E. Trammell jointly  
21 56 conceived and supervised the experimental designs, data collection methods, and contributed to  
22 57 funding acquisition and writing – review and editing of the manuscript.  
23 58  
24 59  
25 60 Anika R. Bratt, Noortje Grijseels, and Josep Padullés Cubino contributed to data curation,  
26 61 project administration, investigation and writing – review and editing of the manuscript.  
27  
28 62  
29 63 Desiree L. Narango contributed to data curation and writing – review and editing of the  
30 64 manuscript.  
31  
32  
33  
34 66  
35 67 **Highlights**  
36  
37 68     • There are marked differences in woody plant composition between interstitial areas – at  
38 69           residential-wildland interface – and natural reference areas across cities.  
40  
41  
42 70     • Differences in woody plant composition were related to variations in soil Nitrogen (N)  
43 71           availability.  
44  
45  
46 72     • Novel communities in interstitial areas have implications for management of ecosystem  
47 73           services that rely on native biodiversity in forests within and beyond urban areas.  
48  
49  
50  
51  
52 74  
53  
54 75  
55  
56 76  
57  
58  
59  
60

1  
2  
3     77 **Abstract**  
4  
5     78 Relatively unmanaged interstitial areas at the residential-wildland interface can support the  
6  
7     79 development of novel woody plant communities. Community assembly processes in urban areas  
8  
9     80 involve interactions between spontaneous and cultivated species pools that include native,  
10  
11     81 introduced (exotic/non-native) and invasive species. The potential of these communities to  
12  
13     82 spread under changing climate conditions has implications for the future trajectories of forests  
14  
15     83 within and beyond urban areas. We quantified woody vegetation (including trees and shrubs) in  
16  
17     84 relatively unmanaged “interstitial” areas at the residential-wildland interface, and in exurban  
18  
19     85 reference natural areas in six metropolitan regions across the continental United States. In  
20  
21     86 addition, we analyzed soil N and C cycling processes to ensure that there were no major  
22  
23     87 anthropogenic differences between reference and interstitial sites such as compaction, profile  
24  
25     88 disturbance, or fertilization, and to explore effects of novel plant communities on soil processes.  
26  
27  
28  
29  
30     89 We observed marked differences in woody plant community composition between interstitial  
31  
32     90 and reference sites in most metropolitan regions. These differences appeared to be driven by the  
33  
34     91 expanded species pool in urban areas. There were no obvious anthropogenic effects on soils,  
35  
36     92 enabling us to determine that compositional differences between interstitial and reference areas  
37  
38     93 were associated with variation in soil N availability. Our observations of the formation of novel  
39  
40     94 communities in interstitial spaces in six cities across a very broad range of climates, suggests that  
41  
42     95 our results have relevance for how forests within and beyond urban areas are assessed and  
43  
44     96 managed to provide ecosystem services and resilience that rely on native biodiversity.  
45  
46  
47  
48  
49     97 **Keywords:** Nitrogen cycling, carbon cycling, woody plant community, urban land-use change,  
50  
51     98 urban-residential interface, novel ecosystems  
52  
53  
54  
55     99

1  
2  
3 100 **Introduction**  
4

5 101 Urban expansion in the continental U.S. has created large areas of urban, suburban, and  
6 102 exurban land use intermixed with remnant native ecosystems and agricultural land (Pouyat and  
7 103 others 2007). These land-use patterns are similar across different climate regimes and biomes,  
8 104 creating ecological homogenization at regional and continental scales (Groffman and others  
9 105 2017). For example, plant communities and functional diversity in residential yards converge  
10 106 across the continental United States (U.S.) due to similarities in human preferences and  
11 107 management (Polsky and others 2014; Locke and others 2019; Padullés Cubino and others  
12 108 2019b). Beyond residential yards, interactions between human decisions and natural processes of  
13 109 community assembly have the potential to affect less populated areas surrounding the dense  
14 110 urban core (Groffman and others 2014). In relatively unmanaged interstitial spaces (i.e., remnant  
15 111 or spontaneously forested areas surrounded by residential development), native and introduced  
16 112 (exotic/non-native) vegetation (introduced to an area outside its native ecosystem and reproduced  
17 113 spontaneously; USDA, NRCS 2023) have the potential to mix and assemble into new or novel  
18 114 communities (Hobbs and others 2009; Andrade and others 2021). These areas are common  
19 115 throughout metropolitan areas but are especially common in large and expanding suburban and  
20 116 exurban land uses at the residential-wildland interface (Brown and others 2005).  
21

22 117 In this study, we addressed the question of whether analysis of forests that have  
23 118 spontaneously assembled in in urban interstitial spaces provide insight into how global  
24 119 environmental change will affect the forests of the future. We ask if the complex mix of  
25 120 anthropogenic factors affecting these spaces (altered climate and atmospheric chemistry, altered  
26 121 disturbance regimes, altered species pool) are analogous to factors playing out across the globe at  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 122 lower intensity (McDonnell and Pickett 1988). If so, the novel communities that assemble in  
4  
5 123 these spaces may provide a glimpse of the forests that may become widespread across the world.  
6  
7

8 124 Understanding processes of community assembly in interstitial spaces requires an  
9  
10 125 understanding of the factors sorting for cultivated and spontaneous species pools in urban  
11  
12 126 ecosystems (Knapp and others 2012; Pearse and others 2018; Lopez and others 2018, Blouin and  
13  
14 127 others 2019; Padullés Cubino and others 2019a; Padullés Cubino and others 2019b; Padullés  
15  
16 128 Cubino and others 2020; Cavender-Bares and others 2020). Native vegetation originates from the  
17  
18 129 pool of continental flora interacting with regional climatic drivers, resulting in assemblages  
19  
20  
21 130 adapted to the regional biome. These native species interact with spontaneous (i.e., self-  
22  
23 131 propagated) and cultivated species pools introduced by humans (Pearse and others 2018; Avolio  
24  
25 132 and others 2021). The former results from the natural dispersal of regional flora that adapt to or  
26  
27 133 persist in the urban environment, and the latter include pools introduced from the horticultural  
28  
29 134 industry – primarily determined by human preferences and policies. Cultivated and horticultural  
30  
31 135 species – including both native and introduced (exotic/non-native) species – that escape and  
32  
33 136 establish on their own can also become part of the urban spontaneous pool, dispersing and  
34  
35 137 mixing with regional and continental native flora to create novel communities (Aronson and  
36  
37 138 others 2016; Pearse and others 2018; Blouin and others 2019; Cavender-Bares and others 2020;  
38  
39 139 Avolio and others 2021). The potential for these novel communities to spread under changing  
40  
41 140 climatic conditions has implications (e.g., for ecosystem services, social benefits, and potential  
42  
43 141 for biodiversity conservation) for the future trajectories of forests within and beyond urban areas  
44  
45 142 (Hobbs and others 2006, 2009; Johnson and Handel 2016).

51 143 Novel ecosystems can differ in diversity, composition, age, and structure from native  
52  
53 144 ecosystems, and therefore, potentially exhibit different ecosystem functions (Hobbs and others  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 145 2009). In urban areas, novel ecosystems can consist primarily of species that are adapted to or  
4 persist under urban-associated stresses (e.g., urban heat, air, soil, light, and noise pollution).  
5  
6 146 Introduced (e.g., exotic/non-native) – including invasive species – are disproportionately  
7 represented in urban species pools (Avolio and others 2015; Pregitzer and others 2019). Invasive  
8 species tend to thrive in nutrient-rich soils, often escape natural enemies, and are frequently  
9 quick to establish in unmanaged lands (Ehrenfeld 2003; Carreiro and Tripler 2005; Heneghan  
10 2004; Johnson and Handel 2016). The presence of these species has implications for the  
11 ecosystem functions and services that rely on native biodiversity to support food webs (Narango  
12 and others 2018; Tallamy and others 2021), water resources ([Richardson and van Wilgen 2004](#);  
13 [van Wilgen and others 2008](#); Le Maitre and others 2000); and soil conservation (Scott and others  
14 2004; [1998](#)).  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

156 Evaluation of community and ecosystem processes in interstitial areas must consider soil  
157 properties. Urban soils are very heterogeneous (Pouyat and others 2007). For example, while  
158 many urban soil profiles have been markedly altered by physical, chemical, and biological  
159 disturbance such as compaction, atmospheric deposition, and invasion by exotic earthworms  
160 (Pouyat and others 2010; Herrmann and others 2020), others are relatively undisturbed (Raciti  
161 and others 2011, Trammell and others 2020a; Ryan and others 2022). These alterations, as well  
162 as natural variation in the properties of relatively unaltered soil profiles, have marked  
163 implications for plant community development and ecosystem function (Frelich and others  
164 2019). Soil properties are thus potentially important drivers of novel plant community structure  
165 and function in interstitial areas and must be considered when evaluating the potential of these  
166 novel communities to spread within and beyond urban areas. More practically, if soils in  
167 interstitial areas have been disturbed by site-specific activities such as tillage, fertilization,

1  
2  
3 168 compaction, or pollution, the value of these areas as locations for analysis of how forests that  
4  
5 169 have spontaneously assembled in in urban interstitial spaces provide insight into how global  
6  
7 170 environmental change will affect the forests of the future is reduced.  
8  
9

10 171 This study evaluated woody plant community composition and soil microbial carbon (C)  
11  
12 172 and nitrogen (N) cycle processes in interstitial (relatively unmanaged) and natural reference  
13  
14 173 ecosystems (representative of regional biomes) in six metropolitan areas across the U.S.  
15  
16 174 (Baltimore, MD; Boston, MA; Los Angeles, CA; Miami, FL; Minneapolis-St. Paul, MN;  
17  
18 175 Phoenix, AZ). We tested whether woody plant community composition in interstitial sites  
19  
20 differed from that in natural reference sites and whether soil properties were related to those  
21  
22 177 differences. Woody community composition was measured to identify whether plant  
23  
24 178 assemblages included combinations of introduced (e.g., non-native/exotic) and native species  
25  
26 179 that differed from assemblages in natural reference sites. We measured basic soil properties  
27  
28  
29 180 (moisture, bulk density), soil microbial biomass C and N content, basal respiration, inorganic N  
30  
31 181 pools, potential net N mineralization and nitrification, and denitrification potential and visually  
32  
33 182 inspected soil profiles to ensure that there were no major anthropogenic differences between  
34  
35 183 reference and interstitial sites such as compaction, profile disturbance, or fertilization, and to  
36  
37 184 explore effects of novel plant communities on soil processes. We aimed to answer two questions:  
38  
39  
40 185 1) How does woody plant community composition differ between interstitial and natural  
41  
42 186 reference sites? 2) Are these differences in vegetation associated with variation in soil C and N  
43  
44 187 cycling processes? We hypothesized that: 1) Woody plant community composition in interstitial  
45  
46 188 sites would differ from that in reference sites, with higher proportion of introduced species and  
47  
48 189 2) soil N cycling would be altered in interstitial sites, with higher N pools and rates of N cycling  
49  
50 190 processes in the sites with plant communities most distinct from those in reference sites. Results  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 191 were evaluated in terms of implications for how forests within and beyond urban areas are  
4  
5 192 assessed and managed to provide ecosystem services and resilience that rely on native  
6  
7 193 biodiversity.  
8  
9

10 194  
11 195 **Methods**  
12

13 196 *Site selection*  
14

15 197 We sampled interstitial and reference sites in six major U.S. Metropolitan Statistical  
16  
17 198 Areas (cities): Boston, MA (BOS), Baltimore, MD (BAL), Los Angeles, CA (LAX), Miami, FL  
18  
19 199 (MIA), Minneapolis-St. Paul, MN (MSP) and Phoenix, AZ (PHX) that represent different  
20  
21 200 ecological biomes and/or major climatic regions across the U.S. (Trammell and others 2016).  
22  
23

24 201 Within each region, between four and six natural areas that represented the dominant ecological  
25  
26 202 biome(s) were selected as reference sites. The natural areas were located in protected areas with  
27  
28 203 native vegetation (including trees, shrubs, and cacti) and were located 1 km or more from other  
29  
30 204 sites. Reference ecosystems include mature (over 75-yr-old) oak and tulip poplar forests (BAL);  
31  
32 205 mature (roughly 100-yr-old) northern oak-dominated hardwood forests (BOS); remnant southern  
33  
34 206 California chaparral (LAX); coastal upland pine rockland, subtropical hardwood hammock,  
35  
36 207 coastal hammock, and pine flatwoods (MIA); oak savanna on sandy outwash, tallgrass prairie  
37  
38 208 and bluff prairie on moraine, and maple-basswood forest on moraine (MSP); and native Sonoran  
39  
40 209 Desert (PHX).

41  
42 210 Interstitial sites were sampled ( $n = 4$  to 6) on public lands within each metropolitan area.  
43  
44

45 211 These sites were located in relatively unmanaged areas (generally absent of intensive human  
46  
47 212 intervention such as plowing, mowing, irrigation, fertilization) with vegetation that had  
48  
49 213 developed spontaneously. In addition, the selection criteria included sites with natural soil  
50  
51 214 profiles similar in texture and landscape position to those in the reference areas, without signs of  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 215 anthropogenic soil disturbance. In some cities, e.g., Minneapolis St.-Paul this required  
4  
5 216 distributing sites across different soil parent materials. Unmanaged patches that fit these criteria  
6  
7 217 were located within the same region as the reference sites, either on the edge of the city, at the  
8  
9 218 interface with suburban residential land in public parklands or woodlands (for more detailed  
10  
11 219 description, see Padullés Cubino and others 2020; Lerman and others 2021a). Soil taxonomy was  
12  
13 220 identified using USDA Natural Resource Conservation Service (NRCS) maps for each native  
14  
15 221 reference and interstitial site in each city (Table S1).  
16  
17  
18  
19  
20 222 *Woody vegetation sampling*  
21  
22 223 Within each interstitial and native reference site, we established three 8-m radius plots to  
23  
24 224 assess tree (including shrubs, and cacti in Phoenix) density, basal area, height and condition (e.g.,  
25  
26 225 live/dead). Plot locations were randomly selected with a Geographic Information System (GIS)  
27  
28 226 mapping tool before field sampling. We sampled all individuals above 1m height with a stem  
29  
30 227 greater than 2.54 cm diameter at breast height (DBH) in each plot. We used the USDA Forest  
31  
32 228 Service i-Tree Eco v6.0 manual (<https://www.itreetools.org/>) as a reference for recording species  
33  
34 229 in the field. Woody plant stems were split into understory (< 10 cm DBH) and overstory (> 10  
35  
36 230 cm DBH). Species identifications were cross-checked with World Flora Online (formerly The  
37  
38 231 Plant List), a comprehensive open-access database containing 400,000 recorded plant species  
39  
40 232 contributed by various institutions (<http://www.worldfloraonline.org/>), the online tools for  
41  
42 233 standardizing taxonomic names Taxonomic Name Resolution Service version 5.0 (Boyle and  
43  
44 234 others 2013; <https://tnrs.biendata.org/>), and Integrated Taxonomic Information System (ITIS)  
45  
46 235 online database (<https://itis.gov/citation.html>). Species were also classified according to origin  
47  
48 236 (native or introduced) based on whether the species was considered native or introduced to the  
49  
50 237 state it was sampled in according to the USDA PLANTS database (<https://plants.usda.gov>).  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 238 Introduced species are defined as reproducing spontaneously in the wild without human help and  
4  
5 239 tend to persist, and invasives are defined as (1) non-native (or alien) to the ecosystem under  
6  
7 240 consideration and (2) a species whose introduction causes or is likely to cause economic harm,  
8  
9 241 environmental harm, or harm to human health (USDA, NRCS, 2023). One reference site in  
10  
11 242 Minneapolis-St. Paul (Cedar Creek Ecosystem Science Reserve BU 103) did not have woody  
12  
13 243 plant species present (Table S1).  
14  
15  
16  
17 244  
18 245 *Soil sampling and laboratory analysis*  
19  
20 246 Two soil cores up to 30 cm depth were collected at random locations along transects at  
21  
22 247 each site using a 3.3 cm diameter soil corer, enclosed in plastic sleeves with end caps, put into  
23  
24 248 coolers, and shipped on ice to the Cary Institute of Ecosystem Studies, Millbrook, NY, USA,  
25  
26 249 where they were stored at 4° C (up to 21 days) until they could be processed. In the laboratory,  
27  
28 250 analysis followed procedures described by Raciti and others (2011) and Ryan and others (2022).  
29  
30  
31 251 Soil cores were first visually inspected for evidence of obvious anthropogenic alteration of the  
32  
33 252 soil profile and then divided into 0-10 cm and 10-30 cm sections. Coarse roots and rocks (>2  
34  
35 253 mm) were removed by hand. The separated roots and rocks were dried at 105° C, and rock  
36  
37 254 volumes were estimated using an assumed density of 2.7 g/cm<sup>3</sup>. Water content was measured via  
38  
39 255 gravimetric analysis, where soil samples were dried for 48 hours at 105° C. Dried samples were  
40  
41 256 used to calculate bulk density (BD) as (total dry mass - rock mass) / (total volume - rock  
42  
43 257 volume). Soil organic matter content was measured by loss on ignition at 450° C. Cores were not  
44  
45 258 available for one reference site in Los Angeles (Zuma Canyon), and one reference site in Miami  
46  
47 259 (Pine Ridge Sanctuary; Table S1).  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 260 Soil exchangeable nitrate ( $\text{NO}_3^-$ ) and ammonium ( $\text{NH}_4^+$ ) were extracted in 2 M KCl and  
4  
5  
6 261 analyzed colorimetrically using a Lachat Flow Injection Analyzer. Potential net N mineralization  
7  
8 262 and nitrification, and basal respiration were measured in a 10-day laboratory incubation of soils  
9  
10 263 at room temperature and field moisture. Soils were placed in glass jars fitted with rubber septa to  
11  
12 264 allow for sampling of headspace gas. After incubation, the headspace of the jars was sampled  
13  
14 265 and analyzed for carbon dioxide ( $\text{CO}_2$ ) by gas chromatography with a thermal conductivity  
15  
16 266 detector, and soils were extracted for  $\text{NO}_3^-$  and  $\text{NH}_4^+$ . Potential net N mineralization was  
17  
18 267 calculated as the total accumulation of inorganic N, nitrification was calculated as the  
19  
20 268 accumulation of  $\text{NO}_3^-$ , and respiration was calculated as the accumulation of the  $\text{CO}_2$  during the  
21  
22 269 incubation (Robertson and others 1999).  
23  
24  
25  
26  
27 270 Microbial biomass C and N content were measured using the chloroform fumigation-  
28  
29 271 incubation method (Jenkinson and Powlson 1976). Soil samples were fumigated with chloroform  
30  
31 272 for up to 24 hrs to lyse microbial cells, inoculated with 0.1 g fresh soil, and incubated for 10 days  
32  
33 273 in mason jars with fitted rubber septa. Microbial biomass C was calculated from the production  
34  
35 274 of  $\text{CO}_2$  in the fumigated samples using a proportionality constant (0.41). Microbial biomass N  
36  
37 275 was not corrected with a proportionality constant, and values are just the inorganic produced  
38  
39 276 over the 10-day incubation of fumigated samples.  
40  
41  
42  
43  
44 277 Rates of potential denitrification were measured using the denitrification enzyme assay  
45  
46 278 (Smith and Tiedje 1979; Groffman and others 1999). Soil subsamples were amended with  $\text{NO}_3^-$ ,  
47  
48 279 glucose, chloramphenicol, and acetylene, and incubated anaerobically for 90 minutes. Gas  
49  
50 280 samples were removed after 30 and 90 minutes and analyzed for nitrous oxide ( $\text{N}_2\text{O}$ ) by gas  
51  
52 281 chromatography with an electron capture detector.  
53  
54  
55 282  
56  
57  
58  
59  
60

1  
2  
3 283 *Data analysis*  
45 284 All analyses were performed in R (Version 3.3.3; R Core Team 2019). To prepare the  
6 species data for site-, and city-level comparison, we first characterized woody plant structure in  
7 each plot in terms of species' relative abundance, frequency, dominance, and importance, and in  
8 terms of species diversity (richness, evenness) to examine biodiversity patterns. Relative  
9 abundance (RA) for each woody plant species, i.e., the proportion of individuals of a particular  
10 species to the total number of individuals in a plot, was determined per plot. At each site,  
11 frequency was recorded as the percentage of plots in which a species was found, and relative  
12 frequency (RF) was calculated as the proportion of total frequency of all species to the total  
13 frequency per plot. Relative dominance (RD) was calculated as the proportion of basal area per  
14 species to the total basal area per plot. Basal area was calculated as  $(\pi \times (\text{DBH}/2)^2)$  and values  
15 were converted from  $\text{cm}^2$  to  $\text{m}^2$ . The importance value index (IVI), which presents the ecological  
16 importance and dominance of a species, was calculated as the sum of RA, RF and RD (Curtis and  
17 McIntosh 1951). Woody plant species diversity (richness and evenness) was calculated using the  
18 *codyn* package in R (Hallett and others 2016) for each site. Species richness was calculated as  
19 the overall number of species, and community evenness was calculated as the inverse of  
20 Simpson's D. The relative proportion of introduced species was calculated as the percent  
21 abundance for canopy (DBH > 10 cm) and sapling (DBH < 10 cm) layers. All plot-level values  
22 were averaged for each interstitial and reference site.  
23  
2425 302 To evaluate differences in species composition (i.e., the identity of species present in a  
26 community) among interstitial and reference areas, we used non-metric multidimensional scaling  
27 (NMDS) from the *vegan* package (Oksanen and others 2020). NMDS is an unconstrained  
28 method that uses the pairwise dissimilarity of species composition and reduces dimensional  
29 space to better assess compositional differences between sites (Legendre and Legendre 2012).  
30  
31

1  
2  
3 307 We used Bray-Curtis dissimilarity, which is a semi-metric index of distance between species  
4  
5 308 vectors and quantifies the compositional dissimilarity between sites based on species abundance  
6  
7 309 data (Legendre and Legendre 2012). Species contributions to vegetation patterns were  
8  
9 310 determined using Pearson correlation coefficients between species abundance and NMDS  
10  
11 311 dimensions with the ‘scores’ function included in the *vegan* package in R (Brown 2019; Oksanen  
12  
13 and others 2020). The ‘betadisper’ function was used to calculate the homogeneity of group  
14  
15 312 variances (distance between centroids and group means for interstitial and reference sites).  
16  
17 313 Finally, the ‘adonis’ function – a permutational analysis of variance – was applied using 999  
18  
19 314 permutations to test compositional differences (differences in centroid locations) between  
20  
21 315 reference and interstitial sites.  
22  
23  
24  
25  
26 317 To characterize and compare soil characteristics between interstitial and reference sites,  
27  
28 318 we averaged whole-core (0-30 cm) estimates of microbial biomass C and N, basal respiration,  
29  
30 319  $\text{NO}_3^-$   $\text{NH}_4^+$ , potential net N mineralization and nitrification, denitrification potential, soil organic  
31  
32 320 matter content, and bulk density per site. We used bulk density values to convert all soil  
33  
34 321 parameters to an areal basis ( $\text{g}/\text{m}^2$ ). For each soil parameter, departures from normality were  
35  
36 322 determined using Levene’s test, and to determine variances within land-use type in each city. We  
37  
38 323 compared whole-core differences between interstitial and reference sites between sites using the  
39  
40 324 non-parametric Wilcoxon rank sum test for each soil parameter.  
41  
42  
43  
44 325 To determine multivariate patterns in soil parameters across interstitial and reference sites  
45  
46 326 in each city, we conducted principal component analysis (PCA) using the ‘prcomp’ function in  
47  
48 327 R. The data was standardized (divided by their standard deviation) prior to performing the PCA  
49  
50 328 analysis. Loadings were extracted for all soil parameters in relation to each principal component  
51  
52 329 to explain soil patterns in ordination space. The soil parameters used in the analyses were coded  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 330 as microbial biomass C (BiomassC), microbial biomass N (BiomassN), basal respiration  
4  
5 331 (Respiration),  $\text{NO}_3^-$  (NO3),  $\text{NH}_4^+$  (NH4), total inorganic nitrogen (TIN), potential net N  
6  
7 332 mineralization (Mineralization), potential net nitrification (Nitrification), denitrification potential  
8  
9 333 (DEA), organic matter content (OM), and bulk density (BD).

10  
11 334 To investigate relationships between woody plant species composition and soil  
12 parameters, we also ran a canonical correspondence analysis (CCA), a constrained ordination  
13 method to analyze associations between environmental variables and community composition  
14  
15 336 data, for each city. We computed the variance inflation factor (VIF) using the 'vif.cca' function  
16  
17 337 to check for redundancy amongst predictor variables (soil parameters). Conventionally,  $\text{VIF} > 10$   
18  
19 339 indicates high levels of redundancy among the predictor variables that affect model fit (Zuur and  
20  
21 others 2009). The variables which contributed to  $\text{VIF} > 10$  were removed and the model was run  
22  
23 341 again. Analysis of variance (ANOVA) was conducted to test significance effects of individual  
24  
25 342 predictors (soil parameters), and of the full model using 999 permutations.

32  
33 343 **Results**

34  
35 344 *Question#1: Does woody plant community composition differ between reference and interstitial*  
36  
37 345 *areas?*

40  
41 346 Across cities, there was no consistent difference in mean woody plant species richness  
42  
43 347 between reference and interstitial sites (Table 1). Baltimore had the highest woody plant species  
44  
45 348 richness in the interstitial sites, in the sapling layer ( $9.4 \pm 2.54$ ). Boston had the highest woody  
46  
47 349 species richness in the reference sites, also in the sapling layer ( $6.6 \pm 1.12$ ). Woody plant  
48  
49 350 communities were most even (measured on a scale from 0 to 1, where 1 is the most even) in  
50  
51 351 interstitial sites in Boston and Baltimore and in reference sites in Miami, Minneapolis-St. Paul,  
52  
53 352 Los Angeles, and Phoenix (Table 1). Evenness was higher in the sapling layer of interstitial sites

1  
2  
3 353 for most cities, except for Baltimore (0.88 vs. 0.56), but was higher in reference site canopy  
4  
5 354 layers for most cities (Table 1).

6  
7 355 Overall, there was a higher proportion of introduced species in interstitial sites than in  
8  
9 356 natural reference sites, except in Boston (30% vs. 50%, respectively; Table 1). Overall, the  
10  
11 357 sapling layer (DBH < 10 cm) contained a greater proportion of introduced species than the  
12  
13 358 canopy layer (DBH > 10 cm), except in Minneapolis-St. Paul and Miami reference sites (7.14%  
14  
15 359 and 9.60%, respectively). Introduced species were not found in any sites in Los Angeles and  
16  
17 360 Phoenix (Table 1).

18  
19 361 Across cities, species abundance and dominance differed between interstitial and  
20  
21 362 reference sites, but some species were present in both site types in most cities (average of 37%;  
22  
23 363 Table 2; Fig. S1; Fig. S2). The exceptions were Los Angeles and Phoenix, which had fewer total  
24  
25 364 species (Table 1), and less compositional overlap (in Phoenix) between interstitial and reference  
26  
27 365 sites (Table 2; Figs. S1; Figs. S2). In the majority of cities, native species were the most  
28  
29 366 abundant and dominant in both interstitial and reference sites, with the exception of Miami and  
30  
31 367 Minneapolis-St. Paul, where introduced species were more dominant in interstitial sites (Table 2;  
32  
33 368 Figs. S1). Several native species were common in temperate cities, e.g., *Fraxinus pennsylvanica*,  
34  
35 369 *Quercus velutina*, and *Quercus alba* (Table 2; Fig. S1; Fig. S2).

36  
37 370 Non-metric multidimensional scaling (NMDS) showed differences in woody plant  
38  
39 371 community composition between reference and interstitial sites in most cities, as shown by the  
40  
41 372 lack or minimal overlap of group centroids amongst interstitial and reference sites (Fig. 1).  
42  
43 373 However, there were strong, but not statistically significant compositional differences between  
44  
45 374 interstitial and reference sites in Los Angeles ( $r^2 = 0.47$ ,  $p = 0.10$ , respectively; Table S2).  
46  
47 375 Moreover, dispersion from group centroids (homogeneity among group variances) amongst  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 376 interstitial and reference sites were significant for Los Angeles and Phoenix ( $F_{1,3} = 35.66, p =$   
4  
5 377 0.008 and  $F_{1,6} = 8.20, p = 0.03$ , respectively; Table S2). Native species were most important in  
6  
7 378 determining variation in composition along both dimensions in the NMDS analysis (Table S3),  
8  
9 379 except for Baltimore, Boston and Minneapolis-St. Paul (Figs. 1b, 1f). In Baltimore, the  
10  
11 380 introduced species *Prunus avium* was significant ( $p = 0.013$ ) at explaining variation in species  
12  
13 381 composition in sites along MDS2. In Boston, species that were important at explaining  
14  
15 382 variations in species composition in sites along MDS1 included *Acer ginnala* ( $p = 0.011$ ),  
16  
17 383 *Ailanthus altissima* ( $p = 0.011$ ), *Lonicera tatarica* ( $p = 0.011$ ), *Malus floribunda* ( $p = 0.034$ ),  
18  
19 384 and *Rhamnus cathartica* ( $p = 0.011$ ), while the cultivated hybrid *Tilia x europaea* was significant  
20  
21 385 ( $p = 0.01$ ) at explaining variation in community composition in sites along MDS2 (Fig. 1b; Table  
22  
23 386 S3). In Minneapolis-St. Paul, the introduced species *Rhamnus cathartica* and *Ulmus pumila* were  
24  
25 387 significant ( $p = 0.03$  and  $p = 0.003$ , respectively) at explaining variation in community  
26  
27 388 composition in sites along MDS1 and MDS2, respectively (Fig. 1f; Table S3).  
28  
29  
30  
31  
32  
33  
34  
35 390 *Question #2: Is woody plant community composition in reference and interstitial areas related to*  
36  
37 391 *variation in soil C and N cycling processes?*

392 Across all cities (Fig. 2), N cycling variables (inorganic N pools, microbial biomass N,  
393 potential net N mineralization and nitrification) and Carbon cycling variables (organic matter  
394 content, microbial biomass C, respiration) did not differ between reference and interstitial sites  
395 (Fig. 2). On a city-by-city basis, microbial biomass C was significantly higher in reference sites  
396 in Boston ( $p < 0.05$ ; Fig. S4). There was marked variation in C and N cycle variables among  
397 sites in each city (Figs. S3-S8). There was no visual or taxonomic evidence of extensive human  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460

1  
2  
3 398 alteration of interstitial site soil profiles (Table S1), and there were no consistent differences in  
4  
5 399 soil moisture or bulk density between interstitial and reference sites (data not presented).  
6  
7

8 400 Across cities, at least 61% of the total variance in soil parameters was explained by the  
9  
10 401 first two components (Dim1 and Dim2) in a principal components analysis (Fig. 3; Table S4).  
11  
12 402 On average, the first principal component (Dim1) explained 44.6% and the second principal  
13  
14 403 component (Dim2) explained 26.3% of the variation in interstitial and reference soils. Nitrogen  
15  
16 404 cycle variables were the most strongly loaded on the two principal component axes, especially  
17  
18 405 Dim1.  $\text{NO}_3^-$  and  $\text{NH}_4^+$  strongly loaded on Dim1 and Dim2 in every city, except for Miami (Fig.  
19  
20 406 3; Table S4). Potential net nitrification and denitrification potential were strongly loaded on  
21  
22 407 Dim1 or Dim2 in every city except for Los Angeles (Fig. 3; Table S4). Potential net nitrification,  
23  
24 408 microbial biomass N and total inorganic N had strong loadings with both Dim1 and Dim2 in  
25  
26 409 every city. Carbon cycle variables were rarely significantly loaded on either Dim1 or Dim2  
27  
28 410 although organic matter and bulk density were strongly loaded on Dim2 in Miami (Fig. 3; Table  
29  
30 411 S4). Centroids of reference and interstitial sites did not overlap, except in Los Angeles and  
31  
32 412 Miami. Variation among sites was noticeable in many cities, with some interstitial and reference  
33  
34 413 sites having strong association with particular soil variables, while in other cities, site variation  
35  
36 414 was not strongly associated with soil variables (Fig. 3).  
37  
38

39 415 Across cities, in a canonical correlation analysis (CCA) of woody plant community and  
40  
41 416 soil variables, the proportion of variance explained by the first CCA axis was at least 12%, and  
42  
43 417 the second axis explained at least 10% of the variation across both interstitial and reference sites  
44  
45 418 (Fig. 4; Table S5). Variance explained was higher ( $> 30\%$ ) in the driest cities, Los Angeles and  
46  
47 419 Phoenix, that had many fewer species present (Fig. 4; Table S5). The proportion of variance in  
48  
49 420 woody plant community composition explained by soil variables was at least 62%, except in  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 421 Phoenix (22%; Fig. 4; Table S5). While the number of soil variables that influenced community  
4  
5 422 composition varied per city, some variables were consistent across cities (Fig. 4; Table S5). For  
6  
7 423 example, soil  $\text{NO}_3^-$ ,  $\text{NH}_4^+$ , and organic matter contents were related to woody plant community  
8  
9 424 composition in both interstitial and reference sites in all cities except Phoenix (Fig. 4; Table S5).  
10  
11 425  $\text{NO}_3^-$  and community composition were significant in Boston ( $p = 0.033$ ) and Miami ( $p = 0.004$ ),  
12  
13 426 while organic matter content was statistically significant in Baltimore ( $p = 0.019$ ), and Miami ( $p$   
14  
15 427 = 0.005, Fig. 4; Table S5). Furthermore, the CCA models were only statistically significant in  
16  
17 428 Baltimore ( $p = 0.044$ ) and Miami ( $p = 0.021$ ), and marginally significant in Boston ( $p = 0.064$ ;  
18  
19 429 Fig. 4; Table S5).  
20  
21  
22  
23  
24  
25  
26 430  
27  
28 431 **Discussion**  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

432 In this study, we addressed the question if analysis of forests that have spontaneously  
433 assembled in in urban interstitial spaces provide insight into how global environmental change  
434 will affect the forests of the future. We hypothesized that the complex mix of anthropogenic  
435 factors affecting these spaces (altered climate atmospheric chemistry, disturbance regimes, and  
436 species pool) are analogous to factors playing out across the globe at lower intensity (McDonnell  
437 and Pickett 1988) and that the novel communities that assemble in these spaces provide a  
438 glimpse of the forests that may become widespread beyond urban areas. Our observations of  
439 marked differences in woody vegetation composition between interstitial and reference sites in  
440 six cities with very different climate across the U.S. support this idea and provide insight into the  
441 novel communities that may become common across the U.S. over the next 50 – 100 years. In  
442 the sections below, we first discuss these differences in plant communities and then discuss if  
443 local human alteration of soils has reduced the value of our sites as analogs for future

1  
2  
3 444 environmental conditions. Finally, we discuss the effects of altered plant communities on soil  
4  
5 445 processes and ecosystem services.  
6  
7

8 446 The differences in woody plant communities was most clearly shown by NMDS for  
9  
10 447 Baltimore, Boston, Los Angeles, and Phoenix, where interstitial and reference sites separated  
11  
12 448 along NMDS axes (Fig. 1; Table S3). Even in cities that did not show clear differences along the  
13  
14 449 NMDS axes (e.g., Minneapolis-St. Paul), there was evidence for clustering among the interstitial  
15  
16 450 sites indicating that interstitial sites were more similar to each other than reference sites. As we  
17  
18 451 discuss below, the differences between reference and interstitial sites were likely the result of a  
19  
20 452 greater proportion of introduced species and higher species richness in interstitial sites,  
21  
22 453 especially in the sapling layers (Table 1).  
23  
24  
25

26 454 Our careful selection of sites allowed us to assess how changes in plant community  
27  
28 455 composition affect soil N cycling, which is important for a variety of ecosystem services (e.g.,  
29  
30 456 primary productivity). In our study sites, there were no noticeable anthropogenic effects on soils,  
31  
32 457 e.g., compaction, profile disturbance, or fertilization. Therefore, we were able to examine how  
33  
34 458 differences in plant community composition between interstitial and reference sites were  
35  
36 459 associated with variation in N availability. This finding is shown by separation of interstitial and  
37  
38 460 reference sites along PCA axes of soil characteristics in Baltimore, Boston, Los Angeles, Miami,  
39  
40 461 and Minneapolis-St. Paul in the PCA, and by relationships between N pools ( $\text{NO}_3^-$ ;  $\text{NH}_4^+$ ; TIN,  
41  
42 462 and microbial biomass N) and woody vegetation composition in the CCA. It is important to note  
43  
44 463 that there were no systematic differences in N availability between interstitial and reference sites,  
45  
46 464 and no evidence that interstitial sites had artificially elevated N availability based on soil  
47  
48 465 taxonomy (Table S1). Closely matching the soil series allowed us to avoid differences in soil  
49  
50 466 moisture retention and having the sites interspersed across the region avoid local pollution (e.g.,  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 467 atmospheric N deposition) gradients. Thus, careful selection of sites allows for examination of  
4  
5 468 how natural variation in N availability across native reference and interstitial sites is a driver of  
6  
7 469 woody plant community composition (Table S3).  
8  
9

10 470 As detailed below, the differences that we observed between interstitial and reference  
11 sites have implications for how forests are assessed and managed to provide ecosystem services  
12  
13 471 related to native species diversity, carbon storage, and ecosystem resilience to global  
14  
15 472 environmental change.  
16  
17 473

18 474

19 475 *How does composition of the woody plant community differ between interstitial and natural*  
20  
21 476 *reference sites?*

22  
23 477 The observed differences in woody plant community composition between native  
24 reference and interstitial sites are likely the result of the expanded species pool – native and  
25 introduced – in urban areas. While there might be multiple confounding factors (e.g., land-use  
26 history, plant physiology, abiotic effects), woody plant communities in the interstitial sites have  
27 developed adjacent to altered landscapes, such as residential areas with human-managed  
28 landscapes (yards and neighborhoods, transportation corridors, etc.). These areas are planted and  
29 managed with highly selected species (Padullés Cubino and others 2019b; Padullés Cubino and  
30 others 2020) that have the potential to establish in unmanaged areas such as our interstitial sites,  
31 and disperse beyond managed areas, such as our reference sites.  
32  
33 481  
34  
35 482  
36  
37 483  
38  
39 484  
40  
41 485  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

486 Woody plant canopies in interstitial sites across the six cities were dominated by native  
487 species, while sapling layers had greater percentages of introduced species (Table 2). While this  
488 could be a function of ecological time lags (e.g., phase in biological invasion; Blackburn et al.  
489 2011), it could also be the result of invasive species cultivated in highly managed urban areas

1  
2  
3 490 that have successfully dispersed to relatively unmanaged areas (e.g., Buckthorn; Heneghan  
4  
5 491 2004). However, the majority of saplings in the interstitial sites were still native (Table 1, Fig.  
6  
7 492 S1). Despite native woody plant canopies, previous studies suggest that the presence of  
8  
9 493 introduced species in the understory layer indicate that interstitial sites are likely to develop  
10  
11 494 different trajectories than the reference natural areas over time (Kowarik et al. 2019; Trammell  
12  
13 495 and Carreiro 2011; Trammell and others 2020b), especially if native progeny are outcompeted by  
14  
15 496 introduced (exotic/invasive) species. Previous studies comparing urban forests (e.g., large parks)  
16  
17 497 with natural reference areas have found that the presence of introduced species was greater in  
18  
19 498 forests within the urban matrix, particularly in the understory layer (Templeton and others 2019).  
20  
21 499 While different factors would contribute to the presence and persistence of introduced species in  
22  
23 500 different cities (e.g. forest age, land-use type and mechanism of introduction; Schoenenberger  
24  
25 501 and Conedera 2013; Trammell and others 2020b; Jiang and others 2022), interstitial sites –  
26  
27 502 which are embedded within the urban matrix – are closer in proximity to residential areas than  
28  
29 503 reference sites. Padullés Cubino and others (2020) found that residential yards had higher  
30  
31 504 proportions of introduced species compared to reference natural areas in the cities we studied. It  
32  
33 505 is possible that dispersal through residential yards may facilitate the spread of introduced species  
34  
35 506 to interstitial sites (Vieira and others 2014). Moreover, invasive species are widely available  
36  
37 507 through the horticultural industry (e.g., *Rhamnus cathartica*; Nóvoa and others 2015; Beaury  
38  
39 508 and others 2021). In this study, only woody plant species were included, and the presence of  
40  
41 509 introduced species in other herbaceous layers may provide additional support for this idea  
42  
43 510 (Trammell and Carreiro 2011; Trammell and others 2020; Deljouei and others 2017;  
44  
45 511 Fratarcangeli and others 2022).

52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 512 In forest ecosystems, introduced woody species that are also invasive are especially  
4  
5 513 concerning due to their potential to threaten recruitment of native species (e.g. shading out) and  
6  
7 514 out-competing native understory over time (Reinhart and others 2006; Doroski and others 2018).  
8  
9 515 For example, Templeton and others 2019 showed that urban forests tended to have greater  
10  
11 516 abundance of invasive plants in both the canopy and understory layers. Other studies have found  
12  
13 517 canopies dominated by native species and understories dominated by exotics (Trammell and  
14  
15 518 Carreiro 2011; Pregitzer and others 2019; Trammell and others 2020), supporting the idea that  
16  
17 519 exotics will become more important over time.  
18  
19  
20

21 520 Among the invasive species that we observed, *Acer platanoides* and *Rhamnus cathartica*  
22  
23 521 are of particular interest because they were both found in multiple cities, which suggests they  
24  
25 522 have a wide-ranging distribution. *Rhamnus cathartica* has the ability to establish and persist in  
26  
27 523 disturbed areas and proliferate in sites undergoing succession (Zouhar 2015), while *Acer*  
28  
29 524 *platanoides* ' strong shade-tolerance allows it to dominate in closed-canopies and suppress native  
30  
31 525 understory seedlings (Munger 2003).  
32  
33  
34

35 526 Amongst the six cities, introduced species were most common in Boston (Table 1) and it  
36  
37 527 was the only city with a greater percentage of introduced species in reference sites than  
38  
39 528 interstitial sites (Table 1). *Tilia x europaea* was both abundant and dominant in the canopy of  
40  
41 529 one reference site, and it was also present in the sapling layer, along with *Rhamnus cathartica*  
42  
43 530 and *Ailanthus altissima* (Table 1; Fig. S2). Previous studies of temperate forests in  
44  
45 531 Massachusetts have found that heavily fragmented forest patches are more susceptible to  
46  
47 532 invasion of introduced species (McDonald and others 2008). Temperate forests of New England  
48  
49 533 have experienced increased fragmentation over recent decades resulting from increasing human  
50  
51 534 population expansion, even at low densities (Vogelmann 1995). Therefore, not just proximity to  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 535 the urban matrix, but also forest size, age and structure may play an important role in the  
4  
5 536 susceptibility of forested ecosystems to plant species invasion (e.g., Trammell and others 2020b).  
6  
7 537 The “edges” of these fragmented forests are highly dynamic, with notably high rates of C  
8  
9 fixation and growth, that vary with species composition (Reinmann and Hutyra 2017; Morreale  
10  
11 538 and others 2021). There is thus great interest in how woody plant species composition is  
12  
13 539 changing in these increasingly common fragmented landscapes.  
14  
15

16  
17 541 In Minneapolis-St. Paul, the relative openness of forest stands in a prairie landscape may  
18  
19 542 facilitate the spread of invasive species. One of the reference sites in this city had high  
20  
21 543 abundance of *Rhamnus cathartica*, but only in the sapling layer (Table 1; Fig. S2). This species  
22  
23 544 is known to occur not only in disturbed areas but can also be found in open wildlands (Zouhar  
24  
25 545 2015). Given the openness of savanna landscapes, reference sites in the Minneapolis-St. Paul  
26  
27 546 region may be especially susceptible to this species, which is readily dispersed by birds and tends  
28  
29 547 to out-compete native understory plants by creating dark, dense thickets (Mascaro and Schnitzer  
30  
31 548 2007; Knight and others 2017). *Rhamnus cathartica* also has the advantage of "extending" the  
32  
33 549 growing season through early leaf-out and delayed senescence, probably contributing to its  
34  
35 550 success in the understory (Zouhar 2015). Interestingly, this reference site was the only one  
36  
37 551 without any *Quercus* species (a shade-intolerant genus) and was the only one with *Ulmus pulima*  
38  
39 552 in the canopy layer. This species is fast-growing, which allows it to develop rapidly once  
40  
41 553 established, becoming highly invasive in prairie ecosystems (Gaskin and others 2020). The  
42  
43 554 presence of this invasive species in the canopy layer may facilitate invasion by  
44  
45 555 *Rhamnus cathartica* in the understory, which thrives in the shade of other trees. This species has  
46  
47 556 also been found spontaneously growing in residential yards in Boston and Minneapolis-St. Paul  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 557 (Cubino and others 2019a), indicating its ability to spread and establish without human  
4  
5 558 intervention.  
6  
7  
8 559 Despite the abundance of introduced and invasive species in interstitial and some  
9  
10 560 reference sites, native species dominated most sites across cities (Table 2; Fig. S1; Fig. S2). Still,  
11  
12 561 there were important differences in native species dominance between interstitial and native  
13  
14 562 sites. For example, reference areas in Baltimore were dominated by *Quercus* species (e.g.,  
15  
16 563 *Quercus michauxii*, *Quercus alba*, *Quercus velutina*) and co-dominated by *Liriodendron*  
17  
18 564 *tulipifera* (Table 2; Fig. S2). However, *Quercus michauxii* was not present in any of the  
19  
20 interstitial sites, and *Fraxinus Pennsylvanica* was co-dominant in two interstitial sites, but not  
21  
22 565 present in any reference sites. *Quercus michauxii* is shade-intolerant and requires openings for  
23  
24 566 establishment allowing it to survive in the understory, while *Fraxinus Pennsylvanica* is tolerant  
25  
26 567 to shade and adaptable in many landscapes (Gucker 2005), including urban environments, where  
27  
28 568 it is commonly planted as part of municipal planting campaigns (Doroski and others 2020) and in  
29  
30 569 residential yards (Wheeler and others 2017). This indicates that there might be different  
31  
32 570 ecological sorting processes occurring in some interstitial sites that allow for different species  
33  
34 571 than those found in reference sites to establish and dominate stands. For example, Schurman and  
35  
36 572 others (2012) found that environmental constraints, such as N availability and soil moisture  
37  
38 573 regime influenced the species distribution of younger trees in temperate forests, but stand age  
39  
40 574 was more likely to predict mature tree distribution. In addition, the loss of late successional  
41  
42 575 species impacts the structure and functions of forested ecosystems such as microclimate,  
43  
44 576 biomass, and chemical processes (Ellison and others 2005; Thompson and others 2013).  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

578 Comparison of interstitial and reference sites in our most arid cities (Phoenix and Los  
579 Angeles) produced an interesting contrast to mesic cities. Woody plant species richness was very

1  
2  
3 580 low in these cities, with most sites in Phoenix dominated by a single species (Table 1; Fig. S1;  
4  
5 581 Fig. S2). Additionally, all the species in both the reference and interstitial sites within these cities  
6  
7 582 were native and dominated by the same species. For example, in Los Angeles, *Malosma laurina*,  
8  
9 583 which was highly abundant in interstitial sites and one reference site in Los Angeles, is a  
10  
11 584 successful colonizer following disturbance (e.g., fire; Howard 1992), making it a resilient  
12  
13 585 species. These results suggest that forests developing on interstitial sites in Los Angeles may  
14  
15 586 have similar trajectories to current native reference sites.  
16  
17  
18  
19 587  
20  
21 588 *Is variation in woody plant community composition related to variation in soil C and N cycle*  
22 589 *processes?*

24 590 A major objective of our study was to determine if community assembly processes in  
25  
26 591 urban interstitial areas are leading to the development of novel ecosystems that have the potential  
27  
28 592 to spread within and beyond urban areas. We found little evidence for unique urban effects on  
29  
30 593 soils in the interstitial sites in this study. However, evaluation of plant-soil interactions in urban  
31  
32 594 ecosystems is complicated by extensive alteration of soils by human activities. This alteration  
33  
34 595 can limit the use of urban ecosystems as analogs of global environment change (McDonnell and  
35  
36 596 Pickett 1990). For example, if soil profiles at a site are altered by the presence of human-altered  
37  
38 597 or human-transported materials such as coal ash or municipal trash (Mejía and others 2022), they  
39  
40 598 cannot be used to learn about the effects of interacting factors such as changes in climate,  
41  
42 599 atmospheric chemistry, and local species pool. In this study, interstitial sites were selected to  
43  
44 600 avoid areas with extensive alteration. Consistent with this effort, we did not see significant  
45  
46 601 differences between interstitial and reference sites for any N cycling variable across cities,  
47  
48 602 suggesting that these sites were suitable for studying the effects of altered urban climate,  
49  
50 603 atmospheric chemistry, and species pools on community assembly (McDonnell and Pickett  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 604 1990). However, we did observe significant variation in soil processes within individual cities  
4  
5 605 that sheds light on the causes of variation in N cycle processes such as the presence of introduced  
6  
7 606 species, and the influence of these processes on woody plant dynamics (Fig. 3; Figs. S3-S8). In  
8  
9 607 drier regions, these variations may be affected by local N cycling patterns (e.g., deposition), such  
10  
11 608 as those observed in California (Fenn and others 1996, Fenn and others 2010).  
12  
13

14 609 Although we did not see significant differences between interstitial and reference sites for  
15  
16 610 any N cycling variable across cities, city-by-city analysis of relationships between N dynamics  
17  
18 611 and tree community composition supports the idea that there are relationships between these  
19  
20 612 variables that cut across interstitial and reference sites. For example, in Baltimore, two interstitial  
21  
22 613 sites located farther outside the confidence interval in the vegetation NMDS were the same sites  
23  
24 614 outside the confidence intervals in the soil PCA. Similarly, in Boston, two reference sites  
25  
26 615 clustered in the vegetation NMDS were also clustered in the soil PCA. In Los Angeles, one  
27  
28 616 interstitial site was distinct on both vegetation (NMDS) and soil (PCA) analyses. In addition,  
29  
30 617 these patterns were supported by the CCA that illuminated multiple soil variables (basal  
31  
32 618 respiration,  $\text{NO}_3^-$ , total inorganic N, microbial biomass N, potential nitrification and N  
33  
34 619 mineralization, denitrification potential, organic matter, bulk density) that had significant  
35  
36 620 relationships with community composition across interstitial and reference sites. However, these  
37  
38 621 dynamics varied by city, indicating that the mechanisms driving the variation in N dynamics, and  
39  
40 622 the relationships with woody plant community composition are context-dependent. Factors such  
41  
42 623 as soil texture, pH, and water holding capacity influence N availability in soils, and have been  
43  
44 624 well studied in rural context (Pastor and others 1984; Pastor and Post 1986), but less so within  
45  
46 625 urban areas (Groffman and others 2006). The spread of invasive species can also affect nutrient  
47  
48 626 cycling (Ehrenfeld 2003; Mueller and others 2018). There is a clear need for further analysis of  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 627 these uncertainties as the N cycle is affected by multiple components of environmental change  
4  
5 628 that will need to be considered when evaluating future trajectories of urban (and beyond) forests  
6  
7 629 (Mason and others 2022).  
8  
9

10 630 While the PCA analysis showed significant and coherent variation in N cycling among  
11 sites, variation in soil C cycle processes was less marked, i.e., there were few significant  
12 correlations between soil C cycle processes and the two PCA axes from soil characteristics.  
13  
14 633 Moreover, we did not observe significant differences between interstitial and reference sites for  
15 any C cycling variables across cities. The lack of difference in C dynamics between interstitial  
16 and reference sites was surprising given their differing proximity to human-dominated  
17 landscapes and the effects of this proximity on woody plant communities and N cycling. In both  
18 site types, organic matter quality appears to be high enough to support high levels of microbial  
19 biomass and respiration, which are indices of the nature and extent of soil C cycling activity  
20 (Powlson and others 2017). These C dynamics are controlled to a large extent by abiotic factors,  
21 such as temperature and moisture, that vary geographically. Cities are also subject to biological  
22 factors that affect soil C dynamics, such as the presence of earthworms (Pouyat and others 2002).  
23  
24 642 Our results support the idea that there is high variation in organic matter content within forests  
25 embedded in the urban matrix (Zhu and Carreiro 2004). Unraveling the controls of this variation  
26 will be important for understanding the composition and C sequestration capacity of future  
27 forests.  
28  
29 646  
30  
31 647 *What are the implications of differences in woody plant community composition in the interstitial*  
32  
33 648 *sites for the structure and function of future forests within and beyond urban areas?*  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 649 Our results suggest that novel woody plant communities are assembling in interstitial  
4 areas in cities across the U.S. These communities may affect the ecosystem services provided by  
5 urban forests (e.g., wildlife habitat, water quality, climate regulation; Solomou and others 2019;  
6 Berglihn and Gómez-Begethun 2021), and the resilience of these forests to environmental  
7 change. To the extent that environmental changes currently occurring in cities are harbingers of  
8 changes that will occur more broadly across the landscape (McDonnell and Pickett 1990), these  
9 communities may spread beyond urban areas and influence forest structure and function across  
10 large areas of North America. Johnson and Handel (2016) found that successional trajectories of  
11 urban forests have diverged between forests that underwent restoration (e.g., invasive species  
12 removal) and invaded forests that were not restored, indicating that novel communities that  
13 emerge in unmanaged areas can become dominant over time. Species invasions create temporal  
14 and ecological processes that differ from native communities (Blackburn and others 2011),  
15 which suggests that effective management of invasive species is critical to prevent and mitigate  
16 their spread within and beyond urban areas (Simberloff and others 2010; Dickie and others 2014;  
17 Krumm and Vítková 2016; Brundu and others 2020).

18  
19 664 Our results also suggest that the assembly of novel communities in urban interstitial areas  
20 varies markedly in cities with different climates. For example, only native species (albeit very  
21 few) were found in interstitial sites in hot and dry climates of Los Angeles and Phoenix. In hot  
22 and wet Miami, a much larger pool of both native and introduced species were present. Pearse  
23 and others (2018) showed that species from both native and exotic pools were present in both  
24 cultivated and spontaneous communities in residential yards in the cities we studied, highlighting  
25 the dynamic interactions between direct and indirect human activities and a variety of natural  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 671 biodiversity controls consistent with global trends in urban environments (Gaertner and others  
4  
5 672 2017).

6  
7 673 The process of novel community assembly will also vary with land-use legacies and  
8  
9 674 forest patch size which have a direct effect on a site's susceptibility to species invasions and soil  
10  
11 675 nutrients (Hall and others 2013; Ziter and Turner 2018; Ward and others 2020). Forests growing  
12  
13 676 on land that was under previous land-use (e.g., agriculture or timber) have lower abundance of  
14  
15 677 native woodland species when compared with reference forests (Peña and others 2016). These  
16  
17 678 differences between land-use also point to the importance of soil conditions (e.g., nutrient  
18  
19 679 content; Baeten and others [2010](#)) as a regulator of community assembly. Young forest patches  
20  
21 680 are more likely to have invasive plants and increased pH and Ca than older patches, regardless of  
22  
23 681 land-use context (Trammell and others, 2020b, 2021). As noted above, forest fragmentation  
24  
25 682 creates edge effects that expose tree communities to disturbances that may affect stand  
26  
27 683 microclimate and species physiology (Reinmann and Hutyra 2017; Morreale and others 2021).  
28  
29 684 Trammell and others (2022) showed that edge effects and other environmental factors had  
30  
31 685 greater influence on species invasion than land-use context in forest patches. Garvey and others  
32  
33 686 (2021) found that edge effects had a strong effect on soil respiration in both urban and rural  
34  
35 687 forests. The interaction of these factors will have a great effect on future forest structure and  
36  
37 688 function within and beyond urban areas. These effects are being experienced in forests around  
38  
39 689 the globe (Essl and others 2020), especially from the spread of woody invasive species (Jäger  
40  
41 690 and others 2007; Ayanu and others 2015; Le Maitre and others 2020).

42  
43 691 Forests embedded in the urban matrix are exposed to stressors from the surrounding  
44  
45 692 matrix that can produce effects that may be different from those in less disturbed landscapes  
46  
47 693 (Trammell and others 2022). These effects can include altered soil chemistry, elevated  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 694 temperatures, and light regimes, altered foliage (e.g., caterpillars) and soil fauna (e.g.,  
4  
5 695 earthworms), pollination and seed dispersal agents, and changes in the nature and frequency of  
6  
7 696 disturbance (Pouyat and others 2007, 2010; Lerman and others 2021b). Further research in  
8  
9 697 forests along urban to rural gradients is needed to assess these effects and their relevance to  
10  
11 698 forests beyond urban areas.  
12  
13  
14  
15 699  
16  
17 700 **Conclusions**

18  
19 701 Our results show that urban land-use change has resulted in alterations to natural  
20  
21  
22 702 ecosystems embedded in the urban matrix, creating conditions for novel woody plant  
23  
24  
25 703 assemblages to emerge with potentially altered functions that persist in the absence of human  
26  
27  
28 704 intervention. These results have implications for how we assess and manage the urban forests  
29  
30  
31 705 across the U.S. As novel communities emerge, there will be a need for assessments of how they  
32  
33  
34 706 function relative to demands for specific ecosystem services, and decisions about whether  
35  
36  
37 707 management actions can affect these outcomes will need to be made.  
38  
39  
40 708 For example, urban forest restoration efforts in many cities focus on invasive species  
41  
42  
43 709 removal (Pregitzer and others 2019). Invasive species can change soil conditions and/or adapt to  
44  
45  
46 710 altered soils, but whether soil conditions drive community dynamics or vice versa is still poorly  
47  
48  
49 711 understood (Ward and others 2020). Our results support the idea that these community dynamics  
50  
51  
52 712 are associated with variation in local soil conditions, especially N availability (Smith and others  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 713 2020; Smith and others 2021, Mejía and others 2022). There is a clear need for further research  
4  
5  
6 714 on how soil conditions interact with changing climate, herbivory pressure (e.g., deer), and other  
7  
8  
9 715 environmental changes (Templeton and others 2019) to influence the trajectories, functions, and  
10  
11  
12 716 services of forest communities.

13  
14  
15  
16 717 Our results suggest that urban interstitial communities are a useful experimental venue  
17  
18  
19 718 for investigating the structure and function of future forests. These communities are highly  
20  
21  
22 719 variable and dynamic and illustrate a wide range of possible future forest trajectories that have  
23  
24  
25 720 the potential to spread beyond urban areas under changing environmental conditions. As human  
26  
27  
28 721 activities expand at the residential-wildland interface, unmanaged interstitial areas are likely to  
29  
30  
31 722 function as mediators of native, exotic, cultivated, and spontaneous species pools (Pearse and  
32  
33  
34 723 others 2018), potentially altering natural habitats on regional scales and influencing the structure  
35  
36  
37 724 and function of future forests well beyond urban areas.

42  
43 725  
44 726  
45 727  
46 728  
47  
48  
49 **Acknowledgements**  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

729 This research was supported by the Macrosystems Biology program of the Biological Sciences  
730 Directorate at the National Science Foundation (NSF) through collaborative awards: DEB-  
731 1638648 (Baltimore), DEB-1638606 (Los Angeles), DEB-1638560 (Boston), DEB-1638725  
732 (Phoenix), DEB-1638657 (Miami), DEB-1638519 (Minneapolis/St. Paul), DEB-1638690, DEB-

1  
2  
3 733 1836034, and DEB-1638676. The authors are appreciative of all the field coordinators and  
4  
5 734 assistants that helped collect the data that made this project possible. In Boston, the authors thank  
6  
7 735 the Massachusetts Department of Conservation and Recreation and Mass Audubon for providing  
8  
9 736 permission to work in natural and interstitial sites. In Minneapolis-St. Paul, the authors thank  
10  
11 737 Christopher Buyarski for helping to coordinate the field campaign and data management, and the  
12  
13 738 Minnesota Department of Natural Resources, the Nature Conservancy, Three Rivers Park  
14  
15 739 District, the cities of Brooklyn Park, Eden Prairie, Arden Hills, and Ramsey County Parks and  
16  
17 740 Recreation for providing permission to work in natural and interstitial areas. In Baltimore, the  
18  
19 741 authors thank Laura Templeton for coordinating the field campaign and data management, Ben  
20  
21 742 Glass-Seigel, Dan Dillon, Juan Botero, Katherine Ralston, and Alyssa Wellman Houde for  
22  
23 743 fieldwork and Baltimore City, Baltimore County, and the State of Maryland for providing  
24  
25 744 permission to work in interstitial and natural sites. In Miami, the authors thank Martha Zapata,  
26  
27 745 Sarah Nelson, Sebastian Ruiz for fieldwork and Miami-Dade County Parks, Florida State Parks  
28  
29 746 and Pine Ridge Sanctuary for providing permission to work in natural and interstitial areas. In  
30  
31 747 Los Angeles, the authors thank UCLA/La Kretz Center for California Conservation Science,  
32  
33 748 National Park Service, Los Angeles City Department of Recreation and Parks, the Audubon  
34  
35 749 Center, Mountains Recreation and Conservation Authority, Palos Verdes Peninsula Conservancy  
36  
37 750 for providing permission to work in natural and interstitial sites. In Phoenix, the authors thank  
38  
39 751 Laura Steger for coordinating the field campaign and data management, Alicia Flores, John  
40  
41 752 Talarico, and Brittany Strobel for fieldwork and Maricopa County Parks and Recreation  
42  
43 753 Department, City of Scottsdale, and City of Phoenix for providing permission to work in natural  
44  
45 754 and interstitial sites. The authors are also thankful to the subject-matter editor, and anonymous  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 755 reviewers for their thorough review, and constructive, thoughtful comments that greatly  
4  
5 756 improved the manuscript.  
6  
7  
8 757  
9  
10  
11

12 758 **Data availability**  
13

14 759 Data are available as Supporting Information. Data are also available in Environmental Data  
15  
16 760 Initiative (EDI) Data Portal at <https://doi.org/10.6073/pasta/8b29dc7fd536f4649f8cf6a536421fc9>  
17  
18 761 (DOI) reference number edi.309.1, and  
19  
20 762 <https://doi.org/10.6073/pasta/c1f9302b4cce46cbe003ac41f58ef4a> (DOI) reference number  
21  
22 763 edi.374.2.  
23  
24  
25  
26 764  
27  
28  
29 765  
30  
31  
32 766 **Literature cited**  
33  
34 767  
35  
36 768  
37 769 Ayanu YZ, Jentsch A, Müller-Mahn D, Rettberg S, Romankiewicz C, Koellner T.  
38  
39 770 2014. Ecosystem engineer unleashed: *Prosopis juliflora* threatening ecosystem services?  
40  
41 771 *Regional Environmental Change* 15:155–167.  
42  
43 772 Andrade R, Franklin J, Larson KL, Swan CM, Lerman, SB, Bateman HL, Warren PS, York A.  
44  
45 773 2021. Predicting the assembly of novel communities in urban ecosystems. *Landscape*  
46  
47 774 *Ecology* 36:1–15.  
48  
49 775 Avolio ML, Pataki DE, Gillespie TW, Jenerette GD, McCarthy HR, Pincetl S, Clarke LW.  
50  
51 776 2015. Tree diversity in southern California's urban forest: the interacting roles of social  
52  
53  
54 777 and environmental variables. *Frontiers in Ecology and Evolution* 3:e00073.  
55  
56  
57  
58  
59  
60

1  
2  
3 778 Avolio ML, Swan C, Pataki DE, Jenerette GD. 2021. Incorporating human behaviors  
4  
5 779 into theories of urban community assembly and species coexistence. *Oikos* 130:1849–  
6  
7 780 1864.  
8  
9  
10 781 Aronson MF, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard  
11  
12 782 MA, Hahs AK, Herzog CP, Katti M, La Sorte FA, Williams NS, Zipperer WC. 2016.  
13  
14 783 Hierarchical filters determine community assembly of urban species pools. *Ecology*  
15  
16 784 97:2952–2963.  
17  
18  
19 785 Baeten L, Velghe D, Vanhellemont M, De Frenne P, Hermy M, Verheyen K. 2010.  
20  
21 786 Early Trajectories of spontaneous vegetation recovery after intensive agricultural land  
22  
23  
24 787 use. *Restoration Ecology* 18: 379–386.  
25  
26 788 Beaury EM, Patrick M, Bradley BA. 2021. Invaders for sale: the ongoing spread of  
27  
28 789 invasive species by the plant trade industry. *Frontiers in Ecology and the Environment*  
29  
30 790 19:550-556.  
31  
32  
33 791 Berglihn EC, Gómez-Baggethun E. 2021. Ecosystem services from urban forests: The  
34  
35 792 case of Oslomarka, Norway. *Ecosystem Services* 51:101358.  
36  
37  
38 793 Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, Richardson  
39  
40 794 DM. 2011. A proposed unified framework for biological invasions. *Trends in ecology &*  
41  
42 795 *evolution* 26:333–9.  
43  
44  
45 796 Brown DG, Johnson SM, Loveland TR, Theobald DM. 2005. Rural land-use trends in the  
46  
47 797 conterminous United States, 1950-2000. *Ecological Applications* 15:1851–1863.  
48  
49  
50 798 Brown, J. Running NMDS using ‘metaMDS’ [Internet]. RPubs brought to you by RStudio; 2019  
51  
52 799 August 5 [Cited 2022 July 21]. Retrieved from: <http://rpubs.com/CPEL/NMDS>  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 800 Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald A, Brunori A, Canavan S, Campagnaro T,  
4  
5 801 Celesti-Grapow L, Dechoum MD, Dufour-Dror J, Essl F, Flory SL, Genovesi P, Guarino  
6  
7 802 F, Guang-zhe L, Hulme PE, Jäger H, Kettle CJ, Krumm F, Langdon B, Lapin K, Lozano  
8  
9 803 V, Le Roux JJ, Nóvoa A, Nuñez MA, Porte AJ, Silva J, Schaffner U, Sitzia T, Tanner  
10  
11 804 RA, Tshidada NJ, Vítková M, Westergren M, Wilson JR, Richardson DM. 2020. Global  
12  
13 805 guidelines for the sustainable use of non-native trees to prevent tree invasions and  
14  
15 806 mitigate their negative impacts. *NeoBiota* 61:65–116.  
16  
17  
18  
19 807 Blouin D, Pellerin S, Poulin M. 2019. Increase in non-native species richness leads to biotic  
20  
21 808 homogenization in vacant lots of a highly urbanized landscape. *Urban Ecosystems* 22:1–  
22  
23 809 14.  
24  
25  
26 810 Carreiro MM, Tripler CE. 2005. Forest remnants along urban–rural gradients:  
27  
28 811 examining their potential for global change research. *Ecosystems* 8:568–582.  
29  
30  
31 812 Cavender-Bares J, Padullés Cubino J, Pearse WD, Hobbie SE, Lange AJ, Knapp S,  
32  
33 813 Nelson KC. 2020. Horticultural availability and homeowner preferences drive plant  
34  
35 814 diversity and composition in urban yards. *Ecological Applications* 30:e02082.  
36  
37  
38 815 Curtis JT, McIntosh RP. 1951. An Upland Forest Continuum in the Prairie-Forest Border Region  
39  
40 816 of Wisconsin. *Ecology* 32:476–496.  
41  
42  
43 817 Deljouei A, Abdi E, Marcantonio M, Majnounian B, Amici V, Sohrabi H. 2017. The  
44  
45 818 impact of forest roads on understory plant diversity in temperate hornbeam-beech forests  
46  
47 819 of Northern Iran. *Environmental Monitoring and Assessment* 189:1–15.  
48  
49  
50 820 Dickie IA, Bennett BM, Burrows L, Nuñez MA, Peltzer DA, Porte AJ, Richardson DM,  
51  
52 821 Rejmánek M, Rundel PW, Wilgen BW. 2014. Conflicting values: ecosystem services and  
53  
54 822 invasive tree management. *Biological Invasions* 16:705–719.  
55  
56  
57  
58  
59  
60

1  
2  
3 823 Doroski DA, Felson, AJ, Bradford MA, Ashton MP, Oldfield EE, Hallett RA, Kuebbing SE.  
4  
5 824 2018. Factors driving natural regeneration beneath a planted urban forest. *Urban Forestry*  
6  
7 825 & Urban Greening 29:238–247.  
8  
9  
10 826 Doroski DA, Ashton M, Duguid MC. 2020. The future urban forest – A survey of tree  
11  
12 827 planting programs in the Northeastern United States. *Urban Forestry & Urban Greening*,  
13  
14 828 55:126816.  
15  
16  
17 829 Ehrenfeld, JG. 2003. Effects of exotic plant invasions on soil nutrient cycling processes.  
18  
19 830 *Ecosystems* 6:503–523.  
20  
21  
22 831 Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foste DR,  
23  
24 832 Kloepfel BD, Knoepp JD, Lovett GM, Mohan J. 2005. Loss of foundation species:  
25  
26 833 consequences for the structure and dynamics of forested ecosystems. *Frontiers in Ecology*  
27  
28 834 and the Environment 3:479–486.  
29  
30  
31 835 Essl F, Lenzner B, Bacher S, Bailey SA, Capinha C, Daehler CC, Dullinger S,  
32  
33 836 Genovesi P, Hui C, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Leung B, Liebhold  
34  
35 837 AM, Liu C, MacIsaac HJ, Meyerson LA, Nuñez MA, Pauchard A, Pyšek P, Rabitsch W,  
36  
37 838 Richardson DM, Roy HE, Ruiz GM, Russell JC, Sanders NJ, Sax DF, Scalera R, Seebens  
38  
39 839 H, Springborn MR, Turbelin AJ, van Kleunen M, von Holle B, Winter M, Zenni RD,  
40  
41  
42 840 Mattsson BJ, Roura-Pascual N. 2020. Drivers of future alien species impacts: An  
43  
44 841 expert-based assessment. *Global Change Biology* 26:4880–4893.  
45  
46  
47 842 Fenn M, Poth MA, Johnson DW. 1996. Evidence for nitrogen saturation in the San  
48  
49 843 Bernardino Mountains in southern California. *Forest Ecology and Management* 82:211–  
50  
51 844 230.  
52  
53  
54 845 Fenn M, Allen E, Weiss S, Jovan SE, Geiser L, Tonnesen GS, Johnson RF, Rao LE,  
55  
56  
57  
58  
59  
60

1  
2  
3 846 Gimeno BS, Yuan F, Meixner T, Bytnerowicz A. 2010. Nitrogen critical loads and  
4  
5 847 management alternatives for N-impacted ecosystems in California. *Journal of*  
6  
7 848 *environmental management* 91:2404–23.  
8  
9  
10 849 Fratarcangeli C, Fanelli G, Testolin R, Buffi F, Travaglini A. 2022. Floristic changes  
11  
12 850 of vascular flora in the city of Rome through grid-cell census over 23 years. *Urban*  
13  
14 851 *Ecosystems* 25:1851–1864  
15  
16  
17 852 Frelich LE, Blossey B, Cameron EK, Dávalos A, Eisenhauer N, Fahey T, Ferlian O, Groffman P  
18  
19 853 M, Larson E, Loss SR, Maerz JC, Nuzzo V, Yoo K, Reich PB. 2019. Side-swiped:  
20  
21 854 ecological cascades emanating from earthworm invasions. *Frontiers in Ecology and the*  
22  
23 855 *Environment* 1:502–510.  
24  
25  
26 856 Gaertner M, Wilson JR, Cadotte MW, Macivor JS, Zenni RD, Richardson DM. 2017. Non-native  
27  
28 857 species in urban environments: patterns, processes, impacts and challenges. *Biological*  
29  
30 858 *Invasions* 19:3461–3469.  
31  
32  
33 859 Gaskin JF, Espeland EK, Johnson C, Larson DL, Mangold JM, Mcgee R, Milner C,  
34  
35 860 Paudel S, Pearson DE, Perkins LB, Prosser CW, Runyon JB, Sing SE, Sylvain ZA,  
36  
37 861 Symstad AJ, Tekiela DR. 2020. Managing Invasive Plants on Great Plains Grasslands: A  
38  
39 862 Discussion of Current Challenges. *Rangeland Ecology and Management* 78:235–249.  
40  
41  
42 863 Garvey SM, Templer PH, Pierce EA, Reinmann AB, Hutyra LR. 2022. Diverging  
43  
44 864 patterns at the forest edge: Soil respiration dynamics of fragmented forests in urban and  
45  
46 865 rural areas. *Global Change Biology* 28:3094–3109.  
47  
48  
49 866 Groffman PM, Holland EA, Myrold DD, Robertson GP, Zou X. 1999. Denitrification. Robertson  
50  
51 867 GP, Bledsoe CS, Coleman DC, Sollin P, editors. *Standard Soil Methods for Long Term*  
52  
53 868 *Ecological Research*. Oxford: Oxford University Press. p272-288.  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 869 Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis ID, Band LE  
4  
5 870 Brush GS. 2006. Land Use Context and Natural Soil Controls on Plant Community  
6  
7 871 Composition and Soil Nitrogen and Carbon Dynamics in Urban and Rural Forests. *Forest*  
8  
9 872 *Ecology and Management* 246:296–7.  
10  
11 873 Groffman PM, Cavender-Bares JM, Bettez ND, Grove JM, Hall SJ, Heffernan JB, Hobbie SE,  
12  
13 874 Larson KL, Morse JL, Neill C, Nelson KC, O'Neil-Dunne JP, Ogden LA, Pataki DE,  
14  
15 875 Polsky C, Chowdhury RR, Steele MK. 2014. Ecological Homogenization of Urban USA.  
16  
17 876 *Frontiers in Ecology and the Environment* 12:74–81.  
18  
19 877 Groffman PM, Avolio ML, Cavender-Bares JM, Bettez ND, Grove JM, Hall SJ,  
20  
21 878 Hobbie SE, Larson KL, Lerman SB, Locke DH, Heffernan JB, Morse JL, Neill C, Nelson  
22  
23 879 KC, O'Neil-Dunne J, Pataki DE, Polsky C, Chowdhury RR, Trammell TL. 2017.  
24  
25 880 Ecological homogenization of residential macrosystems. *Nature Ecology & Evolution* 1:  
26  
27 881 0191.  
28  
29 882 Gucker CL. Fire Effects Information System [internet]. Missoula (MT): U.S. Department of  
30  
31 883 Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences  
32  
33 884 Laboratory; c2023. *Fraxinus pennsylvanica*; 2005 [cited 2022 April 30]. Available from:  
34  
35 885 [https://www.fs.fed.us /database/feis/plants/tree/frapen/all.html](https://www.fs.fed.us/database/feis/plants/tree/frapen/all.html)  
36  
37 886 Hall SJ, Trujillo J, Nakase D, Strawhacker C, Kruse-Peeples M, Schaafsma H, Briggs J.  
38  
39 887 2013. Legacies of Prehistoric Agricultural Practices Within Plant and Soil Properties  
40  
41 888 Across an Arid Ecosystem. *Ecosystems* 16:1273–1293.  
42  
43 889 Hallett LM, Jones SK, MacDonald AA, Jones MB, Flynn DF, Ripplinger J, Slaughter P, Gries C,  
44  
45 890 Collins SL. 2016. Codyn: An r package of community dynamics metrics. *Methods in*  
46  
47 891 *Ecology and Evolution* 7:1146–1151.  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 892 Johnson LR, Handel SN. 2016. Restoration treatments in urban park forests drive long-  
4  
5 893 term changes in vegetation trajectories. *Ecological Applications* 26:940–956.  
6  
7 894 Heneghan L, Rauschenberg CD, Fatemi FR, Workman M. 2004. European Buckthorn (*Rhamnus*  
8  
9 895 *cathartica*) and its Effects on Some Ecosystem Properties in an Urban Woodland.  
10  
11 896 *Ecological Restoration* 22:275–280.  
12  
13  
14 897 Herrmann DL, Schifman LA, Shuster WD. 2020. Urbanization drives convergence in soil profile  
15  
16 898 texture and carbon content. *Environmental Research Letters* 15:114001.  
17  
18  
19 899 Hobbs RJ, Aricò S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein P, Ewel JJ, Klink  
20  
21 900 CA, Lugo AE, Norton DA, Ojima DS, Richardson DM, Sanderson EW, Valladares F,  
22  
23 901 Vilà M, Zamora R, and Zobel M. 2006. Novel ecosystems: theoretical and management  
24  
25 902 aspects of the new ecological world order. *Global Ecology and Biogeography* 15:1–7.  
26  
27  
28 903 Hobbs RJ, Higgs E, Harris JA. 2009. Novel ecosystems: implications for conservation  
29  
30 904 and restoration. *Trends in Ecology & Evolution* 24:599-605.  
31  
32  
33 905 Howard JL. Fire Effects Information System [internet]. Missoula (MT): U.S. Department of  
34  
35 906 Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences  
36  
37 907 Laboratory; c2023. *Malosma laurina*; 1992 [cited 2022 April 30]. Available from:  
38  
39 908 <https://www.fs.fed.us/database/feis/plants/shrub/mallau/all.html>  
40  
41  
42 909 Jäger H, Tye A, Kowarik I. 2007. Tree invasion in naturally treeless environments:  
43  
44 910 impacts of quinine (*Cinchona pubescens*) trees on native vegetation in Galápagos.  
45  
46  
47 911 *Biological Conservation* 140:297–307.  
48  
49  
50 912 Jenkinson DS, Powlson DS. 1976. The Effects of Biocidal Treatments on Metabolism in Soil, V.  
51  
52 913 A Method for Measuring Soil Biomass. *Soil Biology and Biochemistry* 8:209–13.  
53  
54 914 Jiang S, Sonti NF, Avolio ML. 2022. Tree communities in Baltimore differ by land  
55  
56  
57  
58  
59  
60

1  
2  
3 915 use type, but change little over time. *Ecosphere* 13:e4054.  
4  
5 916 Johnson LR, Handel SN. 2016. Restoration treatments in urban park forests drive long-  
6  
7 917 term changes in vegetation trajectories. *Ecological Applications* 26:940–956.  
8  
9 918 Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV. 2016. A distinct  
10  
11 919 urban biogeochemistry? *Trends Ecology & Evolution* 21:195–199.  
12  
13 920 Knapp S, Dinsmore LA, Fissore C, Hobbie SE, Jakobsdottir I, Kattge J, King JY,  
14  
15 921 Klotz S, McFadden JP, Cavender-Bares JM. 2012. Phylogenetic and functional characteristics of  
16  
17 922 household yard floras and their changes along an urbanization gradient. *Ecology* 93:S83–  
18  
19 923 S98.  
20  
21  
22  
23  
24 924 Knight KS, Kurylo JS, Endress AG, Stewart JR, Reich PB. 2007. Ecology and  
25  
26 925 ecosystem impacts of common buckthorn (*Rhamnus cathartica*): A review. *Biological  
27  
28 926 Invasion* 9:925–937.  
29  
30  
31 927 Kowarik I, Hiller A, Planchuelo G, Seitz B, von der Lippe M, Buchholz S. 2019.  
32  
33 928 Emerging Urban Forests: Opportunities for Promoting the Wild Side of the Urban Green  
34  
35 929 Infrastructure. *Sustainability* 11:6318.  
36  
37  
38 930 Krumm F, Vítková, L, editors. 2016. Introduced tree species in European forests: opportunities  
39  
40 931 and challenges. European Forest Institute. p423.  
41  
42  
43 932 Lê S, Josse J, Husson F. 2008. *FactoMineR*: A Package for Multivariate Analysis. *Journal  
44  
45 933 of Statistical Software* 25:1–18.  
46  
47 934 Lerman SB, Narango DL, Avolio ML, Bratt AR, Engebretson JM, Groffman PM,  
48  
49 935 Hall SJ, Heffernan JB, Hobbie SE, Larson KL, Locke DH, Neill C, Nelson KC, Padullés  
50  
51 936 Cubino J, Trammell TLE. 2021a. Residential yard management and landscape cover  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 937 affect urban bird community diversity across the continental USA. Ecological  
4  
5 938 Applications 31:e02455.  
6  
7 939 Lerman SB, Narango DL, Andrade R, Warren PS, Grade AM, Straley K. 2021b.  
8  
9 940 Wildlife in the city: Human drivers and human consequences. Barbosa P, editor. Urban  
10  
11 941 ecology: its nature and challenges. Wallingford UK: CABI Publishing. p37-66  
12  
13 942 Locke DH, Polksky C, Grove JM, Groffman PM, Nelson KC, Larson KL, Cavender-Bares J,  
14  
15 943 Heffernan JB, Chowdhury RR, Hobbie SE, Bettez ND, Hall SJ, Neill C, Ogden L,  
16  
17 944 O'Neil-Dunne J. 2019. Residential household yard care practices along urban-exurban  
18  
19 945 gradients in six climatically-diverse U.S. metropolitan areas. PLOS One 14:e0222630.  
20  
21  
22 946 Legendre P, Legendre LF. 2012. Numerical Ecology. New York: Springer.  
23  
24  
25 947 Lopez BE, Urban D, White PS. 2018. Testing the effects of four urbanization filters on  
26  
27 948 forest plant taxonomic, functional, and phylogenetic diversity. Ecological Applications  
28  
29 949 28:2197–2205.  
30  
31  
32 950 Növoa A, Le Roux JJ, Robertson MP, Wilson JR, Richardson DM. 2015. Introduced  
33  
34 951 and invasive cactus species: a global review. AoB Plants 7:plu078.  
35  
36  
37 952 Mascaro J, Schnitzer SA. 2007. *Rhamnus cathartica* L. (common buckthorn) as an  
38  
39 953 ecosystem dominant in southern Wisconsin forests. Northeastern Naturalist 14:387–402.  
40  
41  
42 954 McDonald RI, Motzkin G, Foster DR. 2008. Assessing the influence of historical  
43  
44 955 factors, contemporary processes, and environmental conditions on the distribution of  
45  
46 956 invasive species1. The Journal of the Torrey Botanical Society 135:260–271.  
47  
48  
49 957 McDonnell MJ, Pickett ST. 1990. Ecosystem Structure and Function along Urban-Rural  
50  
51 958 Gradients: An Unexploited Opportunity for Ecology. Ecology 71:1232–1237.  
52  
53  
54 959 Le Maitre DC, Versfeld DB, Chapman RA. 2000. The impact of invading alien plants  
55  
56  
57  
58  
59  
60

1  
2  
3 960 on surface water resources in South Africa: A preliminary assessment. *Water SA* 26:397–  
4 961 408.  
5  
6 962 Mason RE, Craine JM, Lany NK, Jonard M, Ollinger SV, Groffman PM, Fulweiler RW,  
7  
8 963 Angerer J, Read QD, Reich PB, Templer PH, Elmore AJ. 2022. Evidence, causes, and  
9 964 consequences of declining nitrogen availability in terrestrial ecosystems. *Science*  
10 965 376:eab3767.  
11  
12 966 Mejía GA, Groffman PM, Downey AE, Cook EM, Sritrairat S, Karty R, Palmer MI, McPhearson  
13  
14 967 T. 2022. Nitrogen cycling and urban afforestation success in New York City. *Ecological*  
15 968 *applications* 32:e2535.  
16  
17 969 Morreale LL, Thompson JR, Tang X, Reinmann AB, Hutyra LR. 2021. Elevated growth and  
18  
19 970 biomass along temperate forest edges. *Nature Communications* 12:7181.  
20  
21 971 Mueller KE, Lodge AG, Roth AM, Whitfeld TJ, Hobbie SE, Reich PB. 2018. A  
22  
23 972 tale of two studies: Detection and attribution of the impacts of invasive plants in  
24  
25 973 observational surveys. *Journal of Applied Ecology* 55:1780–1789.  
26  
27 974 Munger GT. Fire Effects Information System [internet]. Missoula (MT): U.S. Department of  
28  
29 975 Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences  
30  
31 976 Laboratory; c2023. *Acer platanoides*; 2003 [cited 2022 April 30]. Available from:  
32  
33 977 [https://www.fs.usda.gov /database/feis/plants/tree/acepla/all.html](https://www.fs.usda.gov/database/feis/plants/tree/acepla/all.html)  
34  
35 978 Narango DL, Douglas WT, Marra PP. 2018. Nonnative plant reduce population  
36  
37 979 growth of an insectivorous bird. *Proceedings of the National Academy of Sciences*,  
38  
39 980 115:11549–11554.  
40  
41 981 Nowacki GJ, Abrams MD. (2008). The demise of fire and “mesophication” of forests in the  
42  
43 982 Eastern United States. *BioScience* 58:123–138.  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 983 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Wagner H, Barbour M,  
4  
5 984 Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M,  
6  
7 985 Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan  
8  
9  
10 986 G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T,  
11  
12 987 Stier A, Ter Braak C, Weedon J. Vegan: community ecology package [Internet]; c2022.  
13  
14 988 R package version 2.6-2. Available from: <http://CRAN.R-project.org/package=vegan>  
15  
16  
17 989 Padullés Cubino J, Cavender-Bares J, Groffman PM, Avolio ML, Bratt AR, Hall SJ, Larson KL,  
18  
19 990 Lerman SB, Narango DL, Neill C, Trammell TLE, Wheeler MM, Hobbie SE. 2020.  
20  
21  
22 991 Taxonomic, phylogenetic, and functional composition and homogenization of residential  
23  
24 992 yard vegetation with contrasting management. *Landscape and Urban Planning*  
25  
26 993 202:103877.  
27  
28  
29 994 Padullés Cubino JP, Cavender-Bares J, Hobbie SE, Hall SJ, Trammell TLE, Neill C, Avolio ML,  
30  
31 995 Darling LE, Groffman PM. 2019a. Contribution of non-native plants to the phylogenetic  
32  
33 996 homogenization of U.S. yard floras. *Ecosphere* 10:e02638.  
34  
35  
36 997 Padullés Cubino JP, Cavender-Bares J, Hobbie SE, Pataki DE, Avolio ML, Darling LE, Larson  
37  
38 998 KL, Hall SJ, Groffman PM, Trammell TLE, Steele MK, Grove JM, Neill C. 2019b.  
39  
40 999 Drivers of plant species richness and phylogenetic composition in urban yards at the  
41  
42 1000 continental scale. *Landscape Ecology* 34:63–77.  
43  
44  
45 1001 Pastor J, Aber JD, McClaugherty CA, Melillo JM. 1984. Aboveground production and N and P  
46  
47 1002 cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin.  
48  
49 1003 Ecology 65:256–268.  
50  
51  
52 1004 Pastor J, Post WM. 1986. Influence of Climate, Soil Moisture, and Succession on Forest  
53  
54 1005 Carbon and Nitrogen Cycles. *Biogeochemistry* 2:3–27.  
55  
56  
57  
58  
59  
60

1  
2  
3 1006 Pearse WD, Cavender-Bares JM, Hobbie SE, Avolio ML, Bettez ND, Chowdhury RR, Darling  
4  
5 1007 LE, Groffman PM, Grove JM, Hall SJ, Heffernan JB, Learned J, Neill C, Nelson KC,  
6  
7 1008 Pataki DE, Ruddell BL, Steele MK, Trammell TLE. 2018. Homogenization of plant  
8  
9 1009 diversity, composition, and structure in North American urban yards. *Ecosphere* 9:1.  
10  
11 1010 Peña ED, Baeten L, Steel H, Viaene N, Sutter ND, Schrijver AD, Verheyen K  
12  
13 1011 2016. Beyond plant–soil feedbacks: mechanisms driving plant community shifts due to  
14  
15 1012 land-use legacies in post-agricultural forests. *Functional Ecology* 30:1073–1085.  
16  
17 1013 Polsky C, Grove JM, Knudson C, Groffman PM, Bettez ND, Cavender-Bares JM, Hall SJ,  
18  
19 1014 Heffernan JB, Hobbie SE, Larson KL, Morse JL, Neill C, Nelson KC, Ogden LA, O'Neil-  
20  
21 1015 Dunne JP, Pataki DE, Chowdhury RR, Steele MK. 2014. Assessing the homogenization  
22  
23 1016 of urban land management with an application to US residential lawn care. *Proceedings*  
24  
25 1017 of the National Academy of Sciences 111:4432–4437.  
26  
27  
28 1018 Pouyat RV, Groffman PM, Yesilonis I, Hernández, L. 2002. Soil carbon pools and  
29  
30 1019 fluxes in urban ecosystems. *Environmental pollution* 11:107–118.  
31  
32 1020 Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK. 2007. Soil chemical and  
33  
34 1021 physical properties that differentiate urban land-use and cover. *Soil Science Society of*  
35  
36 1022 *America* 71:1010–1019.  
37  
38 1023 Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K. 2010. Chemical, physical and  
39  
40 1024 biological characteristics of urban soils. Aitkenhead-Peterson J, Volder A, editors. *Urban*  
41  
42 1025 *Ecosystem Ecology*. Agronomy Monograph 55. Madison: American Society of  
43  
44 1026 Agronomy. p119–152.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 1027 Powlson D, Xu J, Brookes P. 2017. Through the Eye of the Needle — The Story of the  
4  
5 1028 Soil Microbial Biomass. KR Tate, editor. *Microbial Biomass: A Paradigm Shift in*  
6  
7 1029 *Terrestrial Biogeochemistry*. London: World Scientific. p1-40.  
8  
9  
10 1030 Pregitzer CC, Charlop-Powers S, Bibbo S, Forgione HM, Gunther B, Hallett RA,  
11  
12 1031 Bradford MA. 2019. A city-scale assessment reveals that native forest types and  
13  
14 1032 overstory species dominate New York City forests. *Ecological Applications* 29:e1819.  
15  
16  
17 1033 Raciti SM, Groffman PM, Jenkins JC, Pouyat RV, Fahey TJ, Pickett STA,  
18  
19 1034 Cadenasso ML. 2011. Nitrate production and availability in residential soils. *Ecological*  
20  
21 1035 *Applications* 21:2357–2366.  
22  
23  
24 1036 R Core Team. R: a language and environment for statistical computing [Internet]. Vienna  
25  
26  
27 1037 (Austria): R Foundation for Statistical Computing, c2020. Available from:  
28  
29 1038 <https://www.R-project.org/>  
30  
31 1039 Reinhart KO, Gurnee J, Tirado R, Callaway RM. 2006. Invasion through quantitative  
32  
33 1040 effects: intense shade drives native decline and invasive success. *Ecological applications*  
34  
35 1041 16:821–31.  
36  
37  
38 1042 Reinmann AB, Hutyra LR. 2017. Edge effects enhance carbon uptake and its vulnerability to  
39  
40 1043 climate change in temperate broadleaf forests. *Proceedings of the National Academy of*  
41  
42 1044 *Sciences* 114:107–112.  
43  
44  
45 1045 Richardson DM, van Wilgen BW. 2004. Invasive alien plants in South Africa: how well do we  
46  
47 1046 understand the ecological impacts? *South African Journal of Science* 100:45–52.  
48  
49  
50 1047 Ryan CD, Groffman, PM, Grove JM, Hall SJ, Heffernan JB, Hobbie SE, Locke DH, Morse JL,  
51  
52 1048 Neill C, Nelson KC, O'Neil-Dunne JP, Chowdhury RR, Steele MK, Trammell TLE.  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 1049 2022. Ecological homogenization of soil properties in the American residential  
4  
5 1050 macrosystem. *Ecosphere* 13:e4208.  
6  
7 1051 Schurman JS, Baltzer JL. 2012. Environmental correlates of tree species distributions vary  
8  
9 1052 among age classes in a northern temperate forest. *Plant Ecology* 213:1621–1632.  
10  
11 1053 Schoenenberger N, Conedera M. 2013. Invasive neobiota in forest ecosystems: opportunity  
12  
13 1054 or threat? D. Kraus D, Krumm D, editors. *Integrative approaches as an opportunity for*  
14  
15 1055 *the conservation of forest biodiversity*. European Forest Institute. p224-231.  
16  
17 1056 Scott DF, Versfeld DB, Lesch W. 1998. Erosion and sediment yield in relation to afforestation  
18  
19 1057 and fire in the mountains of the western cape province, South Africa. *South African*  
20  
21 1058 *Geographical Journal* 80:52–59.  
22  
23  
24 1059 Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, van  
25  
26 1060 Wilgen BW, Zalba SM, Zenni RD, Bustamante RO, Peña EA, Ziller SR, Blanca B. 2010.  
27  
28 1061 Spread and impact of introduced conifers in South America: Lessons from other southern  
29  
30 1062 hemisphere regions. *Austral Ecology* 35:489–504.  
31  
32  
33 1063 Smith J, Hallett R, Groffman PM. 2020. The state factor model and urban forest restoration.  
34  
35 1064 *Journal of Urban Ecology* 6:1018.  
36  
37  
38 1065 Smith J, Hallett RA, Deeb M, Groffman PM. 2021. Fine-scale soil heterogeneity at an urban site:  
39  
40 1066 Implications for forest restoration. *Restoration Ecology* 29:e13409.  
41  
42  
43 1067 Smith MS, Tiedje JM. 1979. Phases of denitrification following oxygen depletion in soil. *Soil*  
44  
45 1068 *Biology & Biochemistry* 11:262-267.  
46  
47  
48 1069 Solomou AD, Topalidou ET, Germani R, Argiri A, Karetos G. 2019. Importance, Utilization  
49  
50 1070 and Health of Urban Forests: A Review. *Notulae Botanicae Horti Agrobotanici Cluj-*  
51  
52 1071 *Napoca* 47:10–16.  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 1072 Tallamy DW, Narango DL, Mitchell AB. 2020. Do non-native plants contribute to insect  
4  
5 1073 declines? *Ecological Entomology* 46:729-742.  
6  
7 1074 Templeton LK, Neel MC, Groffman PM, Cadenasso ML, Sullivan, JH. 2019. Changes in  
8  
9 1075 vegetation structure and composition of urban and rural forest patches in Baltimore from  
10  
11 1076 1998 to 2015. *Forest Ecology and Management* 454:117665.  
12  
13 1077 Thompson JR, Carpenter DN, Cogbill CV, Foster DR. 2013. Four centuries of change in  
14  
15 1078 northeastern United States forests. *PLoS one* 8:72540.  
16  
17 1079 Tirmenstein DA. Fire Effects Information System [internet]. Missoula (MT): U.S. Department of  
18  
19 1080 Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences  
20  
21 1081 Laboratory; c2023. *Acer rubrum*; 1991 [cited 2022 April 30]. Available from:  
22  
23 1082 <https://www.fs.fed.us/database/feis/plants/tree/acerub/all.html>  
24  
25 1083 Trammell TLE, Carreiro MM. 2011. Vegetation composition and structure of woody  
26  
27 1084 plant communities along urban interstate corridors in Louisville, KY, USA. *Urban  
28  
29 1085 Ecosystems* 14:501–524.  
30  
31 1086 Trammell TLE., Pataki DE, Cavender-Bares JM, Groffman PM, Hall SJ, Heffernan,  
32  
33 1087 JB, Hobbie SE, Morse JL, Neill C, Nelson KC. 2016. Plant nitrogen concentration and  
34  
35 1088 isotopic composition in residential lawns across seven US cities. *Oecologia* 181:271–285.  
36  
37 1089 Trammell TLE, Pataki DE, Pouyat RV, Groffman PM, Rosier C, Bettez ND,  
38  
39 1090 Cavender-Bares JM, Grove M, Hall SJ, Heffernan JB, Hobbie SE, Morse JL, Neill C, and  
40  
41 1091 Steele MK. 2020a. Urban soil carbon and nitrogen converge at a continental scale.  
42  
43 1092 *Ecological Monographs* 90:e01401.  
44  
45 1093 Trammell TLE., D'amico V, Avolio L, Mitchell JC, Moore ER. 2020b.  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 1094 Temperate deciduous forests embedded across developed landscapes: Younger forests  
4  
5 1095 harbour invasive plants and urban forests maintain native plants. *Journal of Ecology* 108:  
6  
7 1096 2366–2375.  
8  
9  
10 1097 Trammell TLE, Pouyat RV, D'amico V. 2021. Soil chemical properties in forest  
11 patches across multiple spatiotemporal scales in mid-Atlantic U.S. metropolitan areas.  
12  
13 1098 *Urban Ecosystems* 24:1085–1100.  
14  
15  
16 1100 Trammell TLE, Pouyat RV, D 'Amico V. 2022. Heterogeneity in soil chemistry  
17 relates to urbanization while soil homogeneity relates to plant invasion in small temperate  
18  
19 1101 deciduous forests. *Landscape Ecology* 37:1417–1429.  
20  
21  
22 1102  
23  
24 1103 Uchytil RJ. *Fire Effects Information System* [internet]. Missoula (MT): U.S. Department of  
25  
26 Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences  
27  
28 1104 Laboratory; c2023. *Prunus serotina*; 1991 [cited 2022 April 30]. Available from:  
29  
30  
31 1105 <https://www.fs.fed.us/database/feis/plants/tree/pruser/all.html>  
32  
33 1107 USDA, NRCS. 2023. The PLANTS Database National Plant Data Team, Greensboro, NC, USA;  
34  
35 1108 2023. [cited 06/12/2023]. Available from: <http://plants.usda.gov>.  
36  
37  
38 1109 van Wilgen BW, Reyers B, Le Maitre DC, Richardson DM, Schonegevel L. 2008. A  
39  
40 1110 biome-scale assessment of the impact of invasive alien plants on ecosystem services in  
41  
42 1111 South Africa. *Journal of environmental management* 4:336–49.  
43  
44  
45 1112 Vieira R, Finn JT, Bradley BA. 2014. How does the landscape context of occurrence  
46  
47 1113 data influence models of invasion risk? A comparison of independent datasets in  
48  
49 1114 Massachusetts, USA. *Landscape Ecology* 29:1601–1612.  
50  
51  
52 1115 Vogelmann JE. 1995. Assessment of forest fragmentation in southern New England using  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 1116 remote sensing and geographic information systems technology. *Conservation Biology*  
4  
5 1117 9:439–449.  
6  
7 1118 Ward EB, Pregitzer CC, Kuebbing SE, Bradford MA. 2020. Invasive lianas are  
8  
9 drivers of and passengers to altered soil nutrient availability in urban forests. *Biological*  
10  
11 1119  
12 1120 *Invasions* 22:935–955.  
13  
14 1121 Wheeler MM, Neill C, Groffman PM, Avolio ML, Bettez ND, Cavender-Bares JM,  
15  
16  
17 1122 Chowdhury RR, Darling LE, Grove JM, Hall SJ, Heffernan JB, Hobbie SE, Larson KL,  
18  
19 1123 Morse JL, Nelson KC, Ogden LA, O’Neil-Dunne J, Pataki DE, Polsky C, Steele MK,  
20  
21  
22 1124 Trammell TLE. 2017. Continental-scale homogenization of residential lawn plant  
23  
24 1125 communities. *Landscape and Urban Planning* 165:54–63.  
25  
26 1126 Ziter C, Turner MG. 2018. Current and historical land use influence soil-based ecosystem  
27  
28 1127 services in an urban landscape. *Ecological Applications* 28:643–654  
29  
30 1128 Zouhar K. Fire Effects Information System [internet]. Missoula (MT): U.S. Department of  
31  
32  
33 1129 Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences  
34  
35 1130 Laboratory; c2023. *Rhamnus cathartica*; 2011 [cited 2022 April 30]. Available from:  
36  
37  
38 1131 <https://www.fs.usda.gov/database/feis/plants/shrub/rhaspp/all.html>  
39  
40 1132 Zhu WX, Carreiro MM. 2004. Temporal and Spatial Variations in Nitrogen  
41  
42 1133 Transformations in Deciduous Forest Ecosystems along an Urban-Rural Gradient. *Soil*  
43  
44 1134 *Biology and Biochemistry* 36:267–278.  
45  
46  
47 1135 Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects  
48  
49 1136 models and extensions in ecology with R. New York: Springer.  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

## Tables

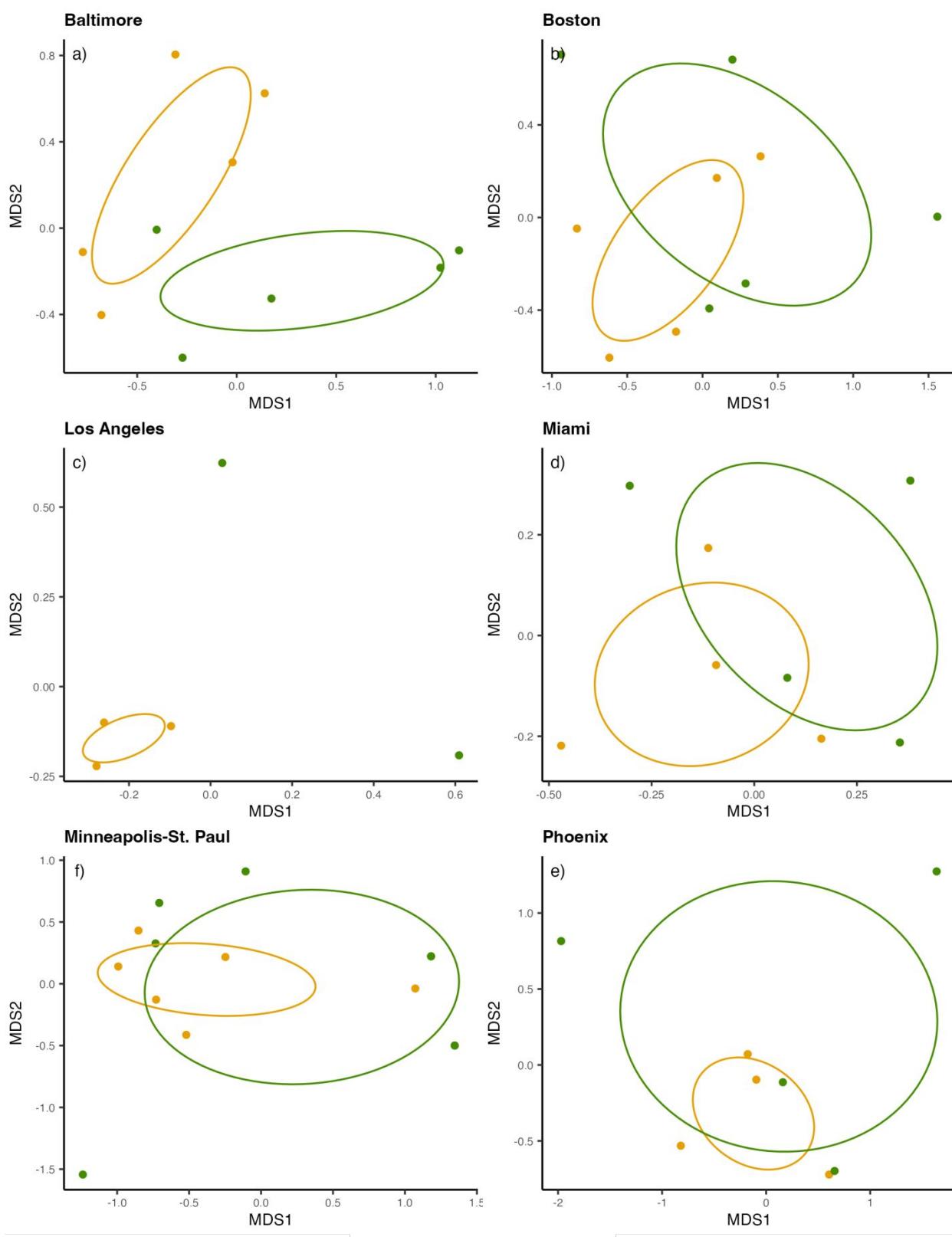
**Table 1.** Average number of woody plant stems per plot (mean  $\pm$  SE), species richness (mean  $\pm$  SE), and evenness by forest layer (canopy and sapling) in interstitial and reference sites in each city ( $n = 6$ ).

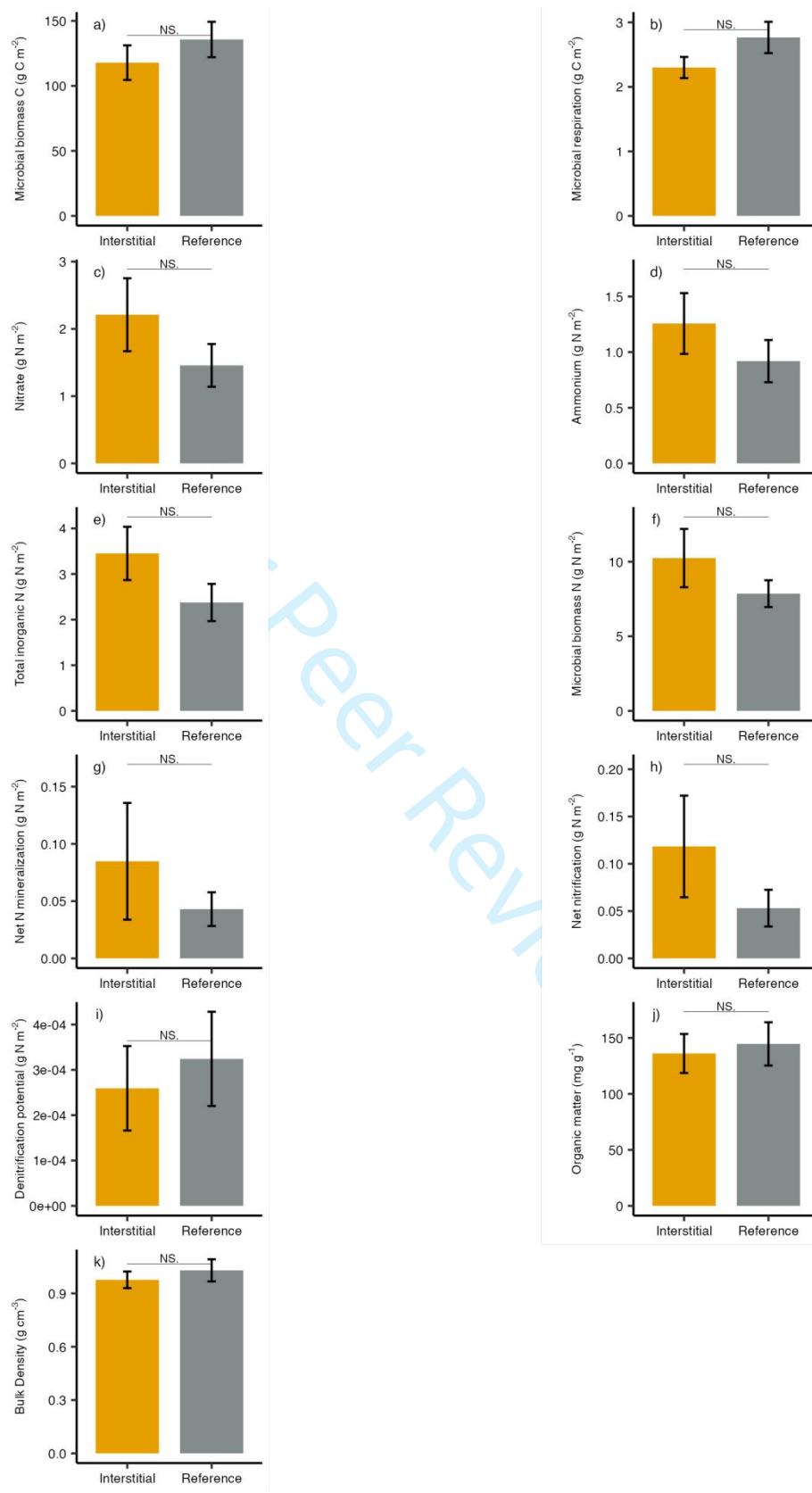
| Forest layer   | City                 | Interstitial      |                        |                 | Reference |                   |                        |
|----------------|----------------------|-------------------|------------------------|-----------------|-----------|-------------------|------------------------|
|                |                      | No. of stems      | Introduced species (%) | Richness        | Evenness  | No. of stems      | Introduced species (%) |
| <b>Canopy</b>  |                      |                   |                        |                 |           |                   |                        |
| >10 DBH        | Baltimore            | 7.4 $\pm$ 0.93    | 0                      | 4.2 $\pm$ 0.37  | 0.88      | 11 $\pm$ 0.84     | 0                      |
|                | Boston               | 30.4 $\pm$ 4.63   | 30                     | 5.2 $\pm$ 0.66  | 0.59      | 27 $\pm$ 5.94     | 50                     |
|                | Los Angeles          | 4 $\pm$ 1.53      | 0                      | 3 $\pm$ 1.15    | 0.89      | 3 $\pm$ 0         | 0                      |
|                | Miami                | 28.5 $\pm$ 7.35   | 43                     | 5.25 $\pm$ 1.65 | 0.66      | 34.75 $\pm$ 10.26 | 10                     |
|                | Minneapolis-St. Paul | 44 $\pm$ 14.35    | 13                     | 5.5 $\pm$ 0.76  | 0.65      | 27.13 $\pm$ 12.15 | 7                      |
|                | Phoenix              | 1.5 $\pm$ 0.5     | 0                      | 1.5 $\pm$ 0.5   | 1.00      | 1.5 $\pm$ 0.5     | 0                      |
| <b>Sapling</b> |                      |                   |                        |                 |           |                   |                        |
| <10 DBH        | Baltimore            | 26.6 $\pm$ 6.58   | 16                     | 9.4 $\pm$ 2.54  | 0.56      | 46.4 $\pm$ 4.73   | 5                      |
|                | Boston               | 24.6 $\pm$ 2.34   | 34                     | 4.8 $\pm$ 1.2   | 0.60      | 23.2 $\pm$ 5.42   | 53                     |
|                | Los Angeles          | 11.67 $\pm$ 2.03  | 0                      | 2.33 $\pm$ 0.67 | 0.81      | 2.5 $\pm$ 0.5     | 0                      |
|                | Miami                | 26 $\pm$ 15.64    | 54                     | 4 $\pm$ 0.71    | 0.71      | 49.25 $\pm$ 20.8  | 6                      |
|                | Minneapolis-St. Paul | 39.67 $\pm$ 14.14 | 48                     | 3.83 $\pm$ 0.87 | 0.71      | 32.5 $\pm$ 13.77  | 0                      |
|                | Phoenix              | 2.5 $\pm$ 0.5     | 0                      | 1 $\pm$ 0.00    | 1.00      | 2 $\pm$ 1.00      | 0                      |

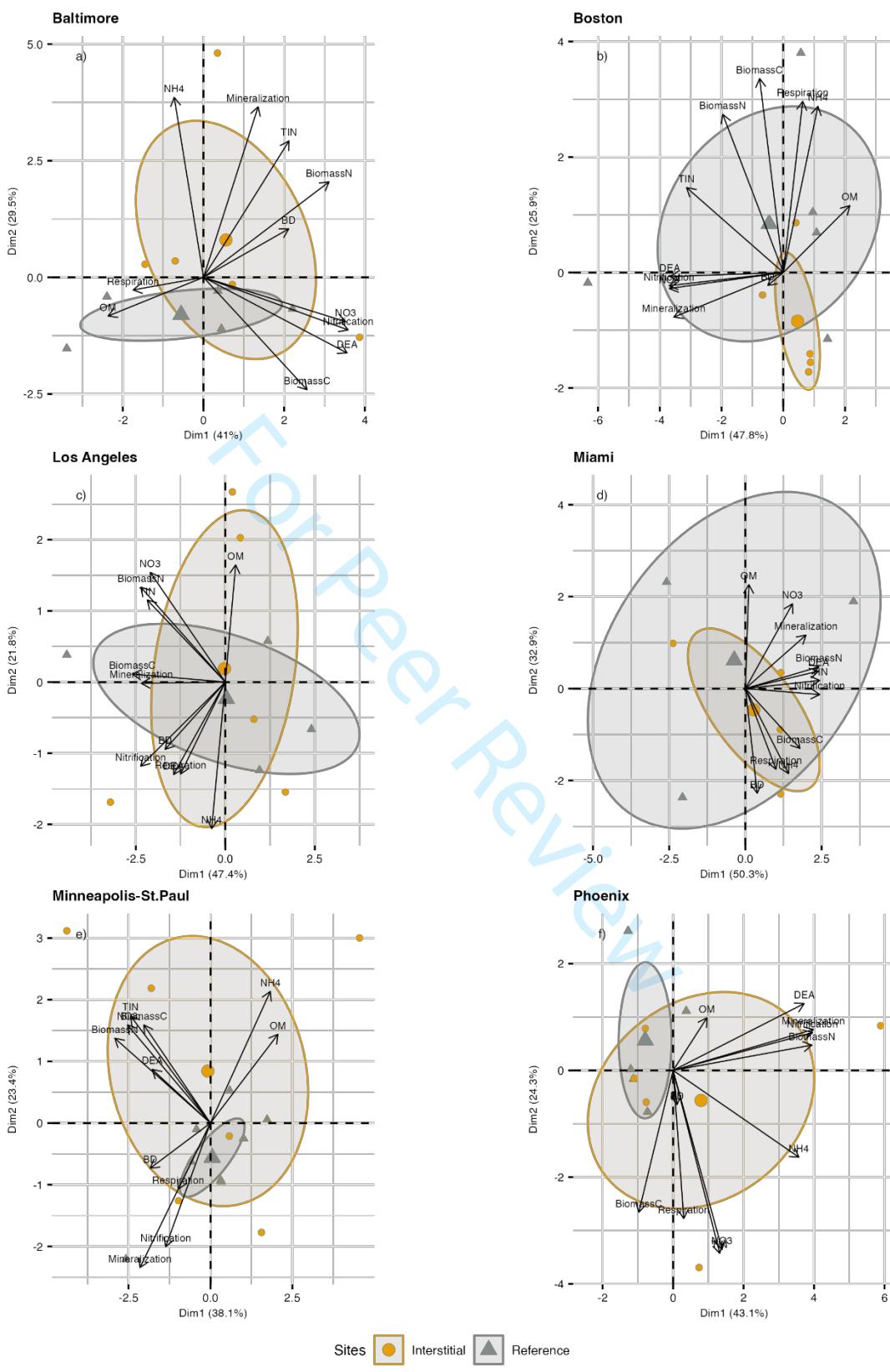
1  
2  
3 1137 **Table 2.** Percent of the number species in interstitial sites, reference sites, and shared  
4 1138 between interstitial and reference sites in each city ( $n = 6$ ).  
5

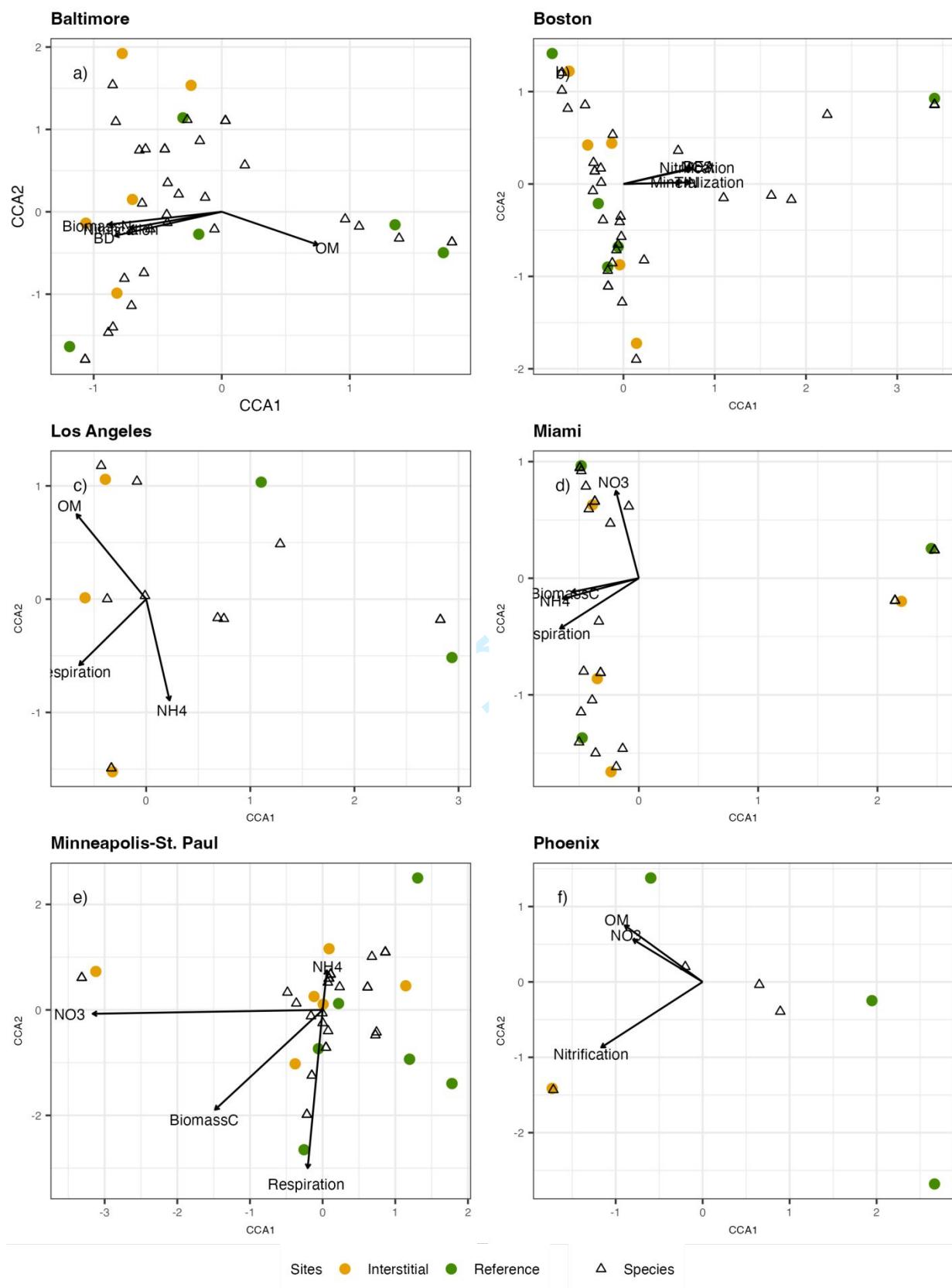
| Cities               | Interstitial (%) | Reference (%) | Interstitial and reference (%) |
|----------------------|------------------|---------------|--------------------------------|
| Baltimore            | 54               | 46            | 32                             |
| Boston               | 64               | 36            | 26                             |
| Los Angeles          | 57               | 43            | 64                             |
| Miami                | 51               | 49            | 18                             |
| Minneapolis-St. Paul | 50               | 50            | 20                             |
| Phoenix              | 40               | 60            | 20                             |

1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176


For Peer Review


1  
2  
3 1177 **Figure 1.** Interstitial and reference areas have distinct woody species compositions. Non-metric  
4 1178 multidimensional scaling (NMDS) of woody community composition in interstitial and reference  
5 1179 sites in (a) Baltimore (b) Boston (c) Los Angeles (d) Miami (e) Minneapolis-St. Paul (f) Phoenix.  
6 1180 Plot points are based on Bray-Curtis distances of relative abundance data. Distance between  
7 1181 points represents compositional similarity, with closer points being more similar than points  
8 1182 further apart. Stress values for a) 0.091 b) 0.076 c) 0 d) 0.064 e) 0.048 f) 0.  
9 1183  
10 1184  
11 1185  
12 1186  
13 1187


14  
15  
16 1188 **Figure 2.** Mean values of soil (0 – 30 cm depth) parameters in interstitial and reference sites over  
1189 all cities. Error bars represent +/- SE. Bars with asterisks are significantly different: \* $p < 0.05$ .  
1190 Bars with NS = not significant.  
1191  
1192


1193  
1194 **Figure 3.** Principal components analysis (PCA) showing soil parameters across interstitial and  
1195 reference sites in a) Baltimore b) Boston c) Los Angeles d) Miami e) Minneapolis-St. Paul f)  
1196 Phoenix. Soil parameter codes: Microbial biomass C (BiomassC), microbial biomass N  
1197 (BiomassN), basal respiration (Respiration),  $\text{NO}_3^-$  (NO3),  $\text{NH}_4^+$  (NH4), total inorganic N (TIN),  
1198 potential net N mineralization (Mineralization), potential net nitrification (Nitrification),  
1199 denitrification potential (DEA), organic matter content (OM), and bulk density (BD).  
1200  
1201

1202 **Figure 4.** Canonical correlation analysis (CCA) showing similarity of woody species community  
1203 composition in relation to soil parameters amongst interstitial and reference sites in a) Baltimore  
1204 b) Boston c) Los Angeles d) Miami e) Minneapolis-St. Paul f) Phoenix. Sites (green and yellow  
1205 dots), tree species (open triangles), soil parameters (black arrows): Microbial biomass C  
1206 (BiomassC), microbial biomass N (BiomassN), basal respiration (Respiration),  $\text{NO}_3^-$  (NO3),  
1207  $\text{NH}_4^+$  (NH4), total inorganic N (TIN), potential net N mineralization (Mineralization), potential  
1208 net nitrification (Nitrification), denitrification potential (DEA), organic matter content (OM), and  
1209 bulk density (BD). Distance between plot symbols indicates similarity of species composition  
1210 and abundance. The proportion of variance explained by CCA1-CCA2 in each city a) 17%-10%  
1211 b) 17%-10% c) 35% d) 14%-10% e) 16%-14% f) 5%-3%.  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
2051  
2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2080  
2081  
2082  
2083  
2084  
2085  
2086  
2087  
2088  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2096  
2097  
2098  
2099  
2100  
2101  
2102  
2103  
2104  
2105  
2106  
2107  
2108  
2109  
2110  
2111  
2112  
2113  
2114  
2115  
2116  
2117  
2118  
2119  
2120  
2121  
2122  
2123  
2124  
2125  
2126  
2127  
2128  
2129  
2130  
2131  
2132  
2133  
2134  
2135  
2136  
2137  
2138  
2139  
2140  
2141  
2142  
2143  
2144  
2145  
2146  
2147  
2148  
2149  
2150  
2151  
2152  
2153  
2154  
2155  
2156  
2157  
2158  
2159  
2160  
2161  
2162  
2163  
2164  
2165  
2166  
2167  
2168  
2169  
2170  
2171  
2172  
2173  
2174  
2175  
2176  
2177  
2178  
2179  
2180  
2181  
2182  
2183  
2184  
2185  
2186  
2187  
2188  
2189  
2190  
2191  
2192  
2193  
2194  
2195  
2196  
2197  
2198  
2199  
2200  
2201  
2202  
2203  
2204  
2205  
2206  
2207  
2208  
2209  
2210  
2211  
2212  
2213  
2214  
2215  
2216  
2217  
2218  
2219  
2220  
2221  
2222  
2223  
2224  
2225  
2226  
2227  
2228  
2229  
22210  
22211  
22212  
22213  
22214  
22215  
22216  
22217  
22218  
22219  
22220  
22221  
22222  
22223  
22224  
22225  
22226  
22227  
22228  
22229  
222210  
222211  
222212  
222213  
222214  
222215  
222216  
222217  
222218  
222219  
222220  
222221  
222222  
222223  
222224  
222225  
222226  
222227  
222228  
222229  
2222210  
2222211  
2222212  
2222213  
2222214  
2222215  
2222216  
2222217  
2222218  
2222219  
2222220  
2222221  
2222222  
2222223  
2222224  
2222225  
2222226  
2222227  
2222228  
2222229  
22222210  
22222211  
22222212  
22222213  
22222214  
22222215  
22222216  
22222217  
22222218  
22222219  
22222220  
22222221  
22222222  
22222223  
22222224  
22222225  
22222226  
22222227  
22222228  
22222229  
222222210  
222222211  
222222212  
222222213  
222222214  
222222215  
222222216  
222222217  
222222218  
222222219  
222222220  
222222221  
222222222  
222222223  
222222224  
222222225  
222222226  
222222227  
222222228  
222222229  
2222222210  
2222222211  
2222222212  
2222222213  
2222222214  
2222222215  
2222222216  
2222222217  
2222222218  
2222222219  
2222222220  
2222222221  
2222222222  
2222222223  
2222222224  
2222222225  
2222222226  
2222222227  
2222222228  
2222222229  
22222222210  
22222222211  
22222222212  
22222222213  
22222222214  
22222222215  
22222222216  
22222222217  
22222222218  
22222222219  
22222222220  
22222222221  
22222222222  
22222222223  
22222222224  
22222222225  
22222222226  
22222222227  
22222222228  
22222222229  
222222222210  
222222222211  
222222222212  
222222222213  
222222222214  
222222222215  
222222222216  
222222222217  
222222222218  
222222222219  
222222222220  
222222222221  
222222222222  
222222222223  
222222222224  
222222222225  
222222222226  
222222222227  
222222222228  
222222222229  
2222222222210  
2222222222211  
2222222222212  
2222222222213  
2222222222214  
2222222222215  
2222222222216  
2222222222217  
2222222222218  
2222222222219  
2222222222220  
2222222222221  
2222222222222  
2222222222223  
2222222222224  
2222222222225  
2222222222226  
2222222222227  
2222222222228  
2222222222229  
22222222222210  
22222222222211  
22222222222212  
22222222222213  
22222222222214  
22222222222215  
22222222222216  
22222222222217  
22222222222218  
22222222222219  
22222222222220  
22222222222221  
22222222222222  
22222222222223  
22222222222224  
22222222222225  
22222222222226  
22222222222227  
22222222222228  
22222222222229  
222222222222210  
222222222222211  
222222222222212  
222222222222213  
222222222222214  
222222222222215  
222222222222216  
222222222222217  
222222222222218  
222222222222219  
222222222222220  
222222222222221  
222222222222222  
222222222222223  
222222222222224  
222222222222225  
222222222222226  
222222222222227  
222222222222228  
222222222222229  
2222222222222210  
2222222222222211  
2222222222222212  
2222222222222213  
2222222222222214  
2222222222222215  
2222222222222216  
2222222222222217  
2222222222222218  
2222222222222219  
2222222222222220  
2222222222222221  
2222222222222222  
2222222222222223  
2222222222222224  
2222222222222225  
2222222222222226  
2222222222222227  
2222222222222228  
2222222222222229  
22222222222222210  
22222222222222211  
22222222222222212  
22222222222222213  
22222222222222214  
22222222222222215  
22222222222222216  
22222222222222217  
22222222222222218  
22222222222222219  
22222222222222220  
22222222222222221  
22222222222222222  
22222222222222223  
22222222222222224  
22222222222222225  
22222222222222226  
22222222222222227  
22222222222222228  
22222222222222229  
222222222222222210  
222222222222222211  
222222222222222212  
222222222222222213  
222222222222222214  
222222222222222215  
222222222222222216  
222222222222222217  
222222222222222218  
222222222222222219  
222222222222222220  
222222222222222221  
222222222222222222  
222222222222222223  
222222222222222224  
222222222222222225  
222222222222222226  
222222222222222227  
222222222222222228  
222222222222222229  
2222222222222222210  
2222222222222222211  
2222222222222222212  
2222222222222222213  
2222222222222222214  
2222222222222222215  
2222222222222222216  
2222222222222222217  
2222222222222222218  
2222222222222222219  
2222222222222222220  
2222222222222222221  
2222222222222222222  
2222222222222222223  
2222222222222222224  
2222222222222222225  
2222222222222222226  
2222222222222222227  
2222222222222222228  
2222222222222222229









1  
2  
3 **Response to Reviewer Comments: Woody plant-soil relationships in urban interstitial spaces have**  
4 **implications for future forests within and beyond urban areas (ECOSYSTEMS MS# ECO-23-0052)**  
5

6 **(Reviewer comments are repeated below, responses are *in red italics*)**  
7

8 **Subject-Matter Editor, Bürgi, Matthias**  
9

10 Comments to the Author:  
11

12 Thank you for submitting your paper “Woody plant-soil relationships in urban interstitial spaces have  
13 implications for future forests within and beyond urban areas” to Ecosystems. We now received two  
14 reviews and both reviewers see the relevance and the potential in the study conducted.  
15

16 However, both reviewers also raise a series of concerns, and based on my own reading, I must add  
17 another one: In the title, the highlights and throughout the manuscript you put a lot of weight on the  
18 relevance of your results for forests within and beyond urban areas. However, I do not see how your  
19 specific results contribute to this finding. The existing literature alone allows to draw these conclusions,  
20 but to which specific aspect do your results contribute? I strongly suggest being more precise and specific  
21 regarding the implications you refer to throughout the text.  
22

23 *We have addressed the concerns regarding the relevance of our results to forests within and beyond  
24 urban areas. At the beginning of the manuscript, we clarify that in this study, we asked the question “if  
25 analysis of forests that have spontaneously assembled in urban interstitial spaces provide insight into  
26 how global environmental change will affect the forests of the future.” We ask if the complex mix of  
27 anthropogenic factors affecting these spaces (altered climate and atmospheric chemistry, altered  
28 disturbance regimes, altered species pool) are analogous to factors playing out across the globe at lower  
29 intensity. If so, the novel communities that assemble in these spaces may provide a glimpse of the forests  
30 that may become widespread across the world. The fact that we observed the formation of novel  
31 communities in these spaces in six cities across a very broad range of climates, suggests that our results  
32 do have relevance for forests beyond urban areas.*  
33

34 *We note that Reviewer #2 appreciates this relevance, “it is of high relevance to better understand novel  
35 ecosystems as they develop in described urban and peri-urban areas. We will face novel ecosystems  
36 across the globe and therefore it is important to learn on how and where to manage in order to maintain  
37 ecosystem services, biodiversity and climate resilience.”*  
38

39 On some occasions, there seems to be a tension between the desire to draw more general conclusion  
40 and the heterogeneity of site conditions, landscape level context, land use legacies etc. in your sites  
41 selected. At least this is my impression when I read for example on Line 576 about a lack of difference in  
42 C dynamics between interstitial and reference sites, but just five lines further down that your results  
43 support the idea that the quantity of C in urban ecosystems can be significant compared to native  
44 ecosystems. Reviewer 1 similarly refers to aspects where a more precise wording might help to avoid  
45 such misunderstandings. The reader has to be very clear regarding which insights arise from your results  
46 and what statements are based on the literature – this does not seem to be always the case now.  
47

48 *As described in detail below, we have clarified the specific places where this tension arises in our revised  
49 manuscript. We have eliminated the sentence that created confusion in (former) Line 576.*  
50

51 I do think that the topic addressed is indeed of high relevance and also of high interest to the readership  
52 of our journal. However, in its present form, the manuscript lacks specificity regarding the insights  
53 generated based on results and how these insights specifically translate into what kind of implications for  
54 future forest management. I therefore suggest that you revise and resubmit your manuscript based on the  
55 recommendations of the reviewers and the suggestions regarding sharpening the message outlined  
56 above.  
57  
58  
59  
60

1  
2  
3 Sincerely yours Matthias Bürgi  
4  
5

6 *Thank you for considering our manuscript. We are glad to hear the topic is relevant and useful to readers*  
7 *of ECOSYSTEMS. We have revised the manuscript according to the comments suggested, and more*  
8 *specifically addressed the implications for future forest management.*

9 **Reviewer 1**  
10

11 General comments:  
12

13 The study by Mejia et al examines woody plant species composition and richness with respect to soil C  
14 and N properties across six contrasting urban areas in the United States. These comparative types of  
15 studies are very important as they highlight where ecological theory becomes limited to different  
16 ecosystems. I think the data sets are robust and should absolutely be published.  
17

18 *Thanks for these positive comments and for your helpful and constructive review!*  
19

20 However, the content of the study needs revision as outlined in my following general and specific  
21 comments:  
22

23 The introduction needs to be revised. First, the authors need to emphasize how this is novel with respect  
24 to their previous works, in particular, the "Trammell, T.L., Pataki, D.E., Pouyat, R.V., Groffman, P.M.,  
25 Rosier, C., Bettez, N., Cavender-Bares, J., Grove, M.J., Hall, S.J., Heffernan, J. and Hobbie, S.E., 2020.  
26 Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs, 90(2),  
27 p.e01401." has very similar conclusions using much of the same data. Moreover, the Trammell paper was  
28 not cited in the introduction and should be as it is incorporating many of the same themes and concepts.  
29 Second, there has been extensive work on C and N cycling in urban systems and this work does not  
30 approach it in a quantitative fashion. I understand the need to advance theory, but there needs to be  
31 quantitative data to describe sizes of storage and fluxes and the current introduction is a disservice to  
32 those authors and to readers.  
33

34 *A major focus of our revision has been to clarify that the soil data were used for two very different*  
35 *purposes than the analyses in Trammell and others (2020) and Ryan and others (2022). Given that the*  
36 *focus of our study was what we can learn from the vegetation communities that spontaneously assemble*  
37 *in urban interstitial spaces, our soils analysis was focused on 1) ensuring that there were no major*  
38 *anthropogenic differences between reference and interstitial sites such as compaction, profile*  
39 *disturbance, or fertilization, and 2) to explore effects of novel plant communities on soil processes. A*  
40 *major focus of our revision was to clarify these objectives. We have also included references to the*  
41 *Trammell and others (2020) and Ryan and others (2022) papers and clarified that these were focused on*  
42 *evaluating homogenization and changes in soil pools and processes rather than relationships with*  
43 *vegetation communities.*

44  
45 The methods were written very well. I only had a specific comment on nondimensionalizing the data used  
46 in the PCA.  
47

48 *Thank you, we have clarified that the soil data was standardized prior to conducting the PCA (line 615).*  
49

50 My first issue with the content of the manuscript is what seems to be either an inconsistency or cherry-  
51 picking regarding composition vs richness. For example, the abstract states "We observed marked  
52 differences in woody plant community composition between interstitial and reference sites in most  
53 metropolitan regions." but the first line of the results state "Across cities, there was no consistent  
54 difference in mean woody plant species richness between reference and interstitial sites (Table 1)." This  
55 seems contradictory to the Cubino et al 2018 study which species richness is held in equal regard as  
56  
57  
58  
59  
60

1  
2  
3 composition and touted as an important response variable but here in the results and discussion it seems  
4 to have been forgotten/buried.  
5

6 *We have clarified in the Methods section (lines 600 – 602) that species composition is “the identity of*  
7 *species present in a community.” We had already defined species richness as “the overall number of*  
8 *species,” in a community (lines 344-345). In the Cubino and others (2019) study the focus was on the role*  
9 *of non-native species in biotic homogenization in residential yards and addressed both species richness*  
10 *and composition. Our focus here was not on homogenization, but rather to explore effects of novel plant*  
11 *communities (composition) in interstitial (i.e., unmanaged) spaces.*

12  
13 My second issue is that soil C and N are discussed and framed irrespective to soil moisture and pollution.  
14 Soil moisture controls the growth of woody plants in southern California (shrubs and invasive grasses  
15 dominate the dry areas). Soil moisture retention data should be available from NRCS to compare soil  
16 data within each city. Also, that could help eliminate any potential aquatic conditions creating outliers in  
17 temperate forests. N pollution in several of the cities are dominant factors, particularly LA which has had  
18 massive N fluxes of N deposition exceeds 10 kg ha<sup>-1</sup> yr<sup>-1</sup> well into the 1990s (N pollution during acid  
19 rain peaked around 12 kg ha<sup>-1</sup> yr<sup>-1</sup> in NY for example). These are two very important processes not  
20 covered in the manuscript as needed.  
21

22 *We have clarified in the methods section (lines 501 – 509) that the selection criteria for the interstitial sites*  
23 *“included sites with natural soil profiles similar in texture and landscape position to those in the reference*  
24 *areas, without signs of anthropogenic soil disturbance. In some cities, e.g., Minneapolis St.-Paul this*  
25 *required locating sites on different soil parent materials. Unmanaged patches that fit these criteria were*  
26 *located within the same region as the reference sites, either on the edge of the city, at the interface with*  
27 *suburban residential land, or within public parklands or woodlands (for more detailed description, see*  
28 *Padullés Cubino and others 2020; Lerman and others 2021). Soil taxonomy was identified using USDA*  
29 *Natural Resource Conservation Service (NRCS) maps for each native reference and interstitial site in*  
30 *each city (Table S1).” Closely matching the soil series allowed us to avoid differences in soil moisture*  
31 *retention and having the sites interspersed across the region avoid local pollution gradients. However, we*  
32 *have highlighted the importance of these gradients, especially in Los Angeles (lines 804 – 806).*

33 Specific comments:  
34

35 The title should be revised. Having “urban interstitial spaces” and “urban areas” in the title seems  
36 redundant.  
37

38 *We have revised to: “Woody plant-soil relationships in interstitial spaces have implications for future*  
39 *forests within and beyond urban areas.”*

40 For author contributions, authors should use CRediT to really specify their intellectual contributions. The  
41 second batch of authors contributed equally through what kind of comments? Making sure their names  
42 are spelled correctly?  
43

44 *We have extensively revised the author statement to more clearly specify the contributions that people*  
45 *made based on CRediT descriptions and the journal guidelines. This paper is the product of a research*  
46 *group that has been working together since 2010 so there are people who contributed to the study and*  
47 *experimental design as well as relative newcomers who were more involved in interpretation of this*  
48 *specific data. This is an active group; there were multiple iterations of comments and suggested edits on*  
49 *the early drafts.*

50 Highlights:  
51

52 Bullet 2: either ‘N’ or ‘nitrogen’.  
53  
54

55  
56  
57  
58  
59  
60

1  
2  
3 *Thank you, this has been revised to Nitrogen (N).*  
4  
5

6 Abstract:

7 The authors should consider being more quantitative, as the only number in their abstract is 'six' for the  
8 number of sites.  
9

10 *While we have extensively revised the Abstract to clarify several key points (as described above), we  
11 have not made it more quantitative as suggested here. Most of our results are from multivariate analyses  
12 that are not particularly conducive to simple quantitative statements.*  
13  
14

15 Results:

16 Line 341: One of my least favorite aspects of ecology, p values. Please remember it is significant or it is  
17 not. Marginally significant defeats the purpose of a priori statistical tests and shows post-hoc significance  
18 hunting. Instead, focus on the R<sup>2</sup> explanatory power which is huge for Los Angeles.  
19

20 *We have clarified (lines 680 – 681) that 'there were strong, but not statistically significant compositional  
21 differences between interstitial and reference sites in Los Angeles ( $r^2 = 0.47$ ,  $p = 0.10$ , respectively; Table  
22 S2)."*  
23  
24

25 Line 370 and 371: Is "Strongly loaded" the correct terminology? From the methods it is unclear if the data  
26 were normalized/nondimensionalized to their standard deviation and thus would have an oversized effect  
27 on the eigenvalues and eigenvectors. Please either clarify the methods or re-do the PCA with  
28 nondimensionalized data.  
29

30 *We clarified in the methods sections (lines 627 – 628) that the data was normalized/nondimensionalized  
31 to their standard deviation before conducting the PCA. This enabled us to use the loadings to determine  
32 the importance of the factors (i.e., strong or weak contribution to the components).*  
33  
34

35 Line 384: The high variability seems like soil macro- and micro-topography were not properly controlled  
36 during sampling in LA and PHX. Such is the way of field sampling.  
37

38 *We have clarified (line 515) that "two soil cores up to 30 cm depth were collected at random locations  
39 along transects at each site." Indeed, some of the variability that we observed may be due to soil macro-  
40 and micro-topography as the reviewer suggests.*  
41  
42

43 Line 399: Why not mention the lack of differences in richness?  
44

45 *We have clarified (lines 481 – 497) in the discussion that the focus of our analysis is species composition,  
46 which we define as "the identify of species present in a community." We do talk about species diversity  
47 (richness), later in the discussion, but our focus is composition.*  
48  
49

50 Discussion:  
51

52 Line 410: The authors should really consider nitrogen in the context of precipitation limitations and N  
53 pollution in their overview as it is misleading to draw a link directly between plants and soil N without  
54 those two major factors being stated immediately.  
55

56 *We have extensively revised this "overview" section as well as the description of the objectives and  
57 experimental approaches to our soil and nitrogen work. Of particular importance here is that having the  
58 sites interspersed across the region avoids local pollution gradients.*  
59  
60

1  
2  
3 Line 476: I believe the major deforestation of New England in the 1800s-1900s was far more  
4 fragmentation than current parcels. Just look at the stone walls!  
5

6 *We have clarified (lines 922 – 924) that “temperate forests of New England have experienced increased*  
7 *fragmentation over recent decades” to avoid confusion with earlier periods of more intensive*  
8 *fragmentation.*

9  
10 Line 517: Finally soil moisture constraints on N are mentioned. Soil moisture constraints need to be a  
11 more prominent feature in describing the C and N data as soils in LA and PHX are moisture constrained  
12 for most of the year while C and N data were determined using incubated soils which are artificial  
13 conditions in the dry areas for most of the year.  
14

15 *We have a paragraph (lines 974 – 977) that discusses how “comparison of interstitial and reference sites*  
16 *in our most arid cities (Phoenix and Los Angeles) produced an interesting contrast to mesic cities.” We*  
17 *note in the methods (lines 712 – 714) that this comparison is not affected by differences in soil moisture*  
18 *between the interstitial and reference sites, none of which received water additions. We also note that*  
19 *there were no water additions to our incubations for C and N cycle processes.*

20  
21 Line 536: Soils and their moisture retention control plants success outside of the udic soil moisture regime  
22 (and even to an extent in udic regimes where aquic conditions dominate). This basic feature of soil  
23 moisture controlling plant richness and composition seems lost on the authors' discussion.  
24

25 *As noted above, we do spend some time talking about the importance of soil moisture effects on plants*  
26 *and soils, and how this varies between the mesic and arid cities. However, these effects do not affect our*  
27 *comparison of interstitial and reference sites, which were chosen to avoid differences in inherent soil*  
28 *characteristics. Detailed soil classifications are presented in Table S1.*

29  
30 Line 546: Finally, acknowledgement of N pollution. There have been tons of great papers examining this  
31 such as:  
32

33  
34 Fenn, M.E., Poth, M.A. and D.W., 1996. for in the San Bernardino Mountains in *Forest*  
35 *Ecology and*, 82(1-3),

36  
37 Fenn, M.E., Allen, E.B., Weiss, S.B., Jovan, S., L.H., Tonnesen, G.S., R.F., Rao, L.E., B.S., Yuan, F. and  
38 T., 2010. critical loads and for in of ,91(12), Line 578: Was organic matter quality measured? If not, this  
39 sentence is a stretch.

40  
41 *Thank you so much for the suggestions, we have added these references and clarified that “in drier*  
42 *regions, these variations may be affected by local N cycling patterns, such as those observed in*  
43 *California.” Please note that our reference and interstitial sites should be equally affected by local N*  
44 *cycling patterns.*

45  
46 *We have clarified that measurements of microbial biomass carbon and respiration are indices of organic*  
47 *matter quality (lines 1040 – 1043).*

48  
49 Appendix Table S1  
50

51 The Taxonomy shown as “Soil Series” is actually the only the soil family with which the soil series  
52 belongs. In addition, the complexes shown you only include one of the soil family data but they are likely  
53 dissimilar units not belonging to the same family which very different soil properties. Such is the problem  
54 with the soil maps of the US :/  
55

56 *We have changed the column heading in Table S1 from “Soil Series” to “Soil Family”*  
57  
58  
59  
60

**Reviewer 2:**

General comments:

This topic is extremely important for the provisioning of future ecosystem services. It is of high relevance to better understand novel ecosystems as they develop in described urban and peri-urban areas. The study is well presented and touches an important interface of forest dynamics considering soil dynamics. We will face novel ecosystems across the globe and therefore it is important to learn on how and where to manage in order to maintain ecosystem services, biodiversity and climate resilience. I do support the publication of this paper. However, it would be beneficial to increase the perspective a bit as there is quite a bit of experience across the world. There are some basic papers that might improve the manuscript especially in the light of a legal framework on introducing tree species. In the light of controlling and managing ecosystems in the future. e.g. Brundu et al. 2020 in *Neobiota Global* guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts.

*Thank you for feedback and recognition of the contribution of our manuscript to understanding novel ecosystems. We agree that broadening our references would strengthen the paper and make the study more relevant to urban and peri-urban forests outside the U.S. We have added 23 additional sources, including Brundu et al. 2020.*

What I miss and think it should be discussed is a stronger link to ecosystem services. Especially the provision of clean and filtered water in such environments seems to be a real challenge for now and the future. There are experiences with invasive woody species with regards to water consumption of introduced species from e.g. South Africa. There is lots of literature available for the Center of Invasion Biology in Stellenbosch (e.g. van Wilgen or Richardson). Also Australia has a broad expertise on this topic. The same accounts for biodiversity and the competition of non-native to native species. This is also only touched very briefly and might be expanded in a few sentences.

*We expanded our discussion of ecosystem services, specifically the effects of invasive species on water consumption and soil conservation. We have also included the references recommended. Many thanks for these specific suggestions!*

In general, the reference list is quite focussed on US literature. This certainly makes sense as the study is tailored for US environments, however, a view across borders is reasonable as in other countries where non-natives (in the US) are native, management experiences for certain species might be available. This also accounts for invading processes. Also here, countries as New Zealand, Australia, South Africa and many countries in South America have vast experiences with such developments. There are also strong publications from author groups from across the globe that might be considered as refs. (e.g. Brundu et al., 2020 *Neobiota Global* guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts; or Krumm and Vitkova, *Introduced tree species - opportunities and challenges*, EFI 2016. Also the groups of Pysek, Essl or Blackburn have important publications on basic principles on invasive processes.

*We have included the references suggested and expanded our discussion of management of non-native vegetation from other non-US references.*

As the definition of crucial terms, such as exotic, native, non-native is interpreted and perceived in different ways, it would be helpful to include a definition in the manuscript. It usually confuses readers as there are also varying definitions around.

*We have clarified in the introduction and methods our definition of introduced (non-native) species based on the USDA definition and offered more details on these definitions in the methods section. According to the USDA: Introduced species reproduce spontaneously in the wild without human help and tend to persist. Invasive species are (1) non-native (or alien) species to the ecosystem under consideration and*

1  
2  
3 (2) a species whose introduction causes or is likely to cause economic harm, environmental harm, or  
4 harm to human health.  
5  
6

7 Specific comments:  
8  
9

10 line 200: What does shrub mean? Any threshold on size  
11  
12

13 *We clarified in the methods that the threshold size for all vegetation measured was 1 cm diameter (line  
14 514).*

15 Discussion:  
16  
17

18 In my view, the first section "overview" would not be necessary. It even confuses a bit and does not  
19 really support the readability of the discussion. I would prefer to start right away with discussing the results  
20 and relationships. Adding a few sentences on impacts on forest ecosystems would be valuable here.  
21 Lines 425ff Any other potential reasons for the observed differences? Or why are the differences that  
22 pronounced? Climatic changes? Land use changes? Invading processes, e.g. missing Mycorrhiza,  
23 missing antagonists etc?

24 *We have eliminated the "overview" section and re-organized the Discussion section as suggested here.  
25 We now start by reminding the reader that our overarching question is "if analysis of forests that have  
26 spontaneously assembled in urban interstitial spaces provide insight into how global environmental  
27 change will affect the forests of the future." We then go on to discuss differences in plant communities  
28 and then discuss if local human alteration of soils has reduced the value of our sites as analogs for future  
29 environmental conditions. We then go on to discuss the effects of altered plant communities on soil  
processes and ecosystem services.*

30 Line 435: The ref of Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jarošík, V.,  
31 Wilson, J.R.U. and Richardson, D.M. 2011. A proposed unified framework for biological invasions. Trends  
32 in Ecology and Evolution. 26(7): 333-339. doi:10.1016/j.tree.2011.03.023 would fit well here.

33 Line 436: Another interesting ref might be from Kowarik et al about urban wilderness in Berlin.

34  
35 *Thank you for the suggestions, we have included these two references throughout the discussion (line  
36 834, 848, and 1074).*

37 Lines 437: Would it be an option that seeds are still rare from non-natives related to natives? This might  
38 then change soon? At least it could be a question of time and it might change. You mention this as a  
39 potential ecological time lag....there is this phase model from Blackburn et al. that might fit well. After the  
40 establishment phase of non-native species the bum and burst phase might follow.

41  
42 *We have revised this sentence to incorporate that introduced species may be going through some phase  
43 change as explained by the model developed by Blackburn and others.*

44 Line 449 ff: This seems quite clear and there are refs around, see e.g. Conedera and Schoenenberger in  
45 studies of Ticino in Switzerland.

46 Line 456ff: There are many refs from across the globe that support your statement here. I would suggest  
47 to refer a bit broader.

48  
49 *We have revised this paragraph to include the works of Conedera and Schoenenberger, as well as other  
50 non-US based references.*

51 Line 612: and probably also different soil conditions unnaturally enriched with nutrients?  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 *This sentence has been revised (lines 1097 – 1099) to clarify that soil conditions is also an important*  
4 *factor to consider in lands previously used for agriculture.*  
5

6 For the discussion, it might be worth discussing also management objectives of urban forest or tree  
7 managers. This might have a strong influence and must be considered anyway. Objectives to make cities  
8 greener must include non-native species that might become invasive with a time lag. The potential list  
9 that must consider urban environmental condidtions, narrow the list of species quite a bit.  
10

11 *This is an interesting topic that is the focus of another paper in review by our research group. However,*  
12 *the focus of this paper is on what we can learn from spontaneously developing novel communities so we*  
13 *have not added discussion of management objectives for urban forests here.*  
14

15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

For Peer Review

1  
2  
3 August 11, 2023  
4  
5  
6

7 Dear Editors-in-Chief Monica G. Turner and Stephen R. Carpenter,  
8  
9

10  
11 Please consider the revised and resubmitted manuscript titled "Woody plant-soil relationships  
12 in interstitial spaces have implications for future forests within and beyond urban areas," by  
13 Gisselle A. Mejía, Peter M. Groffman, Meghan L. Avolio, Anika R. Bratt, Jeannine Cavender-  
14 Bares, Noortje Grijseels, Sharon J. Hall, James Heffernan, Sarah E. Hobbie, Susannah B. Lerman,  
15 Jennifer L Morse, Desiree L. Narango, Christopher Niell, Josep Padullés Cubino, Tara L.E.  
16 Trammell as a resubmission for publication in *Ecosystems*.  
17  
18

19  
20 We have extensively revised the manuscript (previously ECOSYSTEMS MS# ECO-23-0052) in  
21 response to the thoughtful reviewer comments and hope and feel that we have produced a  
22 substantially changed and improved manuscript. We would like to request that this revised  
23 version of the manuscript be handled by the same subject matter editor (Matthias Bürgi) and  
24 the same reviewers. The comments from the editor and the reviewers were extremely useful in  
25 the revision process. The anonymous reviewers acknowledged that the topic is extremely  
26 important and of high relevance to better understand novel ecosystems and provisioning of  
27 future ecosystem services in urban areas and beyond.  
28  
29

30  
31 In relatively unmanaged interstitial spaces (i.e., spontaneously forested areas surrounded by  
32 residential development), native and non-native vegetation have the potential to mix and  
33 assemble into new or novel communities. Our study examined differences in woody plant  
34 community composition between interstitial areas - at the residential-wildland interface - and  
35 natural reference areas in six cities in the continental U.S. (Baltimore, MD; Boston, MA; Los  
36 Angeles, CA; Miami, FL; Minneapolis- St. Paul, MN; and Phoenix, AZ). We also examined  
37 whether these differences in woody plant community composition in interstitial and reference  
38 areas are related to variation in soil C and N cycling processes. We found that there are marked  
39 differences in woody vegetation composition between interstitial and reference areas in six  
40 cities across the U.S. These differences are likely the result of a greater proportion of  
41 introduced species in interstitial sites, and variation in inherent N availability. These results  
42 increase our basic understanding of novel ecosystems that have emerged from transportation  
43 and spread of introduced species and have assembled without human intervention. The  
44 potential effects of these novel ecosystems are largely unknown, but they are of great concern  
45 due to growing urban expansion and land-use change. I hope that this topic is of interest  
46 to readers of *Ecosystems*.  
47  
48

49 This manuscript has not been previously published and is not currently under consideration by  
50 another journal. There are no known conflicts of interest associated with this publication, and  
51 financial support provided for this study did not influence the results of the research. As the  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 corresponding author, I confirm that all authors have approved of and have agreed to submit  
4 the manuscript to *Ecosystems*.  
5

6 I hope that this manuscript can be considered for publication in the journal, and I look forward  
7 to your response.  
8

9 Sincerely,  
10  
11

12  
13   
14  
15

16  
17  
18 Gisselle A. Mejía  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

For Peer Review