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Abstract. We consider pairs of automorphisms (¢, o) acting on fields of Laurent or Puiseux series:
pairs of shift operators (¢: x — x + h1,0:x +— x + hy), of g-difference operators (¢: x + ¢q1x,
0:X — ¢2x), and of Mahler operators (¢: x — xP1, g:x > xP2). Given a solution f to a linear
¢-equation and a solution g to an algebraic o-equation, both transcendental, we show that f and g
are algebraically independent over the field of rational functions, assuming that the corresponding
parameters are sufficiently independent. As a consequence, we settle a conjecture about Mahler
functions put forward by Loxton and van der Poorten in 1987. We also give an application to the
algebraic independence of g-hypergeometric functions. Our approach provides a general strategy
to study this kind of question and is based on a suitable Galois theory: the o-Galois theory of linear
¢-equations.
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1. Introduction

Let K be a field and let F be a field extension endowed with an endomorphism ¢ such
that ¢(K) C K. A linear ¢-difference equation over K is an equation of the form

" (¥) + an—1¢" " (¥) + - +aoy =0, (1.1)

where ay, ...,a,—1 € K. The set Solg, k,r, formed by all elements in F' that are solu-
tion to a linear ¢-difference equation over K, is a ring containing K. Traditionally, the
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algebraic relations over K between the elements of Soly g r are studied through the dif-
ference Galois theory associated with the endomorphism ¢ (see, for instance, [32]). If
we assume that K and F are endowed with a second endomorphism o that is suffi-
ciently independent of ¢, we expect the intersection of Soly, g, r and Sols, k, F to be small,
even possibly reduced to K. Schifke and Singer [28] recently confirmed this expectation
in several important cases (see Theorem 1.1 below for a precise statement). They con-
sider pairs of shift operators (¢: x — x + hq, 0:x — x + hy), of g-difference operators
(¢:x — q1x, 0:X  ¢2x), and of Mahler operators (¢: x > xP1, o:x + xP2). While
some special cases were already known, these authors were the first to provide a unified
approach to this type of results.

The aim of this paper is to go one step further, promoting the idea that, in the above
cases, the elements of Soly, g r and Soly, g, should be algebraically independent, unless
they belong to the small intersection. Our main result in this direction is Corollary 1.5,
which appears to be the first general result supporting this viewpoint. It is obtained as
a consequence of the more general Theorem 1.3. Our approach provides a unified strat-
egy for attacking this kind of problem. It rests on a suitable Galois theory: the o-Galois
theory of linear ¢-difference equations developed in [26]. As a particular instance of The-
orem 1.3, we settle a conjecture of Loxton and van der Poorten [31] concerning Mahler
functions. The latter, which was itself motivated by its consequence in the theory of finite
automata, was our initial motivation for the present work. We also give a second appli-
cation of Theorem 1.3 to the algebraic independence of g-hypergeometric series. The
strategy we follow to prove Theorem 1.3 was initiated recently by the first three authors
in [3], where general hypertranscendence results are obtained for solutions of linear differ-
ence equations associated with the same three operators (shift, g-difference, and Mahler).
However, when working with a parametric operator (here o) that is an endomorphism,
instead of a derivation as in [3], one needs to overcome a number of technical difficulties.
Let us also mention that we introduce in Section 4 some new group-theoretic arguments
concerning linear algebraic groups that can be used to significantly simplify the proof of
the main result of [3].

1.1. Statement of our main result

Throughout this paper, our framework consists of a tower of field extensions C C K C F
with the following properties:

e The field K is equipped with a pair of automorphisms (¢, o).

e These automorphisms extend over F.

Specifically, we consider the following situations, which we refer to as Cases 2S, 2Q,

and 2M, respectively.

Case 2S. In this case, we consider K = C(x), F = C((x™1)), ¢(x) = x + h; and
0(x) = x + hy, where hy, hy € C are Z-linearly independent, i.e. hy/hy &€ Q.
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Case 2Q. In this case, we let K = | J 51 C (x'/7) denote the field of ramified rational
functions. We also use the notation C (x'/*) for this field. We let F = szl C((x'7y)
denote the field of Puiseux series. We also use the notation C ((x'/*)) for this field. We
let (¢, o) denote the pair of automorphisms of K (and F) defined by

¢(x) =q1x and o(x) = gqax,

where g, and g, are two multiplicatively independent nonzero complex numbers, i.e.
q;” qu = 1 implies n; = n, = 0 for all ny,n, € Z. Furthermore, in order to apply the
result of [28] cited below, we also add the following mild restriction: g; and g, cannot
both be algebraic numbers of modulus 1, whose Galois conjugates all have modulus 1.
For instance, one cannot choose g = (3 + 4i)/5 and ¢ = (5 + 12i)/13. In [28], this
condition is imposed in order to ensure that |g;|op 7% 1 for some archimedean absolute
value | - |o. Note that when ¢; and ¢, are multiplicatively independent, none of them is
a root of unity. By Kronecker’s theorem (see, for instance, [10, 1.5.9]), if in addition ¢
is algebraic and if k is a number field containing ¢, there exists a valuation v of k such
that |¢1], # 1, where | - |,, is the absolute value attached to v. Using this suitable absolute
value, it may be possible to get rid of the mild restriction above by adapting the argument
of Schifke and Singer to a nonarchimedean framework (i.e., by replacing the archimedean
field C by an algebraically closed v-adic completion of K).

Case 2M. In this case, we let K = C(x'/*), F = C((x!/*)), and we let (¢, o) denote
the pair of automorphisms of K (and F') defined by

¢(x) =xP' and o(x) = xP2,

where p; and p, are two multiplicatively independent natural numbers.
The recent result of Schifke and Singer [28] mentioned before can now be stated as
follows.

Theorem 1.1 (Schifke and Singer). Let K, F, and (¢, 0) be defined as in Cases 28, 20,
and 2M. Then an element € F cannot satisfy both a linear ¢-difference equation and
a linear o -difference equation with coefficients in K unless it belongs to K.

Remark 1.2. Using the same reasoning as in [3, Remark 1.4], Theorem 1.1 may be
deduced from [28, Corollaries 14 to 16]. We recall that Case 2Q was proved, though
in less generality, by Bézivin and Boutabaa [9], while Case 2M is due to the first author
and Bell [2]. We refer the reader to [28] and the references therein for more details on the
various contributions to the other cases.

Let us recall that an element f in F satisfies an algebraic o-equation over K, or
equivalently that f is o-algebraic over K, if there exists n € N such that the func-
tions f,o(f),...,0"(f) are algebraically dependent over K. Otherwise, f is said to
be o-transcendental over K.

Our main result is the following generalization of Theorem 1.1. Case 2Q of Theo-
rem 1.3 also generalizes some results of [14], see Remark 4.2.
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Theorem 1.3. Let K, F, and (¢, o) be defined as in Cases 28, 2Q, and 2M. Let f € F
be a solution to a linear ¢-difference equation over K. Then either f € K or f is
o-transcendental over K.

As a consequence of Theorem 1.3, we deduce the following result.

Corollary 1.4. Let K, F, and (¢, o) be defined as in Cases 28, 2Q, and 2M. Let f € F
be a solution to a linear ¢-difference equation over K and let g € F be a solution to
an algebraic o-difference equation over K. Then [ and g are algebraically independent
over K unless f € K or g is algebraic over K.

At first glance, some readers may be puzzled by the lack of symmetry in Corollary
1.4. Indeed, f has to satisfy a linear ¢-difference equation, while g is free to satisfy
an algebraic o-difference equation. Thus, it may be tempting to ask for a more general
statement in which f could also be allowed to satisfy an algebraic equation. However,
the Laurent series J defined by J(x) := j(e*"*) € Q((x)), where j is the classical
modular j-invariant, provides a natural conterexample to such a generalization. Indeed,
the function J is known to be transcendental over Q(x), while, for all positive integers p,
it satisfies the algebraic p-Mahler equation

®p(J(x). J(xP)) =0,

where ®,(X,Y) € Z[X, Y] is the pth modular polynomial (see, for instance, [33]).
Maybe, the right generalization could be: a Laurent series that is a solution to two alge-
braic Mahler equations, with respect to two multiplicatively independent parameters,
should satisfy an algebraic p-Mahler equation for all positive integers p. In this direction,
Theorem 1.1 already shows that a Laurent series satisfying two linear Mahler equations
with respect to two multiplicatively independent parameters also satisfies a linear p-
Mabhler equation for all positive integers p. Of course, the same question arises with the
shift and the g-difference operators.

For the sake of symmetry, we also state the following particular case' of Corollary 1.4
that was our initial goal.

Corollary 1.5. Let K, F, and (¢, o) be defined as in Cases 28, 2Q, and 2M. Let € F
be a solution to a linear ¢-difference equation over K and let g € F be a solution to a
linear o -difference equation over K. Then f and g are algebraically independent over K
unless one of them belongs to K.

Remark 1.6. In the three cases we consider, the independence required for the corre-
sponding pairs (¢, o) could be rephrased and unified as follows: ¢ and o commute, and
if f € F isnot a constant (i.e., f ¢ C), then the equation ¢ (f) = o™ (f) has no non-
trivial solution in integers n and m.> As suggested by the previous discussion, it would be
interesting to formalize a general principle emerging from Theorems 1.1 and 1.3.

I'This follows from the fact that if g satisfies a linear o-difference equation over K, then either
g € K or g is transcendental over K (see the proof of Corollary 1.5 in Section 4).
2The additional mild condition in Case 2Q is probably not necessary.
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1.2. Application to Mahler functions

Let K be a field and p > 2 be an integer. A power series f(x) € K[[x]] is a p-Mahler
function if there exist polynomials ag(x), ..., a,(x) € K[x], not all zero, such that

ao(x) f(x) + a1 (x) f(xP) + - + an(x) f(xP") = 0. (1.2)

Furthermore, f is a Mahler function if it is a p-Mahler function for some integer p > 2.
Regarding (1.2), it is tempting to ask about the significance of the parameter p. In 1976,
van der Poorten [30] suggested that Mahler functions associated with multiplicatively
independent parameters should behave independently. For instance, he asked whether the

two Mahler functions
o0 o0

Z x?"  and Z X

n=0 n=0
are algebraically independent over Q(x). The transcendence theory of Mahler functions,
that is, the study of the transcendence and algebraic independence of values of Mahler
functions over Q at algebraic points, was initiated by Mahler in the late 1920s. Mahler
only considered (possibly inhomogeneous) order 1 equations, and Mahler’s method really
restarted in the 1970s in the hands of Kubota, Loxton and van der Poorten, and later
Ku. Nishioka (see the recent survey [1] and the references therein). Kubota, Loxton, and
van der Poorten expected that Mahler’s method could be developed far enough to solve
the above question.? In 1987, van der Poorten [31] announced a series of results that he
expected to prove in his collaboration with Loxton on Mahler’s method.* Among them,
the following two are related to Mahler functions associated with multiplicatively inde-
pendent parameters.

Conjecture 1.7 (Loxton and van der Poorten). Let p; and p, be two multiplicatively
independent natural numbers. Then the following hold:

(i) An element f € Ql[x]] cannot be both a py- and a p,-Mahler function unless it is
rational.

(i) If f € Q[[x]] is a p1-Mahler function and g € Q[[x]] is a p-Mahler function. Then
f and g are algebraically independent over Q(x) unless one of them is rational.

We find that (ii) is a generalization of (i), while (i) itself is a generalization of Cob-
ham’s theorem, an important result in the theory of automatic sequences and sets (see, for
instance, [2] for more details). As already mentioned in Remark 1.2, part (i) of Conjec-
ture 1.7 has finally been proved by the first author and Bell [2]. A different proof has been
given by Schifke and Singer [28].

3In [19], Kubota announced a paper on this problem which never appeared. Also, Loxton and
van der Poorten stated some related results in [21], but the corresponding proofs are considered to
be incomplete (see the discussion in [25, p. 89]).

4However, after this date, there is no new publication on this topic by these authors.
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The first result towards part (ii) of Conjecture 1.7 is due to Ku. Nishioka [25] who
proved the case where f and g both satisfy an inhomogeneous order 1 equation. Recently,
the first author and Faverjon [4, 5] proved the case where f and g are both solutions to
a Mabhler equation of the form (1.2) with ag(0)a,(0) # 0. The results of [4, 5, 25] are
based on Mahler’s method. As a direct consequence of Corollary 1.5, we fully prove
Conjecture 1.7 (even a more general version where the base field is the field of complex
numbers).

Theorem 1.8. Let py and p, be two multiplicatively independent natural numbers. Let
f € Cl[[x]] be a p1-Mahler function and let g € C[[x]] be a p2-Mahler function. Then f
and g are algebraically independent over C (x) unless one of them is rational.

Let us also mention that, in an ongoing work, Medvedev, Nguyen, and Scanlon [23]
study a similar problem where linear Mahler equations of arbitrary order are replaced by
nonlinear order 1 equations of the form f(x?) = P(x, f(x)), where P is a polynomial
in two variables.

After completion of this work, the first author and Faverjon [6] have strongly improved
the results of [4,5]. This allows them to remove the unnecessary condition a¢(0)a, (0) #0.
They also generalize Theorem 1.8 (over Q) to the case of finitely many ¢;-Mahler func-
tions f;(x), 1 <i < r, such that the parameters ¢; are pairwise multiplicatively indepen-
dent (see [6, Corollary A.4]).

1.3. Application to q-hypergeometric series

Let g be a nonzero complex number that is not a root of unity. For every nonnegative

integer n, we let
n

l—qi
[P __ 1
[”]-q ,1:[1 1—¢q

denote the g-analog of the factorial n!. The g-Pochhammer symbol, also called g-shifted
factorial, is defined as

n—1
(@:q)n = [ [(1 - ag").
i=0
The most classical g-analog of hypergeometric functions is given by the so-called (gen-
eralized) basic hypergeometric functions or q-hypergeometric functions:

o0
A1y, 0y (@1:9)n - (@r;q)n n (2)ys—r X"
¢( q,X)= (=D"q‘2 —
BB 2 Brdin Bs o,
Here, r and s are two nonnegative natural numbers and oy, ..., &, B1, ..., Bs are com-

plex numbers. For the coefficients to exist we must assume that g; & ¢%=° for all i.
By definition, a g-hypergeometric function belongs to C[[x]]. It is also well-known that a
q-hypergeometric function satisfies a g-linear difference equation (see, for instance, [16]).
As a direct consequence of Case 2Q of Corollary 1.5, we obtain the following result.
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Theorem 1.9. Let g1 and g, be two multiplicatively independent complex numbers sat-
isfying the conditions given in Case 2Q. Let f be a q1-hypergeometric function and let g
be a q»-hypergeometric function. Then [ and g are algebraically independent over C(x)
unless one of them is rational.

1.4. Organization of the paper

This article is organized as follows. In Section 2, we give a short introduction to the
Galois theory and the o-Galois theory of linear ¢-difference equations, following [26,32].
Several auxiliary results are gathered in Section 3. Section 4 is devoted to the proof of
Theorem 1.3. Finally, Appendix A provides the reader with some complementary results
on difference algebraic groups and their representations that are needed for the proof of
Theorem 1.3.

2. Galois theories of linear difference equations

In this section, we provide a short introduction to the Galois theory of linear ¢-equations
and to the o-Galois theory of linear ¢-equations.

2.1. Galois theory of linear difference equations

We first recall some notation, as well as classical results, concerning the Galois theory of
linear difference equations. We refer the reader to [32] for more details.

2.1.1. Notation in operator algebra. In what follows, all rings are commutative, with
identity, and contain Q. In particular, all fields are of characteristic zero. Given a ring R,
we let Quot(R) denote the total quotient ring of R, that is, the localization of R at the
multiplicatively closed subset of all nonzero divisors. Given a field K, a K-algebra R,
and a subset S of R, we let K(.S) denote the total quotient ring of the ring generated by S
over K.

A ¢-difference ring, or ¢-ring for short, is a pair (R, ¢) where R is a ring and ¢ is
a ring endomorphism of R. When R is a field, R is called a ¢-field. An ideal I of R
such that ¢ (1) C [ is called a difference ideal or a ¢-ideal. The difference ring (R, ¢)
is simple if the only ¢-ideals of R are {0} and R. Two difference rings (Rp, ¢1) and
(R3, ¢2) are isomorphic if there exists a ring isomorphism ¢ between R; and R, such
that ¢ o ¢1 = ¢ o @. A difference ring (S, ¢’) is a difference ring extension of (R, ¢) if
S is aring extension of R and qb" r = ¢- In this case, we usually keep on denoting ¢’ by ¢.
When R is a ¢-field, we say that S is an R-¢-algebra. Two difference ring extensions
(R1, ¢) and (R,, ¢) of the difference ring (R, ¢) are isomorphic over (R, ¢) if there
exists a difference ring isomorphism ¢ from (R1, ¢) to (R», ¢) such that ¢|g = Idg. The
ring of constants of the difference ring (R, ¢) is defined by

R® :={reR:¢(r)=r).
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If R? is a field, it is called the field of constants. If there is no risk of confusion, we
usually simply say that R, instead of (R, ¢), is a difference ring (or a difference field, or
a difference ring extension).

2.1.2. Difference equations and linear difference systems. A linear ¢-equation of order n
over a ¢-field K is an equation of the form

L) :=¢"(y) + an-19""'(y) + -+ agy =0, 2.1)
with ag, ...,a,—1 € K. If ag # 0, this relation can be written in matrix form as
d(Y) = AgY (2.2)
where
0 1 0 0
0 0 1 . :
Ag =\ - S 0 € GL,(K).
0 0 .- 0 1
_ao _al DY RIS —an_l

The matrix Ag is called the companion matrix associated with (2.1). It is often more
convenient to use the notion of linear difference system, that is, of system of the form

¢(Y) =AY with 4 € GL,(K). (2.3)

We recall that two difference systems ¢p(Y) = AY and ¢(Y) = AY with 4, A € GL, (K)
are said to be equivalent over K if there exists a gauge transformation 7' € GL,, (K) such
that A = ¢(T)AT . In that case, ¢(Y) = AY ifand only if p(TY) = A(TY).

Remark 2.1. Let L|K be an extension of ¢-fields and assume that f = (fi...., fu)"
€ L™ isasolutionto ¢(Y) = AY with A € GL,(K). As the K-subspace of L generated by
f1,..., fn is closed under ¢, it follows that each coordinate f; of f satisfies a nontrivial
linear ¢-equation over K of order at most 7.

2.1.3. Galois theory of linear difference equations. In this section, we give a brief sum-
mary of the Galois theory of linear difference equations.

Definition 2.2 ([26, Definition 2.2]). A ¢-pseudofield is a ¢-simple, Noetherian ¢-ring K
such that every non-zero-divisor of K is invertible in K. If K is a ¢-pseudofield then there
exist orthogonal idempotents ey, ..., eg of K such that

e K=¢1.KD:---Dey.K,

o dper) =ex,p(ex) =e3,...,0(eq) = e,
o ¢;. Kisafieldfori =1,...,d (so¢;.K is a p?-field).

Let K be a ¢-field, R be a K-¢-algebra and S C R be a subset of R. We let K{S}4
denote the smallest K-¢-subalgebra of R that contains S. If R is a ¢-pseudofield, we let
K (S)¢ denote the smallest ¢-pseudofield of R that contains S.
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A Picard—Vessiot ring for (2.3) over a difference field (K, ¢) is a K-¢-algebra Ry
satisfying the following three properties.

(1) There exists U € GL, (R4) such that ¢ (U) = AU. Such a matrix U is called a fun-
damental matrix.

(2) Ry is generated as a K-algebra by the coordinates of U and by (det U)™!, that is,
R4 = K[U, (detU)™1].

(3) R4 is a simple ¢-ring.

A Picard—Vessiot extension K4 for (2.3) over the difference field (K, ¢) is a ¢-
pseudofield extension of K with the following properties:

e Ky = K(U) where U € GL, (K4) is a fundamental matrix for (2.3).
o K? = K?.

Note that K¢ = C in our main cases of interest, i.e. in Cases 28, 2Q, and 2M. By
[32, Section 1.1] and [26, Proposition 2.14, Corollary 2.15], we obtain the following
proposition that connects the two definitions.

Proposition 2.3. If C = K? is an algebraically closed field, then there exists a unique
(up to isomorphism of K-¢-algebras) Picard—Vessiot extension for (2.3). Moreover, the
following properties hold:

e Given a Picard—Vessiot extension K4 with fundamental matrix U € GL,(Ky), the
K-¢-algebra Ry := K[U, (detU)™!] C K4 is a Picard-Vessiot ring.

e Given a Picard-Vessiot ring R4, the total quotient ring Quot(R4) is a Picard—Vessiot
extension.

From now on, we assume that K is a ¢-field with C = K¢ an algebraically closed
field of characteristic zero. Let A € GL,(K) and let K4 be a Picard—Vessiot extension for
¢(Y) = AY .Let R4 C K4 denote the Picard—Vessiot ring defined in Proposition 2.3. The
Galois group Gal(K4|K) of ¢(Y) = AY or of K4|K is the functor from the category of
C -algebras to the category of groups that associates to any C-algebra B the group of all
K ®c B-¢-automorphisms of R4 ®c B. Here ¢ acts as the identity on B. The functor
¢ = Gal(K4|K) is representable. In fact, § is represented by C[§] = (R4 ®k R4)? (see
[22, Theorem 2.8] or [32, Section 1.2]).

Let U € GL, (R4) be a fundamental matrix for ¢(¥Y') = AY and let B be a C -algebra.
For any 7 € §(B), there exists [t]y € GL,(B) such that 7(U ® 1) = (U ® 1)[t]y.
Let GL, c be the functor defined by GL, c(B) = GL,(B) for every C-algebra B.
The morphism of functors § — GL, ¢, given by §(B) — GL,(B), v — [t]p, for
any C-algebra B, identifies § with a closed subgroup of GL, c. Since C is alge-
braically closed and of characteristic zero, an algebraic group § over C can be identified
with §(C). Therefore one often identifies Gal(K4| K) with Gal(K4|K)(C).

In that setting, there is a Galois correspondence. We will only need the following
special case.
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Proposition 2.4 ([32, Lemma 1.28]). With the above notation, let # C Gal(K4|K) be a
closed subgroup. Then the following two statement are equivalent:

o KX :={feKs:t(f)=f VYreH)=K.
o H = Gal(K4|K).

We will also need the following result.
Proposition 2.5 ([15, Theorem 3], [7, Theorem 12.6]). If moreover K4 is a field, then:

o Gal(K4|K) is connected if and only if K is relatively algebraically closed in K 4.

o If N is a normal closed subgroup of Gal(K4|K), then KAN is a Picard-Vessiot exten-
sion for some system ¢p(Y) = A'Y, where A’ € GL,/(K) and n’ is a positive integer.

2.2. o-Galois theory of linear difference equations

In this section, we consider rings endowed with two endomorphisms that commute. More
formally, a ¢o-ring is a triple (R, ¢, o) where R is a ring and (¢, o) is a pair of endo-
morphisms of R that commutes. The notions of Section 2.1.1 extend to ¢o-rings in
a straightforward fashion. Given a ¢o-field K and A € GL,(K), the o-Galois theory
developed in [26] aims to understand the algebraic relations between the solutions of
¢(Y) = AY and their successive transforms with respect to o from a Galoisian point
of view. In this section, we assume that K is a ¢po-field of characteristic zero such that
C = K? is algebraically closed. Note that C is a o-field because o and ¢ commute.

A ¢-pseudo-o-field L is a ¢po-ring that is a ¢-pseudofield. The following definition is
concerned with the notion of minimal ring of solutions in the context of parametrized dif-
ference equations. It summarizes in our context [26, Definition 2.18 and Proposition 2.21].

Definition 2.6. Let A € GL,(K). A ¢-pseudo-o-field extension L4 of K is a o-Picard—
Vessiot extension for ¢ (Y) = AY over K if there exists U € GL, (L4) such that ¢ (U) =
AU, Lg = K(U)s, and Lﬁ = K?.The K-¢o-algebra Sy = K{U, (detU)~!}, is called
a 0-Picard-Vessiot ring for ¢(Y) = AY (over K). The ¢-ring Sy is ¢-simple and L4 is
the total quotient ring of S4.

The following definition introduces the o-Galois group.

Definition 2.7 ([26, Definition 2.50]). Let A € GL,(K) and let L4y = K(U), be a o-
Picard—Vessiot extension for ¢(Y) = AY. Set S4 = K{U, (detU)~'},. The o-Galois
group Gal® (L4|K) of L4 over K is the functor from the category of C-o-algebras to the
category of groups that associates to any C-o-algebra B the group of all K ®c B-¢o-
automorphism of S4 ®c B. Here ¢ acts as the identity on B.

It is proved in [26, Lemma 2.51] that this functor is represented by a finitely o-
generated C-o-algebra. Therefore, Gal® (L4|K) is a o-algebraic group over C in the
sense of Definition A.2. For a brief introduction to o-algebraic groups we refer to Sec-
tion A.1 of the appendix. The C-o-algebra C{G} representing G = Gal? (L 4|K) can be
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explicitly described as C{G} = (S4 ®x S4)?. Moreover, by [26, Lemma 2.41],
S4 ®k S4 =S4 ®c C{G}. 2.4)

If U € GL,(Sy) is a fundamental matrix for ¢(Y) = AY, then C{G} = (S4 ®x S4)? =
C{Z, (detZ) '}, where Z = (U ® 1) '(1 ® U) € GL,(S4 ®k S4).

For a C-o-algebra B, the action of t € Gal®(L4|K)(B) on S4 ®c B is deter-
mined by (U ® 1) = (U ® 1)[t]u, where [t]y denotes the image of Z in GL,(B)
under the morphism C{Z, (det Z)~!}; — B corresponding to 7 under G(B) ~
Hom(C{Z, (det Z)~'},, B). The assignment G(B) — GL,(B), t > [t]y, identifies G
with a o-closed subgroup of GL;, ¢, in the sense of Definition A.4.

In this setting, there is a complete Galois correspondence. However, we will only need
the following special case of [26, Theorem 2.52].

Proposition 2.8. With notation as in Definitions 2.6 and 2.7, we have
{seSq4:t(s®1)=5s®1,V1eGa®(L4|K)(B), VY C-0-algebras B} = K.

The following definition introduces the difference analog of the transcendence degree
of field extensions; see [20, Definition 4.1.7].

Definition 2.9. Let L|K be a o-field extension. Then ay,...,ay € L are o-algebraically
independent over K if the elements o' (a;) (i € N, 1 < j < d) are algebraically inde-
pendent over K. A single element a € L is also called o-transcendental over K if it is
o-algebraically independent over K. Otherwise, a is called o-algebraic over K.

A o-transcendence basis of L over K is a maximal subset of L formed by o-alge-
braically independent elements over K. Any two o-transcendence bases of L|K have the
same cardinality [20, Proposition 4.1.6] and so we can define the o-transcendence degree
o-tr.deg(L|K) of L|K as the cardinality of any o-transcendence basis of L over K.

The following lemma will be used several times in what follows.

Lemma 2.10. Let L|K be a o-field extension and let s > 1 be an integer. Then f € L is
o-algebraic over K if and only if f is o°-algebraic over K.

Proof. If f is o-algebraic over K then the transcendence degree of K(f), over K is
finite. Since K C K(f)os C K(f )¢, the transcendence degree of K(f)ss over K is
finite and f is o*-algebraic over K. The converse is obviously true: if f is o*-algebraic
over K, it is o-algebraic over K. [

The o-dimension o-dim(G) of a o-algebraic group is defined in Definition A.8.

Proposition 2.11. In addition to the notation of Definitions 2.6 and 2.7, assume that L 4
is a field. Then o-dim(Gal® (L4|K)) = o-tr.deg(L4|K).

Proof. Tt is shown in [26, Lemma 2.53] that o-dim(Gal® (L4|K)) = o-dim(S4). By [36,
Proposition 3.1], the o-dimension of a finitely o-generated K-o-algebra, which is an
integral domain with o injective, agrees with the o-transcendence degree of its field of
fractions. Therefore o-dim(Sy) = o-tr.deg(L4/K). |
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The following proposition explains the connection between the o-Galois theory of lin-
ear difference equations and the (usual) Galois theory of linear difference equations. The
meaning of “Zariski dense o-closed subgroup” is explained in Definitions A.4 and A.5.

Proposition 2.12. In addition to the notation of Definitions 2.6 and 2.7, assume that L 4
is a field. Then Ky = K(U) C L4 is a Picard-Vessiot extension for ¢(Y) = AY and
the o-Galois group G = Gal® (L 4|K) is a Zariski dense o-closed subgroup of the Galois
group § = Gal(K4|K).

Proof. Because L% = K, itis clear that K4 is a Picard—Vessiot extension for ¢(Y)= AY.
For every C-o-algebra B, every K ®c B-¢o-automorphism of Sy ®¢ B restricts to a
K ®c B-¢-automorphism of R4 ® c B. So G(B) C §(B) and we obtain an inclusion
G C [0]c§, where [0]c¥ is defined in Example A.3. As we can see in the paragraph
after Definition A.5, to prove that G is Zariski dense in 9, it suffices to prove that the
corresponding map C[§] — C{G} of coordinate rings is injective. But this map is the
inclusion (R4 ®x R4)? — (S4 ®k S4)?, which is clearly injective. [ ]

3. Auxiliary results

In this section, we gather some auxiliary results needed for the proof of Theorem 1.3.

3.1. Extending the constants

We will need the following elementary lemma about solutions of linear difference equa-
tions.

Lemma 3.1. Let K be a ¢-field, C = K?, R a K-¢p-algebra, and A € GL,(K). Then,
for every C-algebra B (considered as a ¢-constant ¢-ring), one has

{(yeR":¢(y) =Ay} ®c B={y € (R®c B)" : ¢(y) = Ay}.

Proof. Clearly{y € R" : ¢(y) = Ay} ®c B C{y € (R®c B)" : ¢(y) = Ay}. Let y
be contained in the right-hand side and fix a C-basis (b;);je; of B.Theny =)y, ® b;
for some uniquely determined y; € R". We have

Y o) ®bi =¢(y) =Ay =) _ Ay ®b;.

Therefore ¢ (y;) = Ay; and so y is contained in the left-hand side. ]

3.2. Compatible difference systems

Two difference systems ¢(Y) = AY and o(Y) = AY over a ¢o-field K are compatible
if
P(A)A = o (A)A. (3.1)
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This condition is equivalent to the existence of a K-¢o-algebra S and U € GL,(S) such
that p(U) = AU and o(U) = AU. Compatible difference systems over the projective
line have been studied by Schifke and Singer [28]. The following result shows that com-
patibility is a strong constraint for discrete systems over the projective line.

Proposition 3.2 ([28, Theorem 13]). Let K be one of the ¢po-fields defined in Cases 28,
2Q and 2M. Let A, A € GL, (K) be such that the systems ¢p(Y) = AY and o(Y) =
AY are compatible. Then there exists T € GL,(K) such that p(T)AT ! € GL, ((C) and
o(T)AT 1€ GL,(C). In other words, the systems ¢(Y) = AY and o(Y) = AY are
simultaneously equivalent over K to difference systems with constant coefficients.

3.3. Reducible Galois groups

For a finite-dimensional C-vector space V, a closed subgroup ¥ of GLy is irreducible if
V is an irreducible representation of §. If this is not the case, § is called reducible.
The following lemma characterizes linear difference equations with a reducible Galois

group.

Lemma 3.3 ([3, Lemma 4.4]). Let K be a ¢-field with C = K? algebraically closed. Let
A € GL,(K) and let § C GLy ¢ be the Galois group of (Y) = AY. For an integer r
with 0 < r < n the following statements are equivalent:

o There exists a §-subrepresentation of C" of dimension r over C.
o There exists T € GL,,(K) such that

-1 _ B1 Bz
H(T)AT ™! = (0 33)

with By € GL,(K).

In particular, § is reducible if and only if the above statements hold for some r, with
0<r<n.

3.4. Condition # and consequences

Similarly to [3], we need to consider the following setting. We say that a ¢o-field K
satisfies Condition J if the following properties hold:

e 0: K — K is an automorphism.

e C = K? is algebraically closed.

e For every positive integer r, K has no finite nontrivial ¢” -field extension.

Remark 3.4. Note that if K% = C is an algebraically closed field then by [3, Lemma 4.8],

K?' = C for all positive integers s. Thus, any ¢o-field satisfying Condition ¥, also
satisfies Condition J¢ as a (¢", 0%)-field, for all positive integers r and s.

Lemma 3.5 ([3, Lemma 4.9]). Let K be one of the ¢po-fields defined in Cases 28, 2Q,
and 2M. Then (K, ¢) satisfies Condition J.
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The following lemma is a straightforward generalization of [14, Lemma 4.5].

Lemma 3.6. Let K be a ¢po-field satisfying Condition #. Let A € GL,(K) and let L 4 be
a o-Picard-Vessiot extension for §(Y') = AY over K. If Ly is a field, then K is relatively
algebraically closed in Ly.

Proof. Let M denote the relative algebraic closure of K in L4. We have to show that
M = K. Given a fundamental matrix U € GL,(L4) for ¢(¥Y) = AY and an integer i > 0,
the intersection M N K(U, ...,c' (U)) is a finite ¢-field extension of K and therefore
trivial. Thus M = K. ]

We are now interested in iterating difference systems. Given A € GL,(K) and a pos-
itive integer r, we set A := ¢""1(A)---p(A)A. Note that ¢p(Y) = AY implies that
¢"(Y) = A[1Y . The following proposition shows that, considering some iterates of the
operators o and ¢ if necessary, one can always reduce the situation to the case where the
o-Picard—Vessiot extension L 4 is a field.

Proposition 3.7 ([14, Proposition 4.6]). Let K be a ¢po-field such that C = K¢ is alge-
braically closed. Let A € GL,(K), F a ¢po-field extension of K such that F® = K?, and
letuy, ..., u, € F* be such that (uq, ..., u,,)T is a solution to ¢(Y) = AY. Then the
following properties hold:

(1) There exist some positive integers r and s and a o°-Picard—Vessiot extension
Ly for the system ¢"(Y) = AY over (K, ¢") such that Lq is a field and
K{ui,...,up}gs ¢ embeds into Ly.

(2) If K satisfies Condition J, then the Galois group of ¢"(Y) = AqY over
(K, ¢") coincides with the connected component of the Galois group of the system
¢(Y) = AY over (K, ¢).

Proof. The paper [14] is concerned with Case 2Q but the proof works the same at this
level of generality. u

Remark 3.8. As a straightforward consequence of (2) in Proposition 3.7, we obtain that
if the Galois group § of the system ¢(Y) = AY over (K, ¢) is connected, then, for every
positive integer r, the Galois group of ¢"(Y') = A[1Y over (K, ¢") coincides with §.

A o-algebraic group G over a o-field C is o-integral if its coordinate ring C{G} is a
o-domain, i.e. C{G} is an integral domain and o: C{G} — C{G} is injective.

Lemma 3.9. Let K be a ¢po-field satisfying Condition H and let L4|K be a o-Picard—
Vessiot extension for $(Y) = AY. If L4 is a field, then Gal® (L 4|K) is o-integral and the
Galois group of ¢(Y) = AY is connected.

Proof. Since K is an inversive o-field, i.e. 0: K — K is surjective, by [29,
Proposition 1.2 (iii)], the K-o-algebra L4 satisfies all the equivalent conditions of
[29, Proposition 1.2]. In particular, point (vii) of that proposition implies that
0:Ls®kx S" — L4 ®k S’ is injective for any K-o-algebra S’ with o: §” — S injective.
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Thusthe mapo: L4 ®x L4 — L4 ®k L4 is injective. Since K is relatively algebraically
closed in L4 by Lemma 3.6, we see that L4 is a regular field extension of K. So by
[11, Chapter V, §17, No. 3, Proposition 2], L4 ®x L4 is an integral domain.

Let S4 C Ly denote the corresponding o-Picard—Vessiot ring. Because Ly ®x Ly
is a o-domain we see that also Sy ®7 S4 C L4 ®k L4 is a o-domain. By (2.4) we
have Sy ®x S4 = S4 ®c C{G}, where G = Gal’ (L4|K). Therefore also C{G} is a
o-domain and so G is o-integral. Because the coordinate ring C[¢] of the Galois group
G of p(Y) = AY is contained in C{G} (cf. the proof of Proposition 2.12), it follows that
C[¥%] is an integral domain. Therefore § is connected (cf. [24, Summary 1.36]). |

4. Proofs of Theorem 1.3 and Corollaries 1.4 and 1.5

Throughout this section the ¢o-fields K and F are as in one of Cases 2S, 2Q, and 2M.
Our main goal is to establish Theorem 1.3 that is restated here as Theorem 4.1.

Theorem 4.1. Let f € F be a solution of the linear ¢-equation of order n

¢"(y) + an19""' () + -+ a19(y) + aoy =0, (4.1)
where aq, . . .,ay—1 € K. Then either f € K or f is o-transcendental over K.

Remark 4.2. Let us consider Case 2Q, and let us make two more additional assumptions.
First, let us assume |¢1 |, |g2| # 1. The second more restrictive assumption is on the Galois
group. More precisely, let G be the corresponding Galois group and let G%"° be the
derived subgroup of the connected component of the identity of G. By [14, Corollary 8.2],
if one of the following conditions is satisfied:

e n>2and G¥° = SL,(C);
e n > 3and G*° = SO, (C);
e 1 is even and G¥° = SP,(C),

then either f = 0 or f is o-transcendental over K. Note that the assumption on the
Galois group implies that there are no nonzero solutions of (4.1) in K, so Theorem 4.1
generalizes [14, Corollary 8.2].

The following simple lemma shows that Theorem 4.1 implies Corollary 1.4 and thus
Corollary 1.5.

Lemma 4.3. Let L|K be a o-field extension. Let f, g € L be such that g is o-algebraic
over K. If f is o-algebraic over K(g)q, then f is o-algebraic over K.

Proof. By the transitivity of being o-algebraic [20, Theorem 4.1.2 (i)], f is o-algebraic
over K. ]

Example 4.4. Let us equip C(x) with two automorphisms ¢(x) = x + 1 and o(x) =
x + h, with h € C. When h ¢ Q, the o-transcendence of the Gamma function has been
proved in [26, Example 3.7]. By Lemma 4.3, we then deduce that for & ¢ Q, I'(x) and
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I'(xh~1) are algebraically independent over C(x). More generally, I'(x) is o-transcen-
dental over C (x)(T'(xh™1)),.

Proof of Corollary 1.4. Since f does not belong to K, f is o-transcendental over K by
Theorem 4.1. By Lemma 4.3, f is also o-transcendental over K(g),. In particular, f is
transcendental over K(g). Since g is assumed to be transcendental over K, we deduce
that f and g are algebraically independent over K. ]

Proof of Corollary 1.5. Let us assume that f and g do not belong to K. By Lemma 3.5,
an element of F' that is algebraic over K and satisfies a linear difference equation over K
(with respect to ¢ or o) belongs to K. Hence f and g are both transcendental. We thus
deduce from Corollary 1.4 that f and g are algebraically independent over K, as wanted.

L]

Similarly to [3], Theorem 4.1 is proved by induction on the order n of equation (4.1).
Before proving Theorem 4.1 in full generality, we first consider the following special
cases:

- The function f is a solution of an inhomogeneous equation of order 1.

- The function f is a solution of a difference equation whose corresponding Galois group
is both connected and irreducible.

4.1. Affine order 1 equations

We begin this subsection by studying homogeneous order 1 equations ¢(y) = ay. The
following proposition characterizes the coefficients a € K for which this equation has a
nontrivial o-algebraic solution. Case 2Q is already proved in [14, Proposition 5.3]. The
following proposition summarizes all three cases.

Proposition 4.5. Let K and (¢, 0) be defined as in Cases 28, 2Q, and 2M. Let a € K*.
Let L be a o-Picard—Vessiot extension for ¢(y) = ay and assume that L is a field. Let
u € L* be such that ¢(u) = au. Then the following statements are equivalent.

(1) The element u € L is -algebraic over K.

(2) There exist c € C*, n € Q (n = 0 in Cases 2S and 2M) and b € K* such that a =
cx”@.

Proof. 1If (2) holds, a straightforward computation, similar to the one in the proof of
[14, Proposition 5.3], shows that when n = 0, % €el?=C.In general, we have
0(%/;;))/(%/;)) € L? =C. This shows that u is o-algebraic over K. So (2) implies (1).

Let us assume that u is o-algebraic over K. The Galois-theoretic arguments used in
[26, Theorem 3.1] for Cases 2Q and 2S also apply to Case 2M and we find that, since u
is o-algebraic over K, there exist r € Z>o, ko, ..., k, € Z with kok, # 0, and b € K*
such that

[To'@*) = %b)- 4.2)
£=0
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Consider first Case 2S. Following [17, §4.1], we define the /;-divisor divy, (f) of
f € C(x) as the formal sum divp, () = > _(4jec/n,z "al], Where ng is the sum of the
valuations of f at the points [¢] = @ + h1Z. By [17, Lemme 4.3], there exist ¢ € C*
and 0 # b € C(x) such that f = c¢(b) if and only if divy, (f) = 0. Thanks to this
characterization, we only need to prove that divy, (@) = 0. Suppose to the contrary that
this is not the case and that divy, () = Y 7., ni[¢;] for some pairwise distinct elements
[¢i] € C/hyZ and nonzero integers n;. From (4.2), we deduce

0= dlvh1(¢( )) Zk an[g, hol]. (4.3)
= i=1
Let
I ={i €{l,....m}:[&] = [t + han] for some integer n}.

Letiy,...,is be pairwise distinct integers such that I = {iy,...,is}. Up to renumbering,
we can assume that

[Ciy] <+ < [Gi,]

where, for any [x], [v] € C/h1Z, [x] < [y] means that [y] = [x] + khy (= [x + kh3])
for some k € N*. Note that the binary relation < is well defined because 1/ h, ¢ Q. It
is clear that [{;, — rh2] < [, — jho] forall j € {0,...,r} and k € {1,..., s} such that
(j.k) # (r,1). Moreover, for j €{0,...,r}andi € {1,...,m}\ I, wehave [{;, —rhy] #
[¢i — jh2] by definition of /. Therefore, the coefficient of [{;, — rh»] in equation (4.3) is
equal to 0, i.e. k,n;; = 0. This provides a contradiction.

Consider now Case 2M. For f € F*,letvs € Q be its valuation and tr = fx™% |x=¢
€ C*. By [27, Lemma 20], the equation ¢ (y) = ax~" y, has a solution f € F*. This can
also be verified directly by recursively solving for the coefficients of f.

Let f :=[[5_o0'(f¥¢) € F* and & := [[}_, 14 € C*. With (4.2) and ¢o = 0,
we find that there exists N € Q such that

~ rool(gke) ~ ~ .
(/) = 1‘[ <a"> _ wo0) T auMe ) T

b ¢ xN@-Dp 7

(4.4)

For g € F*, we have ty(g) = Ig. By (4.4), we obtain ¢ = 1. Hence m eF?=C
and there exists d € C* such that

[]o" (%) = ax™N/=Dp, (4.5)
£=0

Let 0 be the derivation xj—x. Since d¢p = p; ?8 and 9ot = pﬁoza, we can easily compute
the logarithmic derivatives of ¢(f) = %f and of (4.5). We find that of/f € F
satisfies the following linear o-difference and ¢-difference equations over K:

d(ax™va d
P90) = "y and Y phkeot(r) =

£=0

d(x N/ (P —l)b)
“N/(o1—Dp
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By Theorem 1.1,9f/f € K.So f € F satisfies a linear ¢-difference equation and a linear
differential equation with coefficients in K. By [3, Theorem 1.2] (see also [28]), f € K.

Therefore
¢ (fxval(P1=1))
¢S e D
has the desired form. ™

In [13, §3.3], the authors study the difference algebraic relations satisfied by the solu-
tions of a differential equation of the form y’ = ay + b with a, b € K. Here, we adapt
and generalize some of the arguments from [13] to our context in order to establish the
following special case of Theorem 4.1

Proposition 4.6. Let K, F, and (¢, 0) be defined as in Cases 28, 2Q, and 2M. Let f € F
satisfy ¢(f) =af + b with a,b € K. Then either f is o-transcendental over K, or
f ek.

Recall that ¢ is an automorphism of K. Therefore, the result is trivial if a = 0. So let
us assume that @ # 0 and let us consider the ¢-system

oY) = (g [i) Y = AY. (4.6)

Then, ({ ) is a vector solution of (4.6). Recall that F® = K?. By Proposition 3.7, there
existr,s € N and a o°-Picard—Vessiot extension L4 over (K, ¢") for the system ¢” (Y) =
ApY with App = ¢"71(A) -+ A such that the following properties hold:

o [ 4is afield.

o fely.

e Let K4 C Ly denote the Picard—Vessiot extension as in Proposition 2.12. Then the
classical Galois group Gal(K4|K) of ¢"(Y) = A[Y over (K, ¢") coincides with the
identity component of the classical Galois group of ¢(Y) = AY over (K, ¢).

Note that the equation corresponding to ¢ (Y') = A[1Y is still an affine order 1 equation.
Without loss of generality, we may assume that » = 1. By Lemma 2.10, without loss of
generality, up to replacing o by some power of o, we may also reduce to the case where
s =1

We may assume that the fundamental matrix is of the form U = (’6 f; ) where 0 #
u € L4 is a solution of ¢ (1) = au, since the lower left entry of U can always be elim-
inated by subtracting a multiple of ({ ) from the first column. Let Gal’ (L4|K) be the
o-Galois group. Via its action on the fundamental matrix U, for any C-o-algebra B,

Gal® (L4|K)(B) can be represented as a subgroup of

{(z '?):cxeB*,,BeB}.

Let G, denote the algebraic subgroup of GL, ¢ given by

Gyu(B) = {((1) ’f) 1B e B} for any C-o-algebra B,
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and set G, = Gal’(L4|K) N Gy. Since t(u ® 1) = u @ o for v = (g‘f) S
Gal® (L4|K)(B), the Galois correspondence implies that G,, = Gal® (L4|K (1) ). More-
over, we have ¢(f/u) = f/u + b/(au), so that Ly|K(u)s is a o-Picard—Vessiot
extension for ¢(y) = y + b/(au). The action of an element T =((1)f1’) € Gy(B) =
Gal® (L4|K{u)s)(B) on L4 is given by

r(i®1)=f®1+1®,3. 4.7)
u

u

The situation is summarized in the following picture:

K)o Gal® (L4 |K)

The proof of [13, Proposition 3.16] for nonhomogeneous differential equations of
order 1 with discrete parameters passes word for word to our context and yields the fol-
lowing lemma.

Lemma 4.7. Let L|K be a ¢po-field extension such that C = K¢ = L®. Fixu, f € L,
u # 0, such that p(f) = af + b and p(u) = au witha,b € K. Assume that { ¢ K and
that 0: K — K is surjective. If u is o-transcendental over K, then f is o-transcendental
over K.

We will also need the following auxiliary result that generalizes [18, Lemma 6.5].

Lemma 4.8. Fora, hek , assume that there exists a o-Picard-Vessiot extension Ly for
oY) = (g ll’)Y = AY over K that is a field. Consider an intermediate ¢-field L with

L4|L|K and let x € L be suchthat ¢(x)/x =a € L*. Ifp(y) =ay + b has a solution
in L(x), then it has a solution in L.

Proof. Let g € L(x) be a solution of the equation ¢(y) = ay + b. Let us first assume
that x is algebraic over L. Then g is algebraic over L and the orbit of g under the Galois
group § of ¢(Y) = AY over L is finite. Let g1, ..., g¢ € L4 denote the elements in
the §-orbit of g and set g := g1 + --- + g¢. Since g is fixed by §, it belongs to L by
Proposition 2.4. As a, b e K C L, we have ¢(gr) =agr + b for 1 < k < {. Therefore,
o(g/l) =ag/l+ b with g/{ € L. This proves the claim in that case.

Now, let us assume that x is transcendental over L. We can extend ¢ to the field
L((x)) of Laurent series by setting ¢ (3> s~, axx¥) = 3 -, ¢(ar)a*x*. Writing g =
D ksr arxk withay € L and r € Z, we get ¢(g) = D oksr & (ax)a* x* . Using the unique-
ness of the Laurent series expansion and the fact that ¢(g) = ag + b, we deduce that
¢(ap) = aap + b. Since ag € L, this completes the proof of the lemma. ]
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After these preliminaries, we are ready to prove Proposition 4.6.

Proof of Proposition 4.6. Let us argue by contradiction and suppose that f is o-algebraic
and does not belong to K. By Lemma 4.7, the element u is o-algebraic over K. By
Proposition 4.5, there exist c € C*, heK*andn e @, which is zero in Cases 2S and 2M,
such that @ = cx"¢(g)/5. Replacing f by f/g and b by b/¢(g), we can assume that
bh=1. By Proposition 2.11, o-tr.deg(L4|K (u)s) = 0 = 0-dim(G,), and the o-algebraic
group G, must be a proper subgroup of G, whose o-dimension is 1. Let C[o] denote
the set of linear o-operators with coefficients in C. By [13, Corollary A.3], there exists
&£ € CJo] such that for B a C-o-algebra,

G,(B) = {((1) ’f) € GLy(B) : £(B) = 0}.
Let first » = 0. As a consequence of (4.7), for t € Gal® (L4|K{(u)s)(B) = G, (B),

f(x(g) ® 1) - éﬁ(r(% ® 1)) - x(é) ®1+182(8) = x(%) ®1

So the Galois correspondence implies that i(%) € K(u)y. Since a € C*, we find that

(o(u)) _ o) _o@o() _ o).

u o) au u
Then d := @ € K? = C, so that K(u), = K(u). Since o/(u) = du with d # 0 and
éﬁ(%) € K(u), there exists a nonzero feC [0] such that f(f) € K(u).Recall thata € C*
so that f(f) is asolution of ¢(y) = ay + f(b). By Lemma 4.8, there exists g € K such
that ¢(g) = ag + f(b). Then % € K(u) is fixed by ¢, and since K(u)? C L?=c,
there exists d’ € C such that cf(f) =d’'u + g. Since u and g both satisfy some linear o-
difference equations over K, the same holds for £( /). Therefore, f satisfies a nontrivial
linear o-difference equation over K. By Theorem 1.1, we find f € K. This contradiction
concludes the proof in the case n = 0 (and hence in Cases 2S and 2M).
Now, let us consider Case 2Q with n # 0. By [13, Theorem A.9], we only have to
consider the following two cases.
(1) There exist integers v > m > 0 such that ¢”(¢) = 0™ («) and £ € CJo] such that
£(B) = 0 forall (& ‘?) € Gal? (L4|K)(B) and all C-o-algebras B.
(2) There exists an integer v > 0 such that ¥ () = 0 for all ((1) /f) € Gy(B) and all
C-o-algebras B.
Consider the first case. For all T € Gal° (L4|K)(B), we have t(u ® 1) = u ® a with
o’ (x) =0™(a). Then g = 0V (u)/0™ (u) satisfies (g ® 1) = g ® 1 and we deduce from

the Galois correspondence that g € K. Since g is a nonzero solution of ¢ (y) = q;’ (v=m) y
and a nonzero Puiseux series of the form Y, 1, g¢x*, we find that ¢{g, = Gy,

forany £ € }Z. Since ¢; and g, are multiplicatively independent, the coefficients gy must
all vanish, which contradicts the fact that g is nonzero.



Algebraic independence and linear difference equations 21

In the second case, a similar computation and the Galois correspondence ensure that
0'(f) € K{u)o. Recall that u is o-algebraic over K. Let m € N be such that 6" (f) €
K(u,o(u),...,0™u)).Since ¢ (0% (1)) = 0¥ (a)o* () and ¢ (c”(f)) = 0" (a)o”(f) +
a”(b), one can apply recursively Lemma 4.8 to find a K-rational solution of ¢(y) =
o¥(a)y 4+ ¢ (b). Since K is inversive, there exist g € K such that ¢(g) = ag + b and
as in the n = 0 case, a complex number d € C such that f = g + du. Since f ¢ K, the
constant d is nonzero. Then u = (f — g)/d belongs to F*. Let k € Q be its valuation.
Since ¢(u) = au = cx"u, we find k = k + n, which is a contradiction. This ends the
proof. ]

4.2. Connected and irreducible Galois groups

As a next step, we consider the case where the Galois group is both connected and irre-
ducible. The goal of this subsection is to prove the following proposition.

Proposition 4.9. Let K, F, and (¢, 0) be defined as in Cases 28, 2Q, and 2M. Let us
assume that n > 2, and let f € F be a nonzero solution to equation (1.1), which we are
going to consider as a ¢-system ¢p(Y) = AY, where A is the corresponding companion
matrix. If the Galois group of ¢(Y) = AY over K is connected and irreducible, then f
is o-transcendental over K.

Throughout this subsection we adopt the following conventions. As previously, K
is one of the ¢o-fields of Cases 2S, 2Q, or 2M. We let L4 denote a o-Picard—Vessiot
extension for ¢(Y) = AY, where A € GL,(K). We define K4 as in Proposition 2.12. As
we will see, Proposition 4.9 will be deduced from the following more general statement.

Proposition 4.10. Let A € GL,(K) withn > 2. Assume that L4 is a field and the Galois
group Gal(K4|K) is irreducible. Then every nonzero solution u € LY of the system ¢(Y)
= AY contains at least one coordinate that is o-transcendental over K.

Proof of Proposition 4.9. We argue by contradiction, assuming that f is o-algebraic
over K. With ¢o = o, we deduce that all coordinates of the vector (f,...,¢" 1(f))T
are also o-algebraic over K. Since (f,...,¢" '(f))" € F" is nonzero, Proposition 3.7
ensures the existence of positive integers r, s and a o°-Picard—Vessiot extension L4,
for ¢"(Y') = A[,Y over K that is a field, such that the vector (f,..., ¢"1(f))7 is the
first column of a fundamental matrix U . Furthermore, Remark 3.8 ensures that the Galois
group of ¢"(Y) = A,1(Y) over K is equal to Gal(K4|K), for the latter is connected.
By Lemma 2.10, all coordinates of the vector (f,...,¢" 1(f))T are also o°-algebraic
over K. Thus, Proposition 4.10 applies with ¢ replaced by ¢”, and provides a contradic-
tion. |

Before proving Proposition 4.10, let us first recall some terminology from the theory
of linear algebraic groups. The radical of a linear algebraic group (over an algebraically
closed field of characteristic zero) is the largest connected solvable normal closed sub-
group. A linear algebraic group is semisimple if it is connected and its radical is trivial. It
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is almost-simple if it is nontrivial, semisimple and every proper normal closed subgroup
is finite. A linear algebraic group is simple if it is nontrivial, semisimple and every proper
normal closed subgroup is trivial. In particular, a simple group cannot be abelian.

Let A € GL,(K) and d € N*. We say that the system ¢(Y) = AY is 0%-isomono-
dromic if there exists A € GL,, (K) such that ¢(Y) =AY ando?(Y) = AY are compati-
ble, i.e. ¢(A)A = o (A) A. The following proposition is analogous to [13, Theorem 6.4]
since, by Lemma 3.6, the base field K is relatively algebraically closed in L4.

Proposition 4.11. Let A € GL,,(K). Assume that L is a field and Gal(K4|K) is a simple
linear algebraic group. If Gal® (L4|K) is a proper o-closed subgroup of Gal(K4|K),
then §(Y) = AY is 0% -isomonodromic for some d > 1.

Proof. Let us fix a fundamental matrix U € GL,(L4) to obtain embeddings of G =
Gal®(L4|K) and ¥ = Gal(K4|K) into GL,,. We know from [26, Theorem 2.55] that
$(Y) = AY is o%-isomonodromic if and only if there exists & € GL,(C) such that
0?(tr) = hth™! for all T € G(B) and all C-o-algebras B. It therefore suffices to find
such d and h. According to the proof of [13, Theorem A.20] (see, in particular, the first
displayed formula on page 114) such d and & exist for every o-reduced Zariski dense
o-closed proper subgroup G of a simple algebraic group ¥ < GL,, defined over an inver-
sive algebraically closed o-field. Since G is Zariski dense in § by Proposition 2.12 and
G is o-reduced, i.e., 0: C{G} — C{G} is injective, by Lemma 3.9, this completes the
proof. |

We refer to Example A.3 for the definition of [o]c Gal(K4|K) that is used in the
following proposition.

Proposition 4.12. Let A € GL,(K). Assume that L4 is a field. If Gal(K4|K) is a simple
linear algebraic group, then

Gal’(L4|K) = [o]c Gal(K4|K).
In particular, o-tr.deg(L4|K) > 0.

Proof. We argue by contradiction, assuming that G = Gal® (L4|K) is properly con-
tained in [0]c ¥, where § = Gal(K4|K). By Proposition 4.11, we obtain the existence
of a matrix A € GL,(K) and an integer d > 1 such that the systems ¢(Y) = AY and
oY) = AY are compatible. By Proposition 3.2, we deduce that the system ¢p(Y) = AY
is equivalent over K to a system ¢(Y) = A;Y, where A; € GL,(C). By [8, Lemma 2.1
and Remark 2.2], the Galois group of such a system is always abelian, providing a con-
tradiction with the assumption that § is simple. Thus G = [0]c§.

Now, since § is a simple linear algebraic group, it cannot be finite and dim(¥) > 0.
Using Proposition 2.11 and Example A.9, we thus conclude that o-tr.deg(L4|K) =
0-dim(G) = dim(¥) > 0. ]

Proposition 4.13. Let A € GL,(K). Assume that L4 is a field. Then either Gal(K4|K)
is a connected solvable linear algebraic group or o-tr.deg(L4|K) > 0.
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Proof. Lemma 3.9 ensures that § = Gal(K4|K) is connected. Let us assume that § is not
solvable and let us show that o-tr.deg(L 4| K) > 0. As § is not solvable, the radical R(9)
of § is a proper closed normal subgroup of ¥ and §/R(¥) is a nontrivial semisimple
linear algebraic group. It follows from the structure theory of semisimple linear algebraic
groups that any nontrivial semisimple linear algebraic groups is an almost-direct product
of (finitely many) almost-simple groups [24, Theorem 21.51]. It follows that such a group
has a simple quotient. Thus, there exists a normal closed subgroup N of § such that § /N
is a simple linear algebraic group. By the second fundamental theorem of Galois theory
(Proposition 2.5) there exist a positive integer n’ and A’ € GL,/(K) such that (K4)¥ is
a Picard—Vessiot extension for ¢(Y) = A'Y over K, with Galois group §/N. Given a
fundamental matrix U’ € GL,/((K4)") of ¢(Y) = A'Y, we find that L4y = K(U'), €
L4 is a o-Picard—Vessiot extension for ¢(Y) = A’Y over K. Since the Galois group of
¢(Y) = A’Y is simple, it follows from Proposition 4.12 that o-tr.deg(L 4/|K) > 0. Hence
also o-tr.deg(L4|K) > 0, as desired. |

Proof of Proposition 4.10. Let S4 C Ly denote the o-Picard—Vessiot ring. As in
Appendix A.2, we let w(S4) = 7(S4|K) denote the set of all elements of Sy that are
o-algebraic over K. Since Ly is a field, S4 is a domain. By Corollary A.18, 7(Sy) is a
K-¢o-subalgebra of S4. Let us assume by contradiction that all coordinates of u are o-
algebraic over K. Then u € w(S4)". Let V C (S4)" denote the n-dimensional C-vector
space of all solutions of ¢ (Y') = AY in S}}. Since, by assumption,u € VN7 (S4)" =: W,
we see that W is nonzero subspace of V. By Corollary A.18, 7w (S4) is stable under
the action of Gal® (L4|K) and so the same holds for W. Since the representation V' of
Gal(K4|K) is irreducible, Lemma A.7 implies that the representation V of Gal® (L4|K)
is irreducible too. Thus W = V and so V C 7 (S4)". Hence, all entries of all elements of V'
are o-algebraic over K. Since L4 is o-generated over K by all these entries, it follows
that o-tr.deg(L4|K) = 0. Thus, by Proposition 4.13, Gal(K4|K) is a connected solv-
able linear algebraic group. However, by the Lie—Kolchin Theorem [24, Theorem 16.30],
such a group stabilizes a line in any nonzero representation. Since n > 2, it cannot act
irreducibly, providing a contradiction. ]

4.3. The general case

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We argue by induction on n. More precisely, our induction
assumption reads as follows.

(H,,) For any positive integer k, if f € F is a solution to a linear ¢¥-difference equation
of order at most n with coefficients in K, then either f is o-transcendental over K
or f eK.

Proposition 4.6 with b = 0 implies that (H;) holds true. Let n > 2 and assume (H,,—;). Let
f € F be a solution to a linear ¢*-difference equation of order n with coefficients in K.
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Without any loss of generality, we can assume that f # 0 and k = 1. Considering the
companion matrix A associated with this equation, Proposition 3.7 ensures the existence
of positive integers r and s such that the following properties hold:

(a) The vector (f.¢(f),....¢" 1(f)) T is a solution to the system ¢" (Y) = ApY .

(b) There exists a (¢", 0¥)-Picard—Vessiot extension L4 for ¢” (Y') = A, 1Y thatis a field
and such that the vector (£,¢(f),...,¢" ()T is the first column of a fundamental
matrix U € GL,(Ly4).

(c) The Galois group § of the system ¢” (Y') = A1) over K is connected.

By Lemma 2.10, without loss of generality, up to replacing o by some power of o, we
may reduce to the case where s = 1. Let us first assume that § is irreducible. Since L4
is a field, Proposition 4.9 shows that f is o-transcendental. Hence (Hj,) holds. From now
on, we assume that § is reducible and that f is o-algebraic over K. Thus, it remains to
prove that f € K. Without loss of generality, we can assume that r = 1.

By Lemma 3.3, there exists a gauge transformation 7 = (¢;,;) € GL,(K) such that

a1 (A Aip
srar = (4 42),

where 4; € GL,, (K), n1 + n> = n, and n, < n. Furthermore, let us assume that 7 is
minimal with this property. Set

) g1 S
g
gn "1 (f)
where
81 8ni+1
g/ — E c Fn] and g// — E c Fn2.
8ny 8n

Since the coefficients of 7 belong to K, it follows from (4.8) that g € K" if and only
if f € K. From now on, we assume for contradiction that f ¢ K. Hence, at least one
coordinate of g does not belong to K.

We have
g\ _ (A A2\ (g
¢ (g”) B (O Az ) (g” ’ *9)

Thus, g” is a solution to the system ¢(Y) = A,Y . Furthermore, since f is o-algebraic
over K, the g; are also o-algebraic over K. By (H,,) and Remark 2.1, we find that
g// e K2,

Let §; denote the Galois group of the system ¢(Y) = A1Y over K. Let us prove
that §; is irreducible. Indeed, if §; were reducible, by Lemma 3.3, there would exist a
gauge transformation changing A into a block upper triangular matrix, contradicting the
minimality of 7. Thus the Galois group of ¢(Y) = A1Y is irreducible.
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Claim. One hasn; = 1.

Proof of the claim. Let Sq4 = K{U, m}o C Ly denote the o-Picard—Vessiot ring for
the system ¢(Y) = AY . Note that, by assumption, f belongs to S4 and thus all the g;’s
also belong to S4. We know that g” € K"2. Since, by assumption, g ¢ K", we see that
g’ ¢ K™ .1t follows from the o-Galois correspondence (Proposition 2.8) that there exist a
C-o-algebra B and t € Gal® (L4 /K)(B) (i.e. 7:S4 ®c B — S4 ®c Bisa K ®c B-¢o-
automorphism) with 7(g’) # g’. By (4.9), ¢(g') = A1g8’ + A12¢”. As T commutes with ¢
and fixes the elements of K, we see that 7(g’) is also a solutionto ¢(Y) = A1Y + A1 28".
Therefore g’ — t(g’) € (S4 ®c B)" is a nonzero solution of ¢(Y') = A,Y. Since L4 is
a field, S4 is an integral domain. By Corollary A.18, 7w(S4/K), the set of elements that
are o-algebraic over K and in S4 is invariant under the action Gal®(L4|K) and is a
o-ring. Since g’ € w(S4/K)"!, we find successively t(g’) € (w(S4/K) ®c B)"! and
g —1(g") € (7(S4/K) ®c B)"1. The latter is a nonzero solution of ¢(¥Y) = A;Y. It
follows from Lemma 3.1 that ¢(Y) = A;Y has a nonzero solution in 7 (S4/K)"!. As the
Galois group of ¢(Y) = A1Y is irreducible and Ly is a field, Proposition 4.10 implies
thatny = 1. [

Asny = 1, we see that g’ = gy € F is a solution to the inhomogeneous linear order 1
equation
P(g1) = A1g1 + A128".

Since g; € F is o-algebraic over K and since A; and A;,g” belong to K, Proposi-
tion 4.6 implies that g; € K. It follows that g = (g 1) € K", and thus f € K, providing
a contradiction. [

Appendix A. Difference algebraic groups and their actions

In this appendix we collect some basic definitions and results concerning difference alge-
braic groups and their actions that are needed for the proof of Theorem 1.3. For a more
detailed introduction to difference algebraic groups see [12, Appendix A] and [35,37].

A.l. Difference algebraic groups

Difference algebraic groups are the group objects in the category of difference varieties.
So we first introduce difference varieties. Throughout this appendix, C denotes an arbi-
trary o-field (not necessarily of characteristic zero). The o -polynomial ring C{y1,...,yn}
over C is the polynomial ring over C in the variables y1,..., yn,0(¥1),...,0(Vn), ...
with action of o extended from C as suggested by the names of the variables. If B is a
C-g-algebra and x = (x1,...,x,) € B”, then a o-polynomial f € C{yy,...,y,} can
be evaluated at x by replacing o’ (yj) with ol (xj). For a subset F of C{y1,...,yn} we
denote the set of solutions of F in B” with Vg (F'). Note that B ~> Vp(F) is naturally a
functor from the category of C-o-algebras to the category of sets.
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A difference variety is in essence the set of solutions of a set of o-polynomials.
There are two reasons why we cannot simply consider the solutions in some fixed large
o-field extension of C. Firstly, there is no suitable notion of a o-closure of a o-field,
similar to the algebraic closure of a field or the differential closure of a differential
field. Secondly, there are many systems of algebraic difference equations where the solu-
tions in o-field extensions reflect very poorly the content of the equations. For exam-
ple, the system y + a(y) = 1, yo(y) = 0 has no solution in a o-field. However, x =
(1,0,1,0,...) € CN is a solution in the o-ring of sequences. (Here the action of ¢ on cN
is given by 0 ((x;)ieN) = (xi+1)ieN-) We therefore define difference varieties as functors,
rather than subsets of some C” for some large o-field extension Cof C.

Definition A.1. A o-variety X (over C) is a functor from the category of C-o-algebras
to the category of sets that is isomorphic to a functor of the form B ~»> Vg (F) for some
n>1land F C C{y1,...,Yn}. A morphism of o-varieties is a morphism of functors.

The functor X given by B ~> Vp(F) is representable, i.e. there exists a C-o-algebra
C{X} such that X is isomorphic to Hom(C{X}, —). Indeed, to specify a solution of F
in B" is equivalent to specifying a morphism C{yi,..., y,} = B of C-o-algebras
that sends all elements in F to zero. The latter is equivalent to specifying a morphism
C{y1,....yn}/[F]— B,where [F]= (6'(f): f € F,i e N) S C{y1,...,y,} denotes
the o-ideal generated by F. We can therefore choose C{X} = C{y1,..., yn}/[F]. We
will usually identify X and Hom(C{X}, —).

A C-o-algebra B is finitely o -generated if there exists a finite subset M of B such that
B = C{M},. Clearly, the C-g-algebra C{X} = C{y1,..., yn}/[F] is finitely o-gener-
ated. Conversely, every finitely o-generated C-o-algebra is isomorphic to one of the form
C{y1,...,Yan}/[F]. It follows that a functor X from the category of C-c-algebras to the
category of sets is a o-variety if and only if it is representable by a finitely o-generated
C-o-algebra. By the Yoneda lemma, this finitely o-generated C-o-algebra is uniquely
determined by X up to isomorphism of C-c-algebras. We denote it by C {X } and call the
coordinate ring of X. Moreover, a morphism n: X — Y of o-varieties corresponds to a
morphism n*: C{Y } — C{X} of C-o-algebras. Note that 1 can be recovered from n* via
ng: X(B) = Hom(C{X}, B) - Hom(C{Y}, B) = Y(B), ¢ — n* o, for any C-o0-
algebra B. In summary, we see that the category of o-varieties over C is anti-equivalent
to the category of finitely o-generated C-o-algebras. We will usually identify a o -variety
X with Hom(C{X}, —).

The category of o-varieties has products. Indeed, if X and Y are o-varieties, then the
functor X x Y given by B ~> X(B) x Y(B) isrepresented by C{X} ®c C{Y }. Therefore
we can make the following definition.

Definition A.2. A o-algebraic group G (over C) is a group object in the category of o-
varieties (over C), i.e. a o-variety G together with morphisms of o-varieties G x G — G
(multiplication), G — G (inversion), 1 — G (identity) satisfying the group axioms.

Here 1 is the functor that associates the trivial group to any C-o-algebra B. In particu-
lar, G(B) is a group for any C-o-algebra B. A morphism 1: G — H of o-algebraic groups
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is a morphism of o-varieties that respects the group structure, i.e. ng: G(B) — H(B) is
a morphism of groups for every C-o-algebra B.

A C-o0-Hopfalgebrais a C-o-algebra with the structure of a C-Hopf algebra such that
the Hopf algebra structure maps are morphisms of C-o-algebras. Since the category of
o-varieties over C is anti-equivalent to the category of finitely o-generated C-o-algebras,
it follows that the category of o-algebraic groups over C is equivalent to the category of
C-o-Hopf algebras that are finitely o-generated over C.

Example A.3. If § is an affine algebraic group over C, then the functor [c]¢§ given by
B ~> §(B¥) is a o-algebraic group. Here B¥ denotes the C-algebra obtained from the
C-o-algebra by forgetting o. For example, if V' is a finite-dimensional vector space and
Y = GLy, then [0]cGLy is the functor that associates to a C-o-algebra B the group
of B-linear automorphisms of V' ®c B. Fixing a basis of V, we see that [o]cGLy is
represented by

C{lo)cGLac} = C{Tyy. (det T) '}

the o-polynomial ring in the variables 7;; (1 <1i, j < n) localized at the multiplicatively
closed subset generated by det T, o(detT),.... See [37, Example 2.6 and Section 1.3]
for a description of C{[o]c¥&} in the general case. In particular, we have an injective
morphism C[§] — C{[o]c§} of C-Hopf algebras.

See [37, Section 2] for a list of further examples of o-algebraic groups.

If X is a o-variety and [ is a o-ideal in C{X}, we can define a subfunctor ¥ of X
by Y(B) = {¢ e Hom(C{X}, B) : () = 0} C Hom(C{X}, B) = X(B) for any C-o-
algebra B. Note that Y is a o-variety since it is represented by C{X}/I. We call Y the
o-closed o-subvariety of X defined by I. For example, if F C F' C C{y1,...,yn}, then
the functor Y given by B ~»> Vg (F’) is a 0-closed o-subvariety of the functor X given by
B ~> Vg (F), since it corresponds to all morphisms on C{X} = C{y1,..., yn}/[F] that
annihilate the image of [F’] in C{X }. For a given o-variety X, the o-closed o-subvarieties
of X are in bijection with the o-ideals of C{X} (see [37, Lemma 1.4]).

Definition A.4. A o-closed subgroup H of a o-algebraic group G is a o-closed
o-subvariety H of G such that H(B) is a subgroup of G(B) for any C-o-algebra B.
A o-closed subgroup of an affine algebraic group § is a o-closed subgroup of [0]c §.

Definition A.5. Let § be an affine algebraic group and let G be a o-closed subgroup
of § (in particular, G(B) < §(B) for all C-g-algebras B). Then G is Zariski dense in §
if every regular function on § that vanishes on G is zero, i.e. for f € C[g] with f(g) =0
for all g € G(B) and all C-o-algebras B, we have f = 0.

In the above definition, we can identify §(B) with the set of C-algebra morphisms
from C[§] to B. For f € C[§] and g: C[§] — B a C-algebra morphism, we then have
g(f) = f(2).

A o-closed subgroup G of § gives rise to the composition of two morphisms
Y:C[g] — C{l[o]cF} — C{G} of C-algebras. Note that for a C-o-algebra B, the inclu-
sion G(B) = Hom(C{G}, B) — ¢(B*) = Hom(C[¢], B¥) is given by precomposing
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with . The morphism v is injective if and only if G is Zariski dense in §. (This follows
by choosing B = C{G} and g = id € G(B) = Hom(C{G}, C{G}).)

Definition A.6. Let G be a o-algebraic group over C. A representation of G is a finite-
dimensional C-vector space V together with a morphism G — [0]¢ GLy of o-algebraic
groups. In particular, for a C-o-algebra B, every g € G(B) acts on V ®¢ B through a
B-linear automorphism.

A C-subspace W of V is a subrepresentation of V if g:V ®c B — V ®c B maps
W ®c B into W ®c¢ B forevery g € G(B) and every C-c-algebra B.

The representation V' of G is irreducible if the only subrepresentations of V' are the
zero subspace and V itself.

A morphism f:V — W of representations of G is a C-linear map such that the

diagram B
VecB L2 wecB

| L

v ecB-L2% weceB

commutes for every g € G(B) and every C-o-algebra B. As for affine algebraic groups
(see, for instance, [34, Section 3.2]), the category of representations of G is equivalent to
the category of finite-dimensional comodules for the Hopf algebra C{G}.

Lemma A.7. Let V be a finite-dimensional C-vector space and let § be a closed sub-
group of GLy. If G is a o-closed Zariski dense subgroup of G, then any G-subrep-
resentation of V is a §-subrepresentation of V. In particular, if V is irreducible as a
representation of §, then V' is irreducible as a representation of G.

Proof. Since G is Zariski dense in &, we have C[§] C C{G}. The comodule struc-
ture p: V — V ®c C{G} corresponding to the representation of G is obtained from
the comodule structure p: V — V ®c C[§] corresponding to the representation of §
by composing with the inclusion V ®¢c C[§] - V ®c C{G}. A C-subspace W of V
is a G-subrepresentation if and only if p(W) C W ®¢ C{G}. Since p factors through
V ®c C[¥], this implies p(W) C W ®¢ C[§], i.e. W is a §-subrepresentation. |

The following definition introduces the o-dimension of a o-algebraic group.

Definition A.8. Let B be a finitely o-generated C-o-algebra and let M C B be a
finite set such that B = C{M},. For i € N let d; € N denote the Krull dimension
of the C-algebra C[M, o (M), ..., (M)]. One can show (see [36, Theorem 2.2])
that o-dim(B) = lim; 5 ii—"l exists and does not depend on the choice of M. The o-
dimension o-dim(G) of a o-algebraic group G is o-dim(C{G}).

In general, o-dim(B) need not be an integer. However, one can show [36, Theo-
rem 5.1] that o-dim(G) is always an integer. From this it follows that our definition of the
o-dimension of a o-algebraic group agrees with the somewhat more complicated defini-
tion given in [12, Definition A.25].
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Example A.9. If § is a linear algebraic group over C, then o-dim([o]¢c§) = dim(¥) by
[37, Example 3.10].

A.2. Difference algebraic elements

The aim of this second part of the appendix is to show that, at least under some mild tech-
nical assumptions, the subring 7 (S|K) of a o-Picard—Vessiot ring S over K consisting of
all elements of S that are o-algebraic over K, is stable under the action of the o-Galois
group G. It is obvious that every K-¢o-automorphism of S maps 7 (S|K) into itself,
i.e. 7(S|K) is stable under G(C), where C = K?. It is much less obvious that 7 (S|K)
is stable under the action of G in the strong sense that for every C-o-algebra B, every
element of G(B) maps 7(S|K) ®c B into n(S|K) ®c B.

Let C be a o-field and B a C-o-algebra. Recall that a € B is called o-algebraic
over C if a satisfies a nonzero o-polynomial equation over C. We define

7 (B|C) = {b € B : b is g-algebraic over C}.
The following example shows that 7 (B|C) is in general not a subring of B.

Example A.10. Let C = Q (with 0 = id) and let K = Q(x1, y1, X2, y2,...) be a ratio-
nal function field in infinitely many variables. Let B = K be the ring of sequences
in K that we equip with a structure of o-ring with 0 ((ay)neNn) = (@n+1)neN. Then
X =(x1,0,x2,0,...) € Band y = (0, y1,0, y2,...) € B are o-algebraic over C because
xo(x) = 0and yo(y) = 0. However, x + y = (x1, y1, X2, y2,...) € B is in general not
o-algebraic over C.

However, it follows from [20, Theorem 4.1.2 (iii)] that if B is a o-domain, (i.e. B
is an integral domain and o: B — B is injective), then 7 (B|C) is a C-o-subalgebra
of B. Because of the pathology exhibited in Example A.10, we modify the definition of
7 (B|C), but in such a way that it remains unchanged for o-domains.

Definition A.11. Let B be a C-o-algebra. An element b € B is o-bounded (over C) if
the sequence (dim(C[b, o (b),...,0" (b)]))ien is bounded. We set

w(B|C) = {b € B : b is o-bounded}.

The following lemma relates the Krull dimension to the maximal number of alge-
braically independent elements. It will be implicitly used several times in what follows.

Lemma A.12 ([36, Proposition 2.1]). Let us consider a C-algebra B and let us assume
the existence of a finite set A C B such that B = C[A]. Then

dim(B) = max{|D|: D C A, D is algebraically independent over C }.
The following lemma explains the connection between 7w (B|C) and w(B|C).

Lemma A.13. Let B be a C-0-algebra. Then u(B|C) C w(B|C). Moreover, if B is a
o-domain, then W(B|C) = n(B|C).
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Proof. If b € B is o-bounded, then dim(C[b, o'(b),...,o% (b)]) <i + 1 for somei > 1.
Thus b, o(b), ..., o' (b) are algebraically dependent over C and so b is o-algebraic.
Therefore u(B|C) C n(B|C).

Let us now assume that B is a 0-domain and let us prove the reverse inclusion. Let
b € B be o-algebraic over C. Because B is a o-domain, its fraction field L is naturally
a o-field extension of C and we can consider the o-subfield C (b), of L. According to
[20, Corollary 4.1.18], the transcendence degree m = tr.deg(C (b)s|C) is finite. Thus
dim(C[b,o(b),...,0%(b)]) <mforalli > 0. |

We now establish some properties of p(B|C) that will permit us later on to deduce
properties of 7(B|C) when B is a o-domain.

Lemma A.14. Let B be a C-0-algebra. Then w(B|C) is a C-o-subalgebra of B.
Proof. Leta,b € B be o-bounded, say
dim(Cla,...,c"(@)]) <m and dim(C[b,...,c'(b)]) <n foralli > 0.

Then dim(Cla, b, ...,o"(a),c' (b)]) < mn foralli > 0. Since Cla + b,...,c' (a + b)]
and Clab, . ..,o" (ab)] are both contained in the latter C-algebra, it follows that we have
dim(Cla + b,...,0' (@ + b)]) < mn and dim(C|[ab, ... 0" (ab)]) < mn. Thus u(B|C)
is a subring of B. If b € B is o-bounded, then clearly o(b) is also o-bounded. Thus
w(B|C) is a C-o-subalgebra of B. |

The following lemma is a slight generalization of [35, Lemma 6.27]. Recall from
[11, Chapter V, §17, No. 3, Definition 1] that an algebra B over a field C is called regular
if B ®c D is an integral domain for every field extension D of C.

Lemma A.15. Let C be an inversive o-field (i.e. 0: C — C is surjective) and let D be
a o-field extension of C such that D is a regular field extension of C. Then there exists
a o-field extension E of D such that every element of E that is fixed by all C-o-field
automorphisms of E lies in C, i.e. EAC(EIC) — ¢,

Proof. We first establish the following claim. There exists a o-field E of D satisfying the
following properties:

e Forevery d € D ~ C there exists a C-o-automorphism t of E with 7(d) # d.

e Every C-o-automorphism of D extends to a C-o-automorphism of E.

e The field extension E|C is regular.

Because D is aregular extension of C, the ring D ® ¢ D is an integral domain [11, Chap-
ter V, §17, No. 3, Proposition 2]. Since C is inversive, it follows from [29, Corollary 1.6]
thato: D ® c D — D ®c D is injective. Therefore the field E of fractions of D Q¢ D
is naturally a o-field. We consider E as a o-field extension of D via the embedding
d +— d ® 1. The C-o-automorphism t of E determined by 7(d; ® d») = d» ® d satis-
fies t(d) # d forevery d € D ~ C. Moreover, every C-o-automorphism v of D extends
to a C-o-automorphism of E by ¥ (d; ® d2) = ¥(d1) ® d». The tensor product of two
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regular algebras is regular [11, Chapter V, §17, No. 3, Prop. 3] and the field of fractions
of a regular algebra is regular [11, Chapter V, §17, No. 4, Cor. to Prop. 4]. It thus follows
that E is a regular extension of C and the claim is established.

Let us now prove the lemma. By the above claim there exists a o-field extension E
of D such thatevery d € D ~ C can be moved by a C-o-field automorphism of E1, every
C -0 -automorphism of D extends over E1 and E1|C is regular. Applying the claim again
(with E1|C in place of D|C) yields a o-field extension E, of E; such that every element
of E1 ~ C can be moved by a C-o-field automorphism of E,, every C-o-automorphism
of Eq extends over E, and E,|C is regular. Continuing, we obtain an ascending chain
CCDCE|CE,C-- of o-field extensions. The union E = U?L E; has the desired
property. |

Lemma A.16. Let C be an inversive o-field and let B be a C-o-algebra. Let D|C be an
extension of o-fields such that D is a regular field extension of C. Then

w(B ®c D|D) = u(B|C) ®c D.

Proof. If b € B is o-bounded over C, then b ® 1 € B ®c D is o-bounded over D.
Thus u(B|C) € u(B ®¢ D|D). Since u(B ®c D|D) is a D-o-subalgebra of B ® c D
(Lemma A.14), it follows that u(B|C) ®c D C u(B ®¢ D|D). The crucial step to prove
the reverse inclusion is to show that (B ® ¢ D|D) descends to C.

By Lemma A.15, there exists a o-field extension E of D such that the fixed field of
the group Aut®(E|C) of all o-field automorphisms of E|C is C. For y € Aut’ (E|C)
we also denote the induced automorphism B c E - BQc E, b® A — b ® y(A),
with y. Note that y: B ®c E — B ®c E is an automorphism of C-o-algebras that
maps E isomorphically onto E. Assume that a € B ®¢c E is o-bounded over E. Then
y maps E{a}, isomorphically onto E{y(a)}, and E[a, ..., o' (a)] isomorphically onto
Ely(a)....,o' (y(a))] for every i > 0. It follows that y(a) is o-bounded over E. Conse-
quently, u(B ®c E|E) € B ®c E is stable under the action of Aut’ (E|C).

Let B’ be the subset of all elements of u(B ®c¢ E|E) fixed under the Aut® (E|C)-
action. It is a C-o-subalgebra of B. Therefore (cf. [11, Cor. to Prop. 6, Chapter V, §10.4,
AV.63) u(B®c E|E)=B' ®c E.Ifb® 1 € B ®¢ E is o-bounded over E, then b has
to be o-bounded over C. Therefore B’ C w(B|C) and it follows that u(B ®¢ E|E) C
w(B|C) ®c E and so u(B ®¢ E|E) = u(B|C) ®c E. Thus

(B ®c D|D) C w(B ®p E|E) = u(B|C) ®c E.

Butas u(B ®c D|D) C B ®c D, we indeed have the desired inclusion u(B ®¢c D|D)
C w(B|C)®c D. "

Proposition A.17. Let K be a ¢po-field of characteristic zero such that o: K — K is sur-
jective and C = K@ is algebraically closed. Let S be a o-Picard—Vessiot ring over K and
let G be the o-Galois group. Assume that G is o-integral, i.e. C{G} is an integral domain
and o: C{G} — C{G} is injective. Then u(S|K) C S is stable under the G-action, i.e.
for every C-o-algebra B, every T € G(B) maps u(S|K) ®c B into u(S|K) ®c B .
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Proof. Tt suffices to show that the co-action p: S — S ®c C{G} maps u(S|K)
into u(S|K) ®c C{G}. Since p(u(S|K)) C u(S ®c C{G}|K), it suffices to show
that u(S ®c C{G}|K) € u(S|K) ®c C{G}. Because 0: K — K is surjective, also
0:C — C is surjective. As C is algebraically closed and inversive, also K{G} =
K ®c C{G} is a o-domain [12, Cor. A.14 (ii)]. Let D denote the field of fractions
of K{G}. Every integral domain over an algebraically closed field is regular [11, Chap-
ter V, §17, No. 5, Cor. 2]. Thus C{G} is regular over C. As regularity is preserved under
base change [11, Chapter V, §17, No. 3, Prop. 3], we see that K ®c C{G} is regular
over K. Finally, since the field of fractions of a regular algebra is regular [11, Chapter V,
§17, No. 4, Cor. to Prop. 4], we can conclude that D is a regular field extension of K. We
can therefore apply Lemma A.16 to deduce that u(S ®x D|D) = u(S|K) ®x D. So

(S ®c C{G}|K) = u(S ®k K{G}|K) € u(S ® D|D) = u(S|K) ®k D.
Therefore

(S ®x K{G}|K) < (n(S|K) ®k D) N (S @k K{G})
= (S|K) @k K{G} = u(S|K) ®c C{G}

as desired. [

Corollary A.18. Let K be one of the ¢po-fields in Cases 28, 2Q, and 2M. Let L4 be a
o-Picard-Vessiot extension for $(Y) = AY with A € GL,(K) and let Sq4 C Ly be the
o-Picard-Vessiot ring. Assume that Ly is a field. Then w(S4|K) is a K-¢o-subalgebra
of S4 and is stable under the action of the o-Galois group Gal® (L4|K).

Proof. In all cases 0: K — K is surjective and C = K¢ is algebraically closed and of
characteristic zero. By Lemma 3.9, the o-Galois group is o-integral. We can therefore
apply Proposition A.17 to deduce that 1 (S4|K) is stable under the action of the o-Galois
group. By Lemma A.13, 7(S4|K) = u(S4|K) and u(S4|K) is a o-subring by Lemma
A.14. Because ¢ and 0 commute, 77(S4|K) is also stable under ¢. |
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