2102.02553v1 [math.GR] 4 Feb 2021

arxiv

Subgroups of free proalgebraic groups and Matzat’s
conjecture for function fields

Michael Wibmer*
February 5, 2021

Abstract

We show that a closed finite index subgroup of a free proalgebraic group is itself a free
proalgebraic group. Our main motivation for this result is an application in differential Ga-
lois theory: The absolute differential Galois group of a one-variable function field is a free
proalgebraic group.

Introduction

Understanding the absolute differential Galois group of interesting differential fields is a central
problem in differential Galois theory. Matzat’s conjecture addresses this question for one-variable
function fields.

Matzat’s Conjecture. Let k be an algebraically closed field of characteristic zero and let K be
a one-variable function field over k, equipped with a non-trivial k-derivation. Then the absolute
differential Galois group of K is the free proalgebraic group on a set of cardinality |K]|.

The first special case of Matzat’s conjecture was proved in [BHHW21D]. There it was shown
that the conjecture holds for K = k(x), the rational function field over k equipped with the
standard derivation %, provided that k is countable and of infinite transcendence degree (over Q).
Subsequently, in [BHHW2Ta], Matzat’s conjecture was proved for (k(z), -&) provided that k is of
infinite transcendence degree. The main result of our article is the following fairly general case of
Matzat’s conjecture:

Theorem (Theorem [2.9). Let k be an algebraically closed field of characteristic zero of infinite
transcendence degree and let K be a one-variable function field over k, equipped with a non-trivial
k-derivation. Then the absolute differential Galois group of K is the free proalgebraic group on a
set of cardinality |K|.

In other words, Matzat’s conjecture holds, provided that k has infinite transcendence degree.
In fact, we show that, for a fixed algebraically closed field k of characteristic zero (of arbitrary
transcendence degree), Matzat’s conjecture for (k(z),-L) implies the general form of Matzat’s
conjecture over k. Our proof of this result has two main steps:
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(i) We show that the absolute differential Galois group of a one-variable function field over k,
equipped with a non-zero k-derivation, is isomorphic to a closed finite index subgroup of the
absolute differential Galois group of (k(z), ).

(ii) We show that closed finite index subgroups of free proalgebraic groups are themselves free.

The second point can be seen as an algebraic-geometric analog of the Nielsen-Schreier theorem,
stating that subgroups of (abstract) free groups are themselves free. It can also be seen as an
analog of the corresponding result for free profinite groups. A closed subgroup of a free profinite
group is in general not free. However, an open (=closed of finite index) subgroup of a free profinite
group is free (see [FJO8, Section 17.6] or [RZ10, Section 3.6]). Our proof of (ii) follows along the
lines of |[RS10] which provides an algebraic approach to the Nielsen-Schreier theorem based on
wreath products.

We conclude the introduction with an outline of the paper. In the first section we show that
a closed finite index subgroup of a free proalgebraic group is itself free. In the second section
we apply this result to obtain a proof of Matzat’s conjecture for function fields over constants of
infinite transcendence degree.

1 Subgroups of free proalgebraic groups

1.1 Notation and quotients

Throughout this article k is a field (our base field) and k is an algebraic closure of k. All schemes
are assumed to be over k unless the contrary is indicated. For brevity and to emphasize the analogy
with the theory of profinite groups, we use the term “proalgebraic group (over k)” in lieu of “affine
group scheme (over k)”. Similarly, an algebraic group (over k) is an affine group scheme of finite
type over k. A closed subgroup of a proalgebraic group is, by definition, a closed subgroup scheme.
We will usually identify a proalgebraic group G with its functor of points R ~» G(R) from the
category of k-algebras to the category of groups. For an affine scheme X, we denote the ring of
global sections of X by k[X], i.e., X ~ Hom(k[X], —) as functors from the category of k-algebras
to the category of groups.

A morphism ¢: G — H of proalgebraic groups is a closed embedding if it induces an isomorphism
between G and a closed subgroup of H; equivalently, ¢: G(R) — H(R) is injective for every k-
algebra R ([Wat79, Theorem 15.3]). For a morphism ¢: G — H of proalgebraic groups we denote
with ¢(G) the scheme theoretic image of ¢. It is the closed subgroup of H defined by the kernel
of the dual map ¢*: k[H]| — k[G].

Let H be a closed subgroup of a proalgebraic group G. We will need to work with the left and
right coset spaces G/H and H\G of H in G. So let us make precise what we mean by that: We
define G/H as the sheaf in the fpqc topology associated to the functor R ~» G(R)/H(R) from the
category of k-algebras to the category of groups, where G(R)/H(R) is the usual coset space of
H(R) in G(R) (as in [DGT70, Chapter III, §3, Section 7]). The functor H\G is defined similarly.
We note that if the sheaf G/H in the fppf topology associated to the functor R ~ G(R)/H(R)
is a scheme (this, e.g., is the case if G is algebraic ([DG70, Chapter III, §3, Theorem 5.4])), then
G/H = G/H. In general, G/H need not be a scheme and if G/H is a scheme it need not be affine.
However, we are mostly interested in the following two situations:

e The closed subgroup H is normal in G. In this case G/H is an affine scheme and therefore
a proalgebraic group ([DGT0, Chapter III, §3, Theorem 7.2]).

e The functor H\G is a finite (and hence affine) k-scheme.

Note that H\G comes equipped with a right action of G and a canonical morphism G — H\G,
that is G-equivariant for the right multiplication of G on G. The inversion g — ¢! induces an



isomorphism G/H — H\G. In particular, G/H is a finite k-scheme if and only if H\G is a finite
k-scheme and the k-dimensions of k[G/H| and k[H\G| agree. If this is the case, we say that H
has finite index in G, or that H is a finite index subgroup of G. The index [G : H] of H in G is
defined as the dimension of k[G/H] as a k-vector space.

A morphism ¢: G — H of proalgebraic groups is a quotient map if it induces an isomorphism
between H and G/ker(¢). This is equivalent to the dual map ¢*: k[H] — k[G] being injective.
For brevity, we call a closed normal subgroup IV of a proalgebraic group G a coalgebraic subgroup
of G if G/N is an algebraic group. For a scheme X over k and a k-algebra R, we denote with Xg
the R-scheme obtain from X by base change via k — R.

For a scheme X over k, we define Aut(X) as the functor from the category of k-algebras to
the category of groups given by Aut(X)(R) = Aut(Xg). If ¥ is a finite k-scheme, Aut(X) is an
algebraic group ([DG70 Chapter II, §1, 2.7]).

Lemma 1.1. Let H be a closed finite index subgroup of a proalgebraic group G. Then there exists
a coalgebraic subgroup N of G with N < H.

Proof. Set ¥ = G/H and let N be the kernel of the morphism G — Aut(X) of proalgebraic groups
corresponding to the (left) G-action on ¥. Then N < H and because G/N embeds into the
algebraic group Aut(X), also G/N is algebraic. O

The following lemma summarizes what we will need to know about quotients.

Lemma 1.2. Let H be a closed finite index subgroup of a proalgebraic group G.

(i) For a k-algebra R and g1,92 € G(R) we have H(R)g1 = H(R)g2 if and only if g1 and go

have the same image under the canonical map G — H\G.
(ii) If k is algebraically closed, the map G(k) — (H\G)(k) is surjective.
(iii) If G is reduced, then also H\G is reduced.

Proof. Point (i) follows as in [DGT0, Chapter III, §1, Example 2.4] by using the equivalence relation
on G defined by H.

For (ii), let N be a coalgebraic subgroup of G such that N < H (Lemma [L.1). Then H/N can
be identified with a closed subgroup of G/N and we have a commutative diagram

G——~G/N

| |

H\G —— (H/N)\(G/N)

in which the lower horizontal arrow is an isomorphism. It thus suffices to show that the upper
horizontal arrow and the right vertical arrow are surjective on k-points. For G — G/N this is
[DG70, Chapter III, §3, Cor. 7.6]. For the right vertical arrow this is the claim of (ii) under the
additional assumption that G is algebraic. But if G is algebraic, then G — H\G is a faithfully flat
morphism of affine schemes of finite type over k ([DG70, Chapter ITI, §3, Prop. 2.5]) and therefore
surjective on the k-points.

For (iii), we can reduce to the case that G is algebraic as in (ii). (Note that G/N is reduced if
G is reduced, because k[G/N| — k[G] is injective.) Then G — H\G is faithfully flat and so the
dual map k[H\G] — k[G] is injective. So if k[G] is reduced, also k[H\G] is reduced. O



1.2 Wreath products for proalgebraic groups

Our proof that closed finite index subgroups of free proalgebraic groups are themselves free, follows
along the lines of [RS10], which relies on properties of wreath products. In this section we introduce
wreath products for proalgebraic groups and establish some of their basic properties. The author
was not able to locate any reference that deals with wreath products of (pro)algebraic groups.
Our definitions and results are mostly straight forward adaptions from the classical case of groups.
However, a question of representability intervenes.

Let us first recall the construction of wreath products in the category of groups. Let A be a
group and let G be a group acting on a set ¥ from the right. The wreath product 4! G of A by
G is the semidirect product

A1G =A% x G,

where A is the set of all maps from 3 to A considered as a group under pointwise multiplication
and G acts on A% (from the left) via g(f)(s) = f(sg) for g € G, f € A¥ and s € X.

Now let A and G be proalgebraic groups over k and let ¥ be a k-scheme equipped with a right
action of G. Let A* denote the functor from the category of k-algebras to the category of groups
given by A¥(R) = Hom(X g, Ar) for any k-algebra R. The group structure on the set Hom(X g, Ag)

of all R-scheme morphisms from Y.p to Ag is given by fifa: Xg M) Ar Xp Arp — Apg for

f1, fo € Hom(X R, Ar), where the second map is the multiplication in Ar. In general, there is no
reason why A* should be a scheme (i.e., representable), however:

Lemma 1.3. If X is a finite k-scheme, then A® is a proalgebraic group. Moreover, the diagonal
morphism d: A — A¥ is a closed embedding of proalgebraic groups.

Proof. For a k-algebra R, we have

A*(R) = Hom(X g, Ar) = Homg(R ®4 k[A], R ® k[X]) = Homy (k[A], R @ k[X]) =
= Homys) (k[A] @5 k[X], R @4 k[X]) = Aps) (R @k k[X]) = (Hggy/eArs) (R),

where ITj5) /X denotes the Weil restriction R ~» X (R ®y, k[X]) of an affine k[¥]-scheme X to k.
The Weil restriction Il s/, X is an affine k-scheme if k[3] is a finite dimensional k-vector space
(IDG70, Chapter I, §1, Prop. 6.6]). Therefore A* is an affine scheme.

The diagonal morphism d: A — A¥ is defined as follows: For a k-algebra R and a € A(R) the
morphism d(a): ¥g — Ag is given by d(a)(s) = a for s € £(R’) and any R-algebra R’. For every
k-algebra R, the map A(R) — (A¥)(R), a + d(a) is an injective group homomorphism. Thus d is
a closed embedding. O

Henceforth we assume that ¥ is a finite k-scheme[] The proalgebraic group G acts on the

proalgebraic group A from the left by g(f): ¥g & Zr ER Ag, i.e., for a k-algebra R, g € G(R)
and f € A¥(R) we have g(f)(s) = f(sg), where s € X(R’) and R’ is an R-algebra. We can
therefore form the semidirect product

A1G = A¥ x G,

henceforth called the wreath product of A by G (with respect to the G-scheme X).

For a morphism ¢: A — B of proalgebraic groups, we define ¢*: A¥ — B* by ¢*(f)(s) =
B(f(s)) for f € A¥(R) and s € X(R') for any k-algebra R and any R-algebra R’. Then ¢* is a
G-equivariant morphism of proalgebraic groups. Moreover, if ¢ is a closed embedding, so is ¢~. It
follows that ¢: A — B induces a morphism

PG AVG— BlG

I This is sufficient for our purposes, since in the application to free proalgebraic groups (Section [L5), the role of
3 will be played by H\I', where H is a closed finite index subgroup of a free proalgebraic group I



by (61 G)(f,g) = (¢*(f),g) for f € (A¥)(R), g € G(R) and R a k-algebra. In other words, the
wreath product is functorial in the first component. Moreover, if A < B and G < H are closed
subgroups, then A G is a closed subgroup of B! H.

1.3 The embedding theorem

Let H be a closed subgroup of a proalgebraic group G. Assume that ¥ = H\G is a finite k-scheme
and that the canonical map 7: G — X has a section T': ¥ — G, i.e., T is a morphism of k-schemes
such that 77 = idy. Note that if G and H were abstract groups, then such a 7" would correspond
to a right transversal of H in G, i.e., a complete system of representatives of the right cosets of
H in G. Let p: G — Aut(X)°P denote the morphism of proalgebraic groups corresponding to the
natural right action of G on 3. Here Aut(X)°P denotes the opposite group of Aut(X). (Recall that
by [DG70l Chapter II, §1, 2.7] Aut(X) is an algebraic group). The main goal of this section is to
construct a closed embedding of G into H ! p(G) = H* x p(G).

Let d: G — G¥ denote the diagonal embedding (as in Lemma [L3)). Since G acts trivially

on d(G) < G*, we have a closed embedding G LLLNYe! ! p(G) of proalgebraic groups. Note that
T € (G¥)(k) < (G1p(@))(k) and so conjugation with T' defines an automorphism ir: G 1 p(G) —
Glp(G). Let

¢: G L2 G p(G) 5 G p(G)
be the composition of these two maps. So for a k-algebra R and g € G(R) we have

d(g) = (T, 1)(d(g), p(9))(T~1,1) = (Td(g)p(g)(T~), p(g))-

Moreover, for an R-algebra R’ and s € ¥(R'), we have

(Td(g)p(g)(T~1))(s) = T(s)gT(sg) "

Since 7(T'(s)g) = 7(T(s))g = sg = ©(T(sg)), it follows from Lemma [[.2 that T'(s)gT(sg)~ ! €
H(R'). Therefore, ¢(G) < Hlp(G) < G p(G). In summary, we have proved the following
embedding theorem:

Theorem 1.4. Let H be a closed finite index subgroup of a proalgebraic group G. LetT: ¥ — G be
a section of the canonical map G — ¥ = H\G. Then there exists a closed embedding of proalgebraic
groups ¢: G — H U p(Q), given by ¢(g) = (fq, p(g)), where, for any k-algebra R and g € G(R) the
morphism fg: Xr — Hg, is given by fq(s) =T(s)gT(sg)~" for s € S(R') and R' an R-algebra.

As above, let H be a closed finite index subgroup of a proalgebraic group G, ¥ = H\G and
p: G — Aut(X)°P the morphism of proalgebraic groups corresponding to the right action of G on
Y. For any proalgebraic group A, we can consider the wreath product A p(H) = A® x p(H). We
define a morphism
ma: AVp(H) = A

by ma(f,g9) = f(Q) for f € (A¥)(R) = Hom(Xg, Ag) and g € p(H)(R) where R is a k-algebra
and 1 € X(R) is the trivial class, i.e., the image of 1 € G(R) under the canonical map G(R) —
Y(R). Note that for (abstract) groups G, N, N and a morphism : N' — N’ of groups, the map
N xG—= N, (n,g) = ¥(n) is a morphism of groups, if and only if ¥(g(n)) = ¢(n) for all g € G
and n € N. For a k-algebra R, h € H(R) and f € Hom(Xgr, Agr) we have h(f)(1) = f(1h) = f(1).
Therefore, w4 is indeed a morphism of proalgebraic groups. In the following lemma, we consider
the special case A = H.

Lemma 1.5. Assume that in the setting of Theorem [1.4 the section T: ¥ — G is such that
T(1) = 1. Then the restriction ¢': H — H U p(H) of the morphism ¢: G — H ! p(G) is such that

the composition H 25 Ho p(H) ™5 H is the identity.



Proof. For a k-algebra R and h € H(R) we have

ma(¢'(h) = fu(1) = T(M)RT(h) " = T(DRT(1)"" = h.

1.4 Free proalgebraic groups

In this section we recall the definition of free proalgebraic groups from [Wib20] and discuss some
of their properties needed in the following section.

Let X be a set and G a proalgebraic group. A map ¢: X — G(k) (of sets) converges to 1 if for
every coalgebraic subgroup N of G the set X ~ ¢ '(N(k)) is finite. In other words, ¢ converges
to one if almost all elements of X map to 1 in any algebraic quotient of G. A pair (¢,T") consisting
of a proalgebraic group I and a map ¢: X — I'(k) converging to 1 is a free proalgebraic group on
X if it satisfies the following universal property: If G is a proalgebraic group and ¢: X — G(k) a
map converging to 1, then there exists a unique morphism ¢: I' — G of proalgebraic groups such
that

X d (k)

N A

G(k)

commutes. According to [Wib20, Theorem 2.17] there exists a free proalgebraic group on X.
Clearly, it is unique up to a unique isomorphism. We therefore take the liberty to sometimes speak
of “the” free proalgebraic group on X, rather than of “a” free proalgebraic group on X. On the
other hand, the phrase “I" is a free proalgebraic group” means that there exists a map ¢ such that
(¢,T") is a free proalgebraic group on a suitable set X.

Lemma 1.6. Let (¢,T") be the free proalgebraic group on a set X and let Fx be the (abstract) free

group on X. Then the map Fx — I'(k) determined by x — 1(x) is injective.

Proof. Let us first assume that X is finite. In characteristic zero, one could use the well-known
fact that SLa(Q) contains a free subgroup on two elements and therefore also a free subgroup on
any finite number of elements. We will give a proof, in any characteristic, based on the fact that
the free group Fx is residually finite (JFJ08, Prop. 17.5.11]). This means that the intersection of
all normal finite index subgroups of Fx is trivial. For every normal finite index subgroup N of
Fx let Gy be the constant (étale) algebraic group corresponding to the finite group Fx /N and
set on: X — Fx — Fx/N = Gn(k) = Gn(k). Because X is finite, ¢ converges to 1 and there
exists a morphism ¥y : I' = G of proalgebraic groups such that

X L I
Gn (k)

commutes. This yields a commutative diagram

Fy (k)
NG
Gn (k)




that shows that an element in the kernel of Fx — I'(k) lies in V. Since the intersection of all N'’s
is trivial, the kernel of Fix — I'(k) is trivial. This proves the lemma for finite X.

Let us now assume that X is arbitrary. Assume that f € Fx lies in the kernel of Fx — I'(k).
Then there exists a finite subset X’ of X such that f € Fx, C Fx. Let (/,IV) be the free

proalgebraic group on X’ and define ¢: X — I'(k) by

J(x) ifxe X,
ple) = {1 itr ¢ X',

Then ¢ converges to 1 and there exist a unique morphism 1: I' — IV of proalgebraic groups such

that
X ‘ I'(k)
(k)

commutes. This yields a commutative diagram

Fy —— F(E)

|

FX/ —— F/(E)

P

-

where Fx — Fx restricts to the identity on Fyx, C Fx. As Fx:, — I'(k) is injective, we see that

necessarily f = 1. Thus Fx — I'(k) is injective. O

The above lemma shows, in particular, that the map ¢: X — I'(k) is injective. We will therefore
from now on identify X with a subset of I'(k).

Lemma 1.7. Assume that k is algebraically closed. Let H be a closed finite index subgroup of the
free proalgebraic group T’ on a set X. Then the map Fx — (H\T')(k) from the (abstract) free group
on X to (H\I)(k) is surjective.

Proof. Let (X) denote the smallest closed subgroup of T' such that X C (X)(k). This is well-
defined because the intersection of closed subgroups containing X is a closed subgroup contain-
ing X. According to [Wib20, Theorem 2.17] we have (X) = I'. By [Wib20, Remark 2.20] the
proalgebraic group I' is reduced. Therefore H\I' is a reduced finite k-scheme by Lemma [1.2]
(iii). So, geometrically, H\I" is simply a finite set of k-points with no additional structure. Let
S1,...,8, denote these k-points and let 7: I' — H\I" be the canonical map. By Lemma [L.2 (ii)
the map 7: I'(k) — (H\T")(k) is surjective. So I' is the disjoint union of the non-empty open and
closed subschemes I'; = 77 1(s;) (i = 1,...,n). Suppose there exists an i € {1,...,n} such that
Fxn Fl(k) = (). Then

Fx C CJ I';(k) and 0 T;
j=1

<,
-

j#i I

<
.

is a proper closed subscheme of I' containing Fx in its k-points. As in [Wat79, Theorem 4.3, (a)]
one sees that (X) is the smallest closed subscheme of I' containing Fx in its k-points. We thus
obtain a contradiction to (X) = I'. Thus Fx NT;(k) # 0 for every ¢ and so Fx — (H\I')(k) is
surjective. O



1.5 Finite index subgroups of free proalgebraic groups are free

In this section we show that a closed finite index subgroup of a free proalgebraic group is itself free.
For the proof we need to recall the notion of Schreier transversal (see, e.g., [RS10, Section 3.1]).
Let Fx be the (abstract) free group on a set X and let H be a subgroup of Fx. A Schreier
transversal of H in Fx is a subset T of F'x such that

e T is a complete system of representatives of the right cosets of H in Fl, i.e., the map
T — H\Fx, t— Ht is bijective and

o T is closed under taking prefixes, i.e., if x1,...,2, € XUX ! such that z; ...z, is in reduced
form and belongs to T', then also z; ...x; belongs to T for ¢ = 0,...,n — 1. (In particular,
1eT)

Schreier transversals exist for every subgroup H of Fx (J[RS10, Lemma 3.1.1]). Let u: Fx — T be
the unique map such that Hw = Hpu(w) for all w € Fx. The following theorem explains the main
use of Schreier transversals. See [RZ10, Theorem 3.6.1] or [FJ08| Section 17.5].

Theorem 1.8 (Nielsen-Schreier). Let H be a subgroup of the free group Fx and let T be a Schreier
transversal of H in Fx. Set

B = {txu(tz) Y| teT, z € X, teu(tz)™' #1}.
Then H is a free group on B. Furthermore, if [Fx : H| is finite, then |B| = 1+ [Fx : H|(|X|—-1).
We are now prepared to prove our proalgebaic analog of the Nielsen-Schreier Theorem.

Theorem 1.9. Assume that k is algebraically closed. Let H be a closed finite index subgroup of
the free proalgebraic group I' on the set X. Then H is a free proalgebraic group. Moreover, if X
is finite, then H 1is a free proalgebraic group on a set of cardinality 1+ [T : H|(|X|—1). If | X| is
infinite, then H is a free proalgebraic group on a set of cardinality | X]|.

Proof. Let Fx denote the subgroup of T'(k) generated by X. We know from Lemma [L.6] that F'y
is the (abstract) free group on X. Let T be a Schreier transversal of Fx N H(k) in Fx. Let
w: Fx — T be the unique map such that (Fx N H(k))w = (Fx N H(k))u(w) for any w € Fx. Set

B = {tep(te) |t €T, x € X, tap(te) " #1}.

Note that txu(tr)™ € Fx N H(k) because (Fx N H(k))tx = (Fx N H(k))p(tz). In particular,
B C H(k). We will prove that H is a free proalgebraic group by showing that the inclusion map
t: B — H(k) satisfies the universal property.

Let us first show that ¢ converges to 1. Let N be a coalgebraic subgroup of H. By [Wib20|
Lemma 2.7] there exists a coalgebraic subgroup N’ of " such that H N N’ C N. Then z € N'(k)
for a subset X’ of X with X \ X’ finite. Since N’ is normal in T, we see that tzt~! € N’(k) for
reX andteT.

By Lemma [I.1] there exists a coalgebraic subgroup N” of I" such that N C H. In particular,
x € N"(k) for all x € X", where X" is a subset of X with X ~\ X" finite. Because N is normal
in T, we have tzt~t € N"(k) < H(k) for all z € X" and t € T. So tzt~' € Fx n H(k), i.e.,
p(tz) = p(t) =tforallz € X” and t € T.

For x € X'N X" and t € T we have tzu(tz)™! = tat~' € N’(k) and so tzu(tz)~' € H(k) N
N'(k) < N(k). Thus ¢ converges to 1.

To verify the universal property, let G be a proalgebraic group and let p: B — G(k) be a
map converging to 1. As in Section [L3] set ¥ = H\I and let the morphism p: I' — Aut(X)°P
of proalgebraic groups be defined through the right action of T" on ¥. By Lemma [L.7] the map
Fx — X(k) is surjective and therefore induces bijections

T ~ (Fx N H(k)\Fx — S(k). (1)



As in the proof of Lemma [[.7] the k-scheme ¥ is geometrically simply a finite set of k points with
no additional structure. So, to specify a morphism from ¥ into a k-scheme X is equivalent to
specifying some k-points of X, one for each k-point of 3. Thus there exists a morphism 7: ¥ — T’
such that T': %(k) — ['(k) is the inverse of the bijection (L) followed by the inclusion T — T'(k).
In particular, T': ¥ — T is a section of the canonical map m: I' — H\I" with T(1) = 1 and we have

a commutative diagram

Fxy %7 (2)

| A

%(k)

We consider the closed embedding ¢: I' — H { p(T") as in Theorem [L.4]

We have to show that there exists a unique morphism ¢: H — G of proalgebraic groups such
that ¥ (b) = ¢(b) for all b € B. We first establish the uniqueness of ¢. Using Lemma [L.5] and the
basic properties of wreath products, we obtain the commutative diagram

F—¢>H2p(P)M>GZp(F)

|

H —— Hp(H) — G1p(H)

SO

H—(G

It follows that ¢ = g o (V1 p(H)) o ¢|g. For x € X CT'(k) we have

W 1p(M)(6(2)) = (Y fa, p()), 3)

where, as in Theorem [L4] f,.: ¥ — H is given by f.(s) = T(s)aT(sx)"! for s € X(R) and
R a k-algebra. Let si1,...,s, be the k-points of ¥ and set t; = T'(s;) for ¢ = 1,...,n. Then
T = {t1,...,t,} and 7(t;) = s;. The morphism ¥ f,: ¥ — G is completely determined by its
values on s, ..., s,. Moreover,

T(s;x) =T(w(t;)z) = T(n(tiz)) = p(tx)

by (@) and so
(V) (si) = Y(tiwp(tix) ") = (tiap(tiz) ™), (4)

where we have extended ¢: B — G(k) to BU {1} — G(k) by ¢(1) = 1. Like any morphism on T,
the morphism (¢1p(I")) 0 ¢ is completely determined by its values on X. But then (8) and (@) show
that (¢ 1 p(I")) o ¢ is completely determined by ¢. Thus ¢ = wg o (¢ 1 p(H)) o ¢|g is completely
determined by ¢. This proves the uniqueness of .

Let us next establish the existence of ¥. For x € X, let g,: ¥ — G be the morphism of
k-schemes determined by g.(s;) = @(t;zp(t;z)™') = o(fu(s;)) for i = 1,...,n and consider the
map x: X = (G1p(T))(k) defined by x(x) = (gz, p(x)). To show that x converges to 1 we need an
observation about coalgebraic subgroups: Assume that N is coalgebraic subgroup of G™ and for
i=1,...,nlet \;: G — G™ denote the inclusion into the i-th factor. Then \; '(N) is a coalgebraic
subgroup of G and therefore also Ny = A\ (N)N...N A, (N) is a coalgebraic subgroup of G.
Moreover, N{* < N.

Now let N be a coalgebraic subgroup of G p(I'). We have to show that y maps all but
finitely many € X into N(k). The intersection Ny = N N G® of N with the subgroup G*
of G1p(T) = G* x p(T) is a coalgebraic subgroup of G*. Since G* can be identified with G,



we can use the above observation to find a coalgebraic subgroup Na of G such that N3 < Nj.
Because p: B — G(k) converges to 1, we have g.(s;) = p(t;zu(t;z)~!) € No(k) for all but finitely
many pairs (i,z) € {1,...,n} x X. Then g, € N3y’ (k) < Ny1(k) < N(k) for all but finitely many
x. Because p(I') < Aut(X)°P is an algebraic group, p(x) = 1 for all but finitely many z € X.
Therefore x(z) = (g, p(x)) € N(k) for all but finitely many x € X. So x converges to 1 and from
the universal property of I' we obtain a morphism 7: I' — G p(I") of proalgebraic groups such that
7(x) = x(z) for all z € X. Note that the composition T' = G1p(I") — p(I') is simply p because this
in true on X. It follows that 7 maps H into G p(H). We will show that 1) = mg o 7|y extends .
That is, we have to show that ¢(b) = ¢(b) for all b € B. This is really just a computation. In fact,
it is the same computation as in the proof of [RS10, Theorem 3.2.1]. For the sake of completeness
we include the details.

For w € Fx CT'(k) let g,: ¥ — G be defined by 7(w) = (9w, p(w)) € (G1p(T))(k). Note that
this is compatible with the above definition of g, for x € X. For wy,ws € Fx we have

(Gurwn» plwiwa)) = T(wiw2) = T(wW1)T(W2) = (Gur > P(W1)) (G > P(W2)) = (G P(W1) (G )5 P(W1) p(w2)).

Therefore gu,w, = Gu, * P(w1)(guws,) and inductively we find that

Gooroom = Guon * P(W1)(Gws) - pP(W1w2)(Gusg) * - - - - p(w1 - - - Win—1)(Guo,,) (5)

for wi,...,wm € Fx. Similarly, for w € Fx we have

(1,1) =7(1) = 7w 'w) = 7w H7(W) = (gu-1, p(W ™)) (gwr p(w)) = (gu-1p(w™ ) (g 1)
and therefore
g1 = p(w ) (g) ™" (6)

Let b € B. We have to show that ¥(b) = o(b). Write b = tau(tz)~! for some z € X and
teT C Fx. Write t = 1 ...24-1 € Fx and u(tx)_l = Zy41... Ty € Fx in reduced form and
set 2y = . Then b = 21 ...2,,. Furthermore, set u; = p(zy...x;) for i = 1,...,m and uy = 1.
Since T is prefixed closed, we have u; = x;...2; for i < £. On the other hand, for i > ¢, using
ptr) ™ =zp1 ... 20, we find

m(u;) = w(towey ... x;) = w(x,, ... :ve_Jrll:le ) =w(at ).

Therefore, using again that T is prefixed closed, we obtain u; = x,,,' ...z, Jrll for ¢ > ¢. From these
explicit formulas for the wu;’s we derive that

ui,lxiu;I =1 for ie{l,...,m}~{¢}. (7)
We next show that for y € X UX ! and w € Fy
gy(r(@) =1 if  plwypwy)™ = 1. (8)

Recall that for y € X we have gy(m(w)) = o(T (7 (w))yu(T(m(w))y) ™) = @(p(w)ypu(pw)y) ™).
But m(p(w)) = m(w) and so m(u(w)y) = 7m(wy). Therefore p(u(w)y) = p(wy). This proves () for
y€ X. Ify € X! then y=! € X and using (6) we obtain

gy(T(w)) = gy—1 (m(W)y) ™" = gy-1 (m(wy)) " = e(ulwy)y  plwyy™") ") =
= p(uwy)y pw) ™)t =p1)t =1

This proves (g]).
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Since, p(w)zp(wz;) ™ = ui—1wiu; P =1 by (@) for i € {1,...,m} ~ {¢} and w = z1...2;_1,
we obtain g, (7(z1...x;-1)) = 1 for i # £ from (8). Using this and (&) we find

¥(b) =76 (7(b) = go(7(1)) = gay..z,, (7(1)) =
= gor (1(1)) - p(21)(gs)(w(1)) .- p(1 - T —1)(ga,, ) (7 (1)) =
= 92, (7(1)) * gao (m(21)) + -~ G (W(@1 - B 1)) =
= go,(m(z1 .. 20 1)) = @(u(xy ... mp ) xpp(zy ... )"t =

So 1 extends ¢ as claimed and we have shown that H is the free proalgebraic group on B. It
remains to determine the cardinality of B. However, since T' is a Schreier transversal of Fx N H (k)
in Fx and [Fx : (Fx N H(k))] = [I": H] by (L), this follows from Theorem [L.§ O

2 Matzat’s conjecture

In this section we prove Matzat’s conjecture for fields of constants of infinite transcendence degree.
Throughout this section (K, d) denotes an (ordinary) differential field of characteristic zero. We
assume that the field of constants k = K° = {a € K| §(a) = 0} is algebraically closed.

2.1 Differential Galois theory

We begin by recalling the basic definitions and results from differential Galois theory. The reader
interested in more background is invited to consult [BHHW21D] or any of the introductory text-
books [Mag94], [vdPS03], [CH11] [Saul6]. We consider a family

(0(y) = Aiy)ier, Ai € K™ (9)
of linear differential systems over K indexed by a set I.

Definition 2.1. A differential field extension L)K is a Picard-Vessiot extension for (9) if L°® = k
and for every i € I there exists Y; € GL, (L) with 6(Y;) = A;Y; and L is generated as a field
extension of K by the entries of all Y;’s. The K-subalgebra R of L generated by the inverse of the
determinant and all the entries of all Y/s is called a Picard-Vessiot ring for (9).

There exists a Picard-Vessiot extension for (9) and it is unique up to a K-d-isomorphism (since
k is algebraically closed). We will call the Picard-Vessiot extension K /K for the family of all
linear differential systems over K the linear closure of K. In the literature, the term Picard-
Vessiot extension is often only used for a single equation. To make this distinction, we say that
a Picard-Vessiot extension is of finite type if it is the Picard-Vessiot extension for a single linear
differential system. Note that every Picard-Vessiot extension is a directed union Picard-Vessiot
extensions of finite type.

Recall that an element a in a d-field extension L of K is called §-finite over K if a satisfies a
non-trivial homogeneous linear differential equation with coefficients in K. Note that a is J-finite
over K if and only if there exists a finite dimensional K-subspace V of L such that a € V and
0(V) C V. The following characterization of the linear closure will be useful later on.

Lemma 2.2. Let L/K be an extension of 6-fields such that L° = k. Then L is a linear closure of
K if and only if

(i) for everym >1 and A € K™*™ there exists Y € GL, (L) such that §(Y) = AY and

(ii) L is generated as a field extension of K by elements that are 0-finite over K.
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Proof. If Y € GL,, (L) such that 6(Y) = AY for some A € K™*", then the K-subspace V of L
generated by the entries of Y satisfies 6(V') C V. Thus the linear closure of K satisfies the above
two conditions.

Conversely, assume that L/K satisfies (i) and (ii). Let L’ be the subfield of L generated over
K by all entries of all matrices Y € GL,, (L) such that §(Y) = AY for some A € GL,(L) (n > 1).
We have to show that L = L. Since L is generated by elements that are d-finite over K, it suffices
to show that every y € L that is é-finite over K is contained in L’. But if y satisfies a linear
differential equation

8" (y) + an_10""Hy) + ... +agy =0 (10)
over K, then y lies in the subfield of L generated by the entries of Y, where Y € GL,, (L) satisfies
§(Y) = AY, with A the companion matrix of (1Q). Therefore, y € L' and L = L'. O

Definition 2.3. Let L/K be a Picard-Vessiot extension with Picard-Vessiot ring R. The differen-
tial Galois group G(L/K) of L/K is the functor from the category of k-algebras to the category of
groups, that associates to every k-algebra T the group of all K ®y T-0-automorphisms of R @y, T,
where T is considered as a constant d-ring.

The differential Galois group of a Picard-Vessiot extension is representable, i.e., it is a proal-
gebraic group. The differential Galois group of a Picard-Vessiot extension of finite type is an
algebraic group. The absolute differential Galois group of K is the differential Galois group of the
linear closure K /K.

The Galois correspondence for a Picard-Vessiot extension L/K is the bijection M — G(L/M)
between the intermediate differential fields of L/K and the closed subgroups of G(L/K). Moreover,
an intermediate differential field M is itself a Picard-Vessiot extension of K, if and only if G(L/M)
is normal in G. In this case the induced morphism G(L/K) — G(M/K) is a quotient map with
kernel G(L/M). We will need to know the following.

Lemma 2.4. Let L/K be a Picard-Vessiot extension with differential Galois group G. Let M be
an intermediate differential field of L/ K such that M/K is finite and let H = G(L/M) < G. Then
G/H is a finite k-scheme.

Proof. Let M'/K be a Picard-Vessiot extension of finite type such that M C M’ C L. Such
an M’ exists because M/K is finite and L is the directed union of Picard-Vessiot extensions of
finite type. Set N = G(L/M). Since G/H ~ (G/N)/(H/N) and G/N is the differential Galois
group of M’'/K, while H/N is the differential Galois group of M’/M, we can reduce to the case
that L/K is of finite type. Then G is an algebraic group and therefore G/H is a scheme ([DGT0,
Chapter III, §3, Theorem 5.4]). Let M° denote the relative algebraic closure of K in L. Then
G(L/M°) = G°, the identity component of G ([vdPS03, Prop. 1.34]). As M’ C M°, we have
G° = G(L/M°) < G(L/M') = H. Therefore G/H is finite. O

2.2 Linear closures and the proof of Matzat’s conjecture

To prove Matzat’s conjecture for function fields, we need more information about linear closures.

Lemma 2.5. Let (K, ) be a differential field and let a be a non-zero element of K. Then the
differential fields (K,0) and (K,ad) have isomorphic absolute differential Galois groups.

Proof. Let (K,68) denote the linear closure of (K,d). We will first show that (K, ad) is a lincar
closure of (K, ad). To begin, we observe that K = K° = K% = K% (= k). To sce that every
linear differential system over (K, ad) has a fundamental solution matrix in (K, aé), fix A € K™<"
and let Y € GL,,(K) be such that §(Y) = a='AY. Then Y is a fundamental solution matrix for
the linear differential system over (K, ad) defined by A. As K is generated as a field extension of
K by the entries of fundamental solution matrices over (K, J) it is clear that K is also generated
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as a field extension of K by the entries of fundamental solution matrices over (K, ad). Therefore
(K,ad) is a linear closure of (K,ad). Moreover, if (R,d) is the Picard-Vessiot ring of (K /K, ¥),
then (R, ad) is the Picard-Vessiot ring of (K /K, aé).

For a k-algebra T, a K ®T-automorphism of R®;T commutes with ¢ if and only if it commutes
with ad. Thus the two absolute differential Galois groups are isomorphic. o

Lemma 2.6. Let L/K be an extension of §-fields such that L/K is a finite field extension. Let
L/L be a linear closure of L. Then L is also a linear closure of K.

Proof. Clearly, for every A € K"*™ C L™ " there exists Y € GL,(L) with 6(Y) = AY. By
Lemma [2.2] it suffices to show that Z/ K is generated as a field extension of K by elements that
are d-finite over K.

Let f € L be d-finite over L. We will show that f is also é-finite over K. Let V be a finite
L-subspace of L such that 6(V) C V and f € V. Because L/K is finite, V is also finite as a
K-vector space. Thus, f is é-finite over K. _

The field extension L/K is generated by the elements of L and by elements of L that are §-finite
over L. As all these elements are J-finite over K, we see that Z/ K is generated by elements that
are ¢-finite over K. O

We note that if L/K and M/L are Picard-Vessiot extensions, it is in general not possible to
embed M/K into a Picard-Vessiot extension of K. (See page 13 in [Mag01] for such an example.)
However, it follows from Lemma [2.6] that it is possible to embed M/K into a Picard-Vessiot
extension of K if L/K is finite.

Corollary 2.7. Let L/K be an extension of d-fields such that L/K is a finite field extension.
Then the absolute differential Galois group of L is isomorphic to a closed finite index subgroup of
the absolute differential Galois group of K.

Proof. Let L be the linear closure of L. We know from Lemma 2.6 that L is the linear closure of
K. Thus the claim follows from Lemma 2.4 O

We are now prepared to prove our main results.

Proposition 2.8. Let k be an algebraically closed field of characteristic zero. If Matzat’s conjecture
is true for k(x), the rational function field in one variable equipped with the standard derivation
7=, then Matzat’s conjecture is true for any one-variable function field over k, equipped with a

non-trivial k-deriwation.

Proof. Let K be a one-variable function field over K equipped with a non-trivial k-derivation 4.
Let z € K be transcendental over k. The standard derivation d% on k(z) extends uniquely to a
derivation ¢,: K — K. Then § = ad, for some non-zero a € K (see, e.g., [Sti09, Lemma 4.1.6]).
We have to show that the absolute differential Galois group of (K, §) is the free proalgebraic group
on a set of cardinality |K|. By Lemma [2.5] it suffices to show that the absolute differential Galois
group H of (K, ¢,) is a free proalgebraic group on a set of cardinality |K|. Since (K, ;) is a finite
differential field extension of (k(z), i), it follows from Corollary 2.7that H is a closed finite index
subgroup of the absolute differential Galois group of (k(x), %). By assumption, the latter is a free
proalgebraic group on a set of cardinality |k(z)| = |K|. Thus, by Theorem [1.9, H is also a free

proalgebraic group on a set of cardinality | K]|. O

From Proposition 2.8 we immediately obtain Matzat’s conjecture for function fields over fields
of constants of infinite transcendence degree.

Theorem 2.9. Let k be an algebraically closed field of characteristic zero of infinite transcen-
dence degree over Q and let K be a one-variable function field over k, equipped with a non-trivial
k-derivation. Then the absolute differential Galois group of K is the free proalgebraic group on a
set of cardinality |K|.
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Proof. This follows from Proposition 2.8 because Matzat’s conjecture holds for (k(z), <), provided

that k has infinite transcendence degree, by [BHHW21a, Theorem 5.6]. (]
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