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We obtain explicit estimates on the stability of the unique continu- Received 4 May 2022
ation for a linear system of hyperbolic equations. In particular, our ~ Accepted 28 January 2023
result applies to the elasticity system and also the Maxwell system.
As an application, we study the kinematic inverse rupture problem
of determining the jump in displacement and the friction force at
the rupture surface, and we obtain new features on the stable
unique continuation up to the rupture surface. KEYWORDS
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1. Introduction

The unique continuation property for a differential operator P states the following: given
an open set Q C R"™" and a small subset U C Q, if Pu=0 and u|; = 0, then u=0 in Q.
Holmgren’s Theorem states that for operators with analytic coefficients, the local version
of the unique continuation property holds across any non-characteristic hypersurface. For
operators with only smooth coefficients, the local unique continuation across a hypersur-
face holds if the hypersurface satisfies a pseudoconvexity condition [1]. Such pseudocon-
vexity condition cannot be dropped due to the existence of counterexamples given by [2].
For operators with coefficients that are analytic in part of the variables, for instance, the
wave operator with coefficients analytic in time, Tataru proved in the seminal paper [3]
that the local unique continuation property holds across any non-characteristic hypersur-
face, which leads to a global unique continuation result in optimal time. Tataru’s unique
continuation theorem is crucial for the Boundary Control method in solving inverse
problems for linear equations, see for example [4-10]. The unique continuation for linear
systems of hyperbolic equations was studied in [11], and the result can be applied to the
time-dependent classical elasticity system and the Maxwell system.

We are interested in the stability of the unique continuation: if Pu is small in Q and
u is small in U, then u is small in Q. Inspired by Tataru’s ideas in [12], the quantitative
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stability of the unique continuation for the wave operator was obtained by [13,14] and
[15] independently. An explicit stability of the unique continuation on Riemannian mani-
folds with boundary was recently obtained by [7], with U being a subset of the boundary.
In this paper, we study the explicit stability of the unique continuation for a linear system
of hyperbolic equations on Riemannian manifolds with boundary, with U being an interior
open subset of the manifold. In particular, our result provides an explicit stability of the
unique continuation for the classical elasticity system and the Maxwell system.

1.1. Main results

We consider a linear system of hyperbolic equations on R x R” of the type
Pu;+ Li(Du,u) =f;, i=1,..,m, (1.1)

where P; is the wave operator with time-independent wave speed v;:

Pi= 3 —vi(x)’Ay,  Ag = ng (x)D;Dy + Zh )D; + q(x (1.2)

Jok=1
and L; are linear functions of Duy, u; (k = 1, ..., m) with tlme-lndependent L>®(R") coef-
ficients. We denote by ||L||,, the maximum over i of the L>(R")-norms of the coeffi-
cients of L;. Assume that v; € C'(R"), v; > 0, ¢ € C'(R") and h;,q € C*(R"). We write

u=(up, )y = f1srfin)s

and denote

||“||i2(g) = ZI:H“iHiZ(Q)’ ||”||;2111(Q) = ZI:HWHEI(Q)

In particular, it was shown in [11] that the elasticity system and also the Maxwell sys-
tem can be written in the form of hyperbolic equations (1.1).

On a Riemannian manifold (M, g), we consider wave operators (1.2) with coefficients
g* locally given by the Riemannian metric g. More precisely, the matrix (g/) is the
inverse of the Riemannian metric (gj) in local coordinates. In particular, one can con-
sider A, to be the Laplace-Beltrami operator on (M, g). Our main result is the following
explicit stability estimate for the unique continuation for the system (1.1).

Theorem 1.1. Let (M",g) be a compact, orientable, smooth Riemannian manifold of
dimension n > 2 with smooth boundary OM, and U be a connected open subset of M
with smooth boundary OU. Assume UNOM =10. Suppose u= (ty,....un), ti €
H'(M x [-T,T)]) is a solution of the system of hyperbolic equations (1.1) with f =
(fis onfm)> fi € L*(M x [=T,T]). Let v = minjinfyepyvi(x) >0 be the minimal wave
speed in M. If

Nl ix—rr) < Aos Nl -r.9) < 05
then there exist constants hg, C,c > 0 such that for any 0 < h < hy, we have
Ag

(log (1 +\Lf||Lzh—Atho))%.

[ull 20,y < C exp (B")
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Figure 1. An illustration of domains in 1+ 1 dimension. The rectangle in the middle is U x [T, T].
In the case of wave speeds v; =1, the domain enclosed by the solid blue lines is the optimal
domain, and the domain enclosed by the red lines is Q,(h) defined in (1.3). The distance between
the blue and red lines is of order v/h. In general, if the wave speeds are not constant, the domain
Q,(h) can be significantly smaller than the optimal domain. For instance, in the case of two equa-
tions with v; = 1 and v, = 2, the dashed blue lines enclose the optimal domain for the scalar wave
equation with wave speed 2, while the domain Q,(h), propagating according to the slower speed, is
still enclosed by the red lines.

The domain Q,(h) is defined by
Q,(h) = {(x.t) € M\ U) x [T, 7] : vT = vlt] — d(x,0U) > Vi, d(x,0M) > b}, (13)

where d denotes the Riemannian distance of M. The constants hgy, C depend on n,m, T, v,
max;||vi||ci, || L|| o, and geometric parameters; ¢ is an absolute constant.

Theorem 1.1 will be proved in Section 3, using the technical tools developed in
Section 2, in particular Proposition 2.7. An illustration and a brief discussion of the
domain Q,(h) can be found in Figure 1 below and Remark 2.

Theorem 1.1 yields the following stable continuation result on the whole manifold.

Corollary 1.2. Let (M",g) be a compact, orientable, smooth Riemannian manifold of
dimension n > 2 with smooth boundary OM, and U be a connected open subset of M
with smooth boundary OU. Assume UNOM =0. Suppose u = (u1,....,un), t; €
H'(M x [-T,T)]) is a solution of the system of hyperbolic Equations (1.1) with f =
(fis oo fm) = 0. Assume T > 2(diam(M) + 1)/v, where v = min;inf,cpvi(x) > 0 is the
minimal wave speed in M. If

||u||H1(M><[7T,T]) < Ao, ||u||H1(U><[7T,T]) < o,
then there exist constants &, C,c > 0 such that for any 0 < & < &, we have
—C

”““LZ((M\U)X[_g,g]) < C(log | log o))

where C is independent of &, and c depends only on n. Furthermore, for any 0 € (0,1),
by interpolation,

[[ullg-0an vy« 227y < C(log | log eol) .
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Figure 2. Rupture surface X¢. The set V is the observation domain. The figure is motivated by the Hi-
net seismograph network' in Japan. Hi-net seismic stations have seismometers installed in boreholes
with varying depths. Note that the figure is not to scale.

1.2. Kinematic inverse rupture problem

Next, we apply our results to an elasticity system to study the kinematic inverse rupture
problem of determining the jump of particle velocity across the rupture surface and the
friction force, see [16]. Inverse problems for elasticity systems have been extensively
studied in various settings, for example, inverse source problems [17-19], inverse obs-
tacle scattering [20-22], seismic inverse scattering [23], and see, for example, [24-33]
for inverse boundary value problems of determining the elastic body, [34,35] for inverse
problems for nonlinear elastic wave equations, and [36-39] for identifying inclusions or
cracks.

In our setting, let M CR® be a compact domain of dimension 3 with smooth
boundary representing the solid Earth. Let ¢ be a (2-dimensional) smooth rupture sur-
face satisfying ¢ N OM = ().

The seismic wave u is modeled by the following equation of motion

pOiu—V - (ATO :Vu)=0 in M\Z, (1.4)

0
where AT is the prestressed elasticity tensor. In the case of isotropy and hydrostatic

prestress T° = —p°I, the prestressed elasticity tensor A" has the form
Afia = 2050k + n(0dy + dudy) — p* (30 — Sudy)- (1.5)

In such case, the Eq. (1.4) has the form of the classical elasticity system which can be
written as the system of hyperbolic Eq. (1.1). With our stability results on the unique
continuation for the system (1.1), we can determine the displacement u on both sides
of the rupture surface, and the friction force 7, see Section 4.

'High sensitivity seismograph network Japan (https://www.hinet.bosai.go.jp).
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Informal formulation of result

Let M’ be the solid Earth with smooth boundary, and X be a smooth rupture surface.
We observe the seismic wave u on the time interval [—T,T] on an open subset V C
M\ X5 (see Figure 2). Then for sufficiently large T, we can determine the displacement u
on both sides of the rupture surface and the friction force s, with explicit estimates in
suitable norms.

A precise formulation is given in Theorem 4.3 and Corollary 4.4. The tangential jump of
particle velocity across the rupture surface signifies the slip rate identified as a vector field.
We write s for this quantity. In other words, s is the tangential component of

[a ] =0(u, —u), us:= hlirgu(z +hn,t), z€Zy,
where n is a unit normal of the rupture surface. The tangential component 7¢ of the
(dynamic) traction 7 at the fault surface is the friction force. The traction is

t=n-T° 4+ 1,(u) + 12 (u),

where 7,(u) and 1, (u) are defined by (4.11) below, and n - T° is the contribution from
the known, static prestress T°. The normal component

0, =n-7

of this traction stands for the normal stress. The slip rate and normal stress are related
to the friction force through a friction law of the form

T = F(S, Gn).

It is typically assumed that the friction force t¢ and slip rate s are aligned, that is, paral-
lel. Several choices of F have been introduced in the geophysics literature. Examples
include the Slip Law and Aging Law in Rate- and State-dependent Friction. It is com-
mon practice to invoke a simpler, linear slip-weakening model to describe friction dur-
ing a rupture when afterslip is not considered, see for example [40].

The friction law F(s,0,) in general is given in terms of a few (presumably time-inde-
pendent) parameter functions, and is typically a nonlinear integral operator. In the geophys-
ics literature this is expressed by introducing a state-variable function, see [41] for the case
of rate- and state-dependent friction. The unique continuation provides the slip rate s, nor-
mal stress g, and friction force ;. After fixing a parametric form of the friction law F, the
inverse friction problem concerns the (conditional) recovery of the mentioned parameter
functions in F. The inverse friction problem with one earthquake can be considered as a
single measurement inverse problem for the parameters in F. In the case of Rate- and
State-dependent Friction, an ordinary differential equation determines a map from slip rate
and normal stress to state-variable function that is also given in terms of a few parameter
functions. We note that the regularity of solutions restricts the allowable mapping property
of the friction “coefficient” in the Amontons—Coulomb law that is widely applied.

We plan to analyze the inverse friction problem in a follow-up paper. To facilitate
this, in view of nonlinearity of F, we give stability results for the unique continuation
problem in Sobolev spaces that are Banach algebras, see Corollary 4.4 and Remark 4
below.
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2. Unique continuation for system of hyperbolic equations
Consider the system of hyperbolic equations on R x R”,
P+ Li(Du,u) =f;, i=1,..,m, (2.1)

where P; is the wave operator (1.2) with time-independent wave speed v;, and L; are lin-
ear functions of Duy, u; (k = 1,...,m) with time-independent L™ (R") coefficients. More
precisely,

Li(Du,u ZZL ki (Dita) + Lk, (2.2)
=1 1=0
where Ly, Lix € L°(R"). We assume v; € C'(R"), v; >0, ¢* € C'(R") and hj,q¢€
C'(R").
We will frequently use the following notations. Denote
Il = maxfmex| Lol ey mpchlliegee) ) Ll = maxlLil @)
We write

u= (o im)s [ = firecrfin)
Denote by |- |, the L*(R"™')-norm and by | -||, the H'(R"*!)-norm. Recall the
weighted norm
||“1H1z : 2”“1”0 + ||Du,||0 : (2.4)
We denote

m m
2 2 2 2
lullo = Nuilles Nulliz =D lluilli-
i=1 i=1

Let A(Dy) be the pseudo-differential operator with symbol a(&,), where a € C*(R) is a
smooth function. It is formally defined as

A(Dy)w = ff_ul—na(iO)‘,Ft’*éoW’

where F, F~! stand for the Fourier transform and its inverse. In particular, we consider

2
the operator e~2o/%7,

—GDZ/Z‘E 1 —ego/ZI
w = ‘7:50*> Ft/—>é

It can also be understood as an integral operator in the time variable with the ker-
nel (t/2me)"/2e=7lf /2,
Let I be a conical subspace of the cotangent bundle T*R""', and let T, be its fiber

at yp € R™™. We recall the definition of a strongly pseudoconvex function in I’
(Definition 2.4 in [42]). A C? real-valued function ¢ is called strongly pseudoconvex in
I" with respect to a partial differential operator P at y, if

Re{p, {p, ¢}}(70,¢) > 0 on p(yo, <) = 0,0 # € Ty,

and
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PO+ 7E 0P E + 116 0D 00, ) >,

for any 0 # ¢ € Iy, satisfying p(yo, & + itd (y9)) = 0, T > 0. Here p denotes the prin-
ciple symbol of P, and {,-} denotes the Poisson bracket.

When P is a second order operator, the last condition above is void for non-charac-
teristic functions with respect to P. In particular, we will later consider the following
type of function

Y(tx) = (T~ |x—z2])” = £,

which is non-characteristic in {(f,x) € R x R" : y/(t,x) > 0} with respect to the wave
operator with constant wave speed 1, where T >0 and z € R" are fixed.

In the coordinate y = (f,x) € R x R", the conormal bundle over R with respect
to the foliation x = const is

N*F = {()/, é) S T*Rn+l : é - (éo’éb'n)én)) 60 - O}
The conormal bundle over a subset K C R™"! (with respect to the foliation x = const) is

NiF:={(y,¢) e N'F:y € K}. (2.5)

2.1. Local estimates
Let us recall the following Carleman estimate in [3].

Theorem 2.1 (Tataru). Let Q be an open subset of R x R" and P be the wave operator
with time-independent coefficients. Let y, € Q and yy € C*(Q) for some fixed p € (0, 1),
such that Y(yo) = 0, ¥ (o) # 0 and S = {y € Q:y(y) =0} is an oriented hypersurface
non-characteristic at y, € S.

Then there exist k >0 and a real-valued quadratic polynomial ¢, such that ¢ is
strongly pseudoconvex in the conormal bundle over B,(y,) with respect to P, with the

property that ¢(yo) = 0 and
{y:v(y) <0} c{y: o) <0} U} in Bc(y). (2.6)

As a consequence, there exist constants €, o, C, R, such that for € < ¢y and © > 1, we have
—eD? _ 2 2
||€ ED°/2T€T¢UH1)T S Crt 1/2||e eDO/Zrenj)Pu”O +Ce TK /4e||er¢u||m,

whenever u € H;. (Q) satisfying Pu € L*(Q) and supp(u) C Br(yo).
To begin with, we derive a Tataru-type estimate for the hyperbolic system (1.1).

Proposition 2.2. Let Q be an open subset of R x R". Let yy € Q and y € C**(Q) for
some fixed p € (0,1), such that Y(yo) = 0, Y/ (o) # 0 and S = {yeQ:y(y)=0}isan
oriented hypersurface non-characteristic at y, € S. Suppose u = (uy, ..., un), u; € H'(Q)
is a solution of the hyperbolic system (1.1) with f; € L*(Q).

Then there exist constants K, €y, 7o, C,R and a real-valued quadratic polynomial ¢, as
determined in Theorem 2.1, such that the following estimate holds for € < €y and T > 1,
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lem P> e ul|, . < € w2l P |+ C e el

as long as supp(u) C Bgr(yo)-
Proof. We apply Theorem 2.1 to each component u; with the hyperbolic operator P;,
lem P> e ui] o < € v len P e P + € e e u

We only need to estimate the first term on the right-hand side,
le™ P27 e Pyl < [le™ P> (f; — Li(Du u))

m
< [le= P f]lg + 1Ll D lle P52 e uy|
k=1

m
+ 1Ll lle™ P e™ Dug .
k=1

For sufficiently large 7, the second term on the right can be absorbed into the left-hand
side when we sum over i. It suffices to estimate the last term,

le™ P26 Druuglly < [1Die™ P> e i) [ + lle™ /> (Die Yui
< Nl P2 e |, + llem P (xDi)e .

where we have used the fact that [Dj,e P/2") =0 for all [ =0,1,...,n. Since ¢ is a
quadratic polynomial, we know (see (2.303) in [8])

[e*EDﬁ/Zf,TD(p(y)} =€ Hessd,(O)(Do,O,...,O)efﬁDg/zr,
which gives
e 26 D < [le™ V2 e gl + gl e anel
+ ellgllca e P> e -

Combining the estimates above and summing the inequalities over i = 1, ..., m, for suffi-
ciently large 7 (and € < 1), one can absorb all unwanted terms on the right-hand side
into the left-hand side. The proposition is proved. O

Next, we use Proposition 2.2 to derive a local stability estimate for the lower temporal
frequencies for the hyperbolic system (1.1), similar to Theorem 1.1 in [14].

Notations
Let b € C°(R™1), 0 < b(¢) < 1 be supported in |£| <2 and equal to 1 in [¢] < 1. Let
A(Dy) be a pseudo-differential operator with symbol a € C;°(R), 0 < a < 1, where a is
supported in [—2,2] and equal to 1 in [—1,1].

Let ¥, ¢, 0,k R, (R < Kk/2) be as stated in Theorem 2.1. As Proposition 2.5 in [14],
one can choose ¢ > 0 sufficiently small such that (see Figure 3)

{y :¥(y) <0} N {y € Bi(r) : p(y) > 83} C Br(y0)- (2.7)

Let y € C°(R), 0 < 7 <1 be a localizer be supported in [—80,0] and equal to 1 in
[—706,0/2]. In particular, we choose the functions b, a, y from the Gevrey functions of
class 1/a for a fixed a € (0, 1).
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supp(u)
¢ = —8) B/ﬁ(yO)
b=20 Br(yo)
Yo
=0
Y >0 Y <0

Figure 3. Setting of Lemma 2.3.

Lemma 2.3. Let Q be an open subset of R x R". Let S= {y € Q: y(y) =0} be an ori-
ented C*? hypersurface which is non-characteristic in Q, and y, € S, " (o) #0. Let b €
CX(R™) be a Gevrey localizer of class 1/o for a fixed o € (0,1) as defined above.
Suppose u = (uy, ..., u,), u; € H(Q) is a solution of the hyperbolic system (1.1) with f; €
L*(Q). Assume u satisfies

supp(u) C {y: ¥(y) <0} NQ. (2.8)

Then there exist constants R, 1, co,c; > 0 such that the following holds.
For u > 1, if for some constant Cy > 0,

D _
4llep By < Cor - Wllia(panira)) = Coo HA<70>b<yTy0>f

then there exists a constant C; > 0 independent of u such that

(3 )o(=)e

Here cy, ¢; are independent of p, Cy.

< Cp exp (—1"),
L2

< Cexp(—ap”), Vo< /.
Hl

Proof. We follow the proof of Theorem 1.1 in [14]. Denote

bo == b(y%") (2.9)

Consider the functions
ﬁi = X((b)boui, u= (1?[1, ceey ﬁm) (210)

where ¢ is the quadratic polynomial determined in Proposition 2.2. The function # is
supported in Byr(yo), and satisfies
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Piti; = 1(¢)boPiu; + [Pi, 1 () bous

= 1(9)bofi — 1(d)boLi(Du, u) + [P, () bo]ui
Since L; is a linear operator, by (2.2),
LR = DD + S L))o
=1 1=0
Hence u satisfies the equations
Piui; + Li(Du, ) = 7(¢)baofi + [Pis 1(¢)bo]ui + ZIZL Dy (1 () o) v (2.11)
110

Then we apply Proposition 2.2 to & = X(d))boui for the hyperbolic system (2.11),
c! T1/2||6 D} /2t f¢u|| < ||e D} /2t T¢ bOf”() +Z”e D} /2t 1'(/)[ (¢)b0]ui||0

+ ULl lle™ P e Dy(()bo)urlly + 776 ™ e
k1

(2.12)

By definition (2.9), we see that supp(by) C Bar(¥o) C Bi(¥0), in view of R < k/2. Thus
the conditions (2.7) and (2.8) imply
supp(u) N supp(x(¢)) N Bar(0) C Br(yo). (2.13)

Since by = 1 in Bg(yo), we have [Py, y(¢)bo]u; = [Pi, x(¢)]ui in Bar(yo), and the follow-
ing holds everywhere:

[P, 1(p)bolui = [P, x()]bou;. (2.14)
Moreover, the conditions (2.6) and (2.8) imply
supp (1 (¢)) N supp(bou) C {y: =85 < $(y) < —75}, (2.15)

where y (¢) denotes the derivative of y(¢).
The second term on the right-hand side of (2.12) can be estimated using (2.14) and

(2.15) as follows,
e —eDg /2t T¢[ 2(P)boluilly = lle” Do/ T(b[P 1(&)]bouill, (2.16)
< Ce” 7 HuiHHl(BzR(}’o))'

We note that the constant C here also depends on 6, R. For the third term on the right-

hand side of (2.12), notice that y(¢)(Dibo)ux = 0 due to (2.13). Hence by (2.15),
||e—fD§/21eT¢D(X(¢)bo)”zHo ”e_EDZ/% “y 1 (&)bouill, (2.17)
S Ce_%()”ui”Lz(BzR()’O))'

For the fourth term on the right, note that the parameter 6 can be chosen such that
80 < Kk*/4e. Since ¢ < ¢ in the support of x(¢), the last term is bounded by

I1/2€71K2/46||er¢171||1)1 < ,1:3/2678166125”a”Hl < C676r(5_ (2.18)
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The first term on the right-hand side of (2.12) can be estimated by repeating the proof
of Lemma 2.6 in [14]. This show that there is ¢ > 0 such that

o=/ e x(@)buf g < Ce, (2.19)
Note that here we replaced f with byf using (2.13) and the fact that supp(f) C supp(u).
Combining the estimates (2.16)-(2.19), we obtain

Tl/z||€7€D§/2r€r¢}{(¢)bou”1,1_ < CeZ‘r(s(efc,u" + 67815), (220)

for sufficiently large T > 1,.

The estimate (2.20) has the same form as (2.7) in [14]. Then one can follow the rest
of the proof there. Here, we sketch the outline of the proof. The first part is to extend
the estimate (2.20) to the upper complex plane. More precisely, consider

N(1) := |l P/ > ey (dp)boul 7, T € C. (2.21)
One needs to show that there is ¢ > 0 so that in the region
R(u) :=={z € C:|z] <¢y”, Imz > 0},
the following holds:
N(—iz) < C(1 + |2|*)e 100Im=, (2.22)
There is ¢ > 0 such that the inequality (2.22) is true for z = it € R(u) when 7 > 10, as
follows from (2.20). The estimate can be immediately extended to z =it € R(p), 0 <
7 < 19, as 7o can be put into the constant C. To extend the estimate to the whole upper
complex plane, one needs a complex analysis argument using the Phragmen-Lindelof

principle, see Lemma 2.7 in [14].
The second part is to estimate

BD
F0) = A (") @ ), 23)
with > 0 to be determined. Here n(s) := n,(s/d), where n, of Gevrey class 1/o is a
localizer supported in [—4,1] and equal to 1 in [—3,1/2]. By our construction, y(¢) =1
on supp(n(¢)u), and hence n(¢)u = n(¢)x(P)u. The function F can be written as an
integral over R :

/= ﬁDO

) = [ a5

R w

where 7} denotes the Fourier transform of #. Then we change the integral over R to a
contour integral in the complex plane

— D, .
F=hL+b, Ij:J ﬁ(z)A(%)e"zd)x(qs)u dz, j=12,
J

) e*iz‘f’x(d))u)(y)dz, (2.24)

where, writing ¢ = %Eu‘“, IN={z€eR:|z| > ¢} and

Ib={z€C:Rez==*(0<Imz</}U{z€C:|Rez|] </ Imz =/}
Note that I'; C R(u). As n, is of Gevrey class 1/o and supported in [—4, 1], there holds
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|ﬁ(z)| < Ce451mz—c\Rez\“ (2.25)

o2
for some ¢ > 0. It follows that ||I;||;p < Ce™*" for some ¢ > 0. Moreover,

A <@) e*FDé/ZiZ
>

where B(H') is the space of bounded operators on H'. Now we apply (2.22) together
with the estimate
HA (ﬁ_lzo) 676D§/2iz
W

that holds for some ¢ > 0. This yields

™D (22 =20y (Y u)| | dz
B(H')

>

e

I

< ecImz/,B2
B(H')

||I2||H1 S CJ e451mz7c\Rez\%+dmz/ﬁ275(51mz|dZ| S Ceicmz

2

for some ¢ >0 and large enough > 0.

By combining the above estimates for I; and I, we get ||F||; < Ce*" for large S,
which is very close to the claimed estimate. The final step of the proof is to replace the
cut off function 7(¢) with the cut off function b((y — y9)/r). We omit the details of the
short proof and refer to [14], see the end of the proof of Theorem 1.1 there. O

2.2. Global estimates

Propagating the local estimate Lemma 2.3 yields a global estimate. To do this, we use
the same constructions as Assumption A4 in [13].

Assumption 2.4. Let Q be a bounded connected open subset of R x R" and u =
(U1 .oor th), Ui € H'(Q). Assume that there is a function y € C**(Q) for some p € (0,1],
such that in an open set Qo C Q one has W (y) # 0 and p;(y, ¥/ (y)) # 0 for all i and all
y € Qo, where pi(y, &) = & — v,-(x)zzj’kgjk(x)fjék is the principal symbol of the hyper-
bolic operator P; in (1.2).

Assume that there exist values W, < ... and a connected nonempty set Y C Q
such that: supp(u) N Y =0, and 0 # {y € Qo : Y(y) > Ynax} C Y. Assume that Vs, is
such that the open set Qu = {y € Qo — Y : Y0 < Y(¥) < Ynax ) is nonempty, connected
and satisfies dist(0Qp, Q,) > 0.

Construction

Let R > r > 0 satisfying 2R < dist(0€y, ;). Under Assumption 2.4, we choose a max-
imal r/2-separated set in Q, as follows. Take y; to be a point where 1 achieves max-
imum in Q,, and y, to be a point where | achieves maximum in Q, — B,/,(y1). In
general, let y; € Q, be a point where | achieves maximum in Q, — UJl‘;iB,/z(yl).
Observe that y; € 9Y and y; is on the boundary of U]l:Br/z (y1) U Y, since ¥ has no crit-
ical point in Qg by assumption. See Figure 4. Repeat the procedure until it stops, and we
get a maximal r/2-separated set {yj}jli ;> also an r/2-net, in Q,. Since {yj}jli | is r/2-sepa-

rated, the total number N of points is bounded by
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Figure 4. Choice of points y;.

N < C(n) vol(Qq)r~ "1, (2.26)

Denote uy = uy for k =1, ...,m, and define

2y~ ,
uk,j+1 = (1 — b]‘)uk,j, b] = b(%), ] Z 1, (227)

where b € C°(R"*1), 0 < b(&) <1 is a localizer supported in |£] < 2 and equal to 1 in
|&] < 1. We write u.j:= (4yj,...,tnj). The requirement 2R < dist(0Qo,Q,) yields
UjlileR()’j) C Q.

The next lemma is an iteration of Lemma 2.3, analogous to Theorem 2.7 in [13].

Lemma 2.5. Under Assumption 2.4, the points y; and functions uy; (j=1,..,N) are
defined as above. Let b € C°(R"™") be a Gevrey localizer of class 1/o for a fixed o €
(0,1), as defined in Lemma 2.3. Suppose u = (uy, ..., n), u; € H'(Q) is a solution of the
hyperbolic system (1.1) with f; € L*(Q). Then there exist constants r,co, 1, ¢2, ¢3, Cj such
that the following holds.

If for some p > ¢,

[l =1 Ifllze) < exp(=#),
then we can find i = p, i = (/cs, ;> 1, such that ||lugjllppq,) < C(N,r) for k=

()5
) r

Proof. For j=1, u.; = u satisfies the support condition (2.8) in Q) for ¥ = i — y/(y;)
due to Assumption 2.4. This can be argued as follows. For y € Qp, u(y) # 0 shows y €
Q) \ Y by Assumption 2.4, which means either y € (Qy \ Y)NQ, or y € (Q \ Y) \ Q,.
The former implies Y(y) < ¥(y1) by our choice of y,. The latter implies either

(HTML translation failed) or ¥/(y) > ... However, the case of y/(y) > ., does not
happen due to Assumption 2.4:

1,...,m, and

< Cj exp (—clu]‘."z), Voo < i /c.
1

H
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{y€Qo:Y() > Vmu) CYC{yeQ:uly) =0}

. . . D N
Let R, r be the constants determined in Lemma 2.3. Since HA (H—f)b(yTy)f Ho <Iflly <

exp (—u), applying Lemma 2.3 gives

()0

For j=2, u., = (1 — b;)u satisfies the following equation

J(2
< Cie M, Yo < uf/c. (2.28)

H!

Piu,')z + L,‘(Dl/l.g, u.)z) (1 — b ) P,, b ZZL, -kl le] (229)

=1 1=0

This can be seen from (2.11) by replacing y, by with 1,1 — b;. Observe that D;b; is sup-
ported in B,(y1) — B,/2(y1) where b(*>**) = 1. Then by (2.28) and Lemma 2.3(b) in
[14], for u, < uj/co and f > 3 to be determined later,

(22 ] - )2

0

D - o
<crt A(O>b<yy ‘)u,- + Ce 5y, (230
125) r 0
< Crteant + Ce k2,
Similarly,
D - o? o
HA<&)b<y yz) (DsDyby)us|| < Cr2e @ + Ce . (2.31)
M R 0
Since the coefficients Ly in (2.29) are time-independent, we have
D - o2 o
HA<M>b(y y2>Ll‘%kl<Dzb1)uk < ClLfloer™t e + ClIL|| e 5. (2.32)
Hy R 0
Recall from Lemma 2.3 in [14] that
2 o
¢y = c4(f) = C(a, vol(Bg)) <1 - B) > C(a,n,R) 37%, (2.33)

since § > 3. Thus we can treat ¢, as a constant independent of /.
Next we estimate terms involving Du.

(2 o] o () omn)
) o))
() omn(2)],
) o) 152)e

S ‘

0

<

>

0
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where we have used the fact that [A(Dy), Ds] = 0, for all s =0,1,...,n. For the second
term on the right-hand side, we apply Lemma 2.3(b) in [14] just as before. The first
term on the right can be estimated as follows.

=2,
PN 2,
o)

)

where we have used Lemma 2.3(c) in [14] in the last inequality. Thus by (2.28), we obtain

Hl

< Cr? + Crle o Iudil| 1>

H!

D, - 2 :
A <ﬁ0> b ()/)/z) (Dyby)(Dwy)|| < Cr2e @M 4 Crte i, (2.34)
M R 0
Combining (2.31) and (2.34) yields
D - 12 o
A <&> b <M) [P, bi]u|| < Cr2(e @M 4 e i), (2.35)
125) R 0
where ¢, ¢4 are independent of f3, u. Moreover,
D o 12
A<M>b<y y2>( < Iflly et <eti. (2.36)
Hy R
—1/a

We assume ¢; < 37* without loss of generality, and choose f = ¢4 so that the require-
ment f§ > 3 is satisfied. The estimates (2.32), (2.35) and (2.36) show that the right-hand
side of (2.29) satisfies the assumptions of Lemma 2.3 for u = ¢,'/*u, with the choice

1

U, = mln{co , <E—l>x} i (2.37)

The support condition (2.8) is satisfied by u., in Q by choosing ¥ = — Y/(y,) due to
Assumption 2.4. This can be argued in the same way as for u.;, considering the fact that
u., = 0on Y UB,/;(y) by definition (2.27). Hence applying Lemma 2.3 to u., gives

(377w

In the same way, the estimates for all u.; can be obtained by induction. We can choose

< G, exp (—c1c4°‘,u§2), Vo < capty/co. (2.38)
Hl

i = W > c; sufficiently large such that y; > 1 for all j =1,...,N, where ¢, depends on
N. Recall that N is bounded by (2.26). For the H'-norm of w. j» we have

-1
sl = H (H(l = bk)> u
k=1

< CNr L.

H!
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All relevant constants can be explicitly calculated as in Theorem 2.7 in [13]. In our

case, the constants additionally depend on m, max;||v||» and ||L|| . O
Lemma 2.5 yields the following global stability estimate.

Proposition 2.6. Let Q be a bounded connected open subset of R x R". Suppose u =
(t1, ooy i), 4; € HY(Q) is a solution of the system of hyperbolic Equations (1.1) with f =
(fis e fm)> fi € L*(Q). Assume Assumption 2.4 is satisfied. Then we have

[l 0

<
lull2(q,) < € 1 ol o)\
8\ 1 ey

where 0 € (0,1) is arbitrary. The constant C explicitly depends on the C*’-norm of

W, ianO|l/J/|, miniinfgo|p,-(~,lp/)|, dist(0€Q, Q,), m, max||vil|a, ||L||, 0 and geometric
parameters.

Proof. Without loss of generality, assume ||ul|gq) =1 If |[f|l, > e, then the
inequality above satisfies trivially. Otherwise |||, = e * for some u > c,, where o €
(0,1) is fixed. The estimates for the lower temporal frequencies follow from Lemma 2.5.
Higher temporal frequencies can be estimated uniformly in frequency. Then the log
-stability estimate follows by the same argument as Theorem 1.1 in [13]. O

In the same way, we also have the following stability estimate for multiple domains,
analogous to Theorem 1.2 in [13].

Proposition 2.7. Let Q be a bounded connected open subset of R x R". Suppose u =
(U1 oo i), Ui € HY(Q) is a solution of the system of hyperbolic Equations (1.1) with f =
(fis o fm)s fi € L*(Q). In Q, we assume the existence of a finite number of connected
open subsets Q](-) and Q;, j=1,2,...,], a connected set Y and functions \; satisfying the
following assumptions.

(1) ;€ C>(Q) for some p € (0,1]; Yily) # 0, pi(n¥j(y)) # 0 for all 4, j and all y €
Q;-), where p; denotes the principle symbol of the wave operator P; in (1.2).

(2)  supp(u) N Y = (); there ?xists Yimaxj € R such that ) # {y € Q](-) P (V) > Yinaxjt C
Y, where Y; = Q](') N (UJI;in uvyY).
B) Q= {y € QJ(.) — Y 5p) > lﬁminJ} for some Y, € R, and dist(@Q]Q,Qj) > 0.

(4) Q, is connected, where Q, = U}Zlﬂj.
Then the following estimate holds for Q, and Q° = UJLIQ;.):
[ull i (o)
oS C(lo ( il QO))H
T e

where 0 € (0,1) is arbitrary. The dependency of the constant C is the same as
Proposition 2.6.

[ull 20
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3. Stability of the unique continuation on Riemannian manifolds

From Proposition 2.7, one can obtain an explicit stability estimate for the unique continu-
ation on Riemannian manifolds in a similar way as Theorem 3.3 in [13] or Theorem 3.1 in
[7]. The following is a proof of Theorem 1.1 which is analogous to Theorem 3.1 in [7].

Proof of Theorem 1.1. The proof is only a slight modification of the proof of Theorem 3.1
in [7]. We consider the submanifold M — U and its boundary has two (smooth) con-
nected components OM, OU. We take I' = QU in [7] and follow the proof of Theorem
3.1 in [7] by using Proposition 2.7. Notice that only the first condition in Proposition 2.7
is affected by the change of wave speed in the wave operator. Hence we only need to
check that the domains QJQ are non-characteristic with respect to P; for all i.

The y;-functions constructed in [7] in the simplest form are
2 2
Yi(xt) = (T —d(x,7))" —
where z; € M are fixed points. In our case of different wave speeds, one can choose the
y-functions as follows:

l/~/j(x, t) = (T —v'd(x,z))’ — % for xe M, t € [-T,T], (3.1)
where

vi= mjnin]&v,-(x) > 0. (i.e. the minimal wave speed in M) (3.2)
i xe

The domains Q]Q can be similarly defined as suitable level sets
Q= {(x, £) €M x [-T.T] : §;(x.1) > h} (3.3)

for some small positive parameter h.
Then it is straightforward to check that fpj is non-characteristic in Q](.) with respect to
all P, Namely, for any i,
—pil(x 1), V) = vi(x)" >0 )) () — 100" = vilx)* [V — 00
k=1
vi(x)?
2
> 4i(x, 1) > 4h,
where we have used the fact that |V,d(x,z)| = 1 and

Vil = —2(T = v'd(x,5))v ' Vad(x 7).

=4 (T — v 'd(x, zj))2 — 4t

Recall that the matrix (¢/*) in the wave operator (1.2) is the inverse of the matrix (gj)
that is the Riemannian metric in local coordinates.

In general, we can choose the yj-functions in the present case in a form similarly
modified from (3.30) in [7]:

V(1) = (1 - Ed(x,0M U V) — &py — dj(x,2i9)) Ti — v dj (x,23)* — 1, (3.4)

where ¢ € C*!'(Rx) is a decreasing function supported in [0,4], and d; (- z;) is a
smoothening of a distance function. Differentiating ;; with respect to x gives
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Vii; = 2((1 = &(d(x, 0M U OU)) — &(py — dj (%, 2i)) Ti — v dj (%, zi5))
(=E'TiV.d(x,0M U OU) + E TV 5 (x,21j) — v ' Vidy (%, 21)).

By the construction in [7], V,d; (x,z;;) and V.d(x,OM) are of opposite directions when
x is near the boundary. Since &’ < 0, the latter multiplier has length at least v~'. Thus
by the same calculation above for l; » one can still show that the suitable level set of
is non-characteristic with respect to all P;.

The additional coefficient v~! can be understood as a time dilation by a factor of .
Thus Theorem 3.1 in [7] gives the estimate in the following domain (see (2.6) in [7]):

Q) = {(x.1) € (M= U) x [=T,T) - vT — vt] = dyy_u(%,0U) > vV, dy_u(x.0M) > h},

where dy_y is the Riemannian distance of the submanifold M - U. Notice that
dy—u(x,0U) = d(x,0U) for any x € M — U, since any path from x to the interior of U
must cross OU. In (1.3), we actually used a smaller domain due to dy_y(-,OM) >
d(-,OM). We note that the factor v~! is only added to one distance term in (3.4). The
other two distance terms there control how close this process approximates the optimal
domain and therefore a constant factor is inconsequential to the final error estimate.

Finally we turn to the data on U. In our case, Lemma 3.3 and 3.4 in [7] are not
necessary as we have the whole manifold M and functions u; € H'(M x [T, T]) readily
available. We can simply take the functions u; on M and cut it off near JU in U. More
precisely, take a smooth function # : M — R such that y=1on M - U, 0<5n <1 on
U within distance h from QU, otherwise 0. Consider #; = nu;. Then u; satisfies the fol-
lowing equation similar to (2.11):

m n
Piit; + Li(Dit, ) = nfy + [Punus + ) > Liw(Dimux = fi.
k=1 1=0

It is clear that [|&l sy —r7) < Ch ' thill g (a7, and

H]?iHLZ(Mx[fT,T]) < Wil qm-vyxermy + HfiHLZ(Ux[fT,T])

< Hfi”Lz(Mx[fT,T]) + Ch72||u||H‘(U><[7T,T])'

Applying these estimates to the last step of the proof of Theorem 3.1 in [7] gives the
desired estimate. As for the dependency of the constant C, besides what is stated in the the-
orem, the constant also depends on geometric parameters: diam(M), ||Ry|| > [|Somll s>
1Sou | cs» inj(M — U), rear(M — U), vol, (M), vol,_; (OM), vol,,_; (OU). 0

Remark 1. In Theorem 1.1, we only use H'-norm data on the interior domain U,
instead of the higher regularity H>*-norm (see (2.7) in [7]) on a subset of the manifold
boundary used in [7]. The extra regularity in [7] were used to extend the data on the
boundary to an extension of the manifold. In our present case, we are avoiding this
issue by using data on an interior domain of the manifold. Nonetheless, the same
method is valid for the system of hyperbolic equations with data on the boundary,
which yields a similar log-type stability estimate with H>*-norm boundary data.
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Remark 2. In particular, if all wave speeds v; =1 (or a constant), the domain Q,(h)
defined in (1.3), where we have quantitative estimates, can be arbitrarily close to the
optimal domain given by Tataru’s unique continuation theorem for the scalar wave
equation in [3], since h is a small parameter chosen in advance. Recall that the optimal
domain is known as the double cone of influence defined as

K(U,T)={(xt) e Mx [-T,T] : d(x, U) < T — |t|}.

However, if one wants the estimate in Theorem 1.1 to work closer to the optimal
domain, the cost is the constant exp (h~“") which goes up exponentially.

In the case of 1+ 1 dimension and v; =1, the optimal domain and the domain
Q,(h) are illustrated in Figure 1. In general, if the wave speeds are not constant, the
domain Q,(h), propagating according to the slowest speed, can be significantly smaller
than the optimal domain.

Theorem 1.1 yields the following estimate on the initial value.

Corollary 3.1. Let (M",g) be a compact, orientable, smooth Riemannian manifold of
dimension n > 2 with smooth boundary OM, and U be a connected open subset of M
with smooth boundary OU. Assume UNOM = (. Suppose u= (uy,...,un), u; €
H'(M x [T, T]) is a solution of the system of hyperbolic equations (1.1) with f =
(fis - fn) = 0. Let v = min;infepvi(x) > 0 be the minimal wave speed in M. If
Il sty < Ao Nullmux-rm) < %0
then for sufficiently small h, we have
11 Ao

lu(-0)|| <Ch3exp(h”")—— .

L&, @h0)) (log (1 + h/:—:))z

The domain Q,(h,0) is defined by
Q,(h,0) = {x € M\ U : d(x,0U) < vT — Vh, d(x,0M) > Vi }. (3.5)

The constants C, c¢ are independent of h, and their dependency is stated in
Theorem 1.1.

Proof. This directly follows from interpolation and the trace theorem. See the proof of
Corollary 3.9 in [7] for more details. O

Due to the Sobolev embedding theorem, Theorem 1.1 implies the following stable
continuation result on the whole manifold.

Proposition 3.2. Let (M",g) be a compact, orientable, smooth Riemannian manifold of
dimension n > 2 with smooth boundary OM, and U be a connected open subset of M
with smooth boundary OU. Assume UNOM = (. Suppose u= (uy,...,up), u; €
H'(M x [T, T]) is a solution of the system of hyperbolic equations (1.1) with f =
(fis - fin) = 0. Assume T > 2(diam(M) + 1)/v, where v = min;infycpv;(x) > 0 is the
minimal wave speed in M. If

ullenaix—rm) <Aoo Nl rmy) < o5
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then there exist constants hy, C,c > 0 such that for any 0 < h < hy, we have
Ao

10l 2 apy vy 7)) < € exp (h™") =y - CAGhT.
(log (1+ h2))’
Furthermore, for any 0 € (0,1), by interpolation,
Cen A N
[l ooy -27)) < € exp () S+ CP Aok

(log (1 + h’s\—(;’))2

Proof. For T > 2(diam(M) + 1)/v and h < 1, we see that

(M\ U) x [—gg] C Q,(h) UNp,

where

TT
Nh = {X eM: d(x,aM) S h} X [—E,E:| .
Theorem 1.1 gives the L*-estimate on Q,(h), and thus we only need to estimate the L?
-norm on N. Apply the Sobolev embedding theorem (e.g. Theorem 4.12 in [43]) to
the space M" x [—T,T] which satisfies the uniform cone condition (Definition 4.8 in

(43])

HMHL%(Mx[—T,T]) < Cllull g ax-1,7) < Cho.

Then,

2 < 2(n+1 ”L“ < ”_Jlrl
oy < ol s, (VOLN)T < Cho

|

Proof of Corollary 1.2. Choose h such that the two terms on the right-hand side of the
L%-estimate in Proposition 3.2 are equal, and we get

h = C(log | log &), (3.6)

for some constant ¢ depending only on #, and for some constant C independent of h.
The condition h < hy gives the choice for & :

G = (exp exp (C'hy /)7 (3.7)

|

4. Application to fault dynamics

In this section, let M*> C R? be a compact domain of dimension 3 with smooth bound-
ary representing the solid Earth. Let ¢ be a (2-D) rupture surface. Assume that Xy is
connected, orientable, smooth with Lipschitz boundary and ¢ N M = (). The open set
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Figure 5. Rupture surface X¢ under Assumption 4.1. The set U is a connected open subset of the
observation domain V satisfying U C V.

V is the observation domain satisfying V C M \ Xy, see Figure 2. The set U is a con-
nected open subset of V satisfying U C V. Then it follows that U N (Zf UOM) = ).

4.1. Unique continuation to rupture surface

We apply our stability results in Sections 2 and 3 to seismic waves. For a concise for-
mulation we adopt the following setting.

Assumption 4.1. Suppose that there are two disjoint open subsets Dy, D, C M satisfying
D, UD, C int(M) and ¢ C dD; N OD,, such that the following condition holds.
(%) For j=1, 2, M;=M\D; is a connected open subset of M with smooth

boundary.
Under Assumption 4.1, it follows that M; N M, contains an open set of M, and

X COMiNOM,;, M= M; UM,. (4.1)

In other words, the rupture surface X¢ can be approached from both sides, and it can
be extended on either side into the boundary of a smooth submanifold. In practice one
can try to construct the subsets D;, D, to be open topological (3-D) balls with smooth
boundary, such that their closures Dy, D, do not intersect OM. If such D, D, can be
constructed, then the condition (x) is satisfied (Figure 5).

We consider function spaces on the disjoint union M; LI M, instead of on M. We say
a function u € H*(M, U M,) if u|M]_ € H*(M;) for j=1, 2. We define the H’-norm on

M1 |_|M2 by

2
2 2
[l Hs(MUM,) = ZH”|M].| HY(M;)° (4.2)
=1

and for T> 0,
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2
[ %J‘((MluMz)x[fT,T]) = Z”l’llex[fT,T]l i{s(ij[fT,T])' (4.3)
=1

J

The seismic wave u is modeled by the following equation of motion
pOu —V - (AT : Vu) =0 in M\ Iy, (4.4)

where the prestressed elasticity tensor AT is related to the in situ isentropic stiffness
tensor C by

0 1
A" i = Cija + E(<T0)ijékl T (To)klfsij + (To)ikéjl - (To)iléjk - (To)jkéil - (T())jz(sik)’

and the operation : is defined as (ATU : Vu)ij = Zk’l/\Toijklaluk in components. In the
case of isotropy and hydrostatic prestress T° = —p°I, the prestressed elasticity tensor
AT’ has the form

A" s = 2850w + p(Oudy + 5ady) — p° (850 — udye)- (4.5)

In this case the Eq. (4.4) has the same form as the classical elasticity system in (A.1),
namely

pO?u — pAu — (A + p) Vdiv u+ first order terms = 0. (4.6)

Note that p® appears in the first order terms of (4.6), see for example [44, Section 2.2].
We assume that

0s Uy A po eC*M \Z_f) are time-independent. (4.7)

Due to Lemma A.1, the Eqs. (4.4) with (4.5) can be written in the form of the system
of hyperbolic Eq. (1.1), and therefore our results in Sections 2 and 3 apply. We consider
the unique continuation in each smooth manifold M; (j=1, 2) with smooth boundary
assumed in Assumption 4.1. We observe on a connected open subset U C M; N M, sat-
isfying U N OM; = 0. Thus we can apply Corollary 1.2 to each manifold M; with the
open set U.

Theorem 4.2. Let M® (the solid Earth), ¥ (the rupture surface) be defined at the begin-
ning of Section 4. Let M; (j=1, 2) be the submanifolds with smooth boundary as in
Assumption 4.1, and u = (uy,up, u3), w; € H*((M; UM,) x [—T,T]) be a seismic wave
satisfying (4.4) with (4.5). We observe on a connected open subset U C M; N M, with
smooth boundary satisfying UNOM; = 0. Assume T > 2(max;diam(M;) + 1)/v, where

v =infy\/u/p is the minimal wave speed. If
etll oty < -1y < Ao Ml v -1.17) < 05
then there exist constants &, C, ¢ such that for any 0 < & < &, we have

—C
>

||(u, div u, curl u)”LZ((%\U)X[*%D < C(log | log &)

where C is independent of ey, and c is an absolute constant. Furthermore, for any 0 €
(0,1), by interpolation,
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|(u, div u, curl u)||H1,0((Mj\U)X[7%]) < C(log | log &)

Proof. By Lemma A.1, the vector-valued function
F := (u,div u, curl u)

satisfies the system of hyperbolic Eq. (1.1). The bounds on the H?>-norm of u give the
bounds

Bl g -r1) < Ao Bl usrmy < %o-

Then applying Corollary 1.2 yields the result. O

Remark 3. The constant C in Theorem 4.2 depends on the geometric parameters of M;
assumed in Assumption 4.1.

The trace onto rupture surface

Recall that Assumption 4.1 indicates X¢ C OM; N OM,. In the boundary normal neigh-
borhoods of M;, M,, the two sides of X; are product spaces X X [0,inj(M;)/2] and
X¢ x [0,inj(M,)/2], where inj(M;) is the injectivity radius of M;. Theorem 4.2 gives an
estimate on the H'’-norm of u on two sides of X, more precisely, on Xf x
[0,inj(M;)/2] x [-T/2,T/2] and Z¢ x [0,inj(M)/2] x [-T/2,T/2]. Hence the trace
theorem yields that the trace of u onto Xy is well-defined from both sides in H*(Z¢ x
[-T/2,T/2]) for k € (0,1/2). Namely, writing the trace of u onto X; from the two
sides as

u+ = limu(z + hn,t), z € Xy, (4.8)
h—0*

the trace theorem and Theorem 4.2 yield that, for any x € (0,1/2),

[|ua= | e (sex[21]) = max C(r, M;)[|ul|

HY3(M)\U)x[~£4]) (49)

< C(log | log 80|)7<%7K)C,

where C is independent of .

4.2. Kinematic inverse rupture problem

Now we show that we can determine the displacement, u, and traction, t;, on both
sides of the rupture surface X by the unique continuation. By implication, we obtain
the tangential jump of particle displacement, [uH]f and friction force, 5.

On the (orientable) rupture surface X with unit normal vector n, the dynamic slip
boundary condition and the force equilibrium are satisfied (e.g. [45]), which gives

n-u” =0,
[t1(4) + 72(u)]" =0, on Xy, (4.10)
Tf — (n - T° + ‘L'1<u) + Tz(ﬂ))H =0,
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with

(4.11)

{ T(u) =n- (AT0 : Vu),
(u) = =V= - (u(n- T°)),

both of which are linearly depending on u, and the surface divergence is defined by
VE.f =V f — (Vf -n)-n. Here the labels “+” and “—” indicate the two sides of X,
and the subscript | represents the tangential component with respect to X¢. On the
exterior boundary OM, with unit normal vector v of the domain M, we apply the
boundary condition

v~(AT0:Vu):v-T0:O.

In the above, T° is known and we assume that the components of T° are time-inde-
pendent smooth functions on M \ X¢. Denote by u-, (t,(u))., (12(u)). the traces of

u,7,(u),72(u) on the two sides of the rupture surface Xy, respectively.
With Theorem 4.2, we can solve the kinematic inverse rupture problem as follows.

Theorem 4.3. Let M® (the solid Earth), ¥ (the rupture surface) be defined at the begin-
ning of Section 4. Let M; (j=1, 2) be the submanifolds with smooth boundary as in
Assumption 4.1, and u = (uy, up, u3), u; € H*(M; UM,) x [=T,T]) be a seismic wave
satisfying (4.4) with (4.5). We observe on a connected open subset U C M; N M, with
smooth boundary satisfying U N OM; = (). Then for sufficiently large T, we can determine

u. € H* (zf « {-%%D (e1(@)., (ta(w))s, 7 € HY! (zf « [_ggb
for any x € (0,3).
Furthermore, if
”uHHZ((MluMz)x[fT,T]) < Ao, ||u||H2(U><[7T,T]) < o,
then there exist constants &y, C, ¢ such that for any 0 < gy < &, we have
—

||ui||H,<<zfX[_§)ﬂ) + ||t — (n- TO)H||H'\'*1(2fx[—%,§]) < C(log | log &)

where C is independent of &y, and c depends only on k.

Proof. With the unique continuation, we determine the displacement u# on both sides of
the rupture surface u+ defined by (4.8), and, hence, [uH]f, the tangential jump of par-
ticle displacement across the rupture surface, and

(t1(u)). == hlimjl(u)(z +hn,t), ze€ZX.
—0=

By implication, as T° is known, we determine

(t2(n)) . = hlim . (u)(z+ hn,t), ze Xy
—0*

Thus we obtain (71(u)) . and (72(u)), . and, hence, .
The regularity of u+ was already discussed following Theorem 4.2, and the regularity
estimate was given in (4.9).
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For the regularity of 77, we recall the Hy-norm in R""" (see Definition B.1.10 in
[46]) defined as

Il = | [P+ 1P+ 2Py @.12)

with respect to the coordinates y = (x',x") € R" x R. Note that when s=0, the H)

-norm above is equivalent to the usual H*-norm. In our case, the local coordinates can
be chosen as the boundary normal coordinate of M; such that

81\4] = {xn = 0}, pi = 8)%" + ai()’,D,)’

where P; is the wave operator (1.2). Moreover, define H(k,s) = {u|xn>0 Tu € H(k,s)}.
Recall also Theorem B.2.9 in [46] that allows us to trade smoothness from the tangential
variables to the normal variable: if u € H, ;) and Piu € Hy,_»,), then u € Hyy) if k <
kyand k+s < kj+s;, j=1, 2.

Now consider the homogeneous system (1.1) with f=0 and u € H” for some 0 € R.
Suppose that the coefficients of L; are smooth. We aim to show that Owul,._, is well-

defined in a rough Sobolev space. Locally u € Hyg = H’ and Pju; = —L;(Du,u) €
Hp_1,0)- This is due to Du € H?' and

[ J Jea(&)P(1+ €PN+ €Y de
1RH X (4.13)
= EJRn+l|i:l(§>|2(1 + |é|2)0(1 + |é/|2)5d£ - E H”H%@,s)'

Thus u; € Hy) if k < 0+ 1 and k+ s < 0. In particular, u; € Hg,1,_1). For an estimate
on the norm, define X = {v € Hy) : [|v|[x < oo} where ||v|y := V1l (60) + [PVl (9-1,0)-
It follows from the closed graph theorem that X is a Banach space. Then apply Lemma
A2 with Y = Hg,y_y) and Z = H(gp), and using (4.13), we have

[will o1, —1y < Clllmill 0y + [[Pittill 9-1,0))

(4.14)
< C(H”z‘”(e,o) + ||D”iH(0—1,o) + ||”i||(9—1,o)) < Clluill o

In fact the constant in (4.14) depends only on the coefficients of P;, L;, which can be
extracted from the proof of Theorem B.2.9 in [46]. Repeating the argument above for
all i =1,...,m (which requires changing coordinates and using the coordinate invariant
versions of the spaces), we have u € H(0+1,—1)~ Then it follows from [46, Theorem B.2.7]

that Opu|,._, is well-defined in H’"> as rough distributions if 6 > 1, and combining
with (4.14),

||8xwu

x":0||H0—§ < CH”||(0+1,—1) < Cllullo- (4.15)

Since u € H'(M; x [~T/2,T/2]) for any 0 € (3,1) by Theorem 4.2, the argument
above and (4.11) show that (t,(u)). € H’*/>(Z¢ x [-T/2,T/2]). The estimate on the
norm of (t;(u)). is given by (4.15) and Theorem 4.2:

(@1 0)- 35, gy < Cllog | log cal) (4.16)
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For the regularity of (ta(u))., since us € H*(Z; x [-T/2,T/2]) for x € (0,1), then
(u(n-T°), € H* and hence (t(u)). € H* 1(Zf x [-T/2,T/2]) by (4.11). The esti-
mate on the norm of (7(u)). is given by (4.9) and (4.13):

[[(z2(u)) .|

Thus t¢ € H* (X x [-T/2,T/2]) by (4.10), and the estimate on its norm directly fol-
lows from (4.16) and (4.17). O

H’H(Efx[—g,ﬂ) < C( log | log £0|)7C, (4.17)

Theorem 4.3 yields the following corollary by interpolation.

Corollary 4.4. Under the assumptions of Theorem 4.3, assume furthermore that

el i tyonty) <7y < A> for some s > 2.

Then there exist constants &, C, ¢ such that for any 0 < & < &, we have

—C
>

[

me(zox[-22)) T 17e = (0 Tl es (5, [3g) < Cllog | log &)

for any r € (1,5 — 1), where C is independent of ¢y, and c depends only on 1, s.

Proof. Since we assume u|Mj><[7T,T] € H'(Mj x [T, T]) for j=1, 2, the trace onto Xt
from both sides u+ € HS_%(Zf x [-T,T]), and

o < Clu

H3(Zex [~ T,T B (Myx[-TT) S CA. (4.18)

Moreover, it follows from (4.11) that 7, (u),7,(#) € H*"! in the boundary normal neigh-
borhood of M;. Hence their traces (7(u)).,(t2(u)). € H"%(Z¢ x [T, T]), and the
norms are also bounded by CA. Therefore t¢ € H*2(Z¢ x [~ T, T]) by (4.10), and

|z — (n- TO)H|

3 < . .
H Y x[-T,T)) — CA (4.19)

Then the corollary follows by interpolating (e.g. [47, Theorem 6.4.5]) between (4.18),
(4.19) and Theorem 4.3. O

Remark 4. In particular, when s> 2, we obtain estimates from Corollary 4.4 for u. on
Sobolev spaces that are Banach algebras, see [43, Theorem 4.39].
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Appendix A

Consider the classical elasticity system in a bounded domain Q C R x R,
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3

p0fu — w(Au + Vdiv u) — V(2 div u) Z - (Vu; 4 Gju)e; = 0, (A1)

for the displacement vector u = (ul,uz,u3) depending on (t,x) € Q. Assume the density p €
C'(Q) and the Lamé parameters u, 1 € C2(Q).

Lemma A.1 (Lemma 5.1 in [11]). Let v=div u, w = curl u. Assume p € CH(Q) and w1 €
C2(Q). If u solves (A.1) then

Bafu —Au+ A (u,v) =0,
u

BZV—Av—l—A u,v,w) =0,
2,u+ 2( )

Bﬁtzw —Aw+ As(u,v,w) =0,
U

where Ay, Ay, Az are linear differential operators of first order with coefficients in C°(Q). Moreover,
when p, u, . do not depend on t, then the coefficients of A; do not depend on t.

Note that this linear system of equations above satisfied by the vector (u,div u,curl u) con-
sists of seven scalar equations. A similar result holds for the Maxwell system, see Lemma 4.1
in [11].

Lemma A.2 Let X C Y C Z be three Banach spaces. Suppose that there is a constant Cy > 0 such
that forallx c X and y € Y,

Ixllz < Co

¥z < Collylly-
Then there is a constant C> 0 such that for all x € X,

[[xlly < Cllx[lx-

Proof. Due to the closed graph theorem, applied to the inclusion map I : X — Y, it is enough to
show that if x, — x in X and x, — y in Y then x=y. The continuous inclusions X C Z and Y C
Z imply that x, — x and x, — y in Z. Thus x=y. m]
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