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Stem-mapped forest stands offer important opportunities for investigating the fine-
scale spatial processes occurring in forest ecosystems. These stands are areas of the 
forest where the precise locations and repeated size measurements of each tree are 
recorded, thereby enabling the calculation of spatially-explicit metrics of individual 
growth rates and of the entire tree community. The most common use of these datasets 
is to investigate the drivers of variation in forest processes by modeling tree growth rate 
or mortality as a function of these neighborhood metrics. However, neighborhood 
metrics could also serve as important covariates of many other spatially variable forest 
processes, including seedling recruitment, herbivory and soil microbial community 
composition. Widespread use of stem-mapped forest stand datasets is currently 
hampered by the lack of standardized, efficient and easy-to-use tools to calculate tree 
dynamics (e.g. growth, mortality) and the neighborhood metrics that impact them. 
We present the forestexplorR package that facilitates the munging, exploration, 
visualization and analysis of stem-mapped forest stands. By providing flexible, user-
friendly functions that calculate neighborhood metrics and implement a recently-
developed rapid-fitting tree growth and mortality model, forestexplorR broadens the 
accessibility of stem-mapped forest stand data. We demonstrate the functionality of 
forestexplorR by using it to investigate how the species identity of neighboring trees 
influences the growth rates of three common tree species in Mt Rainier National Park, 
WA, USA. forestexplorR is designed to facilitate researchers to incorporate spatially-
explicit descriptions of tree communities in their studies and we expect this increased 
diversity of contributors to develop exciting new ways of using stem-mapped forest 
stand data.
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Introduction

Forest ecosystems represent a critical buffer against 
anthropogenic climate change and we therefore must develop 
a deep understanding of their dynamics. An important 
tool in this endeavor is the stem-mapped forest stand; an 
area of forest where the size, species identity and precise 
location of each tree meeting a minimum size threshold are 
recorded (Condit 1995). Once established, these stands are 
revisited periodically to document mortality, re-measure 
trees and record any additional trees that newly meet the 
minimum size threshold. In particular, stem-mapped forest 
stands ≥ 1 ha in area (e.g. those of the Forest Global Earth 
Observatory (ForestGEO; Davies  et  al. 2021) and Pacific 
Northwest Permanent Sample Plot networks (Franklin et al. 
2021)) offer important opportunities for investigating the 
fine-scale spatial processes that drive forest dynamics (Lutz 
2015). This is because they allow us to quantify the local 
tree community (hereafter ‘neighborhood’ for consistency 
with published literature) surrounding any particular tree 
in a spatially-explicit way. Neighborhood metrics have been 
shown to be informative covariates of spatial variation in 
tree growth and survival (Uriarte et al. 2004, Wiegand et al. 
2017). Neighborhood metrics have also facilitated research 
on climate change (Buechling  et  al. 2017), competitive 
interactions (Fortunel  et  al. 2016) and pest-induced tree 
mortality (Buonanduci et al. 2020).

To extract these insights from stem-mapped forest stand 
datasets, a considerable amount of programming skill and 
computational power is required. The first task is to clean 
and format the data for analysis. This is a non-trivial data 
management problem because errors are common in field-
collected data and each group of forest stands tends to have 
its own data structure. Next, the data must be explored to 
identify the important neighborhood metrics; an iterative 
process given that the appropriate neighborhood size is 
generally not known a priori, as it depends on local envi-
ronment, the spatial process being explored (e.g. compe-
tition versus soil microbiomes), species identity and many 
other factors. In addition, calculating neighborhood met-
rics requires identifying all trees within the neighborhood 
of each tree, typically generating datasets with hundreds 
of thousands of rows; a daunting workflow for an inexpe-
rienced programmer. The final step is to build models for 
hypothesis testing that incorporate neighborhood met-
rics, and many of these models require high-performance 
computing resources for maximum likelihood estimation 
(Uriarte  et  al. 2004, Kunstler  et  al. 2016, Fortunel  et  al. 
2018), which not all researchers have access to. Software 
tools that can alleviate these challenges would provide 
opportunities to increase the abundance and diversity of 
projects using these rich datasets.

Software tools for interacting with stem-mapped forest 
stand data are available, but their design restricts their use 
to specific dataset structures and analytical approaches. For 
example, the fgeo suite of R packages (Lepore et al. 2019) 
facilitates analyses of data from the ForestGEO network of 

stem-mapped forest stands (Davies  et  al. 2021). However, 
fgeo does not contain any functions for calculating neigh-
borhood metrics, and its powerful habitat-species asso-
ciation analyses require individual tree-level elevation data, 
which are currently not available for many stands outside 
the ForestGEO network. The scope of the fgeo package is 
understandably limited in order to encourage researchers to 
explore all aspects of the ForestGEO network in particular, 
but we believe there is a great deal of insight to be gained 
from tools that can be applied to the data types common 
to all stem-mapped forest stands: the size, species identity 
and precise locations of trees. For example, the forestecology 
R package (Kim et al. 2021) implements a highly efficient 
neighborhood growth model that allows users to estimate 
species interaction coefficients, but it can only handle 
data from a single large stem-mapped forest stand (e.g. a 
ForestGEO stand) and does not allow the user to include 
additional covariates such as climatic data. Also of note is 
the rFIA package (Stanke et al. 2020), which supports the 
retrieval and analysis of data from the USFS Forest Inventory 
and Analysis (FIA) stands. However, the FIA stands, and all 
other circular stands we are aware of, are too small to encap-
sulate entire neighborhoods in most forest ecosystems (Lutz 
2015), but designed instead to cover a broad distribution 
and thereby permit analysis of tree performance patterns 
across large environmental gradients.

To address this gap in the current technical tool land-
scape, we present the forestexplorR package, which facilitates 
the exploration, visualization and analysis of rectangular 
stem-mapped forest stand data. forestexplorR is specifically 
designed to identify and calculate important neighborhood 
metrics for use in further analyses and therefore requires data 
from forest stands large enough to capture complete neighbor-
hoods (typically, neighborhood radius ≥ 10 m; Uriarte et al. 
2004, Fortunel et al. 2016). forestexplorR is compatible with 
all rectangular stem-mapped forest stand datasets because it 
requires only the common data types of the size, species iden-
tity and position of trees, yet its functions can also combine 
data from many forest stands. forestexplorR provides func-
tions for calculating common neighborhood metrics, and 
creates clean visualizations for data exploration. In addition, 
it allows the user to implement a new, efficient neighborhood 
model of tree growth or mortality (Graham et al. 2021) that 
can be used to select an appropriate neighborhood size, guide 
the development of a more mechanistic model (Uriarte et al. 
2004), and test ecological hypotheses. forestexplorR will 
most significantly increase the utility of distributed net-
works of stem-mapped forest stands because it provides user-
friendly tools for combining data from multiple stands into 
a single neighborhood analysis, thereby enabling users to test 
hypotheses on how forest processes vary between biomes and 
across environmental gradients. Some examples of such dis-
tributed networks are: Pacific Northwest Permanent Sample 
Plot network (Franklin et al. 2021), NEON Distributed and 
Tower Plots (NEON 2012) and both the RAINFOR and 
AfriTRON plots whose data are curated by <www.forestplot.
net> (Lopez-Gonzalez et al. 2009, 2011).
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Package structure and functionality

The functions included in the forestexplorR package are 
divided into five categories based on the analytical task 
they are designed to assist with (Fig. 1). All users should 
begin with the functions in the ‘data formatting’ category, 
which verify the user-provided data are in a format that 
other forestexplorR functions can handle. Functions of the 
describing neighborhoods category create neighborhoods of 
a user-defined size and calculate corresponding neighbor-
hood metrics. There are also sets of functions for calculating 
growth rates and visualizing mapped stands. The ‘modeling’ 
category contains two functions; one that fits a neighbor-
hood model of tree growth or mortality, and another that 
helps the user determine a suitable neighborhood size to use 
in their analyses.

In this section, we describe functions included in the 
package under each of these categories, and list some of 
their potential uses. Figure 1 provides guidance on how the 

function categories can be combined. forestexplorR also 
includes a series of built-in stem-mapped forest stand datasets 
from Mt Rainier National Park (Franklin  et  al. 2021) that 
can be used to test its functions (see ‘examples’ in each of the 
function help files). In addition, the forestexplorR website 
has a series of detailed vignettes describing how to use 
each of these functions (<https://sgraham9319.github.io/ 
forestexplorR/index.html>).

Data formatting

forestexplorR requires stem-mapped forest stand data to be 
provided in two separate data frames; one containing tree 
mapping data (i.e. spatial coordinates), and the other con-
taining tree measurement data. The decision to require sepa-
ration of these two data types was made to avoid redundancy, 
as most trees will have multiple records of measurement data 
(one for each stand census) but only one record of mapping 
data. It follows that each tree should populate only a single 

Figure 1. Schematic of forestexplorR functions. Black arrows represent a potential analysis plan that combines multiple function categories; 
formatted mapping and tree measurement datasets can be used to obtain quantitative neighborhood descriptions and calculate tree growth 
rates, which can be combined to develop tree growth and mortality models. Functions of the ‘visualizations’ category can be used for 
exploratory analysis: size_dist() creates size class distributions of one or more stands; contour_plot() uses point measurements of any 
variable to create an interactive contour map of the stand; stand_map() creates a map of all trees in the stand, indicating their size.
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row in the mapping data frame, but will populate n rows in 
the tree measurement data frame, where n is the number of 
censuses in which the tree was measured. If working with 
stem-mapped forest stands where mapping and tree measure-
ment data are kept in a single file, the user will need to sepa-
rate the two data types prior to using forestexplorR, which 
can be achieved using functions of the dplyr package. For 
example, tree x and y coordinates could be extracted from 
a combined dataset with: combined_dataset_name % > % 
group_by(tree_id) % > % summarize (x_coord = x_coord[1], 
y_coord = y_coord[1]). For other stem-mapped forest stands, 
there may be a separate file of tree measurement data for each 
census, but these can easily be combined into a single tree 
measurement file using dplyr::bind_rows.

The functions mapping_check and tree_check are provided 
to verify that mapping and tree measurement data frames are 
in a format compatible with forestexplorR functions. Both 
functions return a list of two elements: the first element is a 
data frame of the ID codes of all the trees that have a potential 
data issue (e.g. trees with no mapping data, a single ID code 
referring to multiple trees, etc.) and a short description of 
the issue (see function documentation for list of issues); the 
second element is a data frame summarizing the number 
and percentage of tree ID codes that have at least one issue, 
and that have each of the specific issues. The purpose of the 
second element is to help the user evaluate the amount of data 
that would be lost if all trees with certain issues were simply 
excluded from analysis. These functions do not remove any 
trees with data issues because it is likely that many of the data 
issues can be resolved through reference to field notes, etc. It 
is the user’s responsibility to remove any trees with issues that 
cannot be resolved before continuing analysis.

In the interest of flexibility, the mapping and tree 
measurement data frames can each contain as many 
additional columns as desired (and these columns are retained 
in the output where possible; see function documentation for 
details), but the mapping_check and tree_check functions will 
stop and return warning messages if any required columns are 
missing. The mapping data frame must contain the columns: 
tree_id (code uniquely identifying each tree), stand_id (name 
of stand in which the tree is located), species (species identity 
of the tree as a string of any length containing no spaces), x_
coord and y_coord (x and y coordinates of the tree, in meters 
from stand origin). We note here that because forestexplorR 
is specifically designed for rectangular stem-mapped forest 
stand data, the x and y coordinates represent distances from 
the stand corner used as the origin (as opposed to the stand 
center used as the origin in circular stem-mapped stands). 
The tree measurement data frame must contain the columns: 
tree_id, stand_id, species, year (year in which measurement 
was taken) and dbh (diameter at breast height in cm; hereafter 
DBH). In order to use the mortality_model function, the 
tree measurement data frame will also need to include 
a mort column containing mortality status of each tree at 
each census; tree_check will check this column for missing 
data but will not return an error if the column is missing. All 
forestexplorR functions, except those that create plots of a 

single stand (i.e. contour_plot and stand_map), accept datasets 
containing information from multiple stands as input.

Describing neighborhoods

The first step in calculating neighborhood metrics is 
to identify the set of trees in each neighborhood. The 
neighborhoods function achieves this using a mapping and a 
tree measurement data frame and a specified neighborhood 
radius (for assistance in selecting an appropriate 
neighborhood radius, see the select_nbhd_size function 
described in 'modeling tree growth' section). It returns a new 
data frame where each neighborhood ID appears on multiple 
rows, with each row containing information on one of the 
trees in that neighborhood (i.e. growing within ‘radius’ of 
the neighborhood center). By default, a neighborhood is 
constructed for each individual tree in the mapping data 
frame (and neighborhood IDs are equal to focal tree IDs), 
but the function can instead construct neighborhoods 
centered on specific locations within the stand if a data frame 
of these locations is provided under the argument ‘coords’. 
This is useful if some other information has been sampled at 
a specific location in the stand (e.g. seed trap, soil microbial 
community), and the goal is to model it as a function of the 
local tree community. In addition, if the provided mapping 
dataset contains data from multiple forest stands, the user 
can specify for which stands the neighborhoods should be 
calculated. The data frame output by neighborhoods serves as 
the input for a number of other functions in forestexplorR, 
including neighborhood_summary and site_by_species.

The neighborhood_summary function is applied to the data 
frame output by neighborhoods, and calculates neighborhood 
metrics for each tree or user-provided set of coordinates. 
Specifically, it calculates species richness, Shannon–Wiener 
diversity, Simpson’s diversity, Pielou’s J as a measure of even-
ness, overall tree density and the density of each tree species 
in each neighborhood. The purpose of the density metrics 
is to quantify the amount of competition in the neighbor-
hood, considering both the sizes and distances of neighbor-
ing trees. Many different competition metrics have been 
developed in the literature but most of these require the 
optimization of several parameters such as exponents that 
determine the relative importance of neighbor size versus 
neighbor distance (Canham et al. 2004, Uriarte et al. 2004). 
However, the goal of forestexplorR is to allow rapid analy-
sis of stem-mapped forest stand data by calculating metrics 
that can act as covariates in a highly efficient linear-model-
ing framework (see growth_model and mortality_model), and 
therefore we do not explore any neighborhood metrics that 
require parameter optimization. This means that our neigh-
borhood metrics cannot represent the empirically-supported 
non-linear relationships underlying tree performance (e.g. 
the relationship between neighbor distance and the competi-
tive effect on focal growth), but despite this simplification, 
these linear models have been shown to predict tree growth 
rates with accuracy (Graham  et  al. 2021). This simplifica-
tion does not prevent all exploration of density metrics and 
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neighborhood_summary provides several options for how 
densities can be computed. The default option is to measure 
density in units of m2 basal area per hectare, but the result-
ing species-specific densities can also be optionally converted 
to the proportions of total basal area (summed across trees 
of all species) that they constitute. Alternatively, densities 
can be calculated with the angular method (Rouvinen and 
Kuuluvainen 1997)(Eq. 1):

species A density
dbh

distance
=

æ

è
ç

ö

ø
÷

=
å
i

N
i

i1

arctan 	  (1)

where N is the number of neighbors of species A in the neigh-
borhood, dbhi is the diameter at breast height of neighbor i 
and distancei is the distance of neighbor i from the neighbor-
hood center. The angular method may be most appropriate 
when the differential effects of neighbor tree species depend 
on how close those neighbor trees are to the focal (e.g. if dif-
ferences are driven by competition for soil moisture or nutri-
ents; Contreras et al. 2011). The user also has the option to 
exclude neighbor trees smaller than the focal tree from neigh-
borhood density calculations, which may be appropriate if 
competition from smaller neighbors is expected to be negli-
gible (Canham et al. 2004).

When quantifying neighborhoods we must also decide 
how to deal with trees whose neighborhoods overlap the 
stand boundary. As we do not have data on the entire 
neighborhoods of these trees, we must either exclude them 
from our analyses as focal trees, or estimate the character-
istics of the missing portions of their neighborhoods. The 
neighborhood_summary function supports both of these 
approaches with the optional argument ‘edge_correction’. 
When this option is set to true, neighborhood metrics are 
estimated for these partial neighborhoods by calculating 
the proportion of the neighborhood contained in the plot, 
and then multiplying the density values by the inverse of 
this proportion.

forestexplorR also contains some additional functions 
that can help the user acquire further neighborhood metrics. 
The site_by_species function takes the output of neighbor-
hoods as input and creates a site-by-species matrix (presence/
absence or abundance-weighted) where each site is a neigh-
borhood. The resulting matrix could be used in conjunc-
tion with other datasets to calculate either phylogenetic or 
functional diversity (see R packages picante (Kembel et al. 
2010) and FD (Laliberté and Legendre 2010, Laliberté et al. 
2014)). The tree_utm function takes a mapping data frame 
and information on the orientation and location of stands 
(latitude and longitude of stand origins; see function doc-
umentation for details) and outputs universal transverse 
mercator (UTM) coordinates for each individual tree in 
the mapping data frame. The user could then connect their 
stem-mapped forest stand dataset with remote-sensing data 
and extract, for each individual tree, detailed topographical, 
crown-structure or normalized difference vegetation index 
(NDVI) data.

Calculating growth rates

The repeated censuses of stem-mapped forest stands enable 
the calculation of growth rate for each individual tree. for-
estexplorR provides two functions that implement these 
calculations using a tree measurement data frame. The 
growth_summary function extracts the earliest and most 
recent measurements of each tree and calculates an average 
annual growth rate across this period (both DBH change and 
basal area increment). It is not uncommon to obtain illogical 
negative annual growth rates due to measurement error of 
tree DBH in stem-mapped forest stands, and so the function 
returns a warning stating the number of trees that exhibited a 
negative growth rate. The output also contains, for each tree 
that had a non-negative annual growth rate, size-corrected 
average annual diameter and basal area increment growth 
rates. The formula for the size-corrected annual diameter 
growth rate is (Eq. 2):

size corrected annual diameter growth

rate
average annual DBH chan

=
gge

first DBH measurement
	  (2)

These transformed growth rate variables partially account for 
the non-linear relationship between tree size and growth rate 
and tend to more closely follow a normal distribution than 
raw growth rates, thereby enabling linear modeling of tree 
growth (Graham et al. 2021). The detailed_growth function 
works similarly to growth_summary but instead returns 
separate growth rates for each tree between each pair of 
consecutive stand censuses. The greater temporal resolution 
in the growth rates calculated by the detailed_growth function 
enables exploration of how tree growth rates have changed 
over time, perhaps in relation to climatic events.

Visualizing mapped stands

forestexplorR contains several functions for visualizing stem-
mapped forest stands, which facilitate exploratory data analy-
sis. The size_dist function uses a tree measurement data frame 
to graph the size-class distribution of one or more mapped 
stands. These distributions are frequently used in forest ecol-
ogy and management to understand forest stand structure 
dynamics (i.e. stand succession). The ability to construct 
these size-class distributions for multiple stands simultane-
ously is valuable because size_dist outputs a multi-panel plot 
that facilitates comparison.

The contour_plot function creates an interactive contour 
map of the stand based on the value of any quantitative vari-
able measured at multiple locations in the stand. For example, 
the neighborhoods and neighborhood_summary functions can be 
combined to calculate tree density at many locations within a 
given mapped stand, and then contour_plot can be used to gen-
erate a map of spatial variation in tree density across the stand. 
The resulting map could be used to identify suitable sampling 
locations for a study investigating effects of canopy density. If 
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the plotting variable for contour_plot is a neighborhood metric 
(e.g. tree density), it is important to recognize that trees whose 
neighborhoods overlap the stand boundary have not had their 
entire neighborhood sampled. In these cases, the user should 
implement the edge correction feature of neighborhood_sum-
mary in order to more accurately estimate neighborhood met-
rics for these edge trees. The contour_plot function could also 
be used to generate contour plots of edaphic variables mea-
sured on a grid in the stand, which could be used to estimate 
edaphic conditions for each tree (or any sampling location in 
the stand) at high spatial resolution.

To facilitate repeat censuses of stem-mapped forest stands 
or the identification of suitable sample sites, forestexplorR 
can also produce stem maps of stem-mapped forest stands. 
The stand_map function takes as input a mapping and a 
tree census data frame, each representing a single mapped 
stand, and returns a stem map of either the entire stand or 
a specified subsection of it, with individual trees represented 
by points with size proportional to their most recent DBH 
measurement.

Modeling tree growth and mortality

A major research opportunity afforded by stem-mapped 
forest stands is the ability to model tree growth or mortality 
as a function of the spatial structure of the surrounding 
neighborhood of trees. Tree growth and mortality models 
have provided insights on the processes underlying variation 
in tree dynamics, but common modeling techniques rely 
on the computationally-intensive process of maximum 
likelihood estimation to estimate their coefficients. This 
means that such models take a long time to fit and their use 
is therefore restricted to research teams with access to high-
performance computing resources. To encourage broader 
use of neighborhood models, the forestexplorR functions 
growth_model and mortality_model implement a new 
regularized regression model of tree growth and mortality, 
respectively, that can be run in minutes on a personal laptop 
(Graham et al. 2021); less than 1% of the time required to fit 
other neighborhood models (Uriarte et al. 2004).

In these models, the independent variable of either tree 
growth rate (calculated using growth_summary) or tree 
mortality status (the mort column in the tree measurement 
data frame) is modeled as a weighted sum of the following 
variables: the size, distance and species identities of 
neighboring trees; species diversity, overall tree density 
and species-specific tree densities in the neighborhood (i.e. 
neighborhood metrics computed by neighborhood_summary); 
and any additional variables the user wishes to provide (e.g. 
abiotic data collected at the stand level). To correctly interpret 
the estimated coefficients of these models, it is necessary to 
understand the structure of the underlying design matrix, 
which differs from those used in most regression analyses. We 
are trying to model the growth or mortality of individual trees 
as a function of their neighborhood, and therefore it seems 
logical that our design matrix would contain a single row for 
each focal tree and columns that describe various aspects of 

its neighborhood. However, this structure poses a problem 
if we want to estimate coefficients for the size, distance and 
species identity of neighboring trees; most focal trees have 
multiple neighbors with differing sizes, distances and species 
identities and we therefore cannot describe neighbor size 
(or distance or species identity) using a single column. Our 
models resolve this problem by splitting the data for each 
focal tree across n rows in the design matrix, where each row 
represents an interaction between this focal tree and one of its 
n neighbors. This allows us to have a single column describing 
neighbor size and distance. For neighbor species identity, our 
design matrix contains a separate column for each potential 
neighbor species, and the species identity of the neighbor 
for a given row is indicated by a 1 in the relevant neighbor 
species column and 0 in every other neighbor species column. 
This means that a separate coefficient is estimated for each 
neighbor species and those coefficients represent the average 
difference in the dependent variable (growth or mortality) 
between when the neighbor is of that species versus when it 
is not of that species.

The structure of the growth and mortality models results 
in two estimated coefficients that provide information on 
how neighbors of each species influence the dependent 
variable (i.e. growth or mortality). The first coefficient is that 
described in the previous paragraph, which represents the 
average impact of the neighbor being of that species versus 
a different species. The second informative coefficient is that 
of the density of the neighbor species in the neighborhood 
(i.e. the species-specific density output by neighborhood_
summary), which indicates the impact of increasing local 
density of that neighbor species on the dependent variable. 
In our experience, the species identity and density coefficients 
referring to the same neighbor species have always had the 
same direction. As a result, and for the purposes of clean 
visualization, in the case study below we summarize the effect 
of each neighbor species as the average of its two coefficients. 
However, we urge users to carefully consider the implications 
of this in their own data before following this protocol.

Previous work has shown this model to be capable of cap-
turing the inherently non-linear mechanisms underlying tree 
growth through a transformation of the dependent growth 
variable that accounts for the major non-linear relationship; 
that between focal tree size and growth rate (Graham et al. 
2021). This is why we encourage users to use the size-corrected 
growth rates output by growth_summary as the dependent 
variable in growth_model. forestexplorR does not currently 
offer a transformation of mortality status data to normalize 
model residuals of the logistic regression mortality model 
that mortality_model implements. However, we encourage 
users to experiment with transformations of mortality status 
data if they believe that will improve their model fits.

The efficiency of the growth and mortality models leads 
to a number of potential uses. First, the resulting model can 
be used to test hypotheses regarding the processes underlying 
variation in tree growth (Graham et al. 2021) or mortality. 
Second, the model can be run multiple times using differ-
ent neighborhood sizes and plotting mean square error of the 
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resulting models to select a suitable neighborhood size for the 
model that is to be interpreted; a process that takes consider-
able time when using traditional modeling methods. Third, 
the regularization component of the model means that it is 
robust to correlated independent variables. This is because 
regularization shrinks the coefficients of variables that provide 
only marginal explanatory power down to zero and thereby 
automatically removes all but the most influential of a series 
of correlated variables during model fitting (Tibshirani 1996). 
This means that these models could be used to select the most 
important of several correlated climate variables to include in 
a more complex non-linear tree growth model (Uriarte et al. 
2004) and thereby streamline the model building process 
(see Graham et al. 2021 for details). We also note here that 
one of the most fruitful use cases of forestexplorR may be to 
combine data from multiple stem-mapped stands in a single 
growth or mortality model. However, it is important to note 
that the growth_model and mortality_model functions do not 
currently account for spatial autocorrelation between the 
combined stands. For this reason, we recommend that users 
attempt to control for spatial autocorrelation by including 
explanatory variables in their model that capture the major 
axes of variation among stands, such as climatic conditions, 
latitude and elevation. We point users interested in quantify-
ing spatial autocorrelation to other R packages that include 
this functionality, such as spdep and ncf.

To use the growth_model or mortality_model functions, a 
single data matrix containing neighborhood data and either 
growth or mortality data needs to be constructed. To create 
this matrix, the user must independently join the outputs 
of the neighborhoodsand neighborhood_summary functions, 
and then add growth data (output by growth_summary) or 
mortality data (from the tree measurement data frame). There 
is also an option to handle rare neighbor tree species (defined 
as species appearing as neighbors less than x times, where 
x is a user-provided argument) by grouping them together 
under the species identity of ‘RARE’. Finally, if the user 
splits their data into a training and test set, these functions 
can conduct test set validation of the final model, which is 
important if the model is intended for use as a predictive tool 
(Tredennick et al. 2021). The output contains information on 
model fit and estimated coefficients, and contains the model 
object that can be used to make predictions when passed 
to stats::predict. Further details on the use of growth_model 
and mortality_model, as well as detailed examples of how to 
build the required design matrix, are provided in the case 
study below and in the ‘modeling tree growth and mortality’ 
vignette of forestexplorR.

An important step in building a neighborhood model 
is the selection of an appropriate neighborhood size. The 
neighborhood size that corresponds to neighborhood metrics 
of maximal explanatory power for tree growth or mortality 
will vary among ecosystems, forest successional stages and 
study species (Lutz 2015), and it is therefore strongly advised 
that a sensitivity analysis be conducted for neighborhood size. 
The forestexplorR function select_nbhd_size helps the user 
make an informed decision on the appropriate neighborhood 

size by fitting either growth_model or mortality_model using 
different neighborhood sizes and comparing model fit. The 
case study presented in the next section provides more details 
on how to use this function and select a neighborhood size.

Case study

To demonstrate the utility of forestexplorR, we investigate 
how tree growth is influenced by the species identity of 
neighboring trees at Mt Rainier National Park, WA, USA. 
This analysis uses the built-in datasets of forestexplorR, 
which originate from 15 rectangular 1 ha stem-mapped 
forest stands at Mt Rainier that are managed by the Pacific 
Northwest Permanent Sample Plot Network (Franklin et al. 
2021). A similar analysis has already been conducted on 
these data with forestexplorR (Graham  et  al. 2021), but 
the analysis presented here differs by: focusing on a subset 
of the focal species (Abies amabilis, Pseudotsuga menziesii, 
Tsuga heterophylla), using the entire dataset for fitting each 
model (i.e. no data put aside for validation), and allowing 
neighborhood size to differ between focal species.

It is generally expected that tree growth rates are influenced 
by the species identity of neighboring trees, but the nature of 
these interactions can range from facilitative to competitive. 
Of particular interest to ecologists studying coexistence is how 
tree growth is influenced by conspecific neighbors, because 
reduced growth in the presence of conspecifics indicates neg-
ative density-dependent growth – an important mechanism 
for the maintenance of biodiversity (Canham  et  al. 2006, 
Fortunel et al. 2018). The biggest challenges in such analyses 
are: 1) calculating neighborhood metrics; 2) determining the 
appropriate neighborhood size; and 3) optimizing the typi-
cally complex models of tree growth. forestexplorR provides 
simple functions that address each of these challenges. The 
following paragraphs describe how this analysis was con-
ducted with forestexplorR (for underlying code see: <https://
github.com/sgraham9319/forestexplorR_case_study>).

The first step is to select the appropriate neighborhood 
size, which can be achieved using the select_nbhd_size func-
tion. This function applies growth_model multiple times, with 
each run using neighborhood metrics calculated according to 
a different neighborhood size, and calculates the mean square 
error of each model. For this case study, we tried neighbor-
hood sizes of 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 m in 
radius. To ensure that models using different neighborhood 
sizes maintain equal sample size, select_nbhd_size excludes 
all trees whose neighborhood overlaps the stand boundary 
according to the largest neighborhood size to be tested (i.e. 
in this case, all trees within 20 m of a stand boundary were 
excluded). We also specified that species-specific tree densi-
ties in the neighborhoods should be calculated according 
to the proportional method of neighborhood_summary and 
included stand-level abiotic variables (i.e. the built-in dataset 
stand_abiotic) as covariates in the model. The stand-level abi-
otic data are not required for growth or mortality modeling, 
but they are a useful example of how easy it is to incorporate 
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potential explanatory variables beyond those calculated in 
forestexplorR.

This plots of mean square error versus neighborhood size out-
put by select_nbhd_size are shown in Fig. 2A–C. It is expected 
that a larger neighborhood size will generally lead to a better 
fitting model because it contains more information on each 
neighborhood. There is a tradeoff, however, in that the larger 
the neighborhood size, the more focal trees need to be excluded 
from the analysis as a result of their neighborhood overlap-
ping the stand boundary (unless their neighborhood metrics 
are corrected e.g. by the ‘edge_handling’ argument in select_
nbhd_size). It is desirable to model growth of as many focal 
trees as we can without dramatically increasing mean square 
error because this gives us greater confidence that our findings 
will be applicable beyond the sampled stands. Therefore, we 
recommend choosing the neighborhood size that, based on 
visual observation, lies at the ‘elbow’ of these plots, which rep-
resents where further increases in neighborhood size lead to 
only small improvements in model fit. Following this protocol, 

we selected neighborhood sizes of: A. amabilis = 12 m, P. men-
ziesii = 10 m, T. heterophylla = 12 m.

Next, we fit the final model for each species using the 
selected neighborhood size and including all trees whose 
neighborhood of this size does not overlap a stand boundary. 
Each model outputs two coefficients that are indicative of the 
effect of a particular neighbor species on the focal species; 
one for the neighbor species identity variable and another for 
the neighborhood metric of that neighbor species’ density. To 
obtain a single value for the effect of each neighbor species 
on the growth of each focal species, we averaged these two 
related coefficients – these are the values shown in Fig. 2D–F. 
This coefficient averaging procedure is appropriate because all 
predictor variables in this model are rescaled in order to be 
comparable and, in this case, the two coefficients correspond-
ing to the same neighbor species never differed in direction. 
However, users should confirm this is also the case in their 
data before using this coefficient averaging procedure.

Figure 2. Using forestexplorR to investigate how the growth rates of common tree species in Mt Rainier National Park are influenced by the 
species identity of neighboring trees. (A–C) show the relationship between model fit (mean square error) and size of tree neighborhoods, 
with dashed vertical lines indicating the neighborhood size selected for further analysis. (D–F) show the growth response of each focal spe-
cies to neighbors of particular species, with conspecific neighbors shaded in gray and the points for neighbor species whose effect was 
dropped during model fitting colored in red. Plots are aligned according to the focal species they represent: (A and D) = A. amabilis, (B and 
E) = P. menziesii, (C and F) = T. heterophylla. Codes for competitor species are defined as follows: ABAM = A. amablis, ABLA = Abies lasio-
carpa, CANO = Callitropsis nootkatensis, PICO = Pinus contorta, PIMO = Pinus monitcola, PSME = P. menziesii, RARE = all trees of species 
represented by < 100 interactions, TABR = Taxus brevifolia, THPL = Thuja plicata, TSHE = T. heterophylla, TSME = Tsuga mertensiana.
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We find that A. amabilis grows more quickly in the presence 
of conspecifics, indicating positive density-dependent growth, 
but that A. amabilis responds even more positively to neighbor-
ing T. heterophylla. By contrast, P. menziesii and T. heterophylla 
do not exhibit either positive or negative density-dependent 
growth, but instead grow particularly quickly in the presence 
of Pinus contorta and A. amabilis neighbors respectively. These 
findings are mostly, but not entirely consistent with those 
reported previously (Graham  et  al. 2021), but the present 
models are likely more accurate because they use a larger data-
set and a neighborhood size tailored to the focal species.

Discussion

forestexplorR equips forest ecology researchers of all skillsets 
with the tools they need to explore and analyze rectangu-
lar stem-mapped forest stand datasets, and thereby has the 
potential to spur exciting new ways of utilizing this rich data 
source. Widespread use of stem-mapped forest stand datasets 
is currently hampered by the high programming and com-
putational demands involved, particularly in the quantita-
tive description of neighborhoods, selecting an appropriate 
neighborhood size and fitting neighborhood models of tree 
performance. forestexplorR removes these barriers by provid-
ing flexible and user-friendly functions for describing neigh-
borhoods, selecting neighborhood size and implementing a 
rapid-fitting neighborhood model of tree growth or mortal-
ity (Graham et al. 2021) that can be used to investigate spe-
cies interactions. Moreover, by requiring only the data types 
common to all stem-mapped forest stands (species identity, 
location, DBH measurements), forestexplorR is compatible 
with all rectangular stem-mapped forest stand datasets. It will 
therefore now be easier to combine data from multiple stem-
mapped forest stands in a single analysis, which could greatly 
expand the utility of networks of plots distributed over envi-
ronmental gradients such as those of the Pacific Northwest 
Permanent Sample Plot networks (Franklin et al. 2021), the 
NEON Distributed and Tower Plots (NEON 2012), the 
RAINFOR and AfriTRON networks curated by ForestPlots.
net (Lopez-Gonzalez et al. 2009, 2011), and likely many oth-
ers. This also means that stem-mapped forest stand datasets are 
now accessible to all researchers, regardless of programming 
experience and access to computing resources, which should 
greatly expand the diversity of projects using these datasets.

forestexplorR could be used to replicate and strengthen 
tests of previously posed research questions and encourage 
the development of new research directions relating to stem-
mapped forest stand data. The package allows a variety of 
spatially-explicit neighborhood metrics to be calculated with 
ease, and their variation across stands to be explored through 
visualizations. Consequently, it allows any researchers collect-
ing data in stem-mapped forest stands to include neighbor-
hood metrics as covariates in their models. This could lead 
to investigations of tree growth and mortality responses to 
climate change (Buechling et al. 2017) and competitive inter-
actions (Fortunel  et  al. 2016) being replicated in a greater 

diversity of systems. Further, the inclusion of spatially-explicit 
neighborhood metrics could permit deeper investigation of 
spatial variation in soil microbial communities (Otsing et al. 
2021), and improve the accuracy of models predicting car-
bon storage dynamics (Martínez Cano et al. 2020, Ma et al. 
2021). We also hope, that by encouraging a greater diversity 
of researchers to use stem-mapped forest stand data, forestex-
plorR will pave the way for many novel and creative research 
questions to be asked with this data type.

This initial version of forestexplorR is designed to facilitate 
what we expect to be the most common uses of stem-mapped 
forest stand data, but we plan to expand its functionality 
over time with input from the research community. Some 
potential expansions include: 1) the ability to extract average 
annual growth rates over a user-defined time period, and 2) 
functions that connect to other packages or publicly available 
datasets to pull in stand-level climatic data (e.g. WorldClim 
data obtained through raster::getData) or tree-level topo-
graphical data (e.g. lidar). However, as the code underlying 
forestexplorR is openly available on GitHub, we also hope 
that the growing community of researchers working with 
stem-mapped forest stand data will contribute improvements 
and additions that we have not considered.

The forestexplorR package can be downloaded at <https://
github.com/sgraham9319/forestexplorR> and a website 
containing detailed vignettes for the common uses of the 
package is available at <https://sgraham9319.github.io/for-
estexplorR/index.html>. Users of the package are encour-
aged to report difficulties and suggest improvements through 
pull requests and by posting issues on GitHub.

To cite forestexplorR or acknowledge its use, cite this 
Software note as follows, substituting the version of the 
application that you used for ‘ver. 1.0.0’:
Graham, S. I. et al. 2022. forestexplorR: an R package for the explo-

ration and analysis of stem-mapped forest stand data. – Ecog-
raphy 2022: 1–10 (ver. 1.0.0).
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