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ABSTRACT

Providing forest biomass estimates with desired accuracy and precision for small areas is a key challenge to
incorporating forest carbon offsets into commodity trading programs. Enrolled forest carbon projects and veri-
fication entities typically rely on probabilistically sampled field data and design-based (DB) estimators to esti-
mate carbon storage and characterize uncertainty. However, this methodology requires a large amount of field
data to achieve sufficient precision and collection of these data can be prohibitively expensive. This has spurred
interest in developing regional-scale maps of forest biomass that incorporate remote sensing data as an alter-
native to collecting expensive plot data. These maps are often generated using machine learning (ML) algorithms
that combine remote sensing products and field measurements. While these maps can produce estimates across
large geographic regions at fine spatial resolutions, the estimates are prone to bias and do not have associated
uncertainty estimates. Here, we assess one such map developed by the National Aeronautics and Space Ad-
ministration’s Carbon Monitoring System. We consider model-assisted (MA) and geostatistical model-based
(GMB) estimators to address map bias and uncertainty quantification. The MA and GMB estimators use a sam-
ple of field observations as the response, and the ML-produced map as an auxiliary variable to achieve statis-
tically defensible predictions. We compare MA and GMB estimator performance to DB and direct (DR)
estimators. This assessment considers both counties and a small areal extent experimental forest, all within
Oregon USA. Results suggest the MA and GMB estimators perform similar to the DB estimator at the state level
and in counties containing many field plots. But in counties with moderate to small field sample sizes, the GMB
and MA estimators are more precise than the DB estimator. As within-county sample sizes get smaller, the GMB
estimator tends to outperform MA. Results also show the DR estimator’s state-level estimates are substantially
larger than the DB, MA and GMB estimates, indicating that that the DR estimator may be biased. When assessing
the GMB estimator for the experimental forest, we find the GMB estimator has sufficient precision for stand-level
carbon accounting even when no field observations are available within the stand. Plot-level GMB uncertainty
interval coverage probabilities were estimated and showed adequate coverage. This suggests that the GMB
estimator is producing statistically rigorous uncertainty estimates.

1. Introduction

organizations have established carbon markets that are designed, in
part, to incentivize forest landowners to manage for carbon storage. For

As global average temperatures continue to rise, it becomes
increasingly important to implement strategies to mitigate climate
change (IPCC, 2021). Forest carbon sequestration offers the potential to
offset a substantial portion of anthropogenic CO5 emissions (Houghton
et al, 2009). Many state-level government entities and other
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instance, the California Air Resources Board has set up a Compliance
Offset Program that issues tradable credits to forest landowners based on
the amount of carbon their enrolled forests store over time. The land-
owners can then sell their credits in California’s Cap-and-Trade Pro-
gram. Voluntary carbon trading markets that incorporate forest carbon
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offset credits into their trading markets such as the Verra Verified Car-
bon Standard and the American Carbon Registry are also emerging
(Streck, 2021). Under these types of carbon trading systems landowners
manage forests to sequester carbon and, in turn, receive payments for
the carbon their forests store over time.

It is essential to accurately monitor carbon sequestration and storage
on forests enrolled in trading programs to correctly issue credits. Many
carbon markets require forest carbon accrual to be estimated using strict
design-based (DB) estimation protocols that often depend on a proba-
bility sample of field plots. Adhering to these strict DB estimation pro-
tocols can instill confidence in the carbon trading system as these
estimators are often design-unbiased. However, for small landowners,
conducting field inventories large enough to meet the carbon markets’
precision demands can be cost prohibitive (Kerchner and Keeton, 2015).
The earnings from selling credits in carbon trading markets often do not
cover the cost of repeated inventories and other administrative costs
associated with enrolling.

Forest carbon estimates can be directly and accurately derived from
forest biomass estimates, and thus we will discuss forest carbon moni-
toring concurrently with forest biomass estimation. The incorporation of
remote sensing data into forest carbon estimation procedures and
monitoring efforts can decrease costs by, e.g., reducing the number of
plots needed to measure or increasing the amount of time between
repeat field measurements (Lister et al., 2020). Light detection and
ranging (LiDAR) provides measurements of forest height and canopy
density, which tend to be correlated with forest biomass (Hudak et al.,
2012; Babcock et al., 2015; White et al., 2021). Vegetation indexes
derived from optical data such as the normalized difference vegetation
index are related to forest area and volume (Hall et al., 2006; Franklin
et al., 1986). These relationships can be used to generate maps of forest
biomass. Government agencies such as the National Aeronautics and
Space Administration (NASA) and the United States Department of
Agriculture (USDA) Forest Service make freely available remote sensing-
based maps of forest biomass that landowners and auditing entities can
use to monitor carbon (Silva et al., 2021; Huang et al., 2019; Blackard
et al., 2008).

Machine learning (ML) algorithms, such as random forest, are often
employed to predict and map forest biomass with remote sensing data
(Mascaro et al., 2014; Chen et al., 2018; Urbazaev et al., 2018). Spe-
cifically, the random forest algorithm is able to ingest massive remote
sensing datasets and find nuanced non-linear relationships between
training observations of forest biomass and remote sensing covariates
(Breiman, 2001; Hastie et al., 2009). Random forest requires no distri-
butional assumptions and its internal sub-sampling procedures help
safeguard against over-fitting when a large number of covariates are
used in the modeling process (Segal, 2004; Olden et al., 2008).

Large training datasets are needed to effectively calibrate ML algo-
rithms and produce accurate maps of forest biomass (Liu et al., 2018;
Rogan et al., 2008). To overcome this hurdle, many research initiatives
employ a forest inventory and remote sensing data crowd-sourcing
strategy (Zhang and Liang, 2020; Duncanson et al., 2019; Hudak
et al., 2020; Duncanson et al., 2022). This involves collecting a sub-
stantial number of project-level remote sensing (e.g., airborne LiDAR)
and field inventory datasets to serve as training observations. Crowd-
sourcing project-level datasets can be a great strategy to assemble a
large number of training observations, but there are potential draw-
backs. It is possible that specific locations or environmental conditions
can be over- or under-represented in the crowd-sourced dataset. Also,
different protocols for field plot setup and tree measurement can be used
from project to project. These issues can lead to poor random forest
model calibration and subsequent out-of-sample prediction (Millard and
Richardson, 2015).

Model-assisted (MA) estimators can provide a framework to produce
statistically defensible estimates using information from ML produced
maps. MA estimators incorporate supplemental information into a DB
estimation framework through an assisting model. In the current setting,
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the assisting model regresses forest biomass field measurements onto an
ML map product. Recent literature in forest inventory has included the
broad use of MA estimators with probabilistically sampled field plot data
and remote sensing variables to estimate various forest inventory pa-
rameters (Saarela et al.,, 2015; Gregoire et al., 2011; Nasset, 2011;
Strunk et al., 2014; McConville et al., 2020; Ekstrom and Nilsson, 2021;
Frescino et al., 2022; Wojcik et al., 2022). Oftentimes, in areas of interest
that have few field plots, MA estimators still cannot provide sufficient
precision for meaningful inference about quantities of interest such as
biomass (see, e.g. Frescino et al. (2022) Fig. 8).

To potentially increase precision further, we consider the model-
based inferential paradigm where prediction at unobserved field sam-
pling locations is informed, in part, by the ML map. Compared with the
DB inferential paradigm, the validity of inference within the model-
based setting relies on the posited model’s distributional assumptions,
rather than the sampling design.

Geostatistical model-based (GMB) estimators are a class of model-
based estimators that explicitly accommodate extraneous spatial auto-
correlation and help to adhere to the modeling assumptions needed to
conduct valid model-based statistical inference (Babcock et al., 2018;
Finley et al., 2013). GMB estimators do not share the same asymptotic
guarantees concerning bias as estimators in a design-based paradigm
such as the DB and MA estimators described above. However, previous
studies have shown that fitting a GMB estimator with a probability
sample of observations produces estimates similar to those produced
from a DB estimator (Ver Hoef, 2002; Finley et al., 2011; Temesgen and
Ver Hoef, 2015). An advantage of GMB estimators is that, unlike DB and
MA estimators, no sample observations within the area of interest (AOI)
are needed to generate estimates with associated uncertainty for that
AOI. This advantage allows for statistically rigorous estimates and
associated uncertainties down to the spatial resolution of the ML map (e.
g., 30 m pixels).

Here, we explore the use of MA and GMB estimators that leverage
ML-produced maps of aboveground biomass (AGB) and a probability
sample of field plot data to estimate AGB density for a variety of AOIs in
the state of Oregon. We test the candidate estimators using AGB maps
made publicly available through NASA’s Carbon Monitoring System
(CMS) Program for the state of Oregon (Hudak et al., 2020). We use
USDA Forest Service Forest Inventory and Analysis (FIA) field plot AGB
values as training data in our candidate estimators. We compare the MA
and GMB estimators to a direct (DR) estimator of AGB using the random
forest AGB predictions alone and a traditional DB estimator that only
incorporates FIA field plot data. We further examine the influence of
field plot sample size and AOI extent on estimator uncertainty for the
candidate estimators. We also examine plot-level GMB uncertainty in-
terval coverage by calculating fitted-value and holdout-prediction
coverage probabilities.

2. Methods
2.1. Study area

The study area includes all forested portions of Oregon. Forested
areas were determined using the ALOS PALSAR forest/non-forest mask
for the year 2009 (Shimada et al., 2014). Oregon sits in a longitudinal
precipitation gradient, with annual precipitation being highest in the
western portion of the state. Oregon contains three major mountain
ranges; the Oregon Coast Range, Cascade Range and the Klamath Range.
Oregon’s forests are primarily evergreen, with 86% of the states forests
being dominated by coniferous cover types (Bansal et al., 2017). Our
AOIs are the entire study region (i.e., the state of Oregon), each of the 36
counties in Oregon, and the HJ Andrews Experimental Forest (HJA).

The HJA is a 6400 ha forest located in Lane County. It is jointly
managed by the USDA Forest Service and Oregon State University. The
elevation ranges from 410 to 1630 m. Douglas fir-western hemlock
forests occupy low elevation sites and Pacific silver fir forests occupy
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high elevation sites (https://andrewsforest.oregonstate.
edu/).

2.2. Field data

We use the USDA FIA program’s plot data for this analysis. Allo-
metric equations found in the Forest Vegetation Simulator’s (FVS) Fire
and Fuels Extension module were used to estimate AGB for live and dead
trees within plots with a diameter at breast height measurement > 12.7
cm (5 in) (Reinhardt and Crookston, 2003). Tree-level estimates of AGB
were summed to the plot level and divided by plot area to generate
density estimates. The FIA dataset is a spatially balanced systematic
sample where all plots have an equal probability of inclusion. FIA plots
are sampled annually on a rotating panel system where individual plots
are remeasured approximately every 10 years in western states (Bech-
told and Patterson, 2005). There were ~940 forested FIA plots measured
each year in Oregon from 2001 to 2016. The number of forested FIA
plots measured annually in Oregon’s counties ranged from 0 to ~95
depending on county size and proportion of forest area within the
county.

2.3. Remote sensing-based aboveground biomass maps

Remote sensing-based AGB map products for the years 2001-2016
for the state of Oregon were produced as part of a stakeholder driven
biomass mapping project for the western USA and were funded through
NASA CMS (Hudak et al., 2020). We will refer to these maps as CMS-
AGB maps. The CMS-AGB maps were created using the following
multistep process. A random forest model was fit using stakeholder
provided LiDAR and field plot datasets (Fekety et al., 2020). AGB pre-
dictions produced from this project-level random forest model were then
stratified and randomly subsampled to produce a training dataset for a
regional random forest model. Covariates used in the regional random
forest model included Landsat time series metrics fit with the Land-
Trendr algorithm, climate metrics from Climate FVS, topographic in-
formation, and the Simard canopy height map (Kennedy et al., 2010;
Simard et al., 2011).

There is a publicly available CMS-AGB map hosted on the ORNL
Distributed Active Archive Center (Fekety and Hudak, 2019), which has
been recalibrated to better align with regional FIA field plot data using a
regression model. Details about the recalibration are given in Hudak
etal. (2020). Because we are examining estimators that use FIA plot data
as a response variable, our estimators employ the uncalibrated CMS-
AGB maps described in Hudak et al. (2020) in effort to avoid any cir-
cular analysis and double dipping pitfalls (Kriegeskorte et al., 2010; Ball
et al., 2020).

Perturbed FIA plot location data were used in all subsequent ana-
lyses. However, USDA Forest Service personnel extracted CMS-AGB map
values for FIA plots using true locations before providing the perturbed
location data for this analysis. This ensured that relationships between
the FIA observations and CMS-AGB maps were retained.

2.4. Estimators

Four candidate estimators for AGB density are considered in this
study. First, a DR estimator that uses only the CMS-AGB map values
within the AOI to produce its estimate. Next, a DB estimator that uses
only the FIA plots within the AOI to produce its estimate. Next, an MA
estimator that uses FIA plots as the response and the CMS-AGB map as
the auxiliary data, with ordinary least squares linear regression as the
assisting model to produce its estimate. Finally, a GMB estimator that
uses a spatial regression model with FIA plots as the response and the
CMS-AGB map as auxiliary data to produce its estimate. The following
subsections detail the specifics of each estimator, but first we introduce
notation.

We let s, the sample, represent the sample of FIA field plots within the
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AOI, and U, the universe, represent every pixel within the AOI at the
resolution of the CMS-AGB map. We use n as the number of FIA plots
within the AOI, N as the number of CMS-AGB pixels within the AOI, and
n* as the number of FIA plots within the study area. We use x; to denote
the CMS-AGB map prediction at the ith pixel within the AOI and y; to
denote the AGB density at the ith FIA plot within the AOIL Specific to the
GMB estimator, we use M to denote the number of Markov chain Monte
Carlo (MCMC) samples, and [ to index over the M MCMC samples. We
also define s (i.e., a bold letter s) to be a 2-dimensional coordinate vector
within the study area. Note that this s is different from s which was
previously defined as the sample. Finally, given an estimator abbreviated

EST, we denote the mean predicted value for AGB in an AOI as ?EST.

A notable aspect of the estimators we are using is that while there are
a finite number of pixels within the study region, we assume an infinite
population paradigm. This paradigm aligns with FIA’s choices, and with
such a large population, the finite population correction factor would
only make negligible changes to our results as it would be essentially
one.

2.4.1. Direct estimator

The DR estimator uses the CMS-AGB map predictions to estimate
AGB density (Mg/ha) and does not use field plot observations. The DR
estimator for the AOI is

/y\pk = %;xi- (@D)]

The DR estimator is simply the average of the CMS-AGB map grid cell
values in the AOI. Because the probability sample of field observations is
not incorporated into the DR estimator, it is not possible to derive an
estimator for the standard error within a design- or model-based infer-
ential paradigm.

2.4.2. Design-based estimator

The DB estimator uses the probability sample of field plot data to
estimate AGB density. The CMS-AGB map predictions are not used in
this estimator. The DB estimator for the AOI is

= 1
You = i @

i€s
The variance estimator for the DB estimator is

~ 1

‘A/@DB) = Z()’i - ./)}_\DB)Z' 3

n(n - 1) i€s
The upper and lower limits of the 95% confidence interval for the DB
estimator can be obtained using

Yop =@ (1-.95/2)1/ V(Spp), @
where ®!(.) is the quantile function of the standard normal
distribution.

2.4.3. Model-assisted estimator

The MA estimator used here is an extension of the most common
class of MA estimator, the generalized regression (GREG) estimator
(Cassel et al., 1976). The GREG uses a linear regression with coefficients
estimated from data within the AOI as the assisting model for estima-
tion. We extend the GREG to fit the linear regression over the entire
study region (in our case, Oregon USA), rather than the AOI In the
literature, this is often referred to as the modified-GREG (Rao and
Molina, 2015). We will refer to this estimator hence-forth as the MA
estimator.

The MA estimator uses the probability sample of field plot data and
the CMS-AGB map. An assisting model relates the field plot and CMS-
AGB map data within the estimator. The MA estimator for the AOI is
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s :%Zyﬂrizur‘*yi% 5)
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where the assisting model used to calculate y; is
Vi = Bo+ Bixi. (6)

The coefficient estimates /A}O and /31 are obtained using ordinary least
squares regression based on all observations within the study area, n*. This
allows for larger sample sizes in the assisting model, which allows for
more stable estimates of model parameters (see, e.g. Wojcik et al.
(2022), Fig. 5) and better behavior of the variance estimator. The

standard variance estimator of y,, is

VGn) = —

m;(ﬁ -3 @)

The MA estimator’s variance estimator is asymptotically unbiased,
however, the variance estimator tends to be negatively biased for
models with many auxiliary variables and small sample sizes, as the
variance estimator does not account for model estimation error
(McConville et al., 2020). The variance estimator for the MA estimator
has been found to be less negatively biased than the GREG variance
estimator in similar forest inventory applications (Wojcik et al., 2022).

The upper and lower limits of the 95% confidence interval for the MA
estimator can be obtained using
S £ (1= .95/2)/ V(5,0). ®)
2.4.4. Geostatistical model-based estimator

Like the MA estimator, the GMB estimator uses the probability
sample of field plot data and the CMS-AGB map predictions. However,
being model-based, the GMB estimator does not explicitly require field
plot observations to be probabilistically sampled as in the DB and MA
estimators (Gregoire, 1998). While a probability sample is not needed
with the GMB estimator, a field sample that is representative of the
population is needed. The use of a sufficiently sized probability sample
in the GMB estimator helps ensure that the sample is representative of
the population (see McRoberts (2010)), and thus in this study we use a
probability sample of field plot data. The GMB estimator uses a spatial
regression model to relate the field plot and CMS-AGB map data. This
model optimally weights observations from spatially proximate field
plots to inform the estimate. The GMB estimate for the AOI and its
associated variance are based on summaries of MCMC samples from
Bayesian posterior distributions (Gelfand et al., 2003; Banerjee et al.,
2014). The GMB estimator for the AOI is

S = 35, ©
Yoms = 77 Yemp
M =
with
~I 1
Yomp = ﬁzy(si)cmsv 10$)
=

where y’ (s;) is the I-th sample from the posterior predictive distribution
(PPD) of AGB density at the i-th grid cell’s spatial location (i.e., s; is the i-

th grid cell’s spatial coordinates) and ?gMB is the [-th sample of AGB
density for the AOI's PPD. We calculate lower and upper limits of a

Bayesian 95% credible interval for ;GMB using the 2.5 and 97.5 per-

centiles, respectively, of the M ?GMB PPD samples. Note that this is not
the only way to construct a 95% credible interval using PPD samples. For
instance, a highest posterior density interval could be made using
methods detailed in Turkkan and Pham-Gia (1993).

For a generic location s, the spatial regression model is defined as
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¥(8) = By + Bix(s) +w(s) +&(s), a1

where y(s) is AGB density, f is the intercept coefficient, j; is the slope
coefficient associated with CMS-AGB pixel value x(s) and w(s) is a
spatial random effect. The term &(s) follows a normal distribution with
mean zero and variance 72. Here, 72 is viewed as the measurement error
variance. Like the MA estimator’s assisting model (6), the parameters in
(11) are estimated using all n* observations within the study area.
Over the n* observed locations, the spatial random effect w = (w(s;),
w(so), ...,w(sn*))T follows a multivariate normal distribution with a
length n*, zero mean vector and n* x n* covariance matrix X with (i, j)th
element given by C(s;,sj;0). For any two generic locations s and s’ within
the study region, the function used for C(s,s’;0) must result in a sym-
metric and positive definite matrix X. Such functions are known as
positive definite functions, details of which can be found in Cressie
(1993), Chiles and Delfiner (2012), and Banerjee et al. (2014), among
others. Here we specify C(s,s;0) = azp(s,s’; ¢), where 6 = {0‘2, ¢} and
p(-; @) is a positive support correlation function with ¢ comprising one or
more parameters that control the rate of correlation decay and
smoothness of the process. The spatial process variance is given by ¢ 1.
e., Var(w(s)) = o2, This covariance function yields a stationary and
isotropic process, i.e., a process with a constant variance and a correla-
tion depending only on the Euclidean distance separating locations. The
Matern correlation function is a flexible class of correlation functions
with desirable theoretical properties (Stein, 1999) and is given by

s =5'l15) = g7 (@ls =S Tolls =5 6> 0, v >0, (12

where ||s — s'|| is the Euclidean distance between s and s, ¢ = {¢, v} with
¢ controlling the rate of correlation decay and v controlling the process
smoothness. The term I' is the Gamma function and .%, is a modified
Bessel function of the third kind with order v. While it is theoretically
ideal to estimate both ¢ and v, it is often useful from a computational
standpoint to fix v and estimate only ¢. For our current analysis, such a
concession is reasonable given there is likely little information gain in
estimating both parameters. Conveniently, when v = 0.5 the Matern
correlation reduces to the exponential correlation function, i.e., p(||s —
s'|;¢) = exp (—¢||s — §||). Therefore, only two process parameters are
estimated 8 = {02 ¢}. To ease interpretation, we define the effective
spatial range as the distance at which the correlation drops to 0.05 and
present this in subsequent results.

Following Gelman et al. (2013) and Banerjee et al. (2014), given M
MCMC samples from the joint posterior distribution of the posited
model’s parameters (i.e., ﬂf), ﬂll, 121, o for I = 1,2,...,M)), composition
sampling is used to sample one-for-one from the PPD vector y =
(¥(s1) ,¥(s2) ,...,¥(sn) )" The specific form of this PPD is given in Finley
and Banerjee (2020a, b).

3. Results and discussion
3.1. State-level estimates

Yearly state-level AGB density estimates derived using the four
candidate estimators are shown in Fig. 1. It is evident from Fig. 1 that
estimates garnered via the DR estimator are substantially different
(higher) than the other three candidates at the state level. Fig. 1 also
shows that estimates derived using the DB, MA, and GMB estimators are
similar to each other. There is substantial overlap between the 95%
uncertainty intervals for the DB, MA, and GMB estimates. Given that the
DB estimator is known to be design-unbiased when probabilistically
sampled data are used, we argue that the Oregon state-level DR esti-
mator is likely biased. The MA and GMB estimators appear to be unbi-
ased (since their estimates align well with the DB estimates) while still
incorporating the CMS-AGB map predictions. We see that yearly 95%
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State Level Estimates by Year
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Fig. 1. State level AGB density estimates using the four candidate AGB estimators with associated 95% uncertainty intervals. The direct (DR), design-based (DB),
model-assisted (MA) and geostatistical-model-based (GMB) estimators are shown in pink, green, orange and purple, respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

uncertainty intervals are narrower for the MA estimates than the DB
estimates indicating that incorporating the CMS-AGB map product via
the MA approach decreases estimation uncertainty, however we must be
cautious making strong conclusions here as the MA estimator’s variance
estimator is negatively biased. The uncertainty interval widths for the
GMB and DB estimates are similar. This suggests that even though the
GMB approach incorporates the CMS-AGB map data, it does not neces-
sarily result in increased estimation accuracy at the state level.

The DR estimates in Fig. 1 suggest that AGB density has remained
largely constant between 2001 and 2015 with an apparent increase AGB
density in 2016. However, the DB, MA and GMB estimators show a more

gradual increase in AGB density between 2001 and 2016, similar to
findings from the Oregon Department of Forestry (Christensen et al.,
2019).

3.2. County-level estimates

Yearly estimates for Klamath, Clackamas and Benton counties are
presented in Figs. 2, 3 and 4, respectively. We elected to showcase these
three counties because they span the range of FIA plot sample sizes
found in Oregon’s counties (0 to ~90 plots per year). Figures for the
remaining counties in Oregon are provided as supplementary materials.

Klamath County Estimates
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Fig. 2. Klamath County AGB density estimates using the four candidate AGB estimators with associated 95% uncertainty intervals. The direct (DR), design-based
(DB), model-assisted (MA) and geostatistical-model-based (GMB) estimators are shown in pink, green, orange and purple, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)



E. Emick et al.

600 Clackamas County
0

n=15 n=17 n=29 n=24

400

)
=1
=]

Aboveground Biomass (Mg/ha)

Remote Sensing of Environment 295 (2023) 113678

Estimates

n=26 5 n=31 n=24 n=26

n=2 n=33

Estimator
DB

MA
GMB
DR

t ot

2001 2002 2003 2004 2005 2006 2007 2008 2009

Year

2010 2011 2012 2013 2014 2015 2016

Fig. 3. Clackamas County AGB density estimates using the four candidate AGB estimators with associated 95% uncertainty intervals. The direct (DR), design-based
(DB), model-assisted (MA) and geostatistical-model-based (GMB) estimators are shown in pink, green, orange and purple, respectively. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version
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Fig. 4. Benton County AGB density estimates using the four candidate AGB estimators with associated 95% uncertainty intervals. The direct (DR), design-based (DB),
model-assisted (MA) and geostatistical-model-based (GMB) estimators are shown in pink, green, orange and purple, respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

3.2.1. Klamath County (large sample size)

Klamath County has the highest number of field plots of the selected
example counties (~84 plots per year). Fig. 2 shows uncertainty in-
tervals for each candidate estimator in Klamath County. We see that the
DB, MA and GMB estimator’s 95% uncertainty intervals all overlap. It is
also apparent that the MA and GMB estimator’s uncertainty intervals are
narrower than the DB estimator’s uncertainty intervals for each year.
This provides evidence that incorporating the CMS-AGB map in the MA
and GMB estimators is leading to improved precision. In most years, the
MA estimator’s uncertainty intervals are narrower than the GMB esti-
mator’s uncertainty intervals. However, in 2003 and 2013, the GMB

estimator is more precise than the MA estimator.

3.2.2. Clackamas County (moderate sample size)

Fig. 3 shows annual AGB density estimates and associated 95% un-
certainty intervals using the four candidate estimators in Clackamas
County. Field sample sizes in Clackamas County average ~23 plots per
year. As in Klamath County (Fig. 2), the DB, MA and GMB estimator’s
95% uncertainty intervals overlap in each year. The MA estimator’s 95%
uncertainty intervals are narrower than the DB estimator’s intervals in
all years except in 2003, indicating that the MA estimator tends to
improve estimation precision through the inclusion of the CMS-AGB
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map data. The GMB estimator’s 95% uncertainty intervals are substan-
tially narrower than the DB and MA intervals in each year. The ability of
the GMB estimator to borrow information from proximate plot locations
outside of Clackamas County in addition to its use of CMS-AGB map
auxiliary data appears to lead to marked estimator precision improve-
ment when compared to the DB and MA estimators in moderate sample
size scenarios.

It is also apparent that the DB estimates are more variable than the
MA and GMB estimates from year to year. For instance, the DB esti-
mator’s AGB density estimate shifts from ~275 Mg/ha in 2003 to nearly
375 Mg/ha in 2004 and, in 2005, drops to ~240 Mg/ha. This estimate
volatility from year to year is likely caused by the lower field data
sample sizes in Clackamas County. The additional information provided
by the CMS-AGB map product appears to stabilize MA and GMB esti-
mates year to year.

3.2.3. Benton County (small sample size)

Fig. 4 shows annual AGB density estimates and associated 95% un-
certainty intervals using the four candidate estimators in Benton County.
Sample sizes in Benton County are low with an average of ~5 field
samples per year. No FIA field samples were available in 2005, 2007 and
2015. Due to the lack of field samples in those years, it is not possible to
estimate AGB density using the DB and MA candidate estimators.
However, the GMB estimator is a model-based approach which allows
for estimation and uncertainty interval calculation in AOIs with no field
data. We see that the GMB estimates in the years with no field data are
similar to the GMB, MA and DB estimates in adjacent years. This sug-
gests that even when no field data are available within the county, the
GMB estimator is able to provide reasonable AGB density estimates by
incorporating the CMS-AGB map predictions and borrowing field data
information from outside the county via the spatial random effect w(s).

The CMS-AGB map is improving estimate precision for Benton
County, evidenced by the MA estimator’s 95% uncertainty interval
widths being narrower than the DB estimator’s uncertainty interval
widths in many years. It appears that both the DB and MA estimators
may be adversely affected by the low FIA field sample sizes in Benton
County, evidenced by large uncertainty interval widths. The GMB esti-
mator provides substantially narrower 95% uncertainty intervals
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compared to the MA and DB estimator in all years considered. Similar to
Clackamas County, the ability to borrow information from nearby plots
outside of Benton County along with the added auxiliary information
from the CMS-AGB map predictions leads to a precise GMB estimator.

3.2.4. County-level estimate assessment

Fig. 5 shows the relationship between AGB estimate 95% uncertainty
interval width (95% uncertainty interval upper bound minus lower
bound) and field sample size for the DB, MA and GMB estimators for all
county-year combinations. We see that the MA and GMB estimators tend
to produce estimates with narrower uncertainty intervals than the DB
estimator for the within-county sample sizes encountered in this anal-
ysis. The GMB and MA estimators tend to produce similarly precise AGB
estimates for county-years with >40 field plots. Estimator precision
tends to decrease substantially as sample size decreases from 40 to
0 with the DB and MA estimators. It is well-known that DB estimators do
not perform well when sample sizes become small (e.g., <30). Fig. 5
appears to corroborate this notion. We see that, at smaller sample sizes,
the MA estimator does increase precision compared to the DB estimator
through the incorporation of the CMS-AGB map. However, because the
MA estimator falls within the DB statistical paradigm, we still see a
dramatic decrease in precision as sample sizes drop below 30. The GMB
estimator precision does not decrease as dramatically as the MA and DB
estimators for sample sizes <30. The GMB estimator explicitly uses the
spatial dependence structure in AGB density to weight information from
proximate plots outside the AOI to help inform estimates within the AOI,
leading to this increase in precision over the DB approach.

3.3. The HJ Andrews Experimental Forest

As mentioned throughout, a unique feature of the GMB estimator is
that it can generate estimates and associated uncertainties in AOIs that
contain no field plots. This feature makes it possible to calculate esti-
mates and uncertainties for individual grid cells and map them. In this
section, we explore this feature through an analysis in the HJA. Recall
that the HJA is located in Lane County and has no FIA field plots within
its borders. To explore the predictive performance of the GMB estimator
in the HJA in the year 2016, we produce AGB density estimates and
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posterior standard deviations for a variety of pixel resolutions within the
HJA, for forest stands within the HJA and for variety of different sized
concentric circles at the center of the HJA. We selected the year 2016 for
the HJA analysis because it was the most current CMS-AGB map
available.

We first examine pixel-level predictions within the HJA. Figs. 6 and 7
display grid cell-level AGB estimates and associated posterior standard
deviations for the HJA at varying spatial resolutions, respectively. These
resolutions span from 30 m pixels to 240 m pixels. In Fig. 6, we see how
the GMB estimator’s AGB estimates vary across the HJA and can even
identify potential areas where harvests have taken place (see, e.g., the
South Eastern corner of the HJA). Generally the GMB estimator produces
similar maps at each pixel size, with more details visible at finer reso-
lutions. Further, in Fig. 7 we see relatively constant uncertainty across
pixels for each pixel-level resolution within the HJA. For 30 m pixels, we
see very high levels of uncertainty, but for 90 m, 180 m, and 240 m
pixels we see a significant drop in uncertainty as pixel size increases. We
note that for 30 m pixels, posterior standard deviations in the HJA
average ~100 Mg/ha, indicating that one should use caution when
using this map to determine 30 m grid cell-level AGB stocking or making
other management decisions at the grid cell level.

Fig. 8 shows a map of forest stands in the HJA and Table 1 shows
their corresponding AGB density estimates and uncertainties. We see in
Table 1 that generally, as forest stand area increases there is a decrease
in the posterior standard deviation. We see that the coefficient of vari-
ation for forest stands hovers around 0.1, leading us to believe that this
case study in the HJA provides evidence that the GMB estimator may be
useful for conducting stand-level carbon accounting even when there is
no field data available within the stand.

We also examine predictive performance through the use of a set of
concentric circles of varying size to use as our AOIs. Note that Fig. 8
shows the geographic center of the HJA (the center of these circles).
Fig. 9 displays the posterior standard deviations for each concentric
circle as areal extent of the circle increases. Notably, we see that as the
AOQOTr’s areal extent increases there is a decrease in the posterior standard
deviation. Starting at the smallest circle areal extent of 0.09 ha the
posterior standard deviation drastically decreases until the circles are
approximately 2 ha, and then the trend levels out. This gives us a good
sense of what sized AOIs the GMB estimator can provide sufficient
precision for meaningful inference, given that there are no field plots
within the AOL
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3.4. Geostatistical model-based prediction accuracy, bias and uncertainty
interval coverage

In this section, we explore the accuracy, bias and uncertainty interval
coverage of the GMB and CMS-AGB fitted values and predictions at the
FIA plot level. Ideally, we would have assessed accuracy, bias and un-
certainty interval coverage for areal estimates (e.g., county-level esti-
mates). This is not possible however since we do not have AGB
observations that can be safely considered true values for areal extents
larger than the FIA plot. Specifically, we examine GMB model fitted
values and 10-fold holdout predictions with associated 95% credible
intervals for each year (i.e., 2001-2016). GMB fitted values and asso-
ciated 95% credible intervals were generated using PPDs sampled at FIA
plot locations with the full GMB model (i.e., no FIA observations held
out during model fitting). To generate GMB 10-fold holdout predictions
and 95% credible intervals, FIA observations were randomly split into
ten subsets. Then a GMB model was fit with nine subsets and used to
generate PPDs for the held out subset. This process was repeated ten
times, holding out a different subset each time. The Root Mean Squared
Error (RMSE) statistic was used to estimate accuracy. 95% coverage
probability was estimated as the proportion of 95% credible intervals
that contained the associated FIA plot value. Results of this analysis are
shown in Table 2. Fig. 10 shows combined CMS-AGB map, GMB fitted
values and GMB 10-fold holdout predicted values versus FIA plot ob-
servations. Similar figures for individual years are provided as supple-
mentary materials.

GMB fitted values and holdout predictions are more accurate than
the CMS-AGB map predictions. Table 2 shows that GMB fitted values and
holdout prediction RMSE metrics are substantially lower than the CMS-
AGB map RMSE metrics for every year considered. The level of
improvement varies slightly from year-to-year, but GMB holdout pre-
diction RMSE combined across model years shows a 25% improvement
in prediction accuracy compared to the CMS-AGB maps. Table 2 also
shows that GMB fitted values and holdout predictions are substantially
less bias than the CMS-AGB map predictions. GMB fitted values and
holdout prediction bias is slightly negative, but near zero (—0.56 Mg/ha,
—0.45 Mg/ha), whereas CMS-AGB map bias is near 60 Mg/ha. Coverage
probability of GMB fitted values combined across model years is esti-
mated at 0.95. Coverage probability of GMB holdout predictions is
estimated at 0.93. With estimated coverage probabilities being nearly
ideal (target value is 0.95), we argue that the GMB modeling approach

HJA Predictions at Multiple Resolutions
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Fig. 6. Grid cell-level AGB density estimates at HJ Andrews Experimental Forest generated using the geostatistical-model-based (GMB) estimator.
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PPD Standard Deviation of Predictions for HJA at Multiple Resolutions
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Fig. 7. Grid cell-level AGB density posterior standard deviations at HJ Andrews Experimental Forest using the geostatistical-model-based (GMB) estimator.
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Fig. 8. Selected Stand Locations for the HJ Andrews Experimental Forest.

adequately characterizes uncertainty with statistical rigor.
4. Conclusion

We examined an MA and GMB estimator that leveraged an ML-
produced CMS-AGB map product to estimate AGB density. We
compared the two estimators to a DR estimator that used only the CMS-
AGB map predictions and to a DB estimator that used only probabilis-
tically sampled FIA field data. Comparing these four estimators provided
evidence that the DR estimator is likely biased and that the MA and GMB
estimators appeared to correct for bias induced by the CMS-AGB map
predictions through the incorporation of FIA field data. The MA- and

GMB-derived AGB density estimates did not substantially differ from the
DB estimates for AOIs where the DB estimates of AGB density had suf-
ficient precision.

Incorporating the CMS-AGB map at the state level resulted in a
moderate increase in estimation precision when the MA estimator was
used, however some of this gain in precision may be due to the negative
bias of the variance estimator for the MA estimator. When examining the
GMB estimator at the state level we found it to appear less biased than
the DR estimator, however it did not result in increased precision over
the DB estimator. MA- and GMB-derived estimates of AGB density for
counties with large field sample sizes saw marginal gains in precision
compared to the DB estimator. The GMB estimator’s precision was
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Table 1

Aboveground biomass (AGB) density (Mg/ha) estimates with associated 95%
uncertainty intervals for HJ Andrews Experimental Forest and stands within.
Posterior predictive distribution standard deviations (PPD SD) and stand areas
are also presented.

Stand ID AGB Density (Mg/ha) PPD SD (Mg/ha) Area (Ha)
1000728 326.01 (232.96, 411.09) 46.76 3
1000490 374.78 (298.37, 462.05) 42.40 6
1000540 298.41 (221.15, 377.76) 42.24 12
1001018 262.92 (172.34, 340.12) 42.47 15
1003796 314.22 (236.53, 404.35) 42.43 23
1000649 445.97 (365.42, 536.51) 41.16 130
1000808 455.71 (378.68, 533.48) 38.65 418
100674 428.95 (348.38, 499.78) 38.36 459

HJ Andrews 392.72 (319.58, 454.04) 32.51 6400

markedly better than the MA and DB estimators for AOIs with moderate
to small sample sizes. The GMB estimator tended to be the most precise
estimator when the AOI's sample sizes dropped below 30. We also
examined the influence of AOI size on the GMB estimator’s uncertainty
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metrics when there were no field plots within the AOI by looking at
concentric circles of varying size within the HJA. We saw that uncer-
tainty was very high for AOIs of less than 1 ha, moderate for AOIs of area
1-2 ha, and sufficient for areas over 2 ha. This result suggests that the
GMB estimator may be useful for forest stand-level AGB density esti-
mation when no plots are available within the AOI due to its ability to
borrow strength from proximate field data outside the stand. We also
examined the accuracy and coverage probability of plot-level AGB
predictions using the GMB estimator. We saw the the GMB estimator had
an overall prediction accuracy improvement of nearly 25% compared to
the CMS-AGB map at the FIA plot level. We also observed that GMB 95%
coverage probabilities were sufficient to say that the GMB estimator
adequately characterizes uncertainty with statistical rigor at the FIA plot
level.

Perturbed FIA plot coordinates were used in this analysis meaning
that plot locations were potentially off by a kilometer or more. The DB
and MA estimators examined here do not explicitly depend on spatial
location information. Because of this, the DB and MA estimators are not
adversely affected by plot perturbing (as long as the AGB map pre-
dictions are extracted for FIA plots before perturbing, as was done in this

Standard Deviation of Estimates over Estimation Area, HJ Andrews Experimental Forest
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Fig. 9. Posterior standard deviations for concentric circular AOIs centered at the geographic center of HJ Andrews Experimental Forest.

Table 2

Geostatistical model-based and CMS-AGB map accuracy, bias and 95% uncertainty interval coverage probability (CP). Accuracy is assessed using the root mean

squared error (RMSE) statistic.

GMB Model Fitted Values GMB 10-Fold Holdout Prediction CMS-AGB Map
Year 95% CP RMSE BIAS 95% CP RMSE BIAS 95% CP RMSE BIAS
2001 0.93 106.61 —0.52 0.93 112.54 —-0.73 - 166.26 73.49
2002 0.95 97.95 —0.64 0.93 112.09 —-0.57 - 166.64 78.88
2003 0.99 64.11 -0.23 0.94 120.56 —-0.50 - 162.59 64.86
2004 0.96 90.14 —0.38 0.93 112.78 -0.67 - 165.98 72.04
2005 0.95 110.83 —0.61 0.94 120.69 0.08 - 167.52 61.01
2006 0.96 121.30 -0.99 0.94 130.83 —-0.31 - 166.26 60.77
2007 0.94 107.20 —0.74 0.93 113.10 —-0.20 - 156.51 55.73
2008 0.94 108.10 -0.28 0.93 118.02 -0.73 - 156.35 64.09
2009 0.94 121.09 -0.53 0.93 128.20 —0.69 - 161.53 55.42
2010 0.94 103.33 —0.92 0.93 112.61 —0.66 - 150.16 59.73
2011 0.94 105.00 —0.69 0.93 111.90 —-0.53 - 147.93 54.40
2012 0.95 98.08 —-0.02 0.93 115.73 —0.68 - 149.89 57.42
2013 0.97 88.19 —-0.57 0.94 115.00 —-0.07 - 149.06 53.24
2014 0.98 62.36 -0.35 0.94 112.56 -0.31 - 145.76 46.82
2015 0.95 117.11 —0.66 0.93 125.61 -0.23 - 153.19 42.62
2016 0.95 106.59 —-0.90 0.94 120.16 —0.51 - 149.02 57.54
Combined 0.95 101.90 —0.56 0.93 117.85 —0.45 - 157.14 59.74
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Overall GMB 10-Fold Holdout Predictions
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Fig. 10. Combined prediction accuracy and uncertainty interval coverage for GMB models. Grey vertical bars show the 95% uncertainty interval produced at the FIA
plot location. Red line is the one-to-one line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

study). However, the GMB estimator incorporates a spatial random ef-
fect that explicitly models AGB spatial dependence based on intersite
distances between plot locations. Using perturbed plot locations in the
GMB estimator likely inhibits the estimators ability to model spatial
autocorrelation precisely. We see in Table 3 that effective range esti-
mates vary substantially from year to year. We also see that effective
range uncertainty interval widths are very high, indicating that the GMB
estimator was not able to estimate how far-reaching the spatial corre-
lation structure was between plots with a high degree of certainty.

In future work, we plan to examine the GMB estimator more thor-
oughly for this application using true FIA plot coordinate locations.
Additionally, we plan to test how the GMB estimator performs when FIA
subplot-level observations are used for model fitting. We believe that
adapting the GMB estimator in this way may improve precision by
allowing for the model to more precisely estimate the spatial autocor-
relation structure in the data. We also plan to extend the GMB estimator
to account for model nonstationarity by incorporating spatially varying
coefficients (Babcock et al., 2015). It is likely that the relationship be-
tween FIA plot observations and the CMS-AGB map product is not the
same across Oregon given how the CMS-AGB map was generated (it
likely over-represents some forest areas and under-represent others).
Allowing the GMB estimator’s model coefficients to vary across space
may account for issues with local model lack-of-fit and lead to improved
AGB density estimation. We also plan to begin exploring spatio-temporal
extensions to the GMB framework to allow for AGB change estimation.

This work showcases two approaches capable of incorporating ML-

Table 3

produced predictions of AGB to improve AGB density estimation pre-
cision for a variety of AOIs. We see that it is possible to estimate AGB
density for AOIs within a design- and model-based statistical paradigm
and generate statistically defensible uncertainty characterizations when
the assumptions underpinning the approaches are sufficiently met. The
estimators explored here have the potential to vastly improve our ability
to estimate forest biomass in a way that is useful to carbon trading
markets. Being able to provide statistically rigorous uncertainty metrics
alongside estimates allows carbon trading markets to incorporate these
metrics into their accounting procedures. By incorporating auxiliary
remote sensing-driven forest biomass maps using the approaches
examined here, we can decrease costs associated with forest carbon
accounting by reducing the amount field data needed to produce suffi-
ciently precise estimates. Adopting these approaches to estimation can
incentivize small forest landowners to enroll in carbon trading programs
by reducing barriers to entry.
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Year Po h I

2001 25.30 (—1.99, 46.69)  0.56 (0.51, 0.61) 1063.97 (483.12, 2099.72)
2002 23.27 (7.72, 38.68) 0.56 (0.52, 0.61) 1919.84 (681.74, 4625.29)
2003 35.33 (20.32, 49.89) 0.56 (0.52, 0.61) 6746.55 (1639.38, 11,753.57)
2004 31.65 (11.05, 48.14) 0.56 (0.41, 0.61) 2385.57 (899.19, 6323.34)
2005 40.22 (13.61, 58.32) 0.53 (0.49, 0.59) 1448.05 (661.72, 2826.32)
2006 24.03 (—3.70, 42.59)  0.62 (0.57, 0.67) 999.31 (354.68, 2420.21)
2007 47.28 (24.09, 61.89) 0.53 (0.48, 0.57) 775.98 (316.81, 2269.16)
2008 19.77 (-3.67, 40.92)  0.63 (0.58, 0.67) 1278.70 (585.05, 2647.26)
2009 32.92 (6.63, 53.13) 0.61 (0.56, 0.66) 950.91 (427.07, 2074.20)
2010 34.07 (19.51, 48.24) 0.59 (0.54, 0.63) 1134.40 (441.25, 2852.70)
2011 38.70 (24.63, 52.04) 0.60 (0.56, 0.65) 1068.37 (373.33, 4130.61)
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11,976.19 (10,640.90, 13,305.16)
10,827.60 (8569.42, 12,410.26)
7919.18 (3437.03, 12,960.22)
10,682.34 (6983.40, 12,732.48)
13,420.53 (11,947.91, 14,972.43)
16,055.77 (14,053.96, 18,259.09)
11,994.16 (10,442.51, 13,571.97)
12,796.94 (11,321.22, 14,471.53)
15,651.23 (13,933.58, 17,421.14)
11,607.07 (9784.78, 13,138.17)
11,363.71 (8436.50, 13,014.75)
11,355.93 (7737.36, 13,327.71)
11,041.76 (4450.04, 13,120.83)
10,041.76 (3565.31, 11,260.74)
14,886.90 (13,381.16, 16,516.42)
12,488.88 (9296.08, 14,286.75)

175.92 (45.58, 602.41)
50.59 (22.16, 141.97)
14.00 (10.39, 56.43)
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163.00 (154.03, 172.23)
159.54 (150.95, 167.38)
171.85 (161.60, 180.80)
166.61 (157.73, 174.89)
170.51 (161.25, 179.01)
174.69 (164.58, 185.02)
173.77 (166.24, 182.43)
170.76 (160.96, 179.74)
183.23 (173.12, 192.67)
174.60 (166.03, 183.08)
183.05 (175.29, 191.92)
182.36 (174.30, 190.50)
182.67 (174.13, 191.83)
189.77 (181.48, 197.82)
189.69 (180.54, 199.27)
187.13 (178.75, 197.51)
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