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Abstract

This paper introduces a neural kernel method to generate machine learning plasticity models for micropolar and
micromorphic materials that lack material symmetry and have internal structures. Since these complex materials often require
higher-dimensional parametric space to be precisely characterized, we introduce a representation learning step where we first
learn a feature vector space isomorphic to a finite-dimensional subspace of the original parametric function space from the
augmented labeled data expanded from the narrow band of the yield data. This approach simplifies the data augmentation
step and enables us to constitute the high-dimensional yield surface in a feature space spanned by the feature kernels. In the
numerical examples, we first verified the implementations with data generated from known models, then tested the capacity
of the models to discover feature spaces from meso-scale simulation data generated from representative elementary volume
(RVE) of heterogeneous materials with internal structures. The neural kernel plasticity model and other alternative machine
learning approaches are compared in a computational homogenization problem for layered geomaterials. The results indicate
that the neural kernel feature space may lead to more robust forward predictions against sparse and high-dimensional data.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

When deriving models to predict path-dependent responses of materials that lack material symmetry or exhibit
complex size-dependent behaviors, the smallest number of variables (e.g., stress measures, stress invariants, internal
variables) required to replicate constitutive responses increases, and the dimension of the parametric space in which
the model is formulated also becomes higher. This increase in variables often leads to the increase of material
parameters due to the need for additional support to control the geometry in the high-dimensional space.

As such, modelers must decide a trade-off between simplicity and sophistication [1]. Increasing the number
of material parameters is often undesirable or only used as the last measure to capture the phenomenology
precisely [2]. This preference for simpler models is not limited to constitutive theories of solids and has a long
history in science (p.398, Newton [3])and philosophy [4±6]. In the early ages of the development of plasticity
theories, experimental data were relatively limited in quantities and lacked precision afforded by the state-of-the-art
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instruments [1,7,8]. Hence, assumptions on material symmetry and limitations on the number of variables used to
describe the deformation mechanisms become common strategies that maximize what [1] described as the trade-off
between simplicity and sophistication.

1.1. Previous approaches for modeling low-symmetry, higher-order, and multiphysics coupling plasticities

Increasing the precision of a material model may unavoidably increase the least number of material parameters
necessary to describe the material behaviors. As such, many simpler models that involve more hypotheses often
become the blueprint of more elaborated models of higher dimensions. This approach is often adopted by plasticity
models in, for instance, the following scenarios.

1. There is a need to capture additional causal mechanisms that are not describable with the current existing
variables [9]. For instance, the anisotropy and non-coaxiality induced by fabric evolution require incorporating
the fabric tensors into the constitutive laws [10±12].

2. There is a need to enrich the description of a model such that the model can be further generalized for
broader applications. For instance, the Drucker±Prager model can be viewed as a generalization of the Von
Mises model by introducing the dependence of the yielding behaviors with respect to the pressure (position
of the hydrostatic axis in the principal stress space). de Borst [13] introduces micropolar constitutive models
for geo-materials by introducing the additional couple stress terms and length scale parameter in a Drucker±
Pragger model. Multi-physics constitutive models, such as [14], also adopt an extension strategy where a
pure solid mechanics model is enhanced by introducing additional variables such as temperature, degree of
saturation, and volume fraction of void that are necessary to capture the multiphysical coupling [14±18]).

3. Finally, there have also been cases in which a model is amended to circumvent known limitations. A classic
example is the usage of micropolar theory to circumvent the pathological mesh dependence of plasticity
models in the softening regimes. (e.g. [19±21]).

Nevertheless, this incremental strategy to amend models exhibits disadvantages. First of all, obtaining plasticity
data from either representative elementary volume simulations or experiments could be costly. As such, the lack of
foresight of the model dimensions may lead to a biased data acquisition strategy where data might not distribute well
enough to calibrate and test the learned model. For models expressed in higher-dimensional space (e.g., anisotropic
elasticity model that requires not just the strain invariants but also the principal directions, micropolar and
micromorphic models that require higher-order terms to fully describe the kinematics), data may appear to be
sparser and hence requires more data points to characterize the behaviors of comparable complexity [22].

1.2. Previous efforts in machine learning plasticity modeling

Machine learning approaches with advanced architecture, such as the recurrent neural networks for sequential
learning [23±26], 1D convolutional neural network [27], and transformer with attention mechanisms [28], can
be, in theory, trained to replicate these high-dimensional constitutive responses. However, the vanishing/exploding
gradients, the increased computational cost, and the increased demand for data can all become the bottleneck of these
approaches. Furthermore, the higher dimensionality of the model also makes the learned model more vulnerable to
overfitting (incapable of generalized prediction) [29] and the results more difficult to interpret properly [27,30,31].

On the other hand, there are multiple attempts to represent the plastic yield surfaces via parametrized surface
or implicit functions. Vlassis and Sun [27], for instance, introduce the usage of the signed distance function to
implicitly represent the yield surface in the stress-internal-variable space. The additional signed distance property
enables the plastic flow to be a unit gradient which simplifies the calculation of the plastic multiplier, and allows one
to incorporate the plastic flow direction into the Sobolev training of yield function. The resultant yield function is
then parametrized via an MLP architecture. Meanwhile, Coombs et al. [32],Coombs and Motlagh [33,34] leverage
the flexibility afforded by non-uniformed rational B-splines (NURBs) to parametrize yield function. Xiao and Sun
[35], on the other hand, represents the yield surface as a manifold and train neural networks to paramterize an atlas
of coordinate charts to form three-variable yield surface of complex shapes.

While the component/modular-based learning approach [36,37] enables one to reformulate the plasticity learning
problem without enforcing the memory effect through the architecture, the challenges of training and interpreting
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those models remain. Another less explored route to model plasticity is to use the kernel method in which a nonlinear
transformation maps the material data in a higher-dimensional feature space to make it easier to perform clustering
(e.g., unsupervised learning) or insert hyperplane (e.g., classification). The advantage of the kernel method is that
it is generally more robust (due to the non-parametric nature and the implicit feature mapping without any explicit
feature engineering) and less sensitive to outliers [38]. More importantly, the construction of a higher-dimensional
feature space also makes it possible to interpret the relations between the features and the learned plasticity models.
However, a key technical barrier of the classical kernel method is that the performance of the method is highly
sensitive to the specific kernel function (e.g., polynomials, radial basis function) used to generate the feature space.
As different data sets may require different kernel functions to achieve good performance, selecting the kernel
function becomes a time-consuming trial-and-error process.

1.3. Neural kernel method for high-dimensional plasticity

This paper introduces a neural kernel approach to generate micropolar and micromorphic plasticity models. Here
we want to leverage the robustness and interpretability of the kernel method afforded by the feature space while
generating a data-dependent kernel tailored to our specific need to capture the high-dimensional constitutive
responses of the materials with complex internal structures. This treatment provides us with a unified data-driven
approach to recognize the pattern of the data (through the data-dependent kernel), regardless of the data dimensions.
Combined with a simple kernel ridge regression, we may generate a yield function of arbitrary input space
dimensions without explicitly handcrafting the feature space. This trait is input for us to automate the process
of generating yield surface from data of dimensions higher than 3, especially when data is sparse.

1.4. Organization of the rest of the paper

The organization of the rest of the paper is as follows. For completeness, we first review the plasticity theory of
micropolar and micromorphic materials and the related Hill±Mandel lemma necessary for generating the multiscale
data for computational homogenization. This review explains the difficulties in formulating yield surfaces in a
high-dimensional stress space (Section 2). We then introduce the neural kernel method formulated for the high-
dimensional space. In particular, we explain both the theory of the neural kernel method, as well as the strategy we
adopted to train both the data-dependent neural network kernels and obtain the coefficients used to interpolate the
yield function in the high-dimensional feature space. The return mapping algorithm that adopts the neural kernel
yield function is also included (Section 3). This is followed by a collection of representative numerical examples
in which we provide verifications and demonstrate how the proposed approach can be applied to complex data
obtained from direct numerical simulations of layered pressure-sensitive materials (Section 4). We then summarize
our major findings in Section 5. Additional numerical tests and the detailed procedure necessary for third-party
inspection and validations are provided in the Appendix.

2. Constitutive framework for higher-order continua

For completeness, we review the theory of micropolar and micromorphic continua (i.e., higher-order con-
tinua). Cosserat and Cosserat [39] is credited with introducing the first high-order continuum theory in which the
concept of micro-rotation is introduced to describe the effects of internal structures on the constitutive responses.
Different variations, for instance, the couple stress theory [40±43], which derives energy density as a function of
both strain and the curl of strain. The generalized micromorphic continuum theory, which introduces the concepts
of micro-deformation and the corresponding energy-conjugate stress measures as a generalization of the kinematics,
have been introduced in the 1960s [44±47]. The extension of the higher-order continua theory to the finite
deformation range has been formulated by Toupin [41] where an action density is derived such that it is invariant
under the group of Euclidean displacements in a Hamiltonian mechanics framework. MÈuhlhaus and Vardoulakis [48]
and Peerlings et al. [49] further extended the higher-order theories for elastoplasticity problems and examined the
regularization effect of higher-order continuum theories. Steinmann [50] extends the multiplicative kinematics theory
to formulate micropolar elastoplasticity in the geometric nonlinear regime. Recently, the multiscale micropolar [51]
and micromorphic [52] constitutive modeling has been derived in the finite deformation regime, while [53] have
introduced a linear relaxed version of micromorphic models to capture the wave propagation in meta-materials.
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Fig. 1. A microscopic representative volume element (RVE) is attached to the macroscopic material point with position vector X ; the local
coordinate of the RVE is denoted by Y . The directors in the RVE describe the internal micro-structure (e.g., voids or inclusions), and the
deformed configuration of the directors reflects the distortion of the internal structure.

A comprehensive review of connections between the higher-order and non-local continuum theories can be found
in [54].

For simplicity, we restrict our learned models to be within the infinitesimal deformation regime. We then
introduce machine learning to generate three classes of plasticity models based on Cauchy, micropolar, and
micromorphic continuum theories. The micro-deformation χi j describes the configuration of the directors, i.e., the
internal micro-structures (e.g., voids and inclusions) contained in the material point sampled at an arbitrary position
x, as shown in Fig. 1. The material point of an effective medium is also called the representative volume element
(RVE). For a Cauchy continuum, the directors are much smaller than the RVE, so the kinematic configuration of
the directors χi j mechanically affects the RVE much less than the strain tensor,

εi j = (ui, j + u j,i )/2 (1)

such that the χi j can be neglected. In comparison, the micromorphic theory considers that the size effect of the
deformable directors is not negligible. As such χi j must be considered to describe the distortion of the RVE internal
structure. Micropolar continua is a sub-class of micromorphic continua in which the directors can be assumed to
be rigid (e.g., rigid inclusions) such that

χi j = −ϵi jkθk, (2)

where θk describes the rigid rotation and ϵi jk is the Levi-Civita permutation symbol. Based on the kinematic
configuration of higher-order continua described by ui and χi j , the boundary value problems can be solved given
the constitutive laws of micropolar and micromorphic continua, which are reviewed in Section 2.1, followed by the
RVE homogenization scheme that models the constitutive law by multiscale simulation (Section 2.2) and data-driven
approaches to learn the constitutive law (Section 2.3).

2.1. Boundary value problems

To solve the boundary value problems (BVP) of higher-order continua for the kinematic configuration ui and
χi j , we need to consider the kinematic relation, balance of linear and angular momentum, and constitutive law as
summarized in the upper half of Table 1 [55]. The kinematic relation defines the strain tensor as the difference
between the displacement gradient ui, j and the micro-deformation χi j or micro-rotation −ϵi jkθk ; the gradient of
micro-deformation G i jk or the gradient micro-rotation κi j (i.e., curvature tensor) are also introduced to describe
the higher-order deformation. The balance law of linear and angular momentum states the relationship between the
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Table 1

The summary of BVP components of the micropolar and micromorphic materials.

Micropolar Micromorphic

Kinematic relation εi j = ui, j + ϵi jkθk , κi j = θi, j εi j = ui, j − χi j , Gi jk = χi j,k

Balance of linear momentum σ j i, j = 0 σ j i, j = 0
Balance of angular momentum 1

2 ϵi jkσ j i − m jk, j = 0 σ j i + ζi jk,k = 0

Constitutive law (εi j , κi j ) → (σ j i ,m j i ) (εi j ,Gi jk ) → (σ j i , ζi jk )

Elastoplastic deformation εi j = εe
i j + ε

p

i j , κi j = κe
i j + κ

p

i j εi j = εe
i j + ε

p

i j , Gi jk = Ge
i jk + G

p

i jk

Elasticity σ j i = ∂W (εe
i j
,κe

i j
)

∂εe
i j

, m j i = ∂W (εe
i j
,κe

i j
)

∂κe
i j

σ j i = ∂W (εe
i j
,Ge

i jk
)

∂εe
i j

, ζi jk = ∂W (εe
i j
,Ge

i jk
)

∂Ge
i jk

Yield function f (σ j i ,m j i ) ≤ 0 f (σ j i , ζi jk ) ≤ 0

KKT condition Λ̇ f (σ j i ,m j i ) = 0 (Λ̇ ≥ 0, f ≤ 0) Λ̇ f (σ j i , ζi jk ) = 0 (Λ̇ ≥ 0, f ≤ 0)

Flow rule ε̇
p

i j = Λ̇
∂ f
∂σ j i

, κ̇ p

i j = Λ̇
∂ f
∂m j i

ε̇
p

i j = Λ̇
∂ f
∂σ j i

, Ġ
p

i jk = Λ̇
∂ f
∂ζi jk

Cauchy stress σ j i and higher-order couple stress m j i or generalized stress ζi jk , which are computed given εi j , κi j ,
and G i jk based on the constitutive law.

To complete the solution of BVP, the elastoplastic constitutive law in the lower half of Table 1 needs to be found
to model the relation between the kinematic modes and the higher-order stresses, i.e., between εi j and σ j i , between
κi j and m j i , and between G i jk and ζi jk . The constitutive law consists of the elasticity model, yield function, KKT
condition, and plastic flow rule, as summarized in Table 1. The elasticity model finds the elastic energy functional
W such that the elastic stresses are work conjugates of the kinematic modes. The core component of the plasticity
model [56] is the yield function f that defines the onset of plastic yielding at f = 0. The elastic region in the stress
space requires f < 0. When the stresses touch the yield surface, then f = 0. The permanent plastic deformation
grows at the rate of Λ̇ and in the direction of gradients of f according to the associative flow rule, where Λ is
called the plastic multiplier. The KKT condition shown in Table 1 implies that if the yield surface is not touched,
equivalent to f < 0, then Λ̇ = 0 and no permanent plastic deformation is growing.

The micromorphic elastoplastic constitutive law can then be derived as the return mapping algorithm, i.e., given
current elastic deformation (εe

i j (t),Ge
i jk(t)) and incremental deformation (∆εi j ,∆G i jk), finding the stresses at the

next time step (σ j i (t + ∆t), ζi jk(t + ∆t)).
The first step is to find the trial stresses (σ tr

j i , ζ
tr
i jk), assuming the incremental deformation is elastic, which is

equivalent to f (σ tr
j i , ζ

tr
i jk) < 0 as shown in Eq. (3).

[

σ j i (t + ∆t)

ζi jk(t + ∆t)

]

=
[

σ tr
j i

ζ tr
i jk

]

=

⎡

⎢

⎣

∂W (εe
i j

(t)+∆εi j ,G
e
i jk

(t)+∆Gi jk )

∂εe
i j

∂W (εe
i j

(t)+∆εi j ,G
e
i jk

(t)+∆Gi jk )

∂Ge
i jk

⎤

⎥

⎦
if f (σ tr

j i , ζ
tr
i jk) < 0 (3)

If the incremental deformation is not elastic, i.e., f (σ tr
j i , ζ

tr
i jk) ≥ 0, then a correction of the trial stresses should

be made to ensure f (σ j i (t + ∆t), ζi jk(t + ∆t)) = 0, and the final stresses can be found based on the associative
plastic flow rule as shown in Eq. (5). The elasticity tensors are defined as,

C
e,σ−ε
i jmn = ∂2W

∂εi j∂εmn

, C
e,σ−G
i jmnl = ∂2W

∂εi j∂Gmnl

,C
e,ζ−ε
i jkmn = ∂2W

∂εmn∂G i jk

, and C
e,ζ−G

i jkmnl = ∂2W

∂G i jk∂Gmnl

. (4)

The incremental stress update expressed in Voigt notation reads,
[

σ j i (t + ∆t)
ζi jk(t + ∆t)

]

=
[

σ tr
j i

ζ tr
i jk

]

−
[

C
e,σ−ε
i jmn C

e,σ−G
i jmnl

C
e,ζ−ε
i jkmn C

e,ζ−G

i jkmnl

]

[

∆ε
p
mn

∆G
p

mnl

]

=
[

σ tr
j i

ζ tr
i jk

]

− ∆Λ

[

C
e,σ−ε
i jmn C

e,σ−G
i jmnl

C
e,ζ−ε
i jkmn C

e,ζ−G

i jkmnl

] [

∂ f

∂σnm

∂ f

∂ζmnl

]

. (5)

The two equations above summarize the return mapping algorithm for micromorphic continua. The micropolar
continua is a special case of the micromorphic continua where the micro-deformation is restricted to be rotational
only. As such, the return mapping algorithm can be implemented by re-expressing the micro-rotation gradient κi j

and the couple stress m j i in terms of the micro-deformation gradient G i jk and generalized stress ζi jk , i.e.,

(G i jk, ζi jk) = (−ϵi jlκlk,−
1

2
ϵi jlmlk). (6)
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Fig. 2. The characteristic micromorphic kinematic modes.

The micromorphic return mapping algorithm then return the constitutive updates and the gradient of micro-rotation
and couple stress can then be recovered via

(κi j ,m j i ) = (−1

2
ϵimnGmnj ,−ϵimnζmnj ). (7)

2.2. RVE homogenization based on Hill±Mandel’s condition

The constitutive relation of the material point at position x, shown in Fig. 1, is obtained by studying the RVE
domain Ω with the local coordinate Y as shown in Fig. 1. The kinematic modes denoted as ε̄i j , κ̄i j , and Ḡ i jk are
prescribed by deforming the RVE with the displacement boundary condition shown in Eq. (8) and Fig. 2 [51,52],
where the boundary condition is the linear combination of the prescribed kinematic modes. This boundary condition
is admissible, as proven by Hill’s Lemma in Appendix A.

ui =

⎧

⎪

⎨

⎪

⎩

ε̄i jY j + 1
2 Ḡ i jkY jYk on ∂Ω for micromorphic continua

ε̄i jY j − 1
2ϵi jl κ̄lkY jYk on ∂Ω for micropolar continua

ε̄i jY j on ∂Ω for Cauchy continua

(8)

The local boundary value problem is then solved given the prescribed boundary condition to solve for the local
displacement and stress field. The homogenized stress and generalized stress [52] can be computed as Eq. (9), which
satisfies the Hill±Mandel’s condition as proven in Appendix A.

⎧

⎪

⎨

⎪

⎩

ζ̄i jk = 1
V

∫

∂Ω
1
2 nlσliY jYkd S = 1

V

∫

∂Ω
1
2 (σ j iYk + σkiY j )dV for micromorphic continua

m̄ j i = −ϵimn ζ̄mnj for micropolar continua

σ̄ j i = 1
V

∫

∂Ω
nlσliY j d S = 1

V

∫

Ω
σ j i dV for all continua

(9)

2.3. Supervised learning tasks for neural kernel plasticity

The elastoplastic constitutive law can be sufficiently modeled by machine learning by training the elastic energy
functional and the plastic yield function independently. The elastic energy functional, W (εe

i j , κ
e
i j ) or W (εe

i j ,Ge
i jk),
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can be simply modeled by a neural network consisting of multi-layer perceptrons (MLP), with the strain measures as
the input and the elastic stored energy as output as the output. In our implementation, we adopt the Voigt vectorized
notation used in [57] to train the neural network elasticity models. For brevity, the supervised learning of elasticity
for micromorphic continua will not be discussed in great detail. Interested readers may refer to, for instance, Vlassis
and Sun [27]. On the other hand, the supervised learning for the yielding function and the corresponding hardening
laws are formulated in the next section.

Remark 1 (Neural Network Architecture). The architecture of the MLP, which we adopted in this study, is shown in
Eq. (10). The 3-layer architecture is composed of neurons equipped with Exponential Linear Unit (ELU) activation
function. The activation function of the output layer A3 can be ELU or identity map, depending on how the MLP
is used: A3 should be an identity map mostly except when the MLP is used to construct the neural kernel (NK)
architecture.

fN N (x) = h3 ◦ h2 ◦ h1(x), where

⎧

⎨

⎩

h1(x) = E LU (W 1 · x + b1)
h2(h1) = E LU (W 2 · h1 + b2)
h3(h2) = A3(W 3 · h2 + b3)

and E LU (x) =
{

x if x ≥ 0
e−x − 1 if x < 0

(10)

This neural network design is used for both the elastic stored energy functional as well as the yield surface
because the derivatives of ELU are sufficiently differentiable. This smoothness may improve the robustness of the
optimization process and alleviates the vanishing and exploding gradient problems.

3. Yield surface reconstruction via neural kernel (NK) method

This section describes (1) how to use the neural kernel (NK) method to reconstruct the yield surface for
micromorphic continua and (2) provides the implementation details necessary to incorporate the learned model
into a return mapping algorithm. Here, we represent the yield surface in a multi-dimensional parametric space
via an implicit scalar signed distance level set function f (x), such that the yield surface geometry is recovered at
f (x) = 0 where x stores the higher-order stress components of the implicit yield function and the internal variables.

The general framework of our NK method follows the work of Williams et al. [38] on Neural Kernel Field
(NKF), while we adopt the kernel function architecture as deep neural networks for the generalizability to arbitrary
dimensions. A general workflow of this framework is presented in Fig. 3 containing three major steps:

1. Generate the labeled narrow band level set data given the yield stress point x and plastic flow direction n as
discussed in Section 3.1,

2. Train the kernel coefficients for the kernel function associated with the NN-based feature map φθ , after which
a two-step training may be needed for the NN weight and bias θ to ensure that the sign of the yield function
is correct, as shown in Algorithm 1, and

3. Predict the level set yield function fθ (x) as a linear combination of the basis kernel functions and locate the
surface at fθ (x) = 0 (see Section 3.2).

The workflow shown in Fig. 3 presents the 2D and 3D views of the surface for the readability purpose, but
the NK model is able to reconstruct a much higher-dimensional yield surface. After training the NK-based yield
function, the elastoplastic constitutive law is reproduced by the return mapping algorithm presented in Section 3.3
and Algorithm 2.

3.1. Data processing

The raw data set for surface reconstruction consists of point coordinates sampled from the ground-truth surface
and the corresponding normal vectors, such that the data set is described in the form of S = {(xi , ni ) ∈ R

d × R
d},

where xi are point coordinates and ni are the surface outward unit normal vector at xi ; in the context of the plastic
yield function, xi are yield stress points and ni are the plastic flow direction. For supervision purposes, we create
two labeled datasets following the concept of the narrow band level set [58]. The first data set D is generated by

7



Z. Xiong, M. Xiao, N. Vlassis et al. Computer Methods in Applied Mechanics and Engineering 416 (2023) 116317

Fig. 3. The workflow of training the neural kernel function with the yield surface data consists of 3 steps: generating the labeled narrow
band level set data, training the kernel coefficients for the kernel function, and finally forward predicting the level set yield function as a
linear combination of the basis kernel functions.

Fig. 4. Sketch of a narrow band level set yield function. The idea is to locally control the gradient around the boundary at f = 0 and
globally control the sign of f on both sides of the boundary.

perturbating the spatial coordinate of surface points in the normal direction, and labeling them by the distance to
the true surface as follows:

D = {(xi , 0)|(xi , ni ) ∈ S}
⋃

{(xi + ϵni , ϵ)|(xi , ni ) ∈ S}
⋃

{(xi − ϵni ,−ϵ)|(xi , ni ) ∈ S} (11)

where ϵ is a small number indicating the distance of perturbation for the surface points. The first data set controls
the trained level set function to be zeros at the surface, and the gradient of the function is equal to the unit normal
as shown in Fig. 4. In our numerical examples, the data are centered and scaled such that the average norm of each
data point becomes one, and ϵ is tuned as a hyperparameter between 0.01 and 0.1.

The second set of labeled data V is needed to ensure the occupancy condition [59], i.e., the function should be
negative inside the surface and positive outside the surface, and there should not be additional holes in the region
enclosed by the surface, as shown in Fig. 4. V is sampled in the d-dimensional Euclidean space excluding the
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points on the surface, where yvol = 1 if xvol is a point outside the surface, and yvol = −1 otherwise.

V = {(xvol , yvol) ∈ R
d × {−1, 1}|xvol ̸∈ {x|(x, n) ∈ S}} (12)

3.2. Training scheme of NK method

This subsection describes the proposed NK method for surface reconstruction in detail. Before we go through
the general framework of NK, we present a brief overview of classical kernel methods to facilitate further
demonstrations of the NK method. Classical kernel methods for regression problems adopt a pre-defined kernel
function with a set of trainable kernel coefficients αi to approximate the function y(x) given a labeled dataset
D = {(xi , yi )} as follows:

ŷ(x) =
∑

(x j ,y j )∈D

α j K er (x, x j ) (13)

where the hat over ŷ indicates an approximation of function y. The kernel coefficients α j are trained by directly
solving the following system of linear equations:

(K er (xi , x j ) + λδi j )α j = yi , (xi , yi ) ∈ D (14)

where λ is the tunable hyperparameter used for regularization and data denoising.
It is theoretically proven that the conventional kernel method does not accurately make predictions of unseen

features if the spatial dimension d is much smaller than the number of data |D| [60]. In this sense, the neural
network is adopted in kernel methods in order to increase the representation power of this machine learning model,
where a trainable NN φθ is introduced to create a map from a d-dimensional input space to an h-dimensional
feature space. The kernel regression is then implemented in the feature space enforcing h and |D| in the same order
of magnitude. The φθ implemented in [38] follows an architecture similar to C-OccNet [59] and is not applicable
in higher-dimensional space. For generalizability to higher-dimensional inputs, we establish φθ as a multi-layer
perceptron (MLP).

Instead of the kernel map of the original feature vector x shown in Eq. (13), the arguments of the kernel function
are replaced by the feature map φθ (x). As a result, we introduce the MLP weight θ in addition to coefficients α j

as the trainable parameters, and the architecture of the neural kernel fθ : Rd −→ R is described as follows:

ŷ = fθ (x) =
∑

x j ∈D

α j KN S(φθ (x j ),φθ (x)) (15)

where KN S(x, y) = ψT (x)ψ( y) is the neural spline kernel [61] induced from a single-layer non-trainable neural
network ψ . In this paper, KN S is replaced by K ′(x, y) = xT y such that the neural spline kernel is integrated into
φθ as an additional layer; which results in the following simplified NK architecture:

ŷ = fθ (x) =
∑

x j ∈D

α jφ
T
θ (x j )φθ (x) (16)

We next present the loss function L(α j , θ ) adopted as follows:

L(α j , θ ) =
∑

(xi ,yi )∈D

(yi − ŷ(xi ))
2 + γ

∑

(xvol
i
,yvol

i
)∈V

(

yvol
i − tanh(

ŷ(xvol
i )

ϵ
)

)2

, where α∗
j , θ

∗ = argmin
(α j ,θ )

L(α j , θ ).

(17)

where γ is a tunable hyperparameter. By minimizing this loss function, we achieve two goals in recovering the
correct surface geometry: (1) constrain the value of fθ to zero and the gradient of fθ to fit the actual surface
normal direction, which is satisfied as the first term goes to zero; and (2) enforce the occupancy condition so that
fθ predicts the correct sign inside and outside the yield surface, which is satisfied as the second term goes to
zero. Notice that the second goal characterizes a binary classification problem, but the conventionally used binary
cross entropy (BCE) loss is not included in the loss function, which is because the usage of logarithm becomes
problematic with negative values in this case.
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In the training process, α j and θ are updated in an asynchronous fashion: α j are trained by directly solving
Eq. (14), but θ is updated using gradient-based optimization given fixed α j and ∂L/∂θ . We summarize the training
routine in Algorithm 1.

Algorithm 1 The NK training routine for optimizing trainable parameters α and θ

Require: Training data set D, occupancy data set V , learning rate η, hyperparameters λ and ϵ.
1. Setup the feature map neural network φθ (x) with the trainable parameters θ .

Define φθ (x) = E LU (W 3 · E LU (W 2 · E LU (W 1 · x + b1) + b2) + b3).
Initial θ = {W 1, b1,W 2, b2,W 3, b3} with pytorch default initializer.

2. Given pairs of feature vectors xi , x j from D, compute the kernel matrix Ki j

Assemble Ki j = φθ
T (xi )φθ (x j ) for (xi , yi ), (x j , y j ) ∈ D

3. Solve the linear kernel equations for the kernel coefficients α j .

Solve (Ki j + λδi j )α j = yi for (xi , yi ) ∈ D.
4. Given the level set yield function fθ (x), compute the loss function L(α j , θ ) and its gradient ∂L/∂θ .

Compute fθ (x) =
∑

(xi ,yi )∈D α jφθ
T (x j )φθ (x).

Predict ŷi = fθ (xi ) and ŷvol
i = fθ (xvol

i ) for (xi , yi ) ∈ D and (xvol
i , yvol

i ) ∈ V .

Compute L(α j , θ ) =
∑

(xi ,yi )∈D(yi − ŷ(xi ))2 + γ
∑

(xvol
i
,yvol

i
)∈V

(

yvol
i − tanh(

ŷ(xvol
i

)
ϵ

)

)2

.

Differentiate L(α j , θ ) for ∂L/∂θ with loss.backward().
5. Update θ given η and ∂L/∂θ using gradient-based optimizer like ADAM.

Run torch.optim.Adam(θ,η).step().
6. Repeat Steps 2-5 until the loss function converges and output fθ (x).

Remark 2 (Hyperparameter Tuning).

1. γ < ϵ < rmin can be a set of good hyperparameters in Eqs. (11) and (17), where rmin is found by first
centering the data, i.e. translating the data such that the centroid goes to the origin, and then computing the
distance from the closest data point to the origin.

2. The output dimension h should be large enough, which is equivalent to increasing the dimension of the basis
level set function shown in Fig. 3. Ideally, h should be comparable with |D|.

3. Increasing λ would also improve the convergence of the loss function when the data are noisy. In both
examples of this paper, λ = 0.01 is used.

In the Sobolev training technique with deep learning, we consider the influence of the derivative of the neural
network function with respect to the network input in the loss function, such that we enforce the prediction accuracy
for the neural network derivative with respect to its input. For the global loss function, we directly supply the original
loss in Eq. (17) with the MSE between the groundtruth and predicted surface normal directions:

L Sob(α, θ ) =
∑

(xi ,yi )∈D

(yi − ŷ(xi ))
2 + γ

∑

(xvol
i
,yvol

i
)∈V

(

yvol
i − tanh(

ŷ(xvol
i )

ϵ
)

)2

+ γ ′
∑

(xi ,yi )∈D

∥ni − ∂ ŷ(xi )

∂xi

∥2 (18)

where L Sob is the Sobolev loss function we adopt, γ ′ is a hyperparameter controlling the influence of derivative
term in the global loss. We will compare NK with the MLP-based level set (MLP-LS) method, which is documented
in [27]; the details of the MLP-LS method are provided in Appendix C.

3.3. Return mapping algorithm

The return mapping algorithm for micromorphic materials is presented in Algorithm 2, which follows the
return mapping theory shown in Eqs. (3) and (5). We further assume that the yield surface is able to evolve,
and such hardening process is governed by an internal variable Λ, i.e., the magnitude of the cumulative plastic
strain (plastic multiplier), such that fθ (x,Λ) represents a family of yield functions evolving with Λ. For micropolar
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materials, convert the (κi j ,m j i ) into (G i jk, ζi jk) = (−ϵi jlκlk,− 1
2ϵi jlmlk) before Algorithm 2 and convert back by

(κi j ,m j i ) = (− 1
2ϵimnGmnj ,−ϵimnζmnj ) after the return mapping. The notation

3
G and

3
ζ are used to represent the

3rd-order gradient of the micro-deformation tensor and micromorphic generalized stress tensor respectively.

The implementation of the return mapping algorithm requires the elastic energy functional W (ε,
3
G), the yield

function fθ (x,Λ), where x is the vector consisting of the components of σ and
3
ζ ; given the pre-trained plastic

yield function, the plastic flow direction ∇x fθ (x,Λ) can be derived by pytorch automatic differentiation and
∇Λ fθ (x,Λ) = 0 in the case of perfect plasticity. Unless otherwise stated, fθ (x,Λ) is derived from the pretrained

machine learning model, either from NK or MLP-LS, and W (ε,
3
G) comes from the Sobolev training of elastic

energy functional [62].
Given all the necessary ingredients, Algorithm 2 first computes the elastic trial Cauchy and higher-order stresses

following Eq. (3). If yielding is detected by fθ (xtr ,Λ) ≤ 0, a system of nonlinear equations following Eq. (5) would
be solved to find the vectorized stresses x and the increment in the plastic multiplier ∆Λ. Otherwise, the trial states
are directly output.

Algorithm 2 Return mapping algorithm for higher-order continuum.

Require: Current internal variable Λ, elastic strain εe
n , elastic gradient of micro-deformation

3
Ge

n , increments of

deformation ∆ε,∆
3
G, yield function fθ (x,Λ), and elastic energy functional W (ε,

3
G).

Outputs: Higher-order stresses σ n+1,
3
ζ n+1, and plastic multiplier Λ at the next time step.

1. Compute trial elastic strain, trial elastic stress, and elasticity tensor.

Compute

[

ε
e,tr
n+1
3

G
e,tr
n+1

]

=
[

εe
n + ∆ε

3
Ge

n + ∆

3
G

]

.

Compute

[

σ tr
n+1

3
ζ tr

n+1

]

=
[

∂W/∂ε

∂W/∂
3
G

]

at (ϵe,tr
n+1,

3

G
e,tr
n+1).

Vectorize xtr =
[

σ tr
n+1

3
ζ tr

n+1

]

.

Matrixize C
e =

⎡

⎣

∂2W/∂ε2 ∂2W/∂ε∂
3
G

∂2W/∂ε∂
3
G ∂2W/∂

3
G

2

⎤

⎦ at (ϵe,tr
n+1,

3

G
e,tr
n+1).

2. Check the yield condition and perform return mapping if yield is detected.

if fθ (xtr ,Λ) ≤ 0 then

σ n+1 = σ tr
n+1,

3
ζ n+1 =

3
ζ tr

n+1
else

Solve for x and ∆Λ, such that

[

x − xtr + C
e
∆Λ∇x fθ (x,Λ + ∆Λ)

fθ (x,Λ + ∆Λ)

]

= 0.

Extract σ n+1 and
3
ζ n+1 from x =

[

σ n+1
3
ζ n+1

]

, update Λ = Λ + ∆Λ.

Remark 3 (Stress Integration for Non-Convex Yield Surfaces). As pointed out by Lin and Bažant [63], there do
exist non-convex yield surfaces in the literature, such as the Argyris yield surface (cf. Argyris et al. [64]) and the
Barcelona Basic Model (cf. Sheng et al. [65]), which purposely introduce non-convexity for the sake of matching the
phenomenological responses observed from experiments. As we did not enforce the convexity of the yield function
explicitly, the resultant yield functions (see Figs. 11 and 14) are found to have concave regions. A robust implicit
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stress integration may require specific treatment to find the first intersection between the non-convex yield function
and an elastic trial stress point (cf. Pedroso et al. [66] and Sheng et al. [65]). In our case, we follow the treatment
in GlÈuge and Bucci [67], in which an incremental trial step smaller than the radius of the curvature of the yield
surface is used such that the return mapping algorithm may yield a unique corrected state.

4. Numerical experiments

In this section, two examples of yield surface reconstruction with MLP-LS and NK are presented, each followed
by a performance evaluation. In the first example, both methods are verified by the analytical micropolar J2 yield
surface [68], followed by a short case study comparing the performance of both methods given limited or missing
data. In the second example, both methods are validated by a direct numerical simulation (DNS) data upscaled from
finite element simulations. For brevity, we only present the comparisons of yield surfaces obtained from MLP-LS
and MK methods here. The results obtained from other alternative approaches (e.g., Gaussian Kernel, and NURBS)
are presented in the Appendix.

4.1. Two-dimensional micropolar J2 plasticity model

The first example applies the MLP-LS and NK methods to reconstruct the micropolar J2 yield surface [68] with
a data set inferred from the yield function in Eq. (19). This micropolar J2 plasticity model can be viewed as a
generalized version of the classical J2 plasticity, where the additional terms with respect to the couple stress tensor
m and micropolar length scale l are introduced to capture the size effect. The spatial dimension is reduced to 2D
assuming plane stress, i.e. σ33 = 0, such that only the components σ11, σ22, σ12, m13, and m23 are non-zero in the
yield function, where the mean stress p = (σ11 + σ22)/3 and the deviatoric stress s = σ − p I .

f (σ ,m) =
√

s : s + m : m

l2
−

√

2

3
Y (19)

where Y indicates the yield stress. The numerical specimen used for verification follows linear micropolar
elasticity [68,69],

σ = K tr(ε)I + 2µεdev + 2µcε
skw, (20)

with bulk modulus K = 100
3 MPa, shear modulus µ = 50 MPa, coupled shear modulus µc = 0, and yield stress

Y =
√

2
3 MPa. Due to the micropolar effect, the strain tensor is divided into the hydrostatic part tr(ε)I , deviatoric

part εdev and the skew-symmetric part εskw.
The performance of the two methods is examined by visualizing cross sections of the yield surface and the results

of the return mapping algorithm. According to the test results, both methods are able to detect the yield point on the
yield surface accurately and produce correct higher-order stress curves when the trained yield function is integrated
into a return mapping algorithm. An additional case study with limited and missing data is conducted to evaluate
the performance of both methods given low-quality data.

4.1.1. Yield surface reconstruction and return mapping

The yield data points generated by Algorithm 3 in Appendix B are used to train both the MLP-LS and the
NK models. The MLP-LS model, constructed by a 3-layer MLP shown in Eq. (10) function and 64 neurons in
each hidden layer, is trained with the batch size of 1000 for 500 epochs. The NK model, whose feature map φθ
is constructed by a 3-layer MLP architecture with 64 neurons in each hidden and output layer, is trained for 500
epochs. The training and validation loss histories are shown in Fig. 5, where the validation loss can be less than
the training loss because the training loss function has an additional term controlling the sign of the yield function,
as shown in Eq. (17).

The smooth yield surface is reconstructed by the MLP-LS and NK. The cross sections on σ11 − σ22, σ11 − σ12,
and m13 − m23 planes are shown in Fig. 6, where both methods accurately reconstruct a yield surface that respects
the ground truth yield points. Therefore, we consider that both methods are generalizable to higher-dimensional
yield surfaces given a set of sufficient and well-distributed data.

In addition to the yield surface reconstruction, the return mapping algorithm 2 is implemented to verify both
MLP-LS and NK methods. The material is loaded elastoplastically in a single kinematic mode, i.e. one of the
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Fig. 5. Training and validation losses when learning the analytical plastic yield function.

Fig. 6. Cross sections of the analytical yield surface.

uniaxial tension, shear, and bending modes, and then unloaded elastically. The test results of the return mapping,
as shown in Fig. 7, indicate that both methods can be integrated into the return mapping algorithm and are able to
produce valid stress curves.

4.1.2. Case study with limited and missing data

It has been shown that given a set of sufficient and well-distributed yield point data, both MLP-LS and NK
methods are able to reconstruct the yield surface accurately, as shown in Fig. 6. However, when the sufficient and
well-distributed data are not available, the performance of the two methods is of interest. Therefore, two sets of
non-ideal data are generated from the training set to test the performance of the two methods. The first data set,
called the set of limited data, is sampled from the training set with a limited size via numpy.random.choice(),
such that the data set is as well-distributed as the training set but has a much smaller data size. The other data set,
called the set of missing data, is generated by removing a cluster of yield point data from the training set, such that
the data set has a missing data patch and is considered poorly distributed.

In this case study, the limited data set with 800 data is sampled from the training set, and the missing data is
generated by removing a cluster of data as shown in Fig. 8 (MIDDLE), which contains 13 665 data after the data
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Fig. 7. Return mapping results of uniaxial (LEFT), shear(MIDDLE), and bending (RIGHT) tests verify both MLP-LS and NK methods.

Fig. 8. Surface reconstructed given limited data (LEFT), missing data (MIDDLE), and the return mapping results of uniaxial tension test
(RIGHT).

cluster is removed. It is observed from Fig. 8 that given limited data that follows the same distribution with the
test data, the yield surface can still be reconstructed accurately by both methods, shown in Fig. 8 (LEFT); however,
when the missing data set is used for training, it is observed in Fig. 8 (MIDDLE and RIGHT) that NK produces a
significantly more accurate prediction of the test data and stress history than MLP-LS, which reflects the robustness
against the missing data.

4.2. Multiscale homogenization for anisotropic plasticity of layered clay

The second example presents the application of the neural kernel method to reconstruct micropolar and
micromorphic yield surfaces upscaled from direct numerical simulations. We select an idealized microstructure
commonly used to represent shale, i.e. a layered material consisting of hard and soft constituents [70±72]. Readers
interested in previous mathematical and neural network modeling efforts of layered geomaterials may refer to
Semnani et al. [73], Zhao et al. [74], Borja et al. [75] and Xiao and Sun [35]. To the best knowledge of the
authors, there has not yet been any attempt to model the micropolar and micromorphic plasticity of shale via deep
learning.
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Fig. 9. The internal structure of the RVE consists of layers of clay materials, with the material parameters labeled.

4.2.1. Data preparation

The RVE data is obtained from finite element simulations on a domain consisting of layered clay materials
composed of a hard and a soft constituent with intact interfaces (see Fig. 9). These layer constituents are assumed
to be Cauchy continua with elasto-plastic behaviors characterized by the classical Cam-Clay model but with different
material parameters. Since the constituents are assumed to exhibit no higher-order effects, the higher-order effect
of the effective medium is stemmed from the spatial heterogeneity of the micro-structures. The elastic response is
captured by the following elasticity energy function

ψe(εe) = −p0Cr exp

(

− εe
v

Cr

)

+ 3

2
µ0(εe

s )2, εe
v = tr(εe), εe

s = ∥εe − 1

3
εe
v1∥ (21)

where p0 is the initial pressure, εe
v0 is the initial volumetric deformation, µ0 indicates a constant shear modulus,

and Cr is the elastic re-compression ratio. The yield function with the hardening law is captured by,

f (σ ) = q2

M2
+ p(p − pc), p = tr(σ )

3
, q =

√

3

2
∥σ − p1∥ (22)

where pc the preconsolidation pressure, M is the slope of the critical state line. The hardening law that governs the
evolution of pc is expressed as follows:

pc = pc0 exp(ε p
v /(Cc − Cr )), ε p

v = tr(ε p) (23)

where Cc is the plastic compression index and pc0 indicates the initial preconsolidation pressure.
This data set is generated from the same finite element domain used in [35]. The boundary value problem that

generates the data set is solved also by the same finite element solver (cf. Xiao and Sun [35]) that employs the
deal.ii library [76]. To capture the high-order constitutive behaviors, data are collected by applying the admissible
boundary conditions, solving local BVP, and homogenizing the higher-order stresses according to Eqs. (8) and (9)
in Section 2.

The DNS yield data are first sampled by loading the RVE at evenly parametrized deformation rate by Algorithm
4 in Appendix B, and the yield points are recorded when permanent deformation is detected.

4.2.2. Reconstruction of yield surfaces

We present the yield surfaces in a higher-dimensional stress space. The results are evaluated by comparing the
accuracy and robustness of the yielding and hardening behaviors from unseen stress paths predicted by the NK and
MLP-LS (which serves as the benchmark model).

To present a yield surface in a higher-dimensional stress space, the cross sections of the yield surfaces are
presented by projecting the surface onto the stress planes defined by the combinations of two stress components. Two
cases are studied: micropolar and micromorphic yield surfaces in higher-dimensional stress spaces. The results show
that both MLP-LS and NK are able to capture the complex features of the higher-dimensional yield surface where
data is sufficient. However, when data is sparsely distributed at some parts of the yield surface, NK outperforms
MLP-LS in terms of extrapolating the unseen data.
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Fig. 10. Training and validation losses of different combinations of yield surfaces and models. The micropolar and micromorphic yield
surfaces can be learned by either NK or MLP-LS (LS).

4.2.3. Hyperparameters

Different sets of hyperparameters are used to learn the two yield surfaces with different dimensions. The
micropolar yield function consists of 5 stress components, learned by the deep architecture with an input layer
of 5 neurons. The MLP architecture consists of two dense hidden layers of 256 neurons and an output layer of 1
neuron, while the NK architecture consists of three dense layers of 512 neurons. The MLP-LS is trained with the
batch size of 100 and the learning rate of 0.01 for 1000 epochs, while NK is trained for 500 epochs with the batch
size of 200 and the learning rate of 0.0001, with the other hyperparameters being γ = 0.1, ϵ = 0.02, λ = 0.01. In
the micromorphic case, the yield function consists of 9 stress components, such that the input layer with 9 neurons
is used. The MLP with the same hidden dimension is trained with the batch size of 100 and the learning rate of
0.005 for 1000 epochs, while the NK architecture that consists of three dense layers of 512, 512, and 1024 neurons
is trained for 100 epochs with the batch size of 500, learning rate of 0.0002, with the other hyperparameters being
γ = 0.1, ϵ = 0.05, λ = 0.01.

4.2.4. Training of neural kernels

The training and validation loss histories of different combinations of yield surfaces and models are shown in
Fig. 10. The training loss is generally higher than the validation loss due to the additional term in the training loss
function Eq. (17) that controls the sign of the yield function.

The strikes in the loss history are probably because of the mini-batch gradient-descent optimization of the loss
function, where the loss is not guaranteed to be consistently decreasing, and the gradient evaluated on some data
batches may be very large to create the instability of the loss history. In general, the NK has a higher training loss
but a lower validation loss than MLP-LS which is more likely to overfit the data. The validation loss is defined by
| fθ (xi )| given the test data xi , which does not reflect the accuracy of prediction defined by ∥xi − x̂i∥, where x̂i

is the predicted yield point ( fθ (x̂i ) = 0), but the convergence of the validation loss reflects a decent accuracy of
prediction.

4.2.5. Micropolar yield surfaces

Since the yield surface for higher-order continua depends on more than 3 variables, it is not feasible to fully
visualize the learned yield surface geometrically in a three-dimensional space. As such, we projected the high-
dimensional yield surface onto 2D stress planes (where the rest of the stress components and internal variables are
fixed) to demonstrate the geometrical features of the yield surfaces in the high-dimensional models. We then further
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Fig. 11. Cross sections of the micropolar yield surface reconstructed by MLP-LS and NK.

examine the results via 2D prediction vs. ground-truth plots, samples of stress paths, and stress±strain curves for
individual stress/strain components.

Micropolar yield surfaces projected onto 2D stress planes. The micropolar yield surface is visualized by the cross
sections projected on 10 stress planes of different combinations of stress components, as shown in Fig. 11; the
ground truth yield data are projected to the 10 stress planes as well and compared with the yield points predicted
by NK and MLP-LS. We observe that both NK and MLP-LS are able to capture the complex features of the
higher-dimensional yield data. Furthermore, The yield surfaces parametrized by both approaches are geometrically

similar in most regions, except for a few locations where the training data is sparse, e.g., the top left corner of
the yield surface projected to the first stress plane in Fig. 11. This convergence of the learned function indicates
that the data is sufficiently abundant to constrain the geometry of the yield surfaces. As such, the feature extraction
enabled by the data-dependent kernel of NK does not lead to significant difference in the data-rich regions.

To have a better understanding of the difference between the two predicted surfaces, we inspect the yield surface
projected on the first stress plane and generate two additional unseen data as shown in Fig. 12. It is observed
that although MLP-LS fits the training data more accurately, NK outperforms MLP-LS when extrapolating the
missing data. The same phenomenon is observed in Fig. 8 in the previous example. The reason why NK is better
at extrapolating is probably that the function space of the NK model is spanned by a controlled number of basis
kernel functions as shown in Fig. 3, such that the pattern of the yield surface is recognized by the linear Galerkin
projections of the data to the finite-dimensional function space; the yield surface can then be extrapolated more
reasonably based on the learned pattern.
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Fig. 12. Considering the σ11 − σ22 plane, although MLP-LS is able to fit the training data more accurately, NK is able to better extrapolate
the surface with missing data and fit the unseen data more accurately.

Fig. 13. Micropolar test data compared component-by-component with predictions by MLP-LS and NK.

Accuracy on unseen data. The unseen test yield data (sampled within the identical distribution of the train data)
are compared with the yield point predictions component-wisely in Fig. 13. In this Prediction vs. Ground Truth
figure, a perfect result would be a straight line with a 45-degree inclination angle. In our case, the micropolar yield
surface generated by MK and MLP-LS both demonstrate sufficient accuracy, with the MLP-LS performing slightly
better. This performance difference could be attributed by the different ways NK and MLP-LS parametrize the yield
surface. In the NK case, the inductive bias obtained from the training is generated via the finite-dimensional space
spanned by the data-dependent basis kernels which is used to express the yield surface. In the MLP-LS case, the
yield surface is directly parametrized by the neural network weights. This setting is less restrictive than the kernel
approach where the learned yield function must be an element of the space spanned by the kernel basis. As such,
assuming that the data is sufficiently populated in this micropolar experiment, the performance gain of the MLP-LS
might have been attributed to the higher expressivity of the MLP neural network [77].

4.2.6. Micromorphic yield surfaces

Compared to the micropolar case, the dimension of the micromorphic yield surface is higher. With 9 stress
components and an internal variable as the input, the yield surface would require significantly more data to
populate the parametric space. Theoretically, the number of data needed to produce similar performance increases
exponentially with the dimension [78], which means if 103 is needed to reconstruct the micropolar yield surface
accurately, then approximately 106 data is needed in the micromorphic case in order to reach the similar
performance. This data sparsity manifested by the high dimensionality might contribute to the fact that there are
so few attempts to hand-craft yield surfaces for micromorphic continua and most of them are simply an extension
of the Cauchy continuum counterpart. As such, many of the micromorphic and micropolar simulations are often
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related to F E M2 multiscale approach that is computationally expensive [79,80]. Since it is increasingly unrealistic
to always expect that we will have sufficient data when we increase the dimensionality of the model to incorporate
the micromorphic effect, the robustness of the learning algorithms in the sparse data regime becomes critical.

In this micromorphic example, 16 904 data points (split into 13 500 training data and 3404 test data) are used to
train and test the model. In other words, we have only increased the training data by 2.25 times (cf. Appendix B.2)
whereas the data demand is expected to be increased by 3 orders. This sparsity of data is intentional, as we would
like to investigate whether the feature space generated from the data-dependent kernel may enable us to generate a
more robust inductive bias for extrapolation when the data is limited.

Micromorphic yield surfaces projected onto 2D stress planes. We first examine the NK and MLP-LS yield surfaces
by projecting them onto 36 different stress planes. By comparing Fig. 14 with Fig. 11, this micromorphic data is
distributed in a much sparser manner due to the increased dimensionality. In many of the planes shown in Fig. 14,
there is not even one single data point on the same plane (the orange point(s)). The sparsity showcased in these 2D
planes indicates that the inductive bias inferred from the rest of the data becomes the only dominant factor dictating
the prediction accuracy in those data-missing regions.

At the location regions far away from the DNS data (see σ22 − ζ111, m23 − ζ
sym

212 , and ζ111 − ζ
sym

212 planes.),
MLP-LS method tends to generate yield surfaces of more complex shapes that vary significantly among different
2D stress planes. On the other hand, the NK yield functions (see Fig. 14) have significantly less concave regions
and generally maintain a convex shape. The yield surface projected on different stress planes also exhibits more
consistent geometrical patterns than those obtained from MLP-LS. This difference in the resultant yield functions is
attributed to the sparsity of the data, which makes the learned function depend more significantly on the hypothesis
sets employed by the NK and MLP-LS models (cf. Mohri et al. [78]).

Remarkably, in this data-limited region, the NK model seems to be capable of exploiting the structure and
similarity of the data in the feature space. This exploitation on the structure and similarity of data seems to be
helpful in preventing overfitting (and hence the less complex yield surface) as well as enabling the learned model
to be consistent with the underlying physical laws obeyed by the data. In particular, while both the NK and MLP-
LS algorithms are subjected to the DNS data set compatible to the thermodynamics principles, only the NK model
yields a convex yield surface compatible with the thermodynamics constraint where data are sparse. This result is
particularly interesting, because the convexity of the yield function has not been explicitly enforced via loss function
or specific neural network architecture design.

Accuracy on unseen data. As shown in Fig. 15, both NK and MLP-LS are able to predict the micromorphic test
data with reasonable accuracy in the unseen data. However, due to the high dimensionality and sparsity of the data,
the similar accuracy in predicting a limited set of test data does not necessarily imply the similarity in the geometry
of the learned yield function.

As such, the test data sampled within the same distribution of the training may not be sufficient in painting a
complete picture of the prediction performance. Instead, an adversarial sampling on regions distant from the training
data may provide more useful insight on the robustness of the model, as shown in numerical examples demonstrated
in Figs. 8 and 12.

4.2.7. Validation exercise for constitutive responses along unseen loading paths

This subsection shows the hardening process by the evolution of the yield surface and validates the NK return
mapping algorithm (Algorithm 2) by the benchmark DNS stress history. To realistically reproduce the stress curve,
the hardening process is modeled by introducing the magnitude of cumulative plastic strain as the internal variable,
equivalent to an additional dimension of the higher-order yield surface; the initial yield surface expands as the
internal variable increases. To further validate the constitutive modeling with hardening, the benchmark DNS stress
history as the ground truth is first generated by controlling the deformation rate and solving the local BVP with the
prescribed time-dependent boundary conditions. Another stress history is then produced by the NK return mapping
algorithm and validated by the DNS benchmark. Given that the micropolar and micromorphic data could be too
sparse, the DNS simulations that generate the data are run sequentially with the machine learning step described
in Section 3. This adaptive strategy enables us to sample additional stress data at the locations where local support
of the NK-based yield function is needed to amend the neural kernels. Note that a more rigorous active sampling
strategy could potentially be derived via deep reinforcement learning, as shown in [81,82]. The rational design of

19



Z. Xiong, M. Xiao, N. Vlassis et al. Computer Methods in Applied Mechanics and Engineering 416 (2023) 116317

Fig. 14. Cross sections of the micromorphic yield surface reconstructed by MLP-LS and NK. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

experiments or sampling of data via deep reinforcement learning may potentially improve the robustness of the
learned yield surface, but is out of the scope of this study. Two return mapping examples are presented, one with
the micropolar and the other with the micromorphic constitutive model.
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Fig. 15. Micromorphic test data compared component-by-component with predictions by MLP-LS and NK.

As shown in Algorithm 2, the implementation of the NK-enabled return mapping algorithm requires two
ingredients: the elastic energy functional and the plastic yield function that evolves with an internal variable. The
elastic energy functional with respect to strain and higher-order kinematic modes is first trained by Sobolev training
with the loss function of Eq. (24), where the predicted elastic energy and its gradients are both constrained (cf. [27]).
To simulate the hardening process upon yielding, the yield function is expressed as a function of both the individual
stress components and internal variable Λ is trained via the NK Algorithm 1 where Λ is the magnitude of cumulative
plastic strain.

L =

⎧

⎨

⎩

∑

i |Wi − Ŵi |
2 +

∑

i ∥σ i − ∂Ŵi

∂ε
∥2 +

∑

i ∥mi − ∂Ŵi

∂κ
∥2 in micropolar case

∑

i |Wi − Ŵi |
2 +

∑

i ∥σ i − ∂Ŵi

∂ε
∥2 +

∑

i ∥
3
ζ i − ∂Ŵi/∂

3
G∥2 in micromorphic case

(24)

The micropolar return mapping example is first presented to introduce a test case with the microstrain being
neglected. The deformation rate is controlled such that ε̇11 = ε̇22 = −6e − 7, κ̇32 = 1.9e − 4 for t < 200 and the
opposite deformation rate is applied for t > 200, where t is the pseudo time. The stress history is then simulated
from DNS under the elastoplastic loading and elastic unloading with the prescribed boundary condition in Eq. (8);
all the stress and couple stress components are homogenized. The stress history is projected onto the stress plane
of the combination of each stress component and m23, which is the component conjugate to the main kinematic
mode κ32. The yield surfaces with different internal variables are reconstructed by NK and projected to the same
stress planes, as shown in Fig. 16. It is observed that as the stress propagates, the internal variable increases, and
the yield surface evolves such that the elastic region expands.

In addition to the DNS stress history as the ground truth, another stress history from the return mapping algorithm
of NK is also simulated by prescribing the same deformation history. The material is first loaded elastically such that
the stress increments follow the elastic energy functional W (ε, κ); when the yield is detected, the return mapping
algorithm is initiated and the internal variable is incremented to model the hardening process; finally, the elastic
unloading is applied, and the stress decreases with the curve showing the permanent plastic deformation. Since
some stress components remain zero as shown in Fig. 16, only the nonzero components are presented in Fig. 17,
and the consistency in the component-wise comparison validates the micropolar NK return mapping.

One interesting finding observed from Fig. 17 is that the bending kinematic mode can affect the Cauchy stress.
Most of the handwritten models are chiral, i.e. higher-order kinematic modes and stresses being independent of
the Cauchy stress and strain [51] to avoid modeling the complex coupling effect of the non-chiral material. The
geomaterial we are studying is a non-chiral material according to the stress pattern shown in Fig. 18, because under
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Fig. 16. Micropolar yield surface evolution with stress path projected to the stress planes consisting of different micropolar stress component
combined with m23, where m23 is the stress components conjugate to the micropolar kinematic deformation κ32.

Fig. 17. The history of micropolar stress components is accurately predicted given the history of the kinematic deformation κ32.

the bending mode, the tension part starts to yield such that the stress stops increasing, while the compression part
remains elastic with the normal stresses decreasing. As a result, the homogenized σ11 and σ22 decrease under the
higher-order modes, and our NK method is able to capture this non-chiral effect.

In the micromorphic case, the stress history involves more components due to the additional kinematic modes.
The deformation modes are controlled by the rate of ε̇11 = ε̇22 = −6e − 7, Ġ222 = 3.5e − 4 for t < 200 and the
opposite rate is applied for t > 200. The stress history is then simulated from DNS under the elastoplastic loading
and elastic unloading with the prescribed boundary condition in Eq. (8); all the stress and couple stress components
are homogenized. The stress history is projected onto the stress plane of the combination of each stress component
and ζ222. The yield surfaces evolving with the internal variable are reconstructed by NK and projected to the same
stress planes, as shown in Fig. 19.

Similar to the micropolar case, the stress history simulated by DNS and predicted by NK return mapping under
elastoplastic loading and elastic unloading, with more kinematic modes involved. The non-zero components of the
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Fig. 18. Patterns of normal stress σ11, σ22, and σ12 indicate that the geo-material is nonchiral.

Fig. 19. Micromorphic yield surface evolution with stress path projected to the stress planes consisting of different micromorphic stress
components combined with ζ222, where ζ222 is the stress component conjugate to the micromorphic kinematic deformation G222.

stress history are compared and found to be consistent as shown in Fig. 20, which validates the micromorphic NK
return mapping algorithm and shows the robustness of the NK method in modeling higher-order plasticity problems.

5. Conclusions

This paper presents the NK and MLP-LS method to reconstruct the higher-order yield surface in order to model
the path-dependent constitutive law of a material with a complex micro-structure, e.g., a layered geo-material. The
DNS constitutive data are first collected by solving local BVPs over the RVE domain, and then used to train the
MLP-based elastic energy functional and NK-based narrow band yield function, which reproduce the path-dependent
constitutive relation via return mapping algorithm.
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Fig. 20. The history of micromorphic stress components is accurately predicted given the history of the kinematic deformation G222.

Two examples are presented to evaluate the performance of NK compared to MLP-LS. In the first example,
the NK and MLP-LS are both able to reproduce a simple analytical plasticity yield model, verified by the yield
surface and path-dependent stress curves. However, in the following case study, NK significantly outperforms MLP-
LS in the accuracy of the yield surface and the stress curves reproduction, given the poorly distributed data with
missing patches. In the second example, the two methods are validated by the micropolar and micromorphic DNS
constitutive data of a layered geo-material. It is observed from the micropolar yield surface that NK outperforms
MLP-LS in extrapolating unseen data, which is also observed in the first example. We consider the reason is that
NK learns the pattern of the higher-dimensional surface via projecting the data onto a finite-dimensional kernel
function space and extrapolates the data from the learned pattern. The micropolar return mapping results show
that the material is non-chiral (i.e. Cauchy and higher-order stresses are coupled), which is also observed from the
distortion of the internal RVE structure; the NK method is able to model the non-chiral effect that is hard to reflect
by the handwritten models. The micromorphic results of yield surface reconstruction and return mapping further
show that the NK method is generalizable to a much higher-dimensional stress space and decently reproduces the
path-dependent constitutive responses given limited and missing data.
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Appendix A. Some mathematical background of higher-order continua

This section provides the mathematical derivation of the theory in Section 2. We start with the proof of Hill’s
Lemma of micromorphic, micropolar, and Cauchy materials, which is used to derive the admissible boundary
condition for the higher-order continua. Based on the admissible boundary condition, the stress homogenization
scheme satisfying Hill±Mandel’s condition is derived.

A.1. Proof of Hill’s lemma

The higher-order continuum is studied on an RVE domain Ω with the local coordinate y as shown in Fig. 1.
Hill’s Lemma of the micromorphic continuum can be derived as Eq. (25), where the notation ·̄ = 1

V

∫

Ω
·dV .

σ j iεi j − σ̄ j i ε̄i j + ζi jk G i jk − ζ̄i jk Ḡ i jk = 1

V

∫

∂Ω

(nkσki − nk σ̄ki )(ui − ūi, jY j − 1

2
Ḡ i jlY jYl)d S

+ 1

V

∫

∂Ω

(nkζi jk − nk ζ̄i jk)(χi j − Ḡ i jlYl)d S + σ̄ j i χ̄i j

(25)

The Hill’s Lemma shown in Eq. (25) contains two terms of surface integral. To prove the Hill’s Lemma, the two
terms are expanded separately by the divergence theorem. The first term of Eq. (25), named ªpart 1º, is the surface
integral regarding Cauchy stress. The ªpart 1º surface integral can be expanded into two volume integrals by the
divergence theorem and product rule, with the first volume integral being zero, given σki,k = σ̄ki,k = 0 as shown in
Eq. (26).

part 1 := 1

V

∫

∂Ω

(nkσki − nk σ̄ki )(ui − ūi, jY j − 1

2
Ḡ i jlY jYl)d S

= 1

V

∫

Ω

(σki,k − σ̄ki,k)(ui − ūi, jY j − 1

2
Ḡ i jlY jYl)dV

+ 1

V

∫

Ω

(σki − σ̄ki )(ui − ūi, jY j − 1

2
Ḡ i jlY jYl),kdV

= 1

V

∫

Ω

(σki − σ̄ki )(ui − ūi, jY j − 1

2
Ḡ i jlY jYl),kdV

(26)

The ªpart 1º can be further expanded based on Eq. (26), and some terms can be canceled given
∫

Ω
(σki −σ̄ki )dV =

0 and Ḡ i jk = Ḡ ik j , such that the results can be simplified as shown in Eq. (27).

part 1 = 1

V

∫

Ω

(σki − σ̄ki )(ui − ūi, jY j − 1

2
Ḡ i jlY jYl),kdV

= 1

V

∫

Ω

(σki − σ̄ki )ui,kdV − 1

V

∫

Ω

(σki − σ̄ki )dV (ūi, jδ jk) − 1

V

∫

Ω

(σki − σ̄ki )(
1

2
Ḡ i jlY jYl),kdV

= σki ui,k − σ̄ki ūi,k − 1

2
Ḡ i jl

1

V

∫

Ω

(σki − σ̄ki )(δk jYl + δl jYk)dV (given
∫

Ω

(σki − σ̄ki )dV = 0)

= σ j i ui, j − σ̄ j i ūi, j − Ḡ i jk

1

V

∫

Ω

σ j iYkdV (given Ḡ i jk = Ḡ ik j )

(27)
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The second term of Eq. (25), named ªpart 2º, is the surface integral involving the micromorphic generalized
stress. The ªpart 2º surface integral can be expanded by the divergence theorem and simplified similarly to the
previous derivation.

part 2 := 1

V

∫

∂Ω

(nkζi jk − nk ζ̄i jk)(χi j − Ḡ i jlYl)d S

= 1

V

∫

∂Ω

nkζi jkχi j d S + 1

V

∫

∂Ω

nk ζ̄i jk Ḡ i jlYld S − 1

V

∫

∂Ω

nk ζ̄i jkχi j d S − 1

V

∫

∂Ω

nkζi jk Ḡ i jlYld S

= 1

V

∫

Ω

(ζi jk,kχi j + ζi jk G i jk)dV + ζ̄i jk Ḡ i jk − ζ̄i jk Ḡ i jk − 1

V

∫

Ω

ζi jk,k Ḡ i jlYldV − ζ̄i jk Ḡ i jk

= ζi jk G i jk − ζ̄i jk Ḡ i jk + 1

V

∫

Ω

ζi jk,k(χi j − Ḡ i jlYl)dV

(28)

Adding the equations Eqs. (27) and (28), the Hill’s lemma Eq. (25) can be proven. Given the balance equation
σ j i + ζi jk,k = 0, all additional terms can be canceled other than the final result consisting of 5 terms of volume
integrals, as shown in Eq. (29). This concludes the proof of Eq. (25).

1

V

∫

∂Ω

(nkσki − nk σ̄ki )(ui − ūi, jY j − 1

2
Ḡ i jlY jYl)d S + 1

V

∫

∂Ω

(nkζi jk − nk ζ̄i jk)(χi j − Ḡ i jlYl)d S

= σ j i ui, j − σ̄ j i ūi, j − Ḡ i jk

1

V

∫

Ω

σ j iYkdV + ζi jk G i jk − ζ̄i jk Ḡ i jk + 1

V

∫

Ω

ζi jk,k(χi j − Ḡ i jlYl)dV

= σ j iεi j − σ̄ j i ε̄i j + ζi jk G i jk − ζ̄i jk Ḡ i jk − σ̄ j i χ̄i j + 1

V

∫

Ω

(σ j i + ζi jk,k)(χi j − Ḡ i jlYl)dV

= σ j iεi j − σ̄ j i ε̄i j + ζi jk G i jk − ζ̄i jk Ḡ i jk − σ̄ j i χ̄i j

(29)

A.2. Hill’s lemma for micropolar and Cauchy continua

In the case where the micropolar continuum is considered, the generalized stress is replaced by the couple stress
m j i = −ϵimnζmnj , and the micro-deformation is replaced by the micro-rotation θi = − 1

2ϵi jkχ jk , where ϵi jk is the
Levi-Civita permutation symbol. As a result, the curvature tensor becomes κi j = θi, j = − 1

2ϵimnGmnj , and Hill’s
lemma can be reduced to Eq. (30).

σ j iεi j − σ̄ j i ε̄i j + m j iκi j − m̄ j i κ̄i j = 1

V

∫

∂Ω

(nkσki − nk σ̄ki )(ui − ūi, jY j + ϵi jk κ̄klY jYl)d S

+ 1

V

∫

∂Ω

(nkmki − nkm̄ki )(θi − κ̄i jY j )d S − ϵi jk σ̄ j i θ̄k

(30)

For the Cauchy continuum, the Hill’s Lemma is further reduced to Eq. (31) by neglecting the micro-deformation
and the higher-order generalized stress.

σ j iεi j − σ̄ j i ε̄i j = 1

V

∫

∂Ω

(nkσki − nk σ̄ki )(ui − ūi, jY j )d S (31)

A.3. Admissible RVE boundary conditions

The admissible boundary condition of the RVE can be derived from the Hill’s Lemma, which should satisfy the
Hill±Mandel’s condition in the form of Eq. (32), such that the left-hand side of Eq. (25) vanishes.

σ j iεi j − σ̄ j i ε̄i j + ζi jk G i jk − ζ̄i jk Ḡ i jk = 0 (32)

The Hill±Mandel’s condition is satisfied if the 3 terms of the right-hand side of Eq. (25), including two surface
integrals and one volume integral, become zero, as shown in (33).

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
V

∫

∂Ω
(nkσki − nk σ̄ki )(ui − ūi, jY j − 1

2 Ḡ i jlY jYl)d S = 0

1
V

∫

∂Ω
(nkζi jk − nk ζ̄i jk)(χi j − Ḡ i jlYl)d S = 0

σ̄ j i χ̄i j = 0

(33)
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One admissible boundary condition that satisfies the Hill±Mandel’s condition can be derived based on the
macroscopic strain tensor ε̄i j and the gradient of micro-deformation Ḡ i jk [51,52]. In the case where the base
materials of RVE are Cauchy continuum (i.e. Cauchy to higher-order upscaling), χi j = 0 internally and χ̄i j = 0, such
that ūi, j = ε̄i j , the boundary condition shown in Eq. (34) can be derived, which satisfies Hill±Mandel’s condition
by satisfying Eq. (33).

{

ui = ε̄i jY j + 1
2 Ḡ i jkY jYk on ∂Ω

χi j = Ḡ i jkYk on ∂Ω
(34)

The 3rd-order tensor G i jk is further split into the symmetric part G
sym
i jk = (G i jk +G j ik)/2 and the skew-symmetric

part Gskw
i jk = (G i jk − G j ik)/2, such that the higher order modes can be separated into micropolar bending modes

and microstrain modes. The micropolar behavior of the material can be studied by prescribing the bending modes
κi j = θi, j = − 1

2ϵimnGmnj = − 1
2ϵimnGskw

mnj . As a results, all the characteristic kinematic modes in 2D case are
presented in Fig. 2, such that the prescribed boundary condition is the linear combination of those characteristic
modes.

In the special case when the micropolar or Cauchy continuum is considered, the boundary condition is reduced to
the form of Eq. (35), where Ḡ i jk becomes ϵi jl κ̄lk for micropolar continuum and becomes zero for Cauchy continuum.

{

ui = ε̄i jY j − 1
2ϵi jl κ̄lkY jYk, θi = κ̄i jY j on ∂Ω for micropolar continuum

ui = ε̄i jY j on ∂Ω for Cauchy continuum
(35)

A.4. Homogenization based on Hill±Mandel’s condition

The homogenization of stress and generalized stress should still satisfy Hill±Mandel’s condition in the case
of Cauchy to micromorphic homogenization. In the case of Cauchy to higher-order upscaling, the ζi jk G i jk term in
Eq. (32) vanishes because ζi jk vanishes in Cauchy continua and G i jk is redefined as G i jk = ui, jk . The Hill±Mandel’s
condition can be rewritten in the form of Eq. (36).

σ j iεi j = σ̄ j i ε̄i j + ζ̄i jk Ḡ i jk (36)

The left hand side of Eq. (36) can be rewritten into the surface integral terms by divergence theorem as shown
in Eq. (37).

σ j iεi j = 1

V

∫

Ω

σ j i ui, j dV = 1

V

∫

∂Ω

nlσli ui d S (37)

Based on the admissible boundary condition shown in Eq. (34), Eq. (37) is rewritten into the form with respect
to ε̄i j and Ḡ i jk as shown in Eq. (38).

σ j iεi j = 1

V

∫

∂Ω

nlσli ui d S = 1

V

∫

∂Ω

nlσliY j d S · ε̄i j + 1

V

∫

∂Ω

1

2
nlσliY jYkd S · Ḡ i jk (38)

Subtracting equation Eq. (38) from Eq. (36), the homogenized stress σ̄ j i and generalized stress ζ̄i jk can be derived
in Eq. (39).

(σ̄ j i − 1
V

∫

∂Ω
nlσliY j d S) · ε̄i j + (ζ̄i jk − 1

V

∫

∂Ω
1
2 nlσliY jYkd S) · Ḡ i jk = 0

H⇒

⎧

⎨

⎩

σ̄ j i = 1
V

∫

∂Ω
nlσliY j d S = 1

V

∫

Ω
σ j i dV

ζ̄i jk = 1
V

∫

∂Ω
1
2 nlσliY jYkd S = 1

V

∫

∂Ω
1
2 (σ j iYk + σkiY j )dV

(39)

For micromorphic continuum, σ̄i j is the homogenized Cauchy stress conjugate to ε̄i j and ζ̄i jk is the generalized
stress conjugate to Ḡ i jk as computed in Eq. (39). For Cauchy continuum, only σ̄i j is effective as G i jk is neglected.
For micropolar continuum, the coupled stress m̄i j is derived from the skew-symmetric part of ζ̄i jk , such that
m̄i j = −ϵ jmn ζ̄mni is conjugate to the curvature tensor κ̄i j = − 1

2ϵimnḠmnj . In the special case where only the
symmetric part of ζ̄i jk is considered, ζ̄ sym

i jk = 1
2 (ζ̄i jk + ζ̄ j ik) is homogenized [83] to represent the microstrain

generalized stress.
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Appendix B. Data generation

B.1. Analytical data generation

The data are generated based on the yield function shown in Eq. (19) with the yield strength Y =
√

3/2 and the
length scale l = 1. The data are generated by first determining the loading direction (σ̂11, σ̂22, σ̂12, m̂13/ l, m̂23/ l) in
terms of the 4 parameters (θ0, θ1, θ2, θ); the magnitude of the yield stress is then found given the loading direction
as shown in Algorithm 3. As a result, the point cloud data set of size 20 000 is sampled from the yield surface,
which is then split into a training set of 15 000 data and a test set of 5000 data.

Algorithm 3 Data sampling from micropolar J2 plasticity model.

Require: Yield function f (σ ,m)
1. Sample the parametric variables with equal spacing (linspace).

Iterate through θ1 = numpy.linspace(π/4, 5π/4, 10) and
θ = θ0 = θ2 = numpy.linspace(0, π, 10).

2. Define the stress and couple stress directions in terms of parametric variables.

Define (σ̂1, σ̂2, m̂13/ l, m̂23/ l) = (cos θ0 cos θ1, cos θ0 sin θ1, sin θ0 cos θ2, sin θ0 sin θ2).

Compute directional tensors σ̂ =
[

cos θ sin θ
− sin θ cos θ

] [

σ̂1 0
0 σ̂2

] [

cos θ − sin θ
sin θ cos θ

]

, m̂ =
[

m̂13

m̂23

]

3. Determine and record the yield point.

Compute the yield point (σ Y ,mY ) = (σ̂ ,m̂)
f (σ̂ ,m̂)/(

√
2/3Y )+1

B.2. DNS data generation and sampling

To generate nonpolar, micropolar, and micromorphic yield data, the strain rate and generalized strain rate are
controlled to prescribe the displacement boundary condition; the RVE is loaded at the prescribed rate of deformation
until yield is detected, when the stress is recorded as a point on the yield surface. The direction is the strain and
generalized rates are parametrized d − 1 variables, where d is the dimension of the stress space (d = 3, 5, 9
in nonpolar, micropolar, and micromorphic cases respectively). The loading direction is first determined by the
parametric variables and the strain rate is tuned in magnitude to make sure the RVE yield in 300 strain increments.
The details of the data generation are described in the following steps.

After the DNS simulation, 3185 raw data are generated. The data set is then expanded by utilizing the symmetry
of the RVE (e.g. adding (σ11, σ22,−σ12) if (σ11, σ22, σ12) is in the data set in nonpolar case), and then reduced by
removing the outliers and redundant data in the data set, there are finally 214 data (split into 200 training data and
14 test data) in nonpolar case, 7048 data (split into 6000 training data and 1048 test data) in micropolar case, and
16 904 data (split into 13 500 training data and 3404 test data) in micromorphic case.

Appendix C. Benchmark against alternative approaches for yield surface reconstruction

For completeness, we briefly introduce three other alternative surface reconstruction approaches, which we will
use to benchmark the performance against the proposed neural kernel method. The first approach is the level
set plasticity [27], which fits the yield function as a signed distance function f (x) parametrized by deep neural
networks (Appendix C.1). The second approach is the classical kernel method with a pre-determined Gauss Process
(GP) kernel (Appendix C.2). The last one is the Non-uniform Rational Basis Spline (NURBS) method, which fits
the surface with a set of B-spline basis functions (Appendix C.3). The benchmark results are reported in Section
(Appendix C.4).

C.1. MLP-based level-set method (MLP-LS)

The level set function, also called signed distance function, is defined as the shortest signed distance of a point
to a given surface satisfying Eq. (40), where the sign is positive if the point is outside the surface and negative
otherwise. For example, for J2 plasticity, the yield surface is a circle on the pi plane, and the yield function is a
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Algorithm 4 Data sampling from DNS simulation.

Require: case ∈ {ªnonpolarº, ªmicropolarº, ªmicromorphicº}
1. Sample the parametric variables with equal spacing (linspace).

if case == ªnonpolarº then

θ = numpy.linspace(π8 ,
π
2 , 6) and θ1 = numpy.linspace( 3π

4 , π, 10)

if case == ªmicropolarº then

θ, θ0, θ2 = numpy.linspace(0, π2 , 5), and θ1 = numpy.linspace(π2 ,
5π
4 , 10)

if case == ªmicromorphicº then

θ, θ0, θ2, φ0, φ1, φ2, φ3 = numpy.linspace( π12 ,
5π
12 , 3), θ1 = numpy.linspace( 3π

4 , π, 4)

2. Define the deformation direction by the directional tensors ε̂, κ̂ , and Ĝsym.

if case == ªnonpolarº then

(ε̂1, ε̂2) = (cos θ1, sin θ1)
if case == ªmicropolarº then

(ε̂1, ε̂2, κ̂13, κ̂23) = (cos θ0 cos θ1, cos θ0 sin θ1, sin θ0 cos θ2, sin θ0 sin θ2)
if case == ªmicromorphicº then

⎡

⎢

⎢

⎣

ε̂1 Ĝ
sym
111

ε̂2 Ĝ
sym
222

κ̂13 Ĝ
sym
121

κ̂23 Ĝ
sym
212

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

cosφ0 cos θ0 cos θ1 sinφ0 cosφ1 cosφ2

cosφ0 cos θ0 sin θ1 sinφ0 cosφ1 sinφ2

cosφ0 sin θ0 cos θ2 sinφ0 sinφ1 cosφ3

cosφ0 sin θ0 sin θ2 sinφ0 sinφ1 sinφ3

⎤

⎥

⎥

⎦

compute ε̂ =
[

cos θ sin θ
− sin θ cos θ

] [

ε̂1 0
0 ε̂2

] [

cos θ − sin θ
sin θ cos θ

]

3. Tune the deformation rate based on ε̂, κ̂ , and Ĝsym.

if case == ªnonpolarº then

(ε̇11, ε̇22, ε̇12) = 10−5 ∗ (0.3 ∗ ε̂11, 0.3 ∗ ε̂22, 0.06 ∗ ε̂12)
if case == ªmicropolarº then

(ε̇11, ε̇22, ε̇12, κ̇13, κ̇23) = 10−5 ∗ (0.2 ∗ ε̂11, 0.2 ∗ ε̂22, 0.06 ∗ ε̂12, 2 ∗ κ̂13, 2 ∗ κ̂23)
if case == ªmicromorphicº then

⎡

⎣

ε̇11 ε̇22 ε̇12

κ̇13 κ̇23 Ġ
sym
111

Ġ
sym
222 Ġ

sym
121 Ġ

sym
212

⎤

⎦ = 1.5(10−5) ∗

⎡

⎣

0.2 ∗ ε̂11 0.2 ∗ ε̂22 0.06 ∗ ε̂12

2 ∗ κ̂13 2 ∗ κ̂23 Ĝ
sym
111

Ĝ
sym
222 Ĝ

sym
121 Ĝ

sym
212

⎤

⎦

cone, as shown in Fig. 21. The deep neural network with 2nd-order differentiable activation functions is then used
to learn the scalar-valued level-set function.

∥∇σ ′′ f ∥ = 1 and f = 0 on yield surface. (40)

C.2. Classical kernel method based on Gauss Process (GP)

The GP kernel method is exactly the same as the neural kernel method except that the GP kernel is in the form
of Eq. (41) which is not trainable. Gauss process can be further used for statistical variance analysis and uncertainty
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Fig. 21. Level set function of J2 plasticity.

quantification, but in our application, we only use the GP kernel to predict a deterministic yield surface; please refer
to Williams and Rasmussen [84] for more mathematical background of GP.

K er (x, y) = exp(−∥x − y∥2

2L2
) (41)

C.3. Non-uniform Rational Basis Spline (NURBS)

The other alternative method is the NURBS-based plasticity [32] that approximates the yield function with basis
spline functions, where the isotropic hardening can be modeled by the evolving control points with the internal
variable [33], and the non-associative flow rule can be obtained via the gradient of the plastic potential extrapolated
by Non-Uniform Rational Basic Splines (NURBS) [34].

Basis spline (B-spline) is one popular method for fitting curves or surfaces [85]. NURBS, as one kind of B-
spline method, has been used to reconstruct the yield surface [32], where the NURBS model, with the control
points selected in a particular way, fits the 3D ellipsoidal surface accurately. In this section, we generalize the
NURBS model to surface fitting in arbitrary dimensional Euclidean spaces. We will introduce the adapted NURBS
implementation from the following perspectives: (1) the basis functions, (2) parametrization of higher-dimensional
yield surfaces, and (3) surface fitting with NURBS.

C.3.1. B-spline basis function in higher dimension

In general, we adopt the multi-variate B-spline basis functions as compositions of B-spline basis functions with
a single variable. To this end, we first introduce the single-variate B-spline basis functions with the independent
variable denoted as ϑ , which form a family of polynomials. These functions are defined piecewisely given a knot
vector t that specifies a partition of interval [0, 1]: 0 = t1 ≤ t2 ≤ · · · ≤ ti ≤ · · · ≤ tq = 1, where q is the length of
the knot vector. The single-variate basis functions B(·) of zero degree are shown to be piecewise constant functions
as follows:

B
(0)
i (ϑ) =

{

1 if ti ≤ ϑ < ti+1

0 else
, 1 ≤ i ≤ q − 1 (42)

where the superscript with bracket indicates the degree of polynomials and the subscript i is an index indicator
within the basis family. We further express the single-variate basis function of higher degrees k recursively as
follows:

B
(k)
i (ϑ) = ϑ − ti

ti+k − ti
B

(k−1)
i (ϑ) + ti+k+1 − ϑ

ti+k+1 − ti+1
B

(k−1)
i+1 (ϑ), 1 ≤ i ≤ q − k − 1 (43)
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where we adopt k = 3, and the knot vector t = [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1] in our implementation, which
indicates that the length of the knot vector q = 11 and the number of basis function is q − k − 1 = 7. We denote
the number of basis function members as |B|.

The composition of Bi (for simplicity the superscript (k) is omitted) that formulates multi-variate B-spline basis
functions is then expressed as follows:

Ni (ϑ) = Bi (ϑ) for single variable,
NK (ϑ) = Π

d
l=1 Bil (ϑl) , where K =

∑d
l=1 il |B|d−l for multiple variables.

(44)

C.3.2. Parametrization of higher-dimensional surface

The yield surface living in d-dimensional space describes a d − 1-dimensional manifold and hence could
be parametrized with d − 1 independent variables ϑ = (ϑ1, ϑ2, . . . , ϑd−1). We adopt the generalized spherical
parametrization for describing the yield surface mathematically in Eq. (45), where the independent variables are
angle indicators within the range [0, 1] and there is a dependent variable ρ(ϑ) indicating the radial distance.

x =
[

ρ(ϑ) cos 2πϑ1

ρ(ϑ) sin 2πϑ1

]

for 1D curve

x =

⎡

⎣

ρ(ϑ) cosπϑ1

ρ(ϑ) sinπϑ1 cos 2πϑ2

ρ(ϑ) sinπϑ1 sin 2πϑ2

⎤

⎦ for 2D surface

xi =

⎧

⎪

⎨

⎪

⎩

ρ(ϑ)(Π i−1
j=1 sinπϑ j ) cosπϑi if i < d − 2

ρ(ϑ)(Π d−2
j=1 sinπϑ j ) cos 2πϑi if i = d − 2

ρ(ϑ)(Π d−2
j=1 sinπϑ j ) sin 2πϑi if i = d − 1

for higher dimensions

(45)

C.3.3. Fitting yield surfaces with NURBS

The point cloud data x(i) sampled from the yield surface can be mapped into the labeled data (ϑ (i), ρ(i)) through
the parametrization shown in Eq. (45). The NURBS model is described by Eq. (46), where c ∈ R

|B|d−1
is an array

of control points.

ρ(ϑ) =
|B|d−1
∑

j=1

N j (ϑ)c j = N(ϑ) · c (46)

To fit the NURBS model with the data sampled from the yield surface, the control points c are found such
that the difference between the prediction ρ̂(i) = N(ϑ (i)) · c and the label ρ(i) is minimized. Therefore, the control
points are computed through the regularized least square method as shown in Eq. (47), where [ρ]i = ρ(i) and
[N(ϑ)]i j = N j (ϑ

(i)).

c = argmin
C

∑

i

∥ρ(i) − N(ϑ (i)) · C∥2 + λ∥C∥2 ⇐⇒ c = (NT (ϑ)N(ϑ) + λI)−1 NT (ϑ)ρ. (47)

C.4. Yield surface reconstructed via alternative approaches

To compare the performances of the approaches outlined in Appendices C.1±C.3, we obtained the learned yield
functions via these approaches for three data sets we used in this paper, i.e., the classical J2 von Mises yield function,
a generalized J2 von Mises yield function with the additional couple stress terms, and the micropolar DNS data
inferred from finite element simulations of the layered materials. The results are shown in Fig. 22.

In the first case, the actual learned function only depends on the J2 stress and the data set is of low dimension.
As such, the results in Fig. 22(a) indicate that all four approaches (neural kernel method (red), classical Gaussian
kernel (black), level set MLP (green), and NURBS (yellow)) perform well in this simple case. In the second case,
the Von Mises yield function is amended with a regularization term (see Eq. (19)). This dependence on coupled
stress also breaks the symmetry of the force stress, and hence leads to the dimension of the parametric space to
be increased from 3 to 5. This increase of dimensionality leads to the NURBS yield function failing, but the rest
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Fig. 22. The cross section of the classical J2 yield surface f (σ11, σ22, σ12 = 0) = 0 in 3D space (LEFT), the micropolar J2 yield surface
f (σ11, σ22, σ12 = 0,m13 = 0,m23 = 0) = 0 in 5D space (MIDDLE), and the micropolar DNS yield surface (RIGHT). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the three approaches still perform well (see Fig. fig:nurbs(b)). In the last case, the DNS data set is used where
only a portion of data is purposely missing (see Fig. 22(c)), the dimensionality of the data is identical to the second
case, but the data exhibits lower symmetry. Visual inspections reveal that the neural kernel generates yield function
with geometric features consistent with those of data. On the other hand, the MLP level set is capable to generate
non-oscillatory yield functions, whereas both the NURBS and classical GP kernel may lead to spurious oscillation
in the learned function.

Note that, in the last case where data are missing in one portion of the parametric space, the robustness of
the learned function in the extrapolated regime depends strongly on the types of inductive biases of the learning
algorithm [86]. Since the neural kernel method employs a data-dependent adaptive kernel, it is more expressive
than the classical GP and the NURBS approach where the parametric space is spanned by a pre-determined set of
bases.
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