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Abstract
Oxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine
life. Because the early part of Earth’s history lacked both atmospheric oxygen and animals, a persistent co-evolutionary
narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxy-
gen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if
oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmo-
spheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to
high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean de-
oxygenation (andmarine mass extinctions) is increasingly linked to large igneous province eruptions—massive volcanic carbon
inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these
ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic
record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are
observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent
hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the re-
sponse of the biosphere at large taxonomic, spatial, and temporal scales.
Introduction
Because oxygen is a fundamental requirement for animal
life and because oxygen levels in the ocean-atmosphere sys-
tem have clearly changed over Earth history, the availability
of oxygen has come to be regarded by many geologists and
paleontologists as a master variable governing animal diver-
sity through time. Understanding the relationship between
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oxygen and animal evolution is critical to understanding the
rise and trajectory of complex life on Earth, and it also bears
important lessons for modern and future global change. The
fossil record offers valuable opportunities to investigate bi-
otic responses to changes in Earth’s climate because these
responses are not skewed by human interference (i.e., over-
exploitation or habitat loss), span a greater temporal scale
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than can be studied in laboratory experiments, and repre-
sent our only source of data on actual outcomes of changes
in climate-related stressors (Harnik et al., 2012; Calosi et al.,
2019; Clapham, 2019). Most critically, the fossil record is our
only source of data for understanding whether most species’
extinctions are driven by physiological or ecological processes.
Although physiological stressors (e.g., temperature-dependent
hypoxia, ocean acidification) are the pertinent environmental
factors for marine organisms, it is an open question whether
most species-level extinction has occurred or will occur as
a direct result of these stressors or via physiologically driven
stress on keystone species, followed by trophic cascades and
ecologically driven extinction for other species. The main
challenge in learning and applying these lessons is moving
beyond parallel and correlative studies of the fossil record and
the geochemical record of ancient oceans. This is ultimately
necessary if we are to ask questions such as how extinction
selectivity during ancient hypoxic events corresponds to phy-
logeny, biogeography, or functional morphology, or whether
extinction is likely to be mediated directly by physiology
or ecological cascades. The answers to such questions will
sharpen our ability to use the geologic record to predict bio-
logical responses in the future warming and deoxygenating
ocean.

In this article, we first aim to provide an accessible intro-
duction to how geochemists track redox changes in ancient
oceans (which ultimately leads to inferences of global oceanic
000
and atmospheric oxygen). Next, we review current knowledge
of Earth’s oxygen history, moving from the anoxic oceans and
atmospheres of the Archean eon (4.0–2.5 billion years ago)
to the modern well-oxygenated state, where deoxygenation
(and global warming) is largely driven by massive carbon
inputs from large igneous province (LIP) super-eruptions
(Fig. 1). We then discuss how animals evolved and responded
to oxygen changes throughout this history, particularly aim-
ing to use ecological space-for-time substitutions and mod-
ern ecophysiological approaches to link environmental change
with biotic responses. We argue that such approaches have
high promise for attaining more mechanistic understanding
of how oxygen changes affected animals across timescales.
Considering the past ∼400 million years of Earth history, we
emphasize the role of LIPs in driving low-oxygen events in
the ocean. We specifically dissect the evidence for environ-
mental change resulting from the eruption of the Siberian
Traps LIP, which caused the most devastating mass extinc-
tion in Earth’s history at the Permian-Triassic boundary. Fi-
nally, we discuss the lessons for modern anthropogenic global
change that can be drawn from ancient low-oxygen oceans,
as well as highlight future research directions that will help
build on our current knowledge.

Reading the Record of Oxygen in Earth’s Past
When discussing atmospheric oxygen in Earth’s past, geol-
ogists andmodelers commonly describe these levels by using
1800
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Figure 1. The four broad stages of atmospheric oxygen and life through Earth history, with oxygen in log scale as percent of present atmospheric levels
(% PAL). Shown is the best-guess estimate of atmospheric oxygen (thick black line) and geochemical and biologic constraints detailed in the main text
(thin black lines bounding blue permissive O2 state space). It is known with certainty that the Earth irreversibly transitioned from an essentially anoxic
ocean-atmosphere system to an oxic state ∼2200 million years ago (note the break in scale at 1800 Ma). Although the timing, magnitude, and number of
increases are not clear, it is likely that atmospheric oxygen rose near the Neoproterozoic-Paleozoic boundary and in the mid-Paleozoic. Shown above the
geologic timescale are major evolutionary events; from left to right, these are the first total-group eukaryotic fossils (∼1600 Ma), the first crown-group
eukaryotic fossils (∼1050 Ma), the first animals near the end of the Neoproterozoic (∼570 Ma), and the first trees in the mid-Paleozoic. Cz., Cenozoic;
G.O.E., Great Oxidation Event; LIP, large igneous province.
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percentage of present atmospheric level (% PAL; present 5
100%). For marine redox state or dissolved oxygen levels in
ancient oceans, geologists commonly use a descriptive scheme
that differs slightly from that currently in use in modern
global change studies. First, anoxic conditions are recognized
to be either “euxinic,” with free sulfide, or “ferruginous,” with
free ferrous iron, at least enough to titrate out available sulfide
(Poulton and Canfield, 2011). In contrast to modern anoxic
settings, which are almost all euxinic, it is now recognized
that, especially in the Proterozoic and early Paleozoic (∼2000
to 400 million years ago [Ma]), most anoxic settings were
ferruginous (Canfield et al., 2008; Planavsky et al., 2011;
Guilbaud et al., 2015; Sperling et al., 2015b, 2021). Similar
to modern global change biologists, geologists use the term
“suboxic” to refer to the feather edge of anoxia, where very
few animals aside from chemosynthetic organisms can live.
Here, we define suboxic as ∼1.5% air saturation, ∼5 mmol L21,
∼0.1 mL L21 O2 (note that oxygen concentrations expressed
in mmol L21 or mL L21 will be dependent on temperature,
pressure, and salinity; Hofmann et al., 2011). In contrast to
global change biologists, geologists and paleontologists com-
monly use the term “dysoxic” instead of “hypoxic” to define
oxygen levels between suboxic and fully oxic. In our opinion,
using the term hypoxic, which is a species- or organism-
specific physiological state, to define the geochemical char-
acteristics of a water mass is incongruent. Further, a main
point of this paper is understanding the combined effects
of changing oxygen and temperature. Because hypoxia is the
synergistic interaction of these two environmental param-
eters (e.g., Deutsch et al., 2015), even for a single organism a
water parcel can be hypoxic (or not) across a range of oxy-
gen levels, depending on the temperature. Thus, we will use
dysoxic in this paper to describe low-oxygen conditions and
define it as O2 levels between suboxia (less than ∼1.5% air
saturation) and normoxia (greater than ∼31% air saturation,
>88 mmol L21, >2 mL L21 O2). Sperling et al. (2015a) and
Cole et al. (2020) have recently reviewed oxygen nomencla-
ture across and within fields in geology and modern biology
and oceanography.

For studies of the Holocene (the past 12,000 years) or
Pleistocene (the past 2.6 million years), geologists are able to
utilize small bubbles of ancient air trapped in ice cores. This
has allowed for direct measurement of atmospheric chemis-
try, most notably the dramatic changes in CO2 related to
orbitally forced climate cycles (e.g., Petit et al., 1999) but also
atmospheric O2 (Yan et al., 2021). For deeper Earth history,
however, atmospheric oxygen or marine redox changes—
with a few exceptions detailed below—must be reconstructed
through indirect proxy methods derived from sedimentary
archives. Our two major archives for understanding paleo-
environmental conditions on ancient Earth are carbonates
(composed of sedimentary minerals, such as calcite, arago-
nite, and dolomite, that are precipitated from seawater as
both inorganic precipitates, such as ooids, and the organic
biominerals of organisms, such as corals or bivalves) and
000
shales or mudstones (composed of fine-grained particles that
represent the transported remnants of previously weathered
rocks). Carbonate proxies tend to rely on the abundance or
isotopic ratios of elements that are incorporated as trace
constituents into the carbonate crystal lattice, whereas shale
proxies generally rely on elements that associate with organic
matter or pyrite under reducing conditions. Each of these
sedimentary archives can record local proxies, which reveal
information about the bottom waters directly above a given
sedimentary locality but with no global context, and global
proxies, which reveal the mean state in the ocean but with
no spatial or bathymetric context (for a comprehensive re-
view of various proxy approaches, see Kendall, 2021). Local
proxies for shales include iron speciation (Poulton, 2021)
and the enrichment of redox-sensitive trace metals such as
molybdenum and uranium (Tribovillard et al., 2012), whereas
carbonates can be studied using iodine to calcium (I/Ca) ra-
tios (Lu et al., 2018) or cerium anomalies (Bellefroid et al.,
2018; Liu et al., 2021). Critically, I/Ca may be able to finger-
print dysoxic conditions (Lu et al., 2016), in contrast to most
local proxies in shales, which can robustly distinguish oxic
versus euxinic conditions but may have difficulty distinguish-
ing fully oxygenated from dysoxic or ferruginous conditions
(discussed by Sperling et al., 2018). The global marine redox
landscape can be studied in shales by using molybdenum
and uranium isotopes (Kendall et al., 2017; Stockey et al.,
2020), which track variations in the extent of anoxic sea-
floor, or thallium isotopes (Them et al., 2018), which track
variations in the extent of oxic seafloor.

In carbonates, the global redox landscape is increasingly
studied using uranium isotopes (Fig. 2), which we will fo-
cus on here, particularly as they pertain to mass extinction
events. Under anoxic conditions in the oceans, the reduc-
tion of soluble U(VI) to insoluble U(IV) at the sediment-
water interface is associated with an isotopic fraction-
ation because 238U is reduced more rapidly than 235U (due
to the nuclear volume effect). Although there can be local
differences, the average isotopic offset between seawater
and anoxic sediments is about 10.6‰. Thus, expansion
of ocean anoxia is expected to cause not only a reduction
in ocean uranium concentrations but also a reduction in
the oceanic 238U/235U ratio (typically reported in delta no-
tation as d238U; reviewed in Zhang et al., 2020). The long res-
idence time of uranium in seawater (∼500 thousand years
[kyr]) relative to the ocean mixing time (∼1–2 kyr) leads to
the oceans being well mixed in terms of the 238U/235U ratio,
meaning this ratio is the same anywhere in the ocean. Be-
cause carbonates trap minute quantities of uranium in their
crystal lattice during precipitation with minimal or at least
understandable offset from seawater (Chen et al., 2018),
and because the ocean is well mixed with respect to ura-
nium, this means that any carbonate deposited in an ancient
ocean should be recording the U isotope composition of its
seawater. And since the isotopic composition of seawater is
primarily set by the ratio between seafloor covered by oxic
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versus anoxic bottom waters, geochemists can then quanti-
tatively back-calculate (using increasingly sophisticated model-
ing techniques) the global redox landscape.

Atmospheric and Marine Oxygen Levels
through Earth History
At the broadest level, Earth appears to have experienced
four stages of atmospheric oxygen levels. There were likely
important oscillations within these stages, especially dur-
ing the middle part of Earth’s history; but from the per-
spective of changes that were relevant to animal life in the
oceans, these stages are the early part of Earth history in
the Archean and early Paleoproterozoic (∼4000–2200 Ma;
when the oceans and atmosphere were anoxic), the mid-
Proterozoic (∼2200–540 Ma; when oxygen was stably pre-
sent but at relatively low levels, perhaps 1%–10% of present
levels), the early Paleozoic (∼540–420 Ma; when oxygen lev-
els were perhaps 10%–40% of present levels), and the later
Paleozoic to present (∼420Ma to present; when atmospheric
oxygen was similar to present) (Figs. 1, 3). Despite the con-
siderable study into the question of atmospheric oxygen
through time and general agreement on the broad history,
geologists and geochemists can recognize only two absolute
values with clarity and a lack of controversy. Photochemical
reactions in the atmosphere between incoming UV and SO2

generate sulfur compounds wherein the sulfur isotopes are
fractionated in a manner independent of their mass (mass-
independent fractionation [MIF-S]). Such reactions occur
today; but in the presence of even minute amounts of atmo-
spheric oxygen, as low as 0.001% PAL (1025 PAL), the prod-
ucts of these atmospheric reactions are oxidized and pass
000
through the oceanic sulfur cycle, and any mass-independent
fractionation effects are erased (Pavlov and Kasting, 2002).
The MIF-S signals are recorded in the Archean and early
Paleoproterozoic sulfur record (first discovered by Farquhar
et al., 2000), providing an unambiguous signal of an essen-
tially anoxic atmosphere on early Earth. TheMIF-S then dis-
appears, marking the Great Oxidation Event, or GOE. Cur-
rent controversies include the timing of oxygenation (and
whether it was protracted or sudden; Poulton et al., 2021;
Hodgskiss and Sperling, 2022), but MIF-S and other mark-
ers of an anoxic atmosphere never return after ∼2.2 billion
years ago, marking the irreversible oxygenation of Earth’s
atmosphere.

The second unambiguous constraint on atmospheric
oxygen concentration comes from the fossil record of char-
coal (burned plant material). A series of elegant calculations
and experiments have demonstrated that plant material will
not ignite without ∼15% O2 in the atmosphere (by volume,
equivalent to 73% PAL, given 21% O2 by volume in the at-
mosphere today), and globally distributed runaway wildfires
will occur at greater than ∼35% O2 (5170% PAL) (Jones
and Chaloner, 1991; Wildman et al., 2004; Belcher and
McElwain, 2008). Note, however, that this upper bound has
not been experimentally determined with certainty and that
many commonly cited secondary sources in the literature
(e.g., Kump, 2008) cite earlier studies on paper ignition (Wat-
son et al., 1978) that are not realistic for natural fuels (Wild-
man et al., 2004). Nonetheless, the presence of both charcoal
and unignited plant fossils in the rock record since the late
Silurian (∼420 million years ago) has allowed geologists to
robustly infer that atmospheric oxygen has been between
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Figure 2. The carbonate uranium proxy is one of the most commonly used global redox proxies in deep time, especially for studying mass extinctions.
Riverine U input is broadly constant through time, and the oceanic 238U/235U ratio (typically reported as d238U) is primarily set by the proportion of oxic versus
anoxic seafloor. Under anoxic bottom waters, the heavier 238U isotope is preferentially reduced (with a fractionation of 10.6‰) and trapped in anoxic shales.
Expansion of anoxic seafloor (i.e., right-hand panel) leads to higher burial flux of 238U (gray vertical arrows). Removal of the heavy isotope causes the seawater
d238U ratio to become lighter (more negative). Seawater uranium is incorporated into shallow-water carbonates with relatively little isotopic offset, and thus, an
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(2020) for additional details.
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these approximate levels since this time (Scott and Glass-
pool, 2006). Thus, from the middle Paleozoic onward, sur-
face oceans would have been in equilibrium with an atmo-
sphere with near-modern oxygen. The deep ocean would
have been fully ventilated (i.e., Fig. 3C), excepting any vaga-
ries of polar deep-water formation as related to plate tecton-
ics and climate, which do not show any directional trends
over this time. Any changes in the strength of the biological
pump through time could also have impacted the distribu-
tion of oxygen in the ocean’s interior (Meyer et al., 2016),
but the degree to which such changes occurred is debated
(Fakhraee et al., 2020). Importantly, for the past 420 million
years, anoxic or dysoxic settings in the oceans would have
had the same general oceanographic drivers as in the mod-
ern ocean (Fig. 3C, F). Specifically, deoxygenation would
have developed beneath areas of higher primary productiv-
ity (in oxygen minimum zones [OMZs] and during times
with higher nutrient inputs to the oceans) in enclosed sea-
ways with limited deep-water renewal and, more broadly,
in the open ocean because of stratification (Breitburg et al.,
2018; Levin, 2018).

Between the initial onset of oxygen in Earth’s atmosphere
at the GOE (∼2200 million years ago) and the unquestioned
onset of near-modern atmospheric oxygen levels (∼420 mil-
lion years ago), the situation is murkier. Here, geochemists
must use observations of marine redox conditions and try
to back-calculate atmospheric oxygen. Oxygen levels during
the mid-Proterozoic, or Earth’s Middle Age, between ∼1800
and 800 million years ago, have generally been hypothesized
to be between 1% and 10% PAL (Kump, 2008; Lyons et al.,
2014). However, this oxygen estimate represents to some
extent the gut feeling of Earth historians. This is derived
from observations that many shallowmid-Proterozoic wa-
ters remained oxic (e.g., Shen et al., 2003; Hardisty et al.,
2014) and from modeling results demonstrating that the
invariably anoxic conditions in the deeper oceans would not
have been present at higher than ∼40% PAL (Canfield, 1998;
Ozaki and Tajika, 2013; Cole et al., 2022). The tricky question
remains, though: exactly how low was atmospheric oxygen
in Earth’s Middle Age? Certainly, recent papers with large
numbers of geochemical observations from I/Ca (Lu et al.,
2018), uranium isotopes (Gilleaudeau et al., 2019), and iron
speciation (Planavsky et al., 2011; Sperling et al., 2015b)
have supported the view of a very weakly oxygenated mid-
Proterozoic Earth system. But converting such observations
into hard numbers is difficult. For instance, Bellefroid et al.
(2018) modeled cerium anomaly data to indicate a vanish-
ingly low <0.1% PAL O2, whereas modeling of similar data
by Liu et al. (2021) resulted in estimates of 1%–2% PAL.
While both of these estimates unambiguously point to lower
levels than likely existed in the later Neoproterozoic or Pa-
leozoic, as discussed below (see Oxygen and the origin of
animals), this order-of-magnitude difference has impor-
tant implications for the role of oxygen in the origin of
animals. Thus, the current aim is distinguishing whether
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mid-Proterozoic oxygen levels were simply low or rather
exceedingly low. There has also been increasing emphasis
on treating this billion years of Earth history with more tem-
poral nuance (Canfield, 2014; Diamond and Lyons, 2018;
Planavsky et al., 2018).

The second canonical step in Earth’s oxygenation history
was generally believed to have occurred in the late Neopro-
terozoic, but whether this resulted in full oxygenation of the
ocean-atmosphere system to modern levels has recently been
thrown into question. Although there is clear geochemical
proxy evidence for oxygenation in the Neoproterozoic, there
is also proxy evidence for deoxygenation, and much of the
prior evidence for a state change at this time is less clear
(discussed by Cole et al., 2020). Most likely, oxygen levels
did rise around the base of the Cambrian, and the oceans
were perhaps temporarily well oxygenated with respect to the
remainder of the early Paleozoic (e.g., Chen et al., 2015; Wei
et al., 2018). However, persistent and widespread anoxic con-
ditions in the deeper waters of early Paleozoic oceans (Berry
and Wilde, 1978; Lu et al., 2018; Dahl et al., 2019; Gill et al.,
2021; Sperling et al., 2021) suggest that the broad constraint
provided by modeling for atmospheric O2 (e.g., <40% PAL)
continues to apply to this interval. This inference is con-
sistent with the latest generations of carbon cycle models
(Krause et al., 2018; Lenton et al., 2018). The presence of
Cambrian animals themselves does provide a new minimum
estimate for Paleozoic oxygen levels, which was estimated by
Sperling et al. (2015b) as ∼10% PAL.While this does provide
an increase in minimum oxygen levels (Fig. 1), because late
Neoproterozoic levels are only loosely constrained, the mag-
nitude of any late Neoproterozoic-early Cambrian oxygen
increase (and whether it represented a step change) is un-
clear. Full oxygenation of the ocean-atmosphere system to
100% PAL likely occurred later in the Paleozoic (Dahl et al.,
2010; Wallace et al., 2017; reviewed by Reinhard and Pla-
navsky, 2022). Current research is focused on the magni-
tude of Paleozoic oxygenation (and deoxygenation) events
and possible links between plant evolution and later Paleo-
zoic oxygenation (Dahl and Arens, 2020).

Large Igneous Provinces and Their Effects
After the atmosphere reached 100% PAL, most deoxygen-
ation events developed as a result of massive inputs of car-
bon to the Earth system as supplied by LIP eruptions. The
LIPs and their extrusive flood basalts are voluminous out-
pourings of basaltic magma that occur over a relatively short
time period (geologically speaking, <5 million years [Myr]
and generally <1 Myr) (Kasbohm et al., 2021). They occur
in the middle of both oceanic and continental tectonic
plates and are likely sourced from mantle plumes (making
them fundamentally different in style of volcanism and size
from any volcanic process currently operating on Earth).
The flood basalt deposits from LIPs are often called trap
rocks (the Siberian Traps, Deccan Traps, etc.) after the Swed-
ish word trappa (“staircase”). This is due to the characteristic
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stairstep morphology of the successive basaltic lava flows
(Fig. 4B). In addition to the aboveground flood basalts, LIPs
have a complex underground plumbing system of dikes and
sills that can often intrude into and volatilize organic- or
sulfur-rich sedimentary rocks, thereby dramatically increas-
ing the CO2 or sulfur aerosols that are emitted to the atmo-
sphere (Ganino and Arndt, 2009; Svensen et al., 2009).

High-precision geochronology has demonstrated that LIPs
are precisely associatedwithmultiplemass extinctions, includ-
ing the three most recent Big Five extinctions (the five largest
mass extinctions of the past 540 million years). The LIPs
with precise links to extinctions include the second pulse of
the North Atlantic Igneous Province (LIP)/Paleocene-Eocene
ThermalMaximum extinction (PETM) (55.8Ma), the Decan
Traps/Cretaceous-Paleogene extinction (66.0 Ma), the Karoo-
Ferrar/Pliensbachian-Toarcian boundary (182.7Ma), the Cen-
000
tral Atlantic Magmatic Province/Triassic-Jurassic boundary
(201.5 Ma), and the Siberian Traps/Permian-Triassic bound-
ary (251.9 Ma) (Ernst et al., 2020; Kasbohm et al., 2021). In
these best-dated instances, the LIP erupted several hundred
thousand years prior to the extinction (though note that
both LIPs and extinctionsmay havemultiple pulses). There
are also LIPs likely associated with the Cretaceous ocean an-
oxic events at the Cenomanian-Turonian boundary (OAE-2)
(93.9Ma) and in the early Aptian (OAE-1a) (∼121Ma), the
end-Guadalupian extinction (259.1 Ma), the Frasnian-
Fammenian mass extinction (372.2 Ma), and the early-
middle Cambrian extinction (∼509 Ma), although the ra-
diometric constraints are not as precise (Ernst et al., 2020;
Kasbohm et al., 2021). Still other mass extinctions may be
associated with LIPs, but this is based on indirect geochem-
ical proxy evidence rather than a directly dated LIP (e.g., for
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Figure 4. (A) Large igneous provinces (LIPs) are massive volcanic eruptions and the likely ultimate cause of most Phanerozoic mass extinctions. The
eruption of CO2 from these volcanic provinces (plus volatilized material they intrude into, such as organic rich shale and coal) results in global warming,
ocean acidification, and ocean deoxygenation. Expanded ocean anoxia likely results from a combination of stratification, temperature-dependent remin-
eralization, and increased terrestrial nutrient inputs from increased weathering on a warmer, wetter Earth. The exact oceanographic causes of anoxia
are an area of active research. Modified from Clapham and Renne (2019). Used with permission of Annual Reviews. (B) Flood basalts of the Siberian
Traps on the Kotuy River, Arctic Siberia. The lavas from this eruption cover a minimum area of ∼3.5 million square kilometers, a land area larger than
India and just smaller than the entire European Union. This eruption is responsible for the end-Permian mass extinction via deoxygenation and warm-
ing. Photo credit: Ben Black (Rutgers University).
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the Late Ordovician extinction, Jones et al., 2017; Hu et al.,
2020). Known LIP-extinction couplets are associated with
geochemical evidence for both warming and deoxygena-
tion (Fig. 4A; Ernst and Youbi, 2017). Reviewing the geo-
chemical evidence for deoxygenation associated with LIPs/
mass extinctions is beyond the scope of this article, but to
focus on our highlighted proxy of uranium isotopes, a neg-
ative d238U shift—indicating widespread marine anoxia—
has been documented in association with the Frasnian-
Fammenian extinction (Song et al., 2017; White et al., 2018),
Permian-Triassic extinction (Brennecka et al., 2011; Lau
et al., 2016; Zhang et al., 2018), Triassic-Jurassic extinction
(Jost et al., 2017), Cenomanian-Turonian boundary (Clarkson
et al., 2018), and PETM (Clarkson et al., 2021). All other
LIP-associated extinctions show evidence for widespread
anoxia via other proxy methods (e.g., thallium isotopes at
the Pliensbachian-Toarcian boundary) (Them et al., 2018).
Current research focuses on understanding the nexus of
eruptionmagnitude, rate, and aerosol release, combined with
Earth system boundary state, that causes some LIPs to be
deadlier than others (e.g., Fig. 5B).

The Fossil Record
To understand the role of oxygen in animal evolution and
biodiversity dynamics, it is necessary to understand how
paleontologists read the fossil record and the nature of
that record. For almost the entirety of Earth history (∼85%),
the fossil record was dominated bymicrobes, and even those
fossils were relatively rare. Consequently, quantitative stud-
ies of Precambrian diversity have been difficult (discussed
by Cohen andMacdonald, 2015). However, increased scru-
tiny of older rocks has revealed that the first total-group
eukaryotes appeared around 1650 Ma (represented by larger
cells with cell wall protrusions and possible nuclei) and the
first unambiguous crown-group eukaryotes (the red algae
Bangiomorpha) around 1050Ma (reviewed by Agić, 2021).
Molecular clocks suggest that the animal crown group orig-
inated around 800 Ma (Dohrmann and Wörheide, 2017),
although undoubted animal fossils are not present until
the end of the Neoproterozoic, in the so-called Ediacaran
fauna. The ∼50 million years spanning the Precambrian-
Phanerozoic boundary witnessed the appearance of essen-
tially all fossilizable animal phyla and classes (Erwin et al.,
2011; the Cambrian explosion; Fig. 1). The explosive aspect
of this event is with respect to the appearance of high-level
animal body plans (disparity) rather than species diversity
and with respect to the three billion years of preceding geo-
logical record with no animal fossils. Focusing on the ∼50 mil-
lion years from 570 to 520 Ma, however, it rather reflects
a protracted series of evolutionary innovations and radia-
tions (Wood et al., 2019).

Following the Cambrian radiation, paleontologists have
been able to better tabulate and statistically analyze the di-
versity of life on Earth. The most recognizable and influ-
ential Phanerozoic diversity curve of fossil animals is the
000
Sepkoski curve (Sepkoski, 1981). This curve is based on a
compendium that consists of first and last known fossil oc-
currences with a temporal resolution down to the geologic
stage (the smallest geologic time subdivision) of marine
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Figure 5. Reconstructed marine animal biodiversity dynamics and atmo-
spheric oxygen through the Phanerozoic (comprising the Paleozoic, Meso-
zoic, and Cenozoic eras; the past 540 million years of Earth history). (A) Ge-
nus diversity for marine animals at stage-level resolution, reconstructed using
shareholder quorum subsampling (replotted fromKocsis et al., 2019). (B) Ge-
nus extinction rates for marine animals at stage-level resolution, replotted
from Kocsis et al. (2019) following Stockey et al. (2021). Line and points rep-
resent means of 12 extinction rate metrics for each stage, while envelopes
represent minimum and maximum values. Following paleontological con-
vention, the points are plotted as mid-points of geological stages and so will
not directly correspond to precise geochronological constraints for large ig-
neous provinces (LIPs). Relationship between LIPs and extinctions follows
Ernst et al. (2020) and Kasbohm et al. (2021). The Cretaceous-Paleogene
mass extinction at 66Ma was primarily caused by ameteorite impact. (C) Re-
constructed atmospheric O2 expressed as a percentage of present atmo-
spheric levels (% PAL), but on linear rather than log scale. Shown are long-
term carbon cycle model estimates (Krause et al., 2018; Lenton et al., 2018)
and geological or geochemical proxies. Adapted from Stockey et al. (2021).
Abbreviations for geologic time periods: Cm, Cambrian; O, Ordovician;
S, Silurian; D, Devonian; C, Carboniferous; P, Permian; Tr, Triassic; J, Ju-
rassic; K, Cretaceous; Pg, Paleogene; N, Neogene.
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animal orders, families, and genera from the published litera-
ture. Sepkoski demonstrated that there has been an increase
in diversity across the Phanerozoic that follows a logistic
curve (Fig. 5A). The general shape of the curve starts with
a sharp increase during the Cambrian (Cambrian explosion),
followed by a short plateau that is then followed by a larger
increase during the Ordovician (Great Ordovician Biodiver-
sification Event) before plateauing during much of the Pa-
leozoic. This plateau is ultimately followed by an unabated
increase to the Modern, starting during the early Mesozoic
(Sepkoski, 1981). Recently, the compilation of fossil occur-
rences in the Paleobiology Database (2022) has enabled quan-
titative paleobiologists to address sampling biases in re-
constructions of biodiversity, extinction, and origination
through the Phanerozoic (Fig. 5; Alroy et al., 2008; Alroy,
2010; Kocsis et al., 2019).

Perhaps the most influential outcome of Sepkoski’s com-
pendium is the first quantitative recognition of major mass
extinction events. Extinctions in the fossil record were pre-
viously known, but Sepkoski’s compendium made it pos-
sible to estimate the magnitude and temporal resolution of
these events (Raup and Sepkoski, 1982). Raup and Sepkoski
(1982) revealed the occurrence of five major mass extinc-
tion events (colloquially named the Big Five) as having oc-
curred during the Late Ordovician (∼445Ma), Late Devonian
(∼370 Ma), end-Permian (∼252Ma), end-Triassic (∼201Ma),
and end-Cretaceous (∼66 Ma). The recognition of these
extinction events spurred a flurry of new research agendas
dedicated to uncovering the causal mechanisms.While there
are open questions associated with all mass extinction events,
the general consensus is that, for extinctions after atmo-
spheric oxygen levels reached ∼100% PAL, the most com-
mon ultimate cause is the activity of LIPs, and the most
likely proximate cause is the downstream environmental
impacts including warming and deoxygenation (Bond and
Grasby, 2017; Clapham and Renne, 2019; Fig. 4). The pri-
mary exception is the end-Cretaceous extinction event, which
is primarily attributed to a bolide impact (Alvarez et al.,
1980; Hull et al., 2020), although the temporal coincidence
with the Deccan Traps LIP complicates causal scenarios
(Schoene et al., 2015).

In addition to identifying five major mass extinction
events, Raup and Sepkoski (1982) also noted that back-
ground extinction has gradually decreased across the Phan-
erozoic. Specifically, the total extinction rate (family extinc-
tions per million years) was greatest during the Cambrian
but gradually decreased over the next 500 million years. Sub-
sequent studies that better account for possible sampling
biases have also observed this decrease in extinction rate
(e.g., Foote, 2003; Alroy, 2008; Kocsis et al., 2019). Var-
ious causal mechanisms have been proposed to explain the
decrease in extinction rates, including increased ecological
complexity, ecological resistance to extinction, taxonomic
structure (increase in the number of species per clade over
time), lineage durations, variability of the rock record, and
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stabilization of the carbon cycle as a result of decreased
shallow-marine anoxia (reviewed by Payne et al., 2020). These
observations remain largely correlative, and no community-
wide consensus has yet been established.

Connecting Geochemistry and Fossils
through Physiology
Traditionally, geochemical data have been compared stra-
tigraphically with paleontological diversity data to assess the
environmental impact of a given oxygenation or deoxygen-
ation event. Here, we attempt to interpret these coupled re-
cords in light of information from modern physiology and
ecology (Knoll, 2013). In particular, our interpretation of
possible links between oxygen and the development of an-
imal multicellularity are based on observations from respi-
ration experiments on body plan analogs of the earliest an-
imals, whereas our interpretation of the Cambrian radiation
is based on space-for-time substitutions (e.g., Blois et al.,
2013) from modern OMZs. Moving into the Phanerozoic,
we focus on the metabolic index (Deutsch et al., 2015) as
an ecophysiological link between environment and organ-
ismal evolution. The metabolic index (U) incorporates both
environmental parameters (the partial pressure of oxygen
[pO2] and temperature [T]) and species-specific physiologi-
cal parameters (Ao, Eo, and n) to predict the balance between
organismal oxygen supply and demand (Equation 1), which
must be greater than 1 for habitat to be aerobically viable.
The parameter Ao represents an organism’s hypoxia toler-
ance (at a reference temperature in some formulations), Eo
represents how hypoxia tolerance changes with tempera-
ture, and n represents the allometric scaling of an organism’s
oxygen supply and demand balance with its body size (B).
These physiological parameters are calibrated using res-
pirometry experiments in which the lowest pO2 that can
sustain an organism’s standard metabolic rate, or Pcrit, is
measured across a range of temperatures. Note that a num-
ber of minor variations of the metabolic index equation have
been applied to different ecophysiological problems since
its development by Deutsch et al. (2015), but all are solving
the same problem of viable aerobic habitat:

U 5 Ao � Bn pO2

exp 2Eo
kB�T

� � : (1)

Simply put, U is the ratio of environmental oxygen sup-
ply to metabolic oxygen demand of a species, given the com-
bination of local temperature and oxygen conditions. At
U 5 1, there is exactly enough oxygen in a given area for
the species to maintain standard metabolic rate (SMR).
AtU > 1, the species has thatmanymore times the environ-
mental oxygen available to it than it needs to maintain SMR.
Conversely, at U < 1, the species does not have enough en-
vironmental oxygen supply to meet its standard metabolic
oxygen demand; thus, that given area would be aerobically
unsustainable. Marine organisms do not, however, occupy
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all areas of the ocean whereU > 1; this is because organisms
are performing physiological functions, such as growth, re-
production, or feeding, that require a greater amount of
oxygen than what is needed to maintain SMR. The term
Ucrit is the lowest U value where a given species is docu-
mented to exist and is considered the minimum U value re-
quired for the persistence of that species in a particular area
(Deutsch et al., 2015, 2020).

Oxygen and Animals in the Precambrian
and Paleozoic

Oxygen and the origin of animals
In 1959, the biologist John Nursall argued that the lack of
Proterozoic animal fossils was a real reflection of the ab-
sence of animal life. Citing Harold Urey (1952), who argued
that the atmosphere must have remained reducing until at
least 800 Ma, Nursall (1959) suggested that the permanent
oxygenation of the atmosphere occurred between 800 and
600 Ma, immediately preceding the origin of aerobic life
and the explosive (tachytelic) diversification of animals across
the Precambrian-Cambrian boundary. While the perma-
nent oxygenation of the atmosphere (the GOE) is now con-
strained to ∼2.22 billion years ago (Ga) (Poulton et al., 2021),
the idea that atmospheric oxygen remained too low to
support multicellular animals (e.g., Cloud, 1976), or at least
fossilizable animals (e.g., Towe, 1970; Runnegar, 1982a), un-
til the late Proterozoic nevertheless stuck—primarily among
geochemists reconstructing ancient oxygen levels (reviewed
by Mills and Canfield, 2014). The exact physiological mech-
anisms underlying this prediction, however, either remained
vague or varied from model to model. For the origin of an-
imals from unicellular protists, one proposed mechanism
concerned the amount of ambient oxygen needed to meet
the oxygen demands of the earliest diffusion-dependent an-
imals (Cloud, 1976). For the origin of animals capable of en-
tering the fossil record, one mechanism concerned the amount
of oxygen needed to surpass the basic oxygen requirement
for collagen synthesis and to permit the secretion of shells,
cuticles, and other “hard parts” (Towe, 1970). Many of these
earlier proposed mechanisms, such as the oxygen require-
ment for collagen, have since been refuted (reviewed by Cole
et al., 2020) and none have arisen in their stead.

Given current data, it is unlikely that oxygen was lim-
iting for multicellular animals unless it was far below the
generally hypothesized mid-Proterozoic level of 1%–10%
PAL. Most pertinent to this discussion, the earliest animals
were likely soft-bodied diploblasts (animals possessing only
two germ layers, an inner and an outer), an organization
that essentially leaves all respiring cells in diffusive contact
with seawater (Runnegar, 1982b; Sperling et al., 2013b).
Thus, the minimal oxygen requirements for the earliest an-
imals were unlikely to have been considerably different from
those of unicellular eukaryotes, which had existed for hun-
dreds of millions of years before (Fig. 1). Concordant with
000
this interpretation, respirometry data indicate that mod-
ern marine sponges (diploblastic and perhaps similar in
body plan to some of the earliest animals) can survive under
the oxygen levels estimated to have characterized the mid-
Proterozoic surface oceans (Mills et al., 2014, 2018; Mica-
roni et al., 2021). Animals additionally conserve a limited
subset of genes for enzymes catalyzing anaerobic energy
metabolism pathways, which are distributed widely through-
out the metazoan tree, enabling animals to spend extended
portions of their life cycles under anoxia (Müller et al., 2012;
Mentel et al., 2014). These physiological and genomic ob-
servations, as well as the fact that animals are monophyletic
(an evolutionary novelty), suggest that the attainment of
environmental oxygen levels permissive to animals—while
a prerequisite—was not the primary control on when ani-
mal life originated in geologic time (e.g., Butterfield, 2009b).
The evolution of multicellularity in animals and other Neo-
proterozoic eukaryotes wasmore likely related to food supply or
feeding rather than oxygen (Leys and Kahn, 2018; Butter-
field, 2020). The caveat to this would be if mid-Proterozoic
and early Neoproterozoic oxygen levels were exceptionally
low (i.e., <0.1% PAL, which we view as unlikely but pos-
sible). Specifically, the order of magnitude difference be-
tween 0.1% and 1.0% PAL is key. If oxygen levels prior to
∼800 Ma were persistently <0.1% PAL, then the marine
environment was likely not permissive to animals; levels
between 0.1% and 1.0% are ambiguous and require con-
sideration of the temporal persistence of anoxic events and
synergistic factors, such as temperature (Reinhard et al.,
2016); and persistent levels >1.0% suggest sufficient oxy-
gen for early animals well prior to their appearance.

Oxygen and the early radiation(s) of animals
While the earliest animals and earliest bilaterians may not
have been limited by low Proterozoic oxygen levels, oxy-
gen availability may have been limiting for the evolution
of larger, armored (biomineralized), and more active ani-
mal body plans that developed across the Precambrian-
Cambrian boundary independently in several clades. In con-
trast to the monophyletic origin of animals, this polyphyletic
radiation in the Cambrian suggests an extrinsic (environ-
mental) control. In a classic paper, Rhoads and Morse (1971)
reviewed the biological oceanography of modern OMZs
and demonstrated that changes in body size, diversity, and
bioturbation with increasing oxygen broadly re-capitulated the
appearance of animals across the Precambrian-Cambrian
boundary. This space-for-time substitution was a key
observation linking Cambrian oxygenation with the bio-
logical radiation, and their insights have been supported by
four further decades of study in OMZs. New observations
have added two nuances to the story. First, Sperling et al.
(2013a) studied how polychaete feeding ecology changed
across oxygen gradients in modern OMZs and demonstrated
that while polychaetes can live at very low (∼suboxic) oxy-
gen levels, carnivorous polychaetes generally do not. The
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study found a clear relationship between increasing oxy-
gen levels and the abundance and diversity of carnivores,
which is not unexpected, given the O2 requirements for
mobility and digestion in this feeding strategy. The recent
demonstration that vision in marine invertebrates is highly
oxygen dependent (McCormick et al., 2019) further links
oxygen and carnivory, given the importance of visual acu-
ity in predation (Parker, 2003). The advent of carnivory and
resulting predator-prey arms races represents the most plau-
sible causal factor in the appearance of new animal body
plans (which is what characterizes the Cambrian radiation)
(Peterson et al., 2005; Marshall, 2006; Dzik, 2007; Butter-
field, 2009a); given this, we can draw a causal scenario link-
ing oxygen, ecology, and macroevolution. Specifically, we
can hypothesize that the earliest animals were limited to
small body sizes and low-energy feeding strategies and that
an increase in oxygen levels allowed for more active, car-
nivorous feeding strategies that ultimately ignited the Cam-
brian explosion.

The second recent observation is that, compared to
Rhoads and Morse (1971), we know that the critical oxy-
gen thresholds that would permit Cambrian-type animals
versus prohibit them are quite low (Sperling et al., 2015a).
As noted above, based on ecological patterns in modern
OMZs, ∼10% PAL would likely be sufficient. Based on the
known oxygen constraints (Fig. 1), changes in oxygen are
a plausible trigger for the Cambrian explosion, but equally
plausible is that oxygen increased substantially around the
base of the Cambrian but is only coincidentally correlated
with the biological radiation. As an example, an increase
from a Neoproterozoic baseline of 15% to 30% PAL in the
Cambrian represents a doubling of atmospheric oxygen;
but such an oxygen increase would have likely played a rel-
atively minor role in animal evolution, because there was
sufficient oxygen for Cambrian-type organisms (including
predators) prior to that time. Alternatively, a doubling from
a Neoproterozoic baseline of 5% to 10% in the Cambrian
would cross the critical ecological thresholds and allow the
causal scenario described above to hold. Thus, despite much
progress in both geochemistry and paleobiology, increased
resolution of the actual magnitude of oxygenation and the
oxygen requirements of the Cambrian fauna are still re-
quired to satisfactorily understand the role of oxygen in
the Cambrian explosion. Changes in oxygen or marine re-
dox have also been invoked to explain the major increase
in lower taxonomic diversity during the Ordovician radia-
tion (Fig. 5A; Saltzman et al., 2015; Marenco et al., 2016;
Edwards et al., 2017). While this role for oxygen remains
a possibility, like the hypotheses relating oxygen and the
origin of animal multicellularity, the evolutionary or eco-
logical mechanisms by which increasing oxygen facilitated
this radiation are not clear or differ between studies. In ad-
dition to more focus on evolutionary mechanisms for both
radiations, researchers must better incorporate other envi-
ronmental factors such as food supply or productivity (Pohl
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et al., 2018; Sperling and Stockey, 2018) and temperature
(Boag et al., 2018; Goldberg et al., 2021); oxygen is a crit-
ical environmental variable but far from the only one.

Oxygen and early Paleozoic extinctions
Although the dawn of the Paleozoic witnessed these two ma-
jor evolutionary radiations, the early Paleozoic was also char-
acterized by anomalously high extinction rates relative to the
remainder of the Phanerozoic. A new ecophysiological ex-
planation for high early Paleozoic extinction rates was re-
cently proposed that requires only commonplace climatic
perturbations in the context of lower atmospheric oxygen
levels (Stockey et al., 2021; Figs. 5, 6). Our understanding
of the synergistic effects of oxygen and temperature predicts
that marine ectotherms are likely to have smaller thermal
safety margins at lower environmental oxygen levels (Pört-
ner, 2010; Deutsch et al., 2015). Marine animals are there-
fore expected to be more vulnerable during ocean warming
events in low-oxygen Earth system states. Stockey et al.
(2021) generated 3D ocean simulations using the cGENIE
Earth system model (Ridgwell et al., 2007) at different at-
mospheric O2 levels, continental configurations, and climate
states. These ocean models were then combined with the
metabolic index framework (Deutsch et al., 2015; Penn et al.,
2018; Equation 1) to estimate the magnitude of warming-
driven extinction for a given climate perturbation under dif-
ferent levels of atmospheric oxygenation. Specifically, the
modeled ancient oceans were populated with ecophysiotypes
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Figure 6. The metabolic index demonstrates that animals are likely to have
less aerobic safety buffer with respect to warming events under lower atmo-
spheric oxygen levels. Figure shows global ecophysiotype extinction predicted
to result from a ∼5 7C warming event from an approximately pre-industrial
baseline sea surface temperature at different atmospheric O2 levels. Darker
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having physiological parameters drawn from the distributions
measured in modern species (namely, Ao, Eo, and Ucrit). The
ocean was then perturbed with a CO2-driven warming event,
and the percentage of ecophysiotypes that could find viable
aerobic habitat before the warming event was compared to
the post-warming ocean. The modeled marine extinction
events resulting from standard climate variability under early
Paleozoic levels of oxygenation were much more severe than
those predicted for the same climate perturbation under mod-
ern atmospheric oxygen levels (Fig. 5). Notably, these analyses
illustrate an inflection point in simulated extinction magni-
tude around the upper limit for reconstructed early Paleo-
zoic oxygenation. This modeling approach further demon-
strates that atmospheric oxygen is a more important factor
in controlling the extinction vulnerability of marine ecto-
therms than other Earth system boundary conditions such
as continental configuration, pre-warming climate state, and
the strength of the biological pump.

Anatomy of a Mass Extinction: Permian-Triassic
Mass Extinction
The end-Permian mass extinction was the most severe bi-
otic crisis in the history of animal life, whether measured
in terms of the proportion of taxa lost (Raup and Sepkoski,
1982; Benton, 1995) or the impact on ecosystem structure
(Droser et al., 2000). Many causes have been proposed for
this global catastrophe (reviewed in Erwin, 1993; Payne and
000
Clapham, 2012), but emerging data from sedimentary geol-
ogy and geochemistry and new insights from animal phys-
iology demonstrate that stresses impacting respiratory phys-
iology can account for both taxonomic and biogeographic
selectivity patterns in the extinction (Knoll et al., 1996, 2007;
Clapham and Payne, 2011; Kiessling and Simpson, 2011; Penn
et al., 2018; Song et al., 2020; Foster et al., 2022).

Most researchers now agree that the eruption of the Si-
berian Traps, the largest LIP of the past 500 million years,
was the geological event that triggered the environmental
changes responsible for the biodiversity crisis (e.g., Renne
and Basu, 1991; Campbell et al., 1992; Reichow et al., 2009;
Svensen et al., 2009; Burgess and Bowring, 2015; Burgess
et al., 2017; Fig. 7). The global environmental impact of the
Siberian Traps eruptions resulted from the release of vol-
canic gases, dominated by carbon dioxide but also includ-
ing sulfur volatiles and halocarbons (Svensen et al., 2009;
Sobolev et al., 2011; Black et al., 2012; Broadley et al.,
2018; Elkins-Tanton et al., 2020). The eruptions of this spe-
cific LIP likely had an outsized environmental impact be-
cause the gas content of the large volume of basaltic magma
was enhanced via heating and degassing of volatile-rich sed-
imentary rocks (i.e., coal) in the Tunguskaya Basin (Ganino
and Arndt, 2009; Svensen et al., 2009; Ogden and Sleep,
2012; Elkins-Tanton et al., 2020). The discovery of coal fly
ash at the Permian-Triassic boundary in sites far distant
from the Siberian Traps provides further direct evidence
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for massive coal combustion and concomitant CO2 release
(Grasby et al., 2011).

This massive injection of CO2 into the Earth system
caused substantial greenhouse warming and marine deox-
ygenation (Fig. 7). Seawater temperatures in the surface of the
tropical Tethys Ocean increased ∼12 7C within ∼800 kyr,
from ∼25 7C to ∼37 7C, with potentially 7 7C to 10 7C of
warming occurring in ∼39 kyr (Sun et al., 2012). Accurate
temperature estimates are unfortunately not available from
most areas worldwide across the Permian-Triassic, although
other temperature proxy records do concur there was sub-
stantial warming (e.g., Joachimski et al., 2012, 2019). It is es-
sential to consider both magnitude and timescale of warm-
ing when comparing the end-Permian crisis with modern
global change, because the late Permian warming was sub-
stantially larger but occurred over a much longer duration.
With respect to deoxygenation, the series of oceanographic
linkages between CO2 injection and deoxygenation remain
controversial. For instance, Penn et al. (2018), using the com-
munity earth system model (CESM), suggested that warm-
ing drove persistent stratification of the ocean and, thereby,
anoxia, whereas Hülse et al. (2021), using the cGENIE Earth
system model (Ridgwell et al., 2007), suggested that wide-
spread anoxia was largely the result of temperature-driven
microbial respiration. Despite these uncertainties regarding
the oceanographic mechanism of deoxygenation, it is now
clear from geologic and geochemical evidence that ocean de-
oxygenation coincided with the end-Permian mass extinc-
tion and persisted for several million years into the Triassic.

Evidence of end-Permian ocean deoxygenation emerged
first from analyses of sedimentation patterns, as many shallow-
marine records exhibit shifts from light-colored, bioturbated
sediments below the extinction horizon to dark-colored, un-
bioturbated sediments above the extinction horizon (Wignall
and Hallam, 1992; Wignall and Twitchett, 1996). Similar
sedimentological shifts occur in deep-marine stratigraphic
sections as well (Isozaki, 1997). Iron speciation and pyrite
framboid sizes demonstrate euxinic conditions developing
in places at mid-shelf or even inner shelf depths during the
end-Permian extinction, with ferruginous conditions pre-
sent at deeper depths (Bond and Wignall, 2010; Clarkson
et al., 2016; Schobben et al., 2020). Finally, in addition to
these inorganic proxies, fossil molecules (biomarkers) de-
rived from the pigments of green sulfur bacteria peak in
abundance near the Permian-Triassic boundary (Grice et al.,
2005; Cao et al., 2009). These bacteria photosynthesize using
hydrogen sulfide as an electron donor, thus requiring anoxic,
sulfide-bearing water within the marine photic zone. The oc-
currence of these fossil molecules at widely distributed sites
indicates an unusual prevalence of shallow-marine euxinia
associated with themass extinction event.

Over the past decade, inferences from sedimentary pat-
terns and local redox proxies have been strengthened via
geochemical analysis of global redox proxies. Specifically,
studies demonstrate that the Middle and Late Permian were
000
characterized by d238U similar to the modern ocean, followed
by a negative uranium isotope shift across the Permian-
Triassic boundary in shallow-marine carbonate rocks. This
uranium isotope excursion was first identified across the im-
mediate Permian-Triassic boundary (Brennecka et al., 2011),
with later studies demonstrating that light d238U values char-
acterized the entirety of the Lower Triassic and could be
found in numerous locations worldwide, including south
China, Iran, and Turkey (Lau et al., 2016; Elrick et al., 2017;
Zhang et al., 2018). Numerical models of the uranium cy-
cle accounting for uncertainty in model parameters indicate
that the shift in d238U requires a change in the areal extent of
seafloor anoxia from <1% to >10% in less—and perhaps
much less—than 50 kyr (Lau et al., 2016; Kipp and Tissot,
2022; Pimentel-Galvan et al., 2022; Fig. 7). Agreement be-
tween independent reconstructions of seafloor anoxia based
on d238U and uranium concentration data further suggests
that both datasets contain a strong original redox signature
rather than local or diagenetic overprints (Pimentel-Galvan
et al., 2022).

It is now clear that the latest Permian ocean was similar
to the modern in terms of both temperature and widespread
oxygenation and that the mass extinction event occurred in
association with a substantial increase in atmospheric car-
bon dioxide levels, climate warming, and ocean deoxygena-
tion. The central challenge in using environmental paleo-
proxy data to infer extinction causes is the mapping between
proxy data (environmental stress) and physiological response.
The uranium isotope modeling indicates that anoxia was
widespread (a best guess of 18% of the global seafloor in
Pimentel-Galvan et al., 2022). Anoxia was likely concentrated
below storm wave base in outer shelf or slope environments,
although truly anoxic and/or sulfidic conditions may have
impinged into shallower water in some areas (Grice et al.,
2005; Schobben et al., 2020). However, with near-modern
atmospheric oxygen (i.e., 100% PAL) it is nearly impossi-
ble to drive the entire ocean anoxic (Fig. 3E). This is partic-
ularly true for shallow waters in direct connection with the
atmosphere, and indeed, well-aerated shoreface environ-
ments in the earliest Triassic can record robust and healthy
animal communities (Beatty et al., 2008). Given the diffi-
culty of developing widespread anoxia in the locus of an-
imal biodiversity (shallow shelf), most likely anoxia and/or
euxinia was an important local or regional kill mechanism
but not the global kill mechanism. Rather, geochemical evi-
dence for increased anoxia in deeper-water settings (e.g.,
light d238U carbonate values) are an indirect signal of the real
killer: the development of widespread low-oxygen (dysoxic)
conditions on the shelf combined with high temperatures.

Progress in understanding the relative biotic impact
of these stressors has been made through a workflow in-
corporating (1) an Earth systemmodel calibrated with avail-
able geochemical proxy data, (2) an ecophysiological model
of temperature-dependent hypoxia (the metabolic index),
and (3) comparison between model results and the fossil
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record. Application of this approach to the end-Permian
mass extinction demonstrates that changes in aerobic hab-
itat due to ocean warming and resulting ocean deoxygen-
ation can account for the observed latitudinal gradient and
extinction intensity in the initial major pulse of end-Permian
extinction (Penn et al., 2018). Specifically, this study used
a general circulation model with an end-Permian paleo-
geography to simulate a major climate warming event (via
an increase in modeled partial pressure of carbon dioxide
[pCO2] from 150 to 5580 ppm). The resulting paleoceano-
graphic model provided a good fit to available U isotope
constraints and paleotemperature proxies (Sun et al., 2012;
Lau et al., 2016). As discussed above with respect to early
Paleozoic extinctions, the Penn et al. (2018) study also sim-
ulated “ecophysiotypes” by sampling from the distributions
of physiological parameters measured in modern species.
Similarly, the availability of aerobic habitat for these spe-
cies within the model was assessed before and after the mod-
eled CO2 injection event.

The simulated pre-extinction ocean was habitable to
at least some species in all regions, and aerobic habitat de-
clined for nearly all species after the injection event as a
result of the combined effects of deoxygenation and warm-
ing. Because of changes in the wind field, ocean currents,
and primary productivity, the upper regions of the tropical
ocean experienced substantial warming but little deoxygen-
ation, whereas the polar regions experienced more sub-
stantial deoxygenation. Consequently, loss of aerobic hab-
itat in the model was governed more by deoxygenation
near the poles and more by warming near the equator
(Fig. 8B). Overall, predicted loss of habitat and extinction
was greater near the poles and lesser, albeit still substantial,
in the tropics (Fig. 8B). Intriguingly, the ecophysiologi-
cal model results also suggest that the latitudinal pattern
of extinction intensity was driven as much by the spatial
distribution of species with different physiological capaci-
ties in the pre-extinction Permian ocean as by the spatial
pattern of environmental change during the event itself.
Ecophysiotypes living in the tropics prior to the extinction
were characterized by traits pre-adapted to warm, low-
oxygen environments (low hypoxic thresholds and low ra-
tios of active to resting metabolism, or Ucrit) and were able
to exploit such conditions when they arose globally. Con-
versely, higher latitudes in the pre-extinction ocean could
support ecophysiotypes with high hypoxic thresholds and
higher Ucrit. These ecophysiotypes had no escape and were
preferentially exterminated when the high latitudes warmed
and lost oxygen.

Model predictions for the biogeography of the end-
Permian mass extinction based on application of the meta-
bolic index generally agree with evidence from the fossil
record. Extinction was severe everywhere but eliminated a
greater proportion of marine animal genera at temperate
and high latitudes than in the tropics (Fig. 8A; Penn et al.,
2018). This latitude gradient in extinction does not appear
000
to reflect variation in the quality of the fossil record before
and after the extinction and appears independently in anal-
yses separating the phyla with more sophisticated respiratory
and circulatory systems and greater motility (Arthropoda,
Chordata, Mollusca) from other well-fossilized phyla (Bryo-
zoa, Brachiopoda, Cnidaria, Echinodermata) (Penn et al.,
2018, fig. S14A). The model thus does not currently explain
the difference in extinction intensity across classes and
phyla identified by Knoll et al. (1996), suggesting other
physiological stresses, such as hypercapnia, or differences in
metabolic index parameters across clades not yet captured
by existing (and limited) experimental data. Differences in
Latitude (°N)

Ex
tin

ct
io

n 
(%

)
Ex

tin
ct

io
n 

(%
)

Latitude (°N)

100

80

60

40

20

0

100

80

60

40

20

0

-50 500

-50 500

Vcrit

Fossil Record
Model

40%

70%

O2 LossLoss2

Warming

Total

A.

B.

Figure 8. Ecophysiological modeling of the Permian-Triassic mass extinc-
tion. (A) Global extinction versus latitude, as observed in marine genera
from end-Permian fossil occurrences in the Paleobiology Database (2022)
and shown by red circles with error bars. Modeled extinction with the met-
abolic index based on simulated warming and deoxygenation is shown by
the gray band. This analysis assumes a maximum possible depth of initial
habitat of 500 m (suitable for the end-Permian fossil record) and varies be-
tween a fractional loss of 40% and 70% of habitat volume (Vcrit) required to
result in extinction. Both the fossil record and the ecophysiological model
suggest higher extinction in polar regions compared to the tropics. Addi-
tional paleontological and modeling sensitivity analyses are shown in Penn
et al. (2018). (B) Regional extinction (i.e., extirpation) versus latitude for
model ecophysiotypes across the Permian-Triassic extinction, with individ-
ual contributions from warming and the loss of seawater O2 concentration.
Extirpation occurs in locations where the metabolic index meets the active
demand of an ecophysiotype in the Permian (U > Ucrit) but falls below this
threshold in the Triassic (U < Ucrit).



E. A. Sperling et al. Biol. Bull. 2022, 243: 000–000
the latitude gradient of extinction when considering later
Griesbachian taxonomic losses (Song et al., 2020) may also
point toward the importance of other stresses in causing
extinctions after the initial pulse at the Permian-Triassic
boundary itself.

Regardless of whether details of the Penn et al. (2018)
findings are maintained following the collection of addi-
tional paleo-proxy, fossil, modeling, and experimental res-
pirometry data, the principle of the approach is essential
to use ancient episodes of climate change and extinction to
test hypothesized extinctionmechanisms and to inform pro-
jected biological responses to climate change in the twenty-
first century. Simple, quantitative measures of habitat viabil-
ity are required to translate between environmental changes
determined from paleo-proxy data and biological responses
observed from fossils. Biological traits that are conserved
at high taxonomic levels, such as basic respiratory and cir-
culatory anatomy, or are directly measurable from fos-
sils, such as body size, are most amenable to inclusion in
measures of habitat viability; but the influence of other
variables can be determined by sampling from distribu-
tions constrained by measurements of living species.

Lessons from the Geological Oxygen Record
for Modern Global Change
When attempting to draw lessons or analogies from the geo-
logic past to modern and future global change, the major
stumbling blocks are magnitude and timescale. The magni-
tude of both environmental change and marine extinction
during the Big Five mass extinctions is simply not com-
parable to modern events—except under extreme scenarios
of anthropogenic global change, we do not expect ∼12 7C of
tropical surface warming, near complete loss of oxygen in
the ocean interior, and upward of 90% species extinction,
such as characterized the Permian-Triassic boundary (Penn
et al., 2018; Penn and Deutsch, 2022). Conversely, while
high-precision geochronology can only provide upper esti-
mates for the timescale of ancient environmental change
when such change was very rapid (i.e., <50,000 years for the
Permian-Triassic), and the geological record systematically
under-estimates rates of climate change (Kemp et al., 2015),
there is no evidence that geologic forces come anywhere
close to humanity’s ability to rapidly transfer carbon from
rock reservoirs to the atmosphere. Thus, modern organisms
are likely facing a much lower-magnitude perturbation but
a faster rate of change, which restricts the ability of natural
feedback processes to mitigate environmental stresses.
Studies of Pleistocene records (e.g., Moffitt et al., 2015; Sal-
vatteci et al., 2022) may provide more appropriate scales of
oxygen or temperature change in terms of time and mag-
nitude than the eye-catching Phanerozoic extinctions, al-
though even here the timescale of change was still slower
than the modern. Despite these issues, the geological record
of oxygen changes (and temperature-dependent hypoxia)
offers several important lessons for modern global change.
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It is clear from the early Paleozoic record of oxygen
and life that animal communities living under low atmo-
spheric oxygen levels had very little aerobic buffer and were
prone to rapid extinction from relatively modest changes
in oxygen, temperature, or both. This has implications for
the modern analog environment, specifically animals living
in or near OMZs along continental margins. The geologi-
cal observations provide a historical precedent consistent
with observations from physiology (Wishner et al., 2018)
and sharp ecological thresholds in animal diversity or abun-
dance with declining oxygen levels (Mullins et al., 1985;
Wishner et al., 1990; Gooday et al., 2009; Levin et al.,
2009; Sperling et al., 2016). Together, these data from
the ancient and modern Earth suggest that animals living
in these environments today are likely to be especially vul-
nerable to loss of aerobic scope. Although such environ-
ments are often characterized as “muddy deserts,” they host
a mosaic of habitats and ecosystems with high regional
diversity as well as increasingly important (and likely un-
sustainable) fisheries that have been developed as shal-
lower-water species and stocks are overfished (Morato
et al., 2006; Levin and Sibuet, 2012). Perhaps equally im-
portant to consider with respect to future oxygen changes
are impacts on the bioturbation activities of slope deni-
zens. Continental margins are important sites of nutrient
and carbon cycling (Berner, 1982), mediated in large part
by animal bioturbators. While there have been biogeo-
chemical studies of bioturbators in the modern ocean (e.g.,
Aller and Aller, 1998), researchers have generally not di-
rectly investigated, at either the local scale or the global
scale, the biogeochemical effects in a warming or deoxy-
genating ocean. In contrast, the action of bioturbators in
the poorly oxygenated early Paleozoic has recently received
increased scrutiny (albeit with varying modeling outcomes;
Canfield and Farquhar, 2009; Boyle et al., 2014; Tarhan
et al., 2015; van de Velde et al., 2018). Most likely, the ef-
fects of global change on bioturbation are heterogenous and
require nuance in global modeling efforts; for instance, bio-
diffusion mediates phosphorus burial, whereas bioirriga-
tion recycles P to the water column and enhances produc-
tivity (Tarhan et al., 2021). In any case, the lessons from and
modeling approaches applied to the ancient low-oxygen
world regarding bioturbation are likely to be useful in consid-
ering the biogeochemistry of our future oceans.

The most useful lesson from the ancient record (espe-
cially as a counter-point to climate change skeptics who claim
that modern climate change could just be natural cycles or
who question the link between CO2 and climate change)
is that over the past 400 million years, every time volcanic
forces have injected massive amounts of CO2 into the Earth
system, we see evidence in the geologic record for global
warming, ocean deoxygenation, ocean acidification, and
widespread extinction of marine species. The timescales and
magnitudes may be different, but the repeated response
to natural carbon cycle perturbations is the same as that
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observed today in response to anthropogenic fossil fuel com-
bustion. Notably, biological recovery from such events takes
hundreds of thousands to millions of years, as long as or
longer than the timescale of return to pre-eruption environ-
mental conditions. From a stressor perspective, these ma-
jor extinction events all involve both deoxygenation and
warming. Ecophysiological modeling of the Permian-Triassic
extinction (Penn et al., 2018) suggests that it was the sy-
nergistic combination of these two factors—with varying
contribution by latitude—that best explains the pattern of
extinction in the fossil record. This finding is consistent with
recent meta-analyses suggesting that the combination of
oxygen and temperature is by far the most detrimental stres-
sor combination to marine invertebrates (Reddin et al.,
2020; Sampaio et al., 2021) and highlights the importance
of studying not just oxygen or temperature but, rather,
temperature-dependent hypoxia.
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