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ABSTRACT. We study modules over the commutative ring spectrum HFy A
HT3, whose coefficient groups are quotients of the dual Steenrod algebra by
collections of the Milnor generators. We show that very few of these quotients
admit algebra structures, but those that do can be constructed simply: killing
a generator & in the category of associative algebras freely kills the higher
generators i 4,. Using new information about the conjugation operation in
the dual Steenrod algebra, we also consider quotients by families of Milnor
generators and their conjugates. This allows us to produce a family of asso-
ciative HF2 A HFF2-algebras whose coefficient rings are finite-dimensional and
exhibit unexpected duality features. We then use these algebras to give de-
tailed computations of the homotopy groups of several modules over this ring
spectrum.

1. INTRODUCTION

In stable homotopy theory, the mod-2 Moore spectrum M is a “quotient” of the
sphere that does not admit a unital multiplication. This has several proofs: one uses
mod-2 cohomology, while another observes that 7w, M does not admit the structure
of aring. As aresult, this particular example is often employed to illustrate a barrier
between stable homotopy theory and more classical algebra. It is tempting to blame
these problems on the non-algebraic nature of the stable homotopy category itself,
the difficult nature of the coefficient ring 7S, general unpleasant behavior of the
prime 2, or similar factors. Examples of similar phenomena have been found in
stable module categories by Langer [Lan09] and in exotic triangulated categories
by Muro—Schwede—Strickland [MSS07].

If HFF5 is the mod-2 Eilenberg—Mac Lane spectrum, the smash product

A:H]FQ /\HFQ

is a commutative ring spectrum. The coefficient ring is Milnor’s dual Steenrod
algebra, a polynomial algebra on generators in degree 2° — 1 [Mil58]. Following
previous authors (e.g. [MT68; BMMSS86]), we denote the standard generators by
& so that

A* =~ Fg[fl,fg,...].

We also denote the conjugate of &; by ;.

The spectrum A is an algebra over HF5. By work of Shipley [Shi07], this implies
that it is equivalent to a differential graded algebra over Fy. Even further, it can
be shown that it is formal: this differential graded Fs-algebra is equivalent to the
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graded polynomial algebra A, with zero differential, and as an associative HIFo-
algebra A is equivalent to the generalized Eilenberg-Mac Lane spectrum H(A,).
This gives the category of left A-modules a concrete algebraic model: the category
of differential graded A.-modules.

However, these equivalences ignore commutativity in the multiplicative struc-
ture: A is not equivalent to H(Ay) as a commutative algebra, and these two rings
give incompatible monoidal structures on the category of left A-modules. Our goal
in this paper is to study the gap between the theory of algebras and modules over
A and A.. We will find that examples behaving like the mod-2 Moore spectrum are
abundant, despite left A-modules being very algebraic and despite the coefficient
ring Ay being very tame.

Overview and results. One of our chief approaches in this paper is to use the
relative homology

H (M) = my(HF2 7 M)

and the corresponding relative Adams spectral sequence. These relative groups give
us an indispensable tool for the study of A-modules and A-algebras.

Section 2 is dedicated to these topics. In §2.1, we discuss this relative Adams
spectral sequence: Baker—Lazarev’s HFs-based Adams spectral sequence in the
category of A-modules [BL0O1]. Computing with it requires an understanding of
relative homology groups as comodules over the Hopf algebra

I'= W*(HFQQH]FQ),

which we will identify with Bokstedt’s topological Hochschild homology.

In §2.2, we compute the relative homology of quotients of A by classes in its
homotopy, and describe their comodule structure over I'. We find that, homotopi-
cally, coning off a class does not kill it. This brings us to our first main result,
which we prove in §2.3.

Theorem 1.1. Given any element o € Ay such that a = & mod decomposable
elements, with mapping cone C(a), the multiplication-by-o map induces the zero
map on 7C(a) but not on ﬂ*(C(a)QC(a)). In particular, « is not the trivial

self-map of C(a) as an A-module.

As in the case of the mod-2 Moore spectrum, a consequence of this calculation
is that these cones C(«) have no A-linear multiplication. It may, at first, seem
that Theorem 1.1 is at odds with our algebraic description of the category of left
modules. However, the multiplication-by-a map M — M does not naturally have
the structure of a map of left modules without assuming some commutativity from
A.

Iterated cones are related to endomorphism algebras in §2.4, and we compute
the relative Adams Es-page for these and other related endomorphism objects.

While Section 2 is mostly focused on modules, in Section 3 we consider the effect
of coning off classes in the category of associative algebras. We begin with general
definitions and results about associative algebra quotients in §3.1: given an element
« € T4 A, there is a universal associative A-algebra A//a with a chosen nullhomotopy
of a. In §3.2, we apply the relative Adams spectral sequence to calculate with
these associative algebra quotients of A. By computing the relative homology and
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Adams Fs>-term, we obtain a surprising result that identifies the associative algebra
quotient A//,11 with one of the iterated cones A/(§k+1,&k+2,-..) from Section 2.

Theorem 1.2. The universal associative A-algebra A(k) := AJ/€+1 with a chosen
nullhomotopy of £+1 has, as coefficient ring, the following Ay-algebra:

A<k>* = A*/(€k+la £k+23 s )
Similarly, ACk) := AJ/Cr+1 has the following coefficient ring:

A<k>* = A*/(Ck-‘rla Ck-‘r?a s )
This follows from a general result that we prove only later in Appendix A.

Theorem 1.3. Suppose that B has a multiplication in A-modules with unitn: A —
B. Then the ideal

ker(n) c A,

must be closed under the Dyer—Lashof operation Q1.

This is perhaps unexpected: the operation )1 usually does not have to be pre-
served by 7 because it is not even defined on B. This result very strongly constrains
the ideals that can appear as kernels of quotients because the operation Q1 on A,
is highly nontrivial by work of Steinberger [BMMS86, §II1.2].

The Cs-action on A makes the quotient algebras A(k) and A(k) conjugate to
each other, and this lets us extend A to a Cy-equivariant algebra A<k‘>gA<k> that

we would like to understand for future applications to equivariant homotopy theory.
As a prerequisite to understanding further quotient rings of A like these, Section 4
(which is largely independent) addresses purely algebraic questions about the dual
Steenrod algebra A, and its quotients. In it, we prove the following nontrivial fact
about the conjugation operation.

Theorem 1.4. In the quotient A{k), of the dual Steenrod algebra, the sequence of
elements

Cm+1a Cm+27 ey Cerk
is reqular for any m = 0, and all higher (; are in the ideal generated by them.

Consequently, ACk)s/(Cmtts -5 Cmtk) 18 a commutative, graded Frobenius alge-
bra over Fy with top class in degree 2m+k+1 — gm+1 _ok+1 4 o

Our proof of the regularity of these sequences will require some commutative
algebra; our efforts to give this fact a simple proof using Milnor’s formula for
conjugation have not been successful.

In Section 5, we return to homotopy theory and the study of associative algebras
under A<k>2A<m>. The surprise continues: many quotients by a finite sequence of

classes (; beyond the regularity range still admit ring structures.

Theorem 1.5. For any natural numbers k, m,n = 0, there is an associative algebra
structure on the iterated mapping cone

A<k>/(<m+17 s 7Cm+k+n)7

and these all receive associative A-algebra maps from

Ay n Alm).
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When n = 0, the coefficient ring of Ak)/(Cmt1y- -+ Cmak) 1S the quotient
F2[£17 e ,gk]/(gm+17 LR Cm-HC)

When n > 0, there is a splitting into indecomposable A-modules:
2" -1
srom+k+1
A<k>/(Cm+1v R Cm+k+n) = A<k>/(<m+17 RN} <m+k) A ( \/ 51(2 )>
j=0

In fact, these quotients A(k)/(Cmt1s---sCmtk+n) arise as Postnikov stages of
A<I<;>/1;A<m>. The splitting into suspensions of AY/(Crt1s-- -5 Cmtk) allows us to

conclude that their relative homology and relative Adams spectral sequences are
completely determined by that of of Ak)Y/(Cmt1y---s Cmtk)-

In Section 6 we discuss duality. We first isolate a few facts about connective
associative ring spectra whose coeflicient ring is a Frobenius algebra, which turn out
to include the quotients ACk)/(Cmt1y-- s Cmtk+n)- The duality on their coefficient
rings has consequences, including spectral Gorenstein duality and duality for the
coefficient groups of modules.

Theorem 1.6. Fix any natural numbers k,m,n = 0, and let
5 _ 5(k,m,n) —_ 2m+k+n+l _ 2m+1 _ 2k+1 + 2

For any dualizable A-module M, the A-module Spanier—Whitehead dual DM has
an isomorphism of A{k)w/(Cms1s- -y Cmtk)-modules:

W*(A<k>/(<m+1, sy CerkJrn)ﬁDAM) = (Wéf*(A<k>/<Cm+lv sy <m+k+n)ﬁM)) ’

Here the right-hand side is the Fa-linear dual. In particular,

d (A<k>/(<m+1a LR CerkJrn)) = <7T§7d (A<k>/(<m+1, LR CerkJrn))) V'

This fact implies that any iterated quotient of A<kY/(Cmt1,-- -, CGmir) by classes
in the homotopy of A is self-dual up to a shift.

In Section 7, we illustrate the effectiveness of the theory by computing the relative
Adams spectral sequence for a series of examples. Our first result in §7.1 is to prove
a family of differentials in the Adams spectral sequence of AK)/(Crut1y-- -y Cmtk)-
In §7.2 we completely compute the relative Adams spectral sequence of A{2)/((s,(4),
in §73 that of A<2>/(€17 Cl, <3, C4), and in §74 that of A<3>/(§1, C17 52, Cg, C47 C57 CG)
In these examples, duality proves to be extremely useful for solving extension prob-
lems.

Since it is technical and thematically significantly different from the rest of the
paper, we have left the proof of Theorem 1.3, about the Dyer—Lashof operation
@1, to Appendix A. We start in §A.1 by defining cup-k algebras and discussing an
inductive approach to understanding them. In §A.2 we review the associated power
operations. In §A.3 we define a notion of centrality for a cup-(k — 1) algebra over
a cup-k algebra and explore a few consequences of this definition. Finally, in §A.4,
we prove that for a central cup-(k — 1) algebra B over a cup-k algebra A, the kernel
of m4 A — 7, B is closed under power operations.

1.1. Acknowledgements. The authors would like to thank Andrew Baker, Ian
Coley, Drew Heard, Mike Hopkins, Lennart Meier, Haynes Miller, and Doug Ravenel
for discussions related to this work. We would also like to thank the anonymous
referee for numerous suggestion on the paper.
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2. THE RELATIVE ADAMS SPECTRAL SEQUENCE AND MAPPING CONES

2.1. The relative Adams spectral sequence. The key computational tool we
use is Baker—Lazarev’s relative Adams spectral sequence based on HF5-homology
in the category of A-modules [BLO1]. For this, we need to compute the A-module
version of the dual Steenrod algebra. In our case, however, this is due to Bokstedt
[Bok]; see also Franjou-Lannes—Schwartz for a published reference [FLS94].

Theorem 2.1. The commutative ring spectrum HIFo ﬁH]FQ 1s the topological Hochschild
homology of HFy. The coefficient ring is

F*(HF2/A>HF2) E}FQ[U],
where |u| = 2.

Since 7y (H]FQQHFQ) is flat over w4, HIF5, the pair

(A,T) = (Fa,Fa[u])

forms a Hopf algebra, and w is primitive for degree reasons. By Baker—Lazarev’s
extension of Adams’ original argument, the relative homology

Hf<M) = W*(HFQI/A}M)

of any A-module is a comodule over this Hopf algebra, and we have a relative
Adams spectral sequence. This particular relative Adams spectral sequence has
been employed in equivariant homotopy theory by Hahn—Wilson [HW19].

Corollary 2.2. For any A-modules M and N, there is a relative Adams spectral
sequence with

By = Exty, (H (M), H{(N)),

converging (conditionally) to the homotopy classes of A-module maps from M to
N.

When we take M = N = A, giving the relative Adams spectral sequence for the
homotopy of A, this takes the form

Exty, (F2,F2) = Fa[&1, &, o,

The dual to the coalgebra Fa [u] is an exterior algebra on duals to the primitives
u?". The Fy-term is therefore polynomial on classes
gk—1 1,2%
] € EXt(]FQ,]FQ[u])(]F2,F2)’
and comparing with the abutment, we see that the spectral sequence collapses at
k—
E5. The class [u? 1] detects the homotopy element &;. This gives us an algebraic
interpretation of the relative Adams filtration: the relative Adams filtration of A,
is the filtration by monomial degree in the ungraded sense, while the topological
degree records the fact that A, is a graded ring.
More generally, for any A-module M the relative Adams spectral sequence
N A
Ext]iz[u] (Fo, H (M) = meM
is always a module over the relative Adams spectral sequence for A itself, and this
module structure recovers the associated graded of the action of A, on m, M.

[u
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2.2. Homology of Mapping Cones. We can now apply the relative Adams spec-
tral sequence machinery of §2.1 to study the effect of killing various classes in the
homotopy of A.

Definition 2.3. For any a € A, = m A, let C(a) = A/« denote the mapping cone
of the self-map X114 — A.

Let M}, be the A-module C(&) = A/&. More generally, for any subset I of the
positive natural numbers, let

A
M=\ M.
iel
There is a natural map A — My, and as an A,-module, we have
e (Mr) = Ay /(& | i € ).

This implies that My_, = HIF5, and, more generally, we can view any of the modules
M; as augmented to HF.

We can compute the relative homology of any of these cones fairly directly. Recall
a key observation about the relative Adams filtration: if f: N — M is a map of
relative Adams filtration at least 1, then the relative homology of the cone on f,
C(f), sits in an exact sequence

0 — H (M) — Hy (C(f)) — SH(N) — 0.

Moreover, this extension of comodules is the extension corresponding to the class in

Ext! detecting f. If f has relative Adams filtration at least 2, then the extension is

trivial. The classes u2"  are the primitives in the Hopf algebra I', which generically

makes them appear in Ext!. The following proposition expands upon this when N
is a shift of A.

Proposition 2.4. Let M be an A-module and y, € w7, M with relative Hurewicz
image 9, € HA(M). Let o € mp_1 A be any element that maps to zero in Fo, and
consider the cofiber sequence

yhtn=l g 2 M Clayy)

so that C(ayy,) is the mapping cone on ay, in A-modules. Then

(1) the relative homology of C(ayy) is given by
HA (Clayn)) = HH(M) ©Fs - Tpin,

where |Tgin| =k +n, and
(2) the coaction is determined by

1®Zqn + w2 Qyn fa=¢E, mod decomposables,

w(jjk+n) = {

1® Zran otherwise.

Corollary 2.5. The relative homology of My, as a comodule, is
H (M) = Fafbo, by},

with |b;| = i, where the coaction is given by

Y(by) = 1@ by +u? @by

and by is primitive.
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For any of our modules My, the natural maps
A — My — HFy
are isomorphisms on my. On relative homology, these maps become
Fa — Fa{bo, bor} — Fa[ul].

The class by is the image of 1 under the first map, while the second map sends by
to 1 and by to w2

The general Kiinneth spectral sequence for modules over a ring spectrum, defined
in Elmendorf-Kriz—Mandell-May [EKMM97, Theorem IV.4.1], then allows us to
deduce the more general case, since everything is flat over F.

Corollary 2.6. If I is a subset of the positive natural numbers, then the relative
homology of My, as a comodule, is

H (M) = R)Fa{bo, bai },
el
with |bj| = j and where the coaction is the one on the tensor product induced by the
Hopf algebra structure.

Note that in this tensor product, each factor has a primitive element by in degree
zero and a unique non-primitive element by:. Each of these non-primitive elements
is in a distinct degree, so we can rewrite this using dyadic expansions.

Notation 2.7. If I is a subset of the natural numbers, then let

D; = {222' |Sc1I ﬁnite}

€S
be the set of natural numbers whose dyadic expansions only involve terms of the
form 2° with i e I.
Corollary 2.8. If I is a subset of the positive natural numbers, then the relative
homology of My is
H'(My) = Fa{b; | j € Dr},
with |bj| = j. The coproduct is given by

o) = ) (Z)“() ®bi

€Dy

The augmentation
H{ (M) — H{ (HFs) = Fa[u]
is injective, and sends b; to ui/?,

This gives an algebraic “no-go theorem” for ring structures. Although the ho-

motopy groups w4 M; form a quotient ring of A, these spectra typically cannot
have A-algebra structures.

Theorem 2.9. Let I be a subset of the positive natural numbers. If My is a unital
ring object in the homotopy category of A-modules, then whenever i € I we must
have (i+1) € I. In particular, if I is nonempty and finite there can be no such ring
structure.
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Proof. The class by € HZ (M) has coproduct

Y(by) = 1@ by +u* @ bo,
and hence if there be a ring structure, we must have
b(b2) = 1@ b2 +u? @b,
The element by is the only possible image of the unit, and hence the square must

be again by, making this coproduct non-zero. This forces b% # 0. However, the

only possible non-zero class in degree 2¢*! would be byi+1, which exists if and only
if(i+1)el. O

Remark 2.10. Our identification of the comodule structure in Proposition 2.4 shows
that the comodule structure depends only on the image of a class modulo decom-
posables. The same “no-go theorem” holds for any sequence of classes

{xr | kel,xr =& mod decomposables}.

This remark applies to the conjugate classes (i, but there is also a general
procedure for studying conjugates.

Definition 2.11. If M is an A-module, then let M denote the pullback of M along
the automorphism A — A induced by the swap on HFy A HF5.

Ezample 2.12. For any subset I of the positive natural numbers, M is the quotient
of A by the classes (; with ¢ € I.

We pause to connect the coaction on a module M to that on M.

Proposition 2.13. For any A-module M, we have a natural isomorphism of Fa[u]-
comodules
H{ (M) = H{ (M).

Proof. In this instance, it can be clarifying to discuss the general case first. For a
ring homomorphism f: R — S, an S-algebra E, and an S-module M, the map f
induces a commutative diagram

EAJ*(M) — (BB p(Epf*(M)

l l

EAM ——— (EAEYA(EAM).
S S E S

We will assume I'rp = ﬂ'*(EﬁE) and I's = w*(EgE) are flat over w4 . On
homotopy groups, this becomes a commutative diagram

EE(f*(M)) —2 Tk ®@nyp EE(f*(M))

| |
ES(M) —— T's ®r,n ES(M).

The map f: (74+FE,T'r) — (74E,T's) induced by f is a map of Hopf algebroids,
and so this diagram expresses the existence of a natural map of comodules

()s (BZ(f*M)) — EZ(M)
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over (m4F,T'g). If f is an equivalence, then this natural map of comodules is an
isomorphism.

Now take f to be the swap automorphism of A, so that f*M = M by definition.
We get an isomorphism of Fy[u]-comodules

(f)sHy (M) — HH(M).

In this case, however, the conjugation automorphism f of A induces the trivial
automorphism of Fo[u]: the conjugation in A, is the identity mod decomposables.

Therefore, (f)4 is the identity. O

Remark 2.14. We see the algebraic isomorphism of Proposition 2.13 reflected in an
identification between the corresponding relative Adams spectral sequences. This
is simply recording that modulo elements of higher monomial degree, & = ;.

2.3. Double killing classes resurrects them. One of the most curious features
of this framework is that iterated quotients by classes often see multiplication by
those classes reappear. This was an early observation that led us to this general
framework, starting with the guess that in M, ﬁﬂl, multiplication by &; is non-

trivial.
The following results on comodule structure follow from the calculation of the
relative homology of My, by the Kiinneth theorem.

Proposition 2.15. We have isomorphisms

HE (MkﬁMk) ~ H (M, ﬁﬂk) = Fa{bo ® bo, bar @ bo, bo @ bar , box @ bax },
and the coproduct on byr & bok is

P(bor ®bor) = 1 @ box @ bor + 12 @ (byx ® by + by @ box ) + u> ® by ® bo.

Proof. Proposition 2.13 shows that the relative homologies of M}, and M, agree as
comodules. The result follows from the Kiinneth theorem. O

Note that since both the left and right copies of by in Proposition 2.15 support
the same coproduct, the sum

€ok 1= b2k: ®b0 + b() ®b2k

is actually a primitive element in the comodule. Of course, the element e := by ®bg
is also primitive.

Remark 2.16. The calculation of the comodule structure here is essentially the same
as the calculation that the smash square of the mod 2 Moore spectrum has a non-
trivial S¢? connecting the bottom and top cells. In the category of A-modules, this
is part of a family.

An immediate consequence of Proposition 2.15 is that we have a non-trivial
multiplication by & in the relative Adams spectral sequence for M kﬁM k-

Corollary 2.17. The relative Adams Eo-term for MkﬁMk or My, ﬁﬁk 18

Fol&1,. .. [{eo, ean }/(Ek - €0, &k - €or + &1 - €0),
where the bidegree (t — s,s) of e; is (4,0) and that of & is (2 —1,1).
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Remark 2.18. Either module M = ngMk or M = My Q}Mk sits in a cofiber
sequence

My — M — 32" M.

The relative Adams spectral sequence for M}, collapses at Fs to

Fa[&1,- - [{eo} /S - €o,

and similarly for the 2*-fold suspension. Corollary 2.17 says that this is a non-trivial
extension on relative Adams Fs-terms.

Using Remark 2.18, we can also determine the homotopy. The connecting map
in the long exact sequence on homotopy induced by this cofiber sequence is exactly
multiplication by & or (i in the module

Fa[&1, .- - 1{eo} /& - eo.

In the former case, the map is identically zero and the spectral sequence collapses
at Fsy. In the latter, Milnor’s formula tells us

k .
> & G =0,

i=0
so modulo &, we find two cases:
(1) if k =1, then ¢ = & = 0, while
(2) if k > 1, then {, = &€, + ..., where the elided terms are elements of
monomial degree at least 5.
Corollary 2.19. In the relative Adams spectral sequence for My Q}Mk, when k > 1

we have a ds-differential:
d3(eqr) = £167_ - €0
The spectral sequence collapses at Ey.

Proof. The image 51513 -eg of (i -ep must be zero on the Eo, page, and the only class
available to support this differential is eqx. It remains only to show that the spectral
sequence collapses at E4. Multiplication by & &7, is injective in the module

Fal€1, .- Heo}/ (S - eo),
so the F,-page is
Fal&1, .. J{eo}/ (&, 616k 1) - eo.
For degree reasons, eq is a permanent cycle, and therefore all multiples of ey are as

well. O

The elided terms in the formula for j will reappear as multiplicative extensions:
the class £, is only the leading term of ¢, modulo &. We will expand on this
in §7.1.
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2.4. Endomorphism algebras of cones. The endomorphism ring of a module
is a natural example of an associative algebra. When we consider finite cell A-
modules, the underlying homotopy type can be easily determined, such as in the
case of the algebras
End 4 (M)

when [ is a finite set.

Since the cones M} are self dual in the sense that the A-module Spanier—
Whitehead dual D4 M} has an equivalence

DaMy ~ 22" My,
we have an equivalence of A-module spectra:

Enda (M) ~ 21—2’°M;€2M,~c

Notation 2.20. We will write E(S) for the exterior algebra on a graded set S.

Proposition 2.21. The homotopy of End s (My), as an A-algebra, is
Asx @ E(Bar)/(EkBar, k),
where the relation 7y satisfies

re =&k + Epy1P.0r  mod  higher order monomials.

Proof. Corollary 2.17 says that the Fy-term of the relative Adams spectral sequence
is the following:

Ay ® E(Bor)/(EkBar, Ekr1Bar + &k),

where B« is in degree (—2F). For degree reasons, .o« is necessarily exterior and
a permanent cycle.

This spectral sequence degenerates at E5 because all generators of this algebra
are permanent cycles. In 7, End 4 (My,), therefore, & is divisible by £;4+1 mod terms
that are quadratic and higher in A,. (]

Remark 2.22. One consequence of this theorem is that the “generating hypothesis”,
as in Lockridge [Loc07], fails in the category of A-modules: there are nontrivial self-
maps of the finite complex M}, that induce the zero map on homotopy groups.

When k = 1, there is no indeterminacy in the relation rq: the relation &1 8.0 =0
implies that in degree 1, the only possible relation r; must be that £ = &0.5.
Working inductively, we get a family of algebras where we have good control: the
algebras End 4 (M<y).

Proposition 2.23. The relative Adams spectral sequence for End 4 (Mgy) collapses
at Eo, and there is an isomorphism of algebras

Ty Enda(M<k) = Fo[€kv1, Sp2, .- | @ E(B2, ..., Bar).
For j < k, the image of §; in this algebra is {11505 .
Proof. We use the equivalence Mg = M12 e Mj; to deduce that
Enda(Mgg) ~ EndA(Ml)g SR End 4 (My).
The homology

2k+1

Hy (Enda(My)) = 3272 Hil (M) @ Hy' (M<k)
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is cofree over the quotient coalgebra Fo[u]/(u2") = H. A(M<g). The Cartan-Eilenberg
spectral sequence then degenerates, and so the Es-term of the relative Adams spec-
tral sequence is

Ext (Fq, X2~

2 HA(M<r)) = Fal€hi. rean .- | @ (B, ..., o).
This again collapses at Ey: the maps End(M;) — Enda(Mgy) show, by naturality
of the relative Adams spectral sequence, that the elements 8.5 are permanent cycles
that square to zero and that the extensions &; = &;418.; persist to this Ep-term.
The first nonzero element higher than the 1-line is &7 1B2B.4... Bokr in total
degree 2¥T1. This means that there are no classes in the same total degree as
& + &j4+18.25 of higher relative Adams filtration, so the relations on Es are in fact
exact. (]

Fa[u2"]

Proposition 2.24. For all k, there are equivalences
EndA(Mgk)ng-kl ~ EndA(Mgk)ﬁMk-&-l-

Proof. The previous proposition shows that, for j < k, the image of the element
& in me Enda(Mgy) is §418.0s, and this squares to zero. The image of Mil-
nor’s formula for conjugation then shows that &,y and (x4+1 become equal in
s End a4 (Mgy), and so their mapping cones are equivalent as left modules over
EndA(Mgk). O

Corollary 2.25. There is an equivalence of A-modules

MexnM ey = 22" "2 End 4 (M<p).
Proof. This follows by induction on k. O

3. KILLING &;S IN ASSOCIATIVE ALGEBRAS

The ring A = HFy A HF5 is an associative ring spectrum, so we can universally
kill off elements in homotopy by attaching A, -cells. Doing so in the category
of A-algebras has an added wrinkle that arises from ensuring that the new null-
homotopy commutes with A. Using results from Appendix A, we will see that
killing an element in homotopy in associative algebras has the effect of killing a
swath of Dyer—Lashof operations on that element.

3.1. Killing generators. The method of killing generators here is closely related
to work of Baker—Richter and Szymik [BROS8; Szy14].

Definition 3.1. For a commutative ring spectrum R and an R-module M, we
define Tr(M) to be the free associative R-algebra on M:

Tr(M) = \/ M=".
n=0
Definition 3.2. Suppose that R is a commutative ring spectrum and « € m,(R),
represented by a map "R — R. The associative quotient R//« is the (homotopy)
pushout

| |

R— RJ/a
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in the category of associative R-algebras. Here C'¥X" R is the cone X" R A I ~ .

Proposition 3.3. The algebra R//« is the free associative R-algebra on a null-
homotopy of a in the following sense. For an associative R-algebra B, a map
R//a — B of associative R-algebras is equivalent to a choice of nullhomotopy of the
composite map ¥"R > R — B of R-modules.

Proposition 3.4. For a map f: R — S of commutative ring spectra and o € T R,
there is an equivalence

SA(R/ja) =~ 5//f(a)
of associative algebras over S.

Ezxample 3.5. A choice of nullhomotopy of the zero map S™ — B is equivalent to
amap S"*! — B. As a result, if o = 0 in 7R, then the universal property shows
that R//a is a free algebra:

R//a ~ TR(ZnJrlR) ~ \/ Ek(nJrl)R'

k=0

More generally, if f: R — S is a map of commutative ring spectra such that
f(a) =0, then this shows that there is an equivalence

S%(R//a) ~ Tg(X"T19)
of S-algebras.
3.2. Applications to A-modules.

Proposition 3.6. Suppose that o € Ay is such that o = &1 mod decomposables.
Then there is an isomorphism

T (HF2 7 Affa) = Fofu”]
of comodules over Fa[u].

Proof. The element o maps to zero in HF,. By Example 3.5, there is an equivalence
of H]FQ/A\(A//OZ) with the free algebra Tyg, (52 ) . In particular,

Hf(A//Oz) = W*(HFQQA//Q) = Fz[b2k+1].

The universal property of A//a gives it a map A//a — HFy of A-algebras,
factoring the map C(a) — HF,. Applying HZ(—), we get a factorization
]F2{b07 b2k+1} g FQ[b2k+l] g ]FQ[’U,],

where the composite sends by to 1 and bgr+1 to u2". Since the second map is a
map of algebras, this identifies 7, (HF ﬁA// a), as a comodule, with the subalgebra

Folu?"]. O
Calculation of the relative Adams Fs-term then gives the following.

Proposition 3.7. Let o be as in Proposition 3.6. The relative Adams spectral
sequence computing the homotopy of A//agM has a change-of-rings isomorphism

Byt~ Ext;’:[u] Sty (2 H{(M)).
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Proof. The Hopf algebra Fy [u2k] is cotensored up from Fy along the quotient map

k
q : Falu] — Folu]/(u™).
In particular, for any comodule M, we have an isomorphism of comodules

Fo[u? |@ M =Faolu] O ¢,
Fa[u]/u2”

where g, M is the “restriction” of M along the surjective map of Hopf algebras
q. O

Corollary 3.8. Let a be as in Proposition 3.6. The relative Adams spectral se-
quence for Ty (A//a) degenerates at Es, with Eq-page given by

Faléa, ..., &kl

This gives the m, A-algebra structure up to associated graded. We do not know
a prior: the images of &; for j > k; we know only that ; is zero modulo elements
of monomial degree at least 2, and this may depend on the exact terms in .
Identifying the relations imposed will require an operadic digression in Appendix A.

Definition 3.9. Let A(k) = A//¢k 11 be the free associative A-algebra with &1 =
0, and ACk) = A//Ck41 be its conjugate.

Theorem 3.10. As an Ay-algebra, the coefficient ring my (A(k)) is
A/t Err2, o) = Fol&r, &2, &k
Similarly, the coefficient ring my (A{k)) is
A/ (Cht1s Crr2s - -+ ) = Fa[G, G, Gl

Proof. We will prove the statement for m = A//C41 first. The elements (1, ...,k
of A, have the same images as £1,...,& in the relative Adams spectral sequence,
and so they determine polynomial generators of the E,, page of the relative Adams
spectral sequence for my(A//a). In particular, there are no possible hidden multi-
plicative relations between them.

Therefore, the composite

FQ[CL ey Ck] C A* i 7T*(A<k'>)
is an isomorphism, and so A, — 7, A{k) is surjective. This forces
Tx(ACR)) = Ay/J
as an Ay-algebra. We would like to determine this ideal J; the element (i1 is
in J by construction. By Corollary A.21 in §A.4, the ideal J is closed under the
Dyer—Lashof operation @Q;. In [BMMS86, §III.2], Steinberger showed that in the
dual Steenrod algebra, the Dyer—Lashof operations satisfy
Q1(G) = G-

Therefore, the map Ay, — A, /J factors through Ay /(Ck+1,Ck+2,--.) and this fac-
torization is already forced to be an isomorphism.

The same result holds for the & because conjugation is realized by a self-
equivalence of HFy; A HF5 as a commutative ring spectrum. [
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Remark 3.11. This can also be shown directly. If we apply Q1 to Milnor’s formula
Ditjen ¢2’¢; = 0 and use the Cartan formula Q;(zy) = Q1 (x)y? + 22Q1(y), it is
possible to instead calculate directly that Q1&; = 41 + flsz. Since €41 maps to
zero, all ; for 7 > k must be in the ideal by induction.

Corollary 3.12. There is an equivalence of A-modules
Aky ~ Moy

Similarly, @ ~ M.y.

Proposition 3.13. As an Fy[u]-comodule algebra,

H (AU A AGm)) = Folu” | @ Ffu?”].

Proof. The follows immediately from Propositions 3.6 and 2.13, as well as the
Kiinneth theorem. (]

Corollary 3.14. If m > k, then we have an isomorphism of Fa[u]-comodule alge-
bras
H{ (A N AGm)) = Falu®' ] @ Falegmia],

where eam+1 45 a primitive element in degree 2m+1.

Proof. If m > k, then both *” ®1 and 1®u?" have the same coproduct. Their sum

eqm+1 is therefore primitive, and the two classes u?> ® 1 and eym+: are generators

for the polynomial algebra. O
This gives the relative Adams Fs-term, via the change-of-rings isomorphism.

Corollary 3.15. For m > k, the relative Adams Es-term for A<k>ﬁA<m> is

Fg[fl, e ,fk] @ ]F2[62m,+1].
However, we need more algebraic information before we can analyze the relative
Adams spectral sequence completely.
4. REGULARITY IN DUAL STEENROD ALGEBRA QUOTIENTS

In this section, we prove a series of algebraic results about the dual Steenrod
algebra. Many of the inputs we need are standard facts in commutative algebra,
and for convenience we will largely refer to Matsumura’s text [Mat89].

Definition 4.1. Let A(k), be the (graded) A,-algebra

A*/(§k+17€k+25 DR ) = F?[Elv e a&k]7
let Z,,41,m+k be the (graded) algebra
Fo[Cnt1s Gmtas -+ s Gmrk] © Ax,

and let .
ALk, = ALK/ (Cgts - - -5 Can)-

In this section, our goal is to analyze the structures of the (graded) A.-algebras
Ay /(CGns1s- -5 Cmak), such as ACk), .

Proposition 4.2. In A(k),, we have (, € (Cna1, Cmt2s - - -5 Cmak) for all n > m.
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Proof. This is true by definition for m < n < m + k. Milnor’s formula for the
conjugate classes states that
0=> &%

i+j=n
In the ring A(k),,, this becomes the identity
k: .
Cn = Z §z2 Cn—i
i=1

whenever n > k. If n > m + k, then n — i > m for all 1 < ¢ < k that appear in
the sum. By induction on n, these elements (,,_; are in the ideal, and so the result
follows. 0

Recall that Ay, as a Hopf algebra, represents the automorphisms of the additive
formal group law over rings of characteristic 2: the formal power series

fla) =) Ga*,
=0
gives the universal automorphism, with composition inverse the power series
glw) =) &a”.
i>0
Here & = (o = 1 by convention.
Proposition 4.3. Let I,J c N be co-finite sets of natural numbers. Then the ring
B := A*/(§u<] ‘ 1 E I,] € J)
is a zero-dimensional ring and is finite-dimensional as an Fo-vector space.

Proof. Suppose that p is a (not necessarily graded) prime ideal of B; this gives us
a ring homomorphism
q: A* - B/p>

and hence automorphisms of the additive formal group law over B/p

a(z) = Y a(¢)2®  and  Bz) = ) q()a”
i=0 3=0
which are composition-inverse to each other. By the co-finiteness assumption on 1
and J, both of these automorphisms are polynomials in z.

However, the only composition-inverse polynomials with coefficients in an inte-
gral domain are linear, because the lead coefficient of the composite is a product of
powers of leading coefficients. Therefore, for all ¢, {; = 0 in B/p, and hence ¢&; € p.

This shows that the elements &; are in every prime ideal, which means they are
nilpotent. As B is generated by finitely many nilpotent generators, it is a finite-
dimensional vector space. Moreover, the ideal (£1,&a, ... ) is already maximal, so it
is the only prime ideal of B. O

Corollary 4.4. For any m > 0, the algebra A{k), /(Cmt1s- -5 Cmak) 15 a finite-
dimensional Fy-vector space, and a zero-dimensional ring.

Proof. By construction, we kill all but finitely many &;, and by Proposition 4.2,
only finitely many ¢; are non-zero modulo the ideal ({1, .-y Gmtk)- a
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Corollary 4.5. The ring ACk), is a finitely-generated module over the ring Zy, 41 m+k,
with generators given by lifts of the basis of the quotient ring.

Proposition 4.6. The composite ring homomorphism
Zm+1,m+k - A* - A<k>*
18 one-to-one.

Proof. We have shown that the ring homomorphism g: Zp 1 m4r — Ak), is
finite; the image of g is therefore an integral extension in the sense of [Mat89,
§9]. Such extensions preserve proper inclusions of primes: if p & q is a proper
inclusion of prime ideals of A(k),, then the inclusion p N Im(g) < q n Im(g) of
prime ideals is also proper [Mat89, Theorem 9.3]. Therefore, we have a proper
inclusion ¢g~1(p) < g71(q) of their inverse images in Z,, 11 mix. (Alternatively, this
directly shown in [Sta21, Lemma 00GT].)
We then have a chain of prime ideals of Z,, 41 m+x of length (k + 2):

0c g—l(o) & g_1<£1) & g_1(€17£2) S & g_l(fla'-wfk)'

However, Z,,+1,m+k is a polynomial algebra in k variables over a field, and so it has
Krull dimension k [Mat89, Theorem 5.6]: the maximal number of distinct prime
ideals in a chain in Z,, 41 m+k is (kK + 1). Therefore, the first containment must be
an equality. (I

Proposition 4.7. The ring ACk), is a flat module over Zpy 1 myk-

Proof. Thering A(k), is a finitely-generated graded module over the graded subring
Zm+1,m+k- The ring A(k), is polynomial over a field, and hence Cohen-Macaulay
[Mat89, Theorem 17.7].

Let m = (Crt1, - - - 5 Gm+k) be the augmentation ideal of the graded ring Z,,, 11 m+;
the quotient A(k), = A(k),/m is zero-dimensional by Corollary 4.4. The ring
Alk), is a flat module over Z,, 41 4k if and only if the (ungraded) localization
(A<k;>*)m is a flat module over the local ring (Zm+1,m+k)m [Mat89, §22, Remark].
Applying the “miracle flatness” theorem [Mat89, Theorem 23.1] to the local homo-
morphism

(Zm+1,m+k)m - (A<k>*)m7
we find that A(k), is flat, and hence free, as a Z,, 1 m+r-module. O

Theorem 4.8. For any m = 0, the elements (i1, -, Cmtk form a reqular se-
quence in ACk), , and ACk), is a free module over Zy, 11 mk-

Proof. These elements form a regular sequence in Z,, 1 m+k, and this property is
preserved by flat extensions. [

As a consequence of this regular sequence, we can determine the dimension
function of these finite-dimensional quotients.

Proposition 4.9. The finite-dimensional graded ring A{kYs/(Cmt1y -« - Cmtk) has
the following properties.

(1) The Poincaré polynomial is given by the following rational function:

Hle(l - t2m+i71)
Hle(l —t¥-1)
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(2) The dimension of A(k)s as a vector space is the Gaussian binomial (m,jk)
evaluated at g = 2.

(3) The mazimal degree of a nonzero element is 2(2™ — 1)(2F — 1).

Proof. The first formula is an immediate consequence of the fact that we have the
quotient of a graded polynomial ring on generators in degrees 2¢ — 1 for 1 <i < k
by a regular sequence on generators in degrees 2% — 1 for 1 < i < k.
The second formula is obtained by evaluating at ¢ = 1, which we can calculate
by either cancelling or via limit:
lim H%l(l - thIH_l) _ H?:;(Zmﬂ -1
=l Lo (=) [[i= (20 =1)
This is the definition of the Gaussian binomial at ¢ = 2.
Finally, the degree of the Poincaré polynomial is the difference in degrees between
numerator and denominator:

i(2m+i71)7i(2i71) _ (2m+k+1 72m+1)7(2k+172) _ 2(2m71)(2k71). |

Proposition 4.10. The ring A{k)«/(Cm+1, -« Cmrk) 18 a (commutative, graded)
Frobenius algebra over Fs:
(1) if§ =2(2m —1)(2% —1), then A(k)s/(Cmsts-- - Cmak) is a one-dimensional
Fy-vector space in degree &, and
(2) for any t, the multiplication followed by the projection to YX°Fy is a perfect
pairing between degrees t and 6 — t.

As a result, it is injective as a module over itself.

Proof. As the quotient of a polynomial ring by a regular sequence of length the
Krull dimension, the ring A{k)s/(Cmt1y- -+ Gntk) 1s a zero-dimensional complete
intersection ring. In particular, it is Gorenstein by [Mat89, Theorem 21.3], and by
[EGH96, Proposition 7] this means that the multiplication is a perfect pairing. By
definition, this makes it a Frobenius algebra. O

We briefly recall the following result, re-expressing algebraic duality. These
results can be found in work of Baker [Bak20].

Proposition 4.11. Suppose R is a graded Frobenius algebra over a field F, with top
nonzero degree §. For any graded left R-module M, there is a natural isomorphism

Hompg (M, R) =~ Homp(M, X°F).

In particular, R is injective as a left module over itself. If R is commutative, then
this natural isomorphism is one of R-modules.

Proof. The multiplication pairing
(-,-): Ry ®@ Rs—y — Iy

is a perfect pairing that satisfies (xa,y) = {(x,ay). As a result, y — (—,y) is an
isomorphism R — Homg, (R, ¥°F,) of graded left R-modules. If R is commutative,
we also have {ax,y) = (x,ya), extending it to an isomorphism of R-bimodules.
Applying Hompg (M, —) gives the desired natural isomorphism of abelian groups,
which is an isomorphism of R-modules in the commutative case (using the right
module structure). Taking F-linear duals is exact, so R is injective. (]
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5. FINITE A<k>2A<m>—ALGEBRAS AND SPLITTINGS

The graded algebra computation of A(k), actually greatly simplifies the study
of A<k;>gA<m>. From Theorem 3.10, as an A-module, the ring A{m) is a colimit

of modules of the form N
/N M,

Jj=m+1

and hence A<k:>ﬁA<m> is a colimit of left A{k)-modules of the form

Akyn N M.

j=m+1

Definition 5.1. For natural numbers k, m,n > 0, let

m+k+n
A<k>/(<-m+1v LR Cm+k+n) = A<k>2 < /\ MJ> .

j=m+1

For the special case £k = m and n = 0, let
Aky = AkY/(Ceg1s - - > Cor)-

Theorem 4.8 shows that the collection of elements (41, - - . , Gtk forms a regular
sequence. In particular, the associated Tor spectral sequence collapses.

Corollary 5.2. As an A(k),-module, we have

o (AR (G 1+ Cmerk)) = A/ (Gt - - Gt ) -
In particular, 7. (A(kY) = Alk),.
Since Ak),./(Cm41s---+Cmk) is a finite algebra, with its top degree class in
2(2m —1)(2% — 1), the A-module A(kY/(Cmsts--->Cmak) is also co-connective. In

particular, there are no maps from more highly connected modules. This splits the
quotients by later &s and (s.

Proposition 5.3. For each j > m + k, we have an equivalence of A-modules:
A/ (G- Gk AM = AR/ (Gt - Gonsk) v EF AR/ (G- - Conek)

The same result also holds for Mj.

Proof. By Proposition 4.9, the degree of the top class in the Frobenius algebra
A<k>*/(<m+17 EER <m+k) is

2(2m —1)(2F — 1) = gmHkHL _gmil _ok+l 4 o
If N is any A-module that is at least (2(2™ — 1)(2% — 1) + 1)-connective, then the
space of maps

MapA (N7 A<k>/(Cm+1> R Cm-‘rk))

is contractible and all maps are null-homotopic as maps of A-modules. Applying
this to the map

gj : E2J‘71A<k>/(<m+17 e »Cerk) - A<k>/(<m+1» ey Cerk)a

we see that since j > m + k + 1, the source of the multiplication-by-£; may is
sufficiently highly connected to guarantee that this map is actually null-homotopic.
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The mapping cone Ak)/(Cmi1s-- -, §m+k)2Mj then splits, and the result follows.
The same proof applies to Mj. ([
Inductively applying this result gives us the following splittings.

Proposition 5.4. For any set I of natural numbers that are all greater than m+k,
there is a splitting of A-module spectra

A/ (Cmt1s - -+ Cm-&-k)ﬁMI ~ A/ (Cmt1s - -5 Cmak) A < \/ Sj) )
JED
where Dy is as in Notation 2.7. The same result also holds for M.

Corollary 5.5. For any set I of natural numbers that are all greater than m + k,
the homotopy of AXkY/(Cmtts---s Cmtk) QMI is the Alk),-module

A<k>*/(<m+17 ey Cm-‘rk) ®F2{6]‘ | ] € Df}a
where |ej| = j. The same result also holds for M.
These results can now be specialized to the set I = {m +k+d|1<d<n}.

Corollary 5.6. For any n = 0, including n = o0, we have a splitting

2" —1
A Gt Gmtsn) = AGY (Gt ) A ( V sj@’"*“”)
j=0

of modules over A.

Corollary 5.7. For each n = 0, the homotopy of AkY/(Cmtts -+ - s Cmtktn) @S the
Alk),.-module

2" —1
A<k>*/(Cm+la s 7Cm+k) ® ( @ FQ{ej(2m+k+l) }) .
j=0

These homotopy modules are all finite Fo-vector spaces, and the top degree class
is in dimension

2(2m o 1)(2/(7 . 1) + (27’1 _ 1)2m+k+1 — 2m+k:+n+1 _ 2m+1 _ 2kt+1 + 2.
Definition 5.8. For positive natural numbers k and m and natural number n, let
§ = 6(k,m,n) = 2mThintl __om+l _ok+l 4 o

Using this, we have a surprising consequence: these intermediate stages are
actually all A-algebras.

Theorem 5.9. The A-module A{kY/(Cmity- -y Cmtktn) S equivalent to a Post-
nikov stage of A<k>ﬁA<m>: there is an equivalence of A-modules

A/ (Cmgts - Cmeggm) = PR (A(k;}gA(m}).

For any m,k and n, A)/(Cms1y- -« Cmtktn) has an associative algebra struc-
ture such that the unit

A — ALK/ (Cm1s -+ Cmtketn)

is the natural map.
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Proof. Let § = 0(k,m,n). Corollary 5.6 says that we have an equivalence of A-
module spectra

A<k>QA<m> = A<k>/(<m+lv e a<m+k+n) V\/ ZT'2m+k+n+lA<k>/(<m+lv e a<m+k+n)'
r=1

The first summand is (§ + 1)-co-connective while the second is at least (6 + 1)-
connective, so we deduce that the inclusion

A<k>/(Cm+17 ) <m+k+n) - A<k>2A<m>

becomes an equivalence on §’th Postnikov sections.

Since A is connective, there is a Postnikov tower in A-modules that preserves
associative algebras, meaning that all Postnikov truncations are natural associative
A-algebras and all truncation maps are associative algebra maps, as shown by
Dugger—Shipley [DS06]. This gives us an associative algebra structure on

P5 (A<k>2A<m>) = A<k>/(cm+1a R <m+k+n)a
with a canonical map of algebras from A<k>2A<m>. O

Corollary 5.10. There is an equivalence of A-algebras

A<k>/(Cm+17 ce 7<m+k+n) = A<m>/(§k+17 oo 7€k+m+n)~
Proof. These two algebras are equivalent Postnikov stages of A<k;>gA<m>. O
Remark 5.11. Because of this equivalence, we can focus almost exclusively moving
forward on the case where m > k.

We can also describe the relative homology of these ring spectra as comodules
using the Kiinneth isomorphism; the following shows that the algebra structure is
forced.

Proposition 5.12. For any natural numbers k,m,n = 0, we have an isomorphism
of Fa[u]-comodule algebras

Hf (A<k>/(Cm+la sy Cm+k+n)) = [y [UZk]®]F2[u2m]/ (u
Proof. Theorem 5.9 shows that the composite map of A-modules
A (Gt Gvrenn) — ACRY A AT — PP (AR A AT,

is an equivalence, and the latter map is a map of algebras. Applying the Kiinneth
isomorphism gives us a composite

Fo[u? 1@ HY (M s1,.ms k) = Fa[u? 1@ Fa[u?" ] > HL (PP (AGRyA AGm)) ),

where the first map is a map of comodules and the second is a map of comodule
algebras. In particular, the second map is surjective, and by Corollary 2.8 the image
of the first is

2k+'m+n

® 1 n 1 ® u2k+7n+n)

Folu2' ] @ {1,u2", .. 2" "1,
The kernel must be generated by a primitive element with leading term 1®u2k+m+",
but there is only one such element. We deduce that the Postnikov truncation
induces a quotient map of rings
k m k m
Fo[u? | @ Fa[u?"] - Fa[u? | @ Fa[u®"]/ (u

2k+m+n

® 1 I 1 ® u2k+m+n)
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as desired. 0

Corollary 5.13. For any natural numbers m = k and n = 0, we have an isomor-
phism of comodule algebras

k+n

Hf (A<k>/(§m+1, .. -7Cm+k+n)) = ]F2[U2k] ®]F2[€27"+1]/(€§m+1)
where egm+1 is the primitive of Corollary 3.14.

Corollary 5.14. When m > k, the map on relative homology induced by the ring
map

ACKY/(Gmerts - - - s Gmrbrn) = AKY/ (Gms -5 Cmtotn)
is the Ting map specified by

€om+1 > e%m.
Remark 5.15. This calculation rules out any way to make the map
A<k>/(C7rL+17 .. 7<’m+k+n) e A<k>/{;A<m>

into a map of algebras that is compatible with the Postnikov identification, because
there is no section of the map of algebras on relative homology.

By Corollary 5.13, we also have a nice finitary result for relative Adams spectral
sequences.

Corollary 5.16. For any natural numbers m = k and n = 0, the relative Adams
spectral sequence computing the homotopy of AkY/(Cmt1s- -+ Cmtk4n) has

2n+k,

Ey' = TFaléy, ..., &] ®Faleamii]/(€5mmn).-

For n > 0, all of the relative Adams spectral sequences carry essentially the same
information, due to the A-module splitting of these into Ak)/(Cmt1,-- s Cmitk)-
modules from Corollary 5.6.

Proposition 5.17. For any n > 1, the class

ok
€om+k+l = €omi1

is a permanent cycle in the relative Adams spectral sequence for AKY/(Cmt1y -« s Cmtk)-

Proof. The splitting

2" —1

AN Gt Gmsrrn) =\ DETTD A (G, Gk
j=0

shows that we have a non-trivial homotopy class éym+x+1 in degree 2™+ +1 which
has a non-trivial Hurewicz image. The class egm+x+1 is the only primitive in ho-
mology in that degree, and must therefore be a permanent cycle. O

Corollary 5.18. We have an isomorphism of algebras for any n = 0:

T % (A<k>/(<m+17 ceey CerkJr’rL)) = A<k>*/(<—m+l7 cee 7Cm+k) ® FQ[é2"L+k+1]/é3;+k+l .

In fact, the topological splitting shows an even stronger result.
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Proposition 5.19. For any A-module M, the relative Adams spectral sequence for
the homotopy of A{kY/(Cms1, - - .,§m+k+n)2M is a direct sum of suspensions of

copies of the relative Adams spectral sequence for AkY/(Cmats - - -, Cm-ﬁ-k)ﬁM-' for

allr =2,
B, (AKY/ (Gt -+ Cm+k+n)ﬁM) =
B (ALK (Gt - - ,Cm-Hc)Q}M) ® Faegmikir]/eZminst,
and egm+k+1 1S a permanent cycle.
Proof. This follows from smashing the splitting of A<k)/(Cm+1s-- -5 Cmakin) With
M. O

6. DuALITY

Recall from Proposition 4.10 that the graded ring
]F2[§la s ’gk]/(C7rL+1a R <m+k) = Ty (A<k>/(<m+17 R Cm-‘rk))

is a commutative graded Frobenius algebra. We can promote such algebraic duality
on the coefficient ring of A{k)/(Cmi1,---,Cmik) t0 a spectral duality, including
Gorenstein duality.

Theorem 6.1. Suppose that R is a connective associative ring spectrum over HIF
whose coefficient ring is a commutative graded Frobenius algebra over a field F
with top-dimensional class in degree 0. Then, for R-modules M, there is a natural
isomorphism
s DpM =~ (7T5_*(M))v

as modules over T4 R, where (=) denotes the F-vector space dual.
Proof. Because R is self-injective, the universal coefficient spectral sequence

Extfr’;R(ﬂ*M, msR) = m_sDrM
always degenerates. This gives a natural isomorphism

T DpM = Homg, g(ms«M, 74 R).
(In other words, Spanier—Whitehead duality is a type of Brown—Comenetz duality in

the category of R-modules.) Expanding the identification 74 R =~ Homg (74 R, X°F)
from Proposition 4.11, this becomes an isomorphism

Hom,, (74 M, 74 R) = Homp (7, M, X°F)
as desired. O
This gives us spectral Gorenstein duality as in Dwyer—Greenlees—Iyengar [DGI06].

Corollary 6.2. A ring spectrum R as in Theorem 6.1 satisfies a Gorenstein duality
condition of shift §: we have an equivalence of R-module spectra
Fr(HF,R) ~ ¥°HF.
Spectral duality for such R then gives us duality for its modules.

Proposition 6.3. Suppose that R is an A-algebra whose coefficient ring is a com-
mutative graded Frobenius algebra over Fo, with top-dimensional class in degree

0.
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(1) For I,J < N finite subsets, with s(I,J) = >.2° + . 27, there is an iso-
el jeJ
morphism

lle

Ty (RQMIQMJ> (’/TéJrs(I,J)f* (RQMIQMJ))V

of e R-modules.
(2) There is an isomorphism

T (RQ EndA(M@)) ~ (m,* (RQ EndA(M@)))
of mx R-modules.
Here (=) denotes the Fo-vector space dual.
Remark 6.4. By Proposition 4.10 and Corollary 5.18, the algebras
T (A<k>/(<m+17 B <m+k+n))

are Frobenius algebras, and so Proposition 6.3 holds for all of the A-algebras
AR/ (Cmsts - -+ s Gt ktn ), with shift factor 8(k, m,n).

Proof. Let Da(M) := F4(M, A) be the Spanier—Whitehead duality functor in the
category of A-modules. Then

DA(MIQ‘M,) ~ Z_S(I’J)MIQMJ.
Therefore, the same is true after base change to R, i.e.,
DR(RQMIQMJ) ~ E*S(I’J)RQMIQMJ.
Combining this with Theorem 6.1, we get:
Tt s(1,J) (RQMIQMJ> = W*DR(RQMIQMJ)

lle

(7or (BADIADLS))

This proves item (1). For (2), the proof is completely analogous, using the fact that
End 4 (M, ) is Spanier—Whitehead self-dual because it is the endomorphism ring of
a dualizable object:

Da(Enda(Ms,)) > Da(Me,ADa(Me,)) = Enda(Me,). O

7. COMPUTATIONS OF RELATIVE ADAMS SPECTRAL SEQUENCES

The homotopy rings of the ring spectra A(k) can immediately be read out of
the computations, since they are just the quotients by collections of generators.
For the ring spectra A(k) (or more generally AkY/(Cmats-- s Cmskan)), the ho-
motopy rings were determined in Corollary 5.18, but this formulation can be hard
to parse due to the complicated formulz for the classes (; in terms of the &;. The
relative Adams spectral sequence can be used here to describe what happens up to
associated graded.

For more general quotients, the relative Adams spectral sequence is a very helpful
approach. In this case, we can simplify the procedure by finding the smallest quo-
tient algebra A(k) of A over which a given object is a module. The relative Adams
spectral sequence here is a spectral sequence of modules, giving the desired result.
Prototypical examples of this are given by the associative algebras End (M),
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especially when base changed to A(k). Here, the differentials we describe control
almost everything.

7.1. Some families of differentials. The relative Adams spectral sequence for
modules over A(k) are the most important by Proposition 5.19. We begin by
describing some basic differentials. For any n > k, Corollary 2.5 shows that the
relative Adams spectral sequence for A<k>ﬁﬁn has F>-term

FQ[Elv s 751@] ®F2{b0,b2n}.

Proposition 7.1. For any n = kq +r with ¢ > 1 and 1 < r < k, in the relative
Adams spectral sequence for A<k>ﬁMn we have a differential

orportk . i on—k
d1+2T+2T+k+m+2n—k(b2") = frék - et :

The next page is Fo:
i r+k .. n—k
]FZ [517 .o 7£k]/(£rfk +2 o2 )

Proof. Since we have a cofiber sequence
22" LAY 25 Ak — AkyA M,
the long exact sequence in homotopy gives us that the homotopy of the quotient is
T (A<k>gﬂn) = Fol&r,. ., 6]/ (Cn)-

The image of (,, in the relative Adams spectral sequence must then be hit by a
differential. This image records only the leading term of (,, in terms of monomial
degree. By Lemma 7.2 below, this is the stated term. ([l

Lemma 7.2. For anyn =kq+r withq>1 and 1 <r <k, we have
(= grfkr+2r+k+“'+2n% mod (€g41,Ek+2, .- ) + higher degree monomials.

Proof. Let j, = 2" + 2rtk ... 4+ 277% and let m denote the augmentation ideal of
Fsl&1, ..., &k]. We will verify the formula by induction on ¢, working modulo terms
of degree greater than j. Since we are working modulo &1 and higher, Milnor’s
formula gives

k
n—i n—k .
G =D i =Gk mod miet2,

i=1
If ¢ =1, then (,_x = (., which gives the base case. If ¢ > 1, then by induction,

Gk =62 mod mie 2,
SO ‘

Cn = Cnfkglznik = Cr ]3Jq71+2"7k mod qu’1+2nik+2

as needed. |
Remark 7.3. It is only in identifying the leading term of (, that we used the

assumption that ¢ > 1. For m = 0, the homology changes, since H ;:‘(Mn) no longer
restricts to a trivial Fo[u?"]-comodule.
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We can apply this in the more general case of the quotient by all (,,+; for
1 < ¢ < k. Recall from Corollary 5.16 that the relative Adams F, term for
A<k>/(Cm+17 e Cm+k)a for m = kv is

Fal€1,. .., 6] ® Fa[egmer]/e2man.

Theorem 7.4. For each 1 < i <k, write m+1=kq+r, withl <r <k. In the

relative Adams spectral sequence for A)/(Cma1y-- s Cmik), we have
gin1 0 §<1+420 27Tk 4 ... 4 gmAizk
ds (6 7n+1) = r r+k mti—k j—
2 ggg tr A2 s=1+2" 27k 4 ... 4 omHizk

Proof. On relative homology, the map
A<k>2Mm+l - A<k>/<§m+1, SERE) Cm+k)

takes the class bym+i to the class egi,:l. The result follows from naturality of the
relative Adams spectral sequence. ([

Corollary 7.5. In the relative Adams spectral sequence for /~1<k>, foreach 1 <i<
k, we have _

9=y 0 T <2'+1
dr((ezr)” ) = { Ge2 r=24+1.

More difficult is understanding the remaining differentials. The reason is that,
while the classes (g1, ..., (o form a regular sequence in A{k),, the leading terms
do not. This forces some higher differentials. We now spell this out for A(2). More
surprising, however, is that in various quotients of A(k‘} wherein we kill also lower
&s and (s, these differentials control the entire relative Adams spectral sequence.
We show examples of this in Sections 7.3 and 7.4.

7.2. The relative Adams spectral sequence for fl<2> As a comodule algebra,
Proposition 5.12 shows we have

H (AQ2)) = Folu'] ® Fales]/eg,
where eg is a primitive degree 8 class. The relative Adams Es-term is therefore
By = Fo[&1,&] ® Fales]/es,

with eg in relative Adams filtration 0. Figure 1 shows the spectral sequence from
FEs5 on; we encourage the reader to use this as a guide to the computation. In this,

bullets indicate copies of Fy. The red dashed lines are “exotic” &;-multiplications.

The classes in blue are the submodule generated by the class 2.

Proposition 7.1 (or Corollary 2.19) gives our first differential, killing &3 + (3.
Proposition 7.6. There is a ds-differential
d3(es) = &165.
This gives an F, page

Fa[€1, €2]/(6:163) ® E(eF).
Proposition 7.1 then gives the differential on €3, killing &4 + (4.

Proposition 7.7. There is a ds-differential
ds(e3) = &3.
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FIGURE 1. The relative Adams spectral sequence starting at E5 for A<2>

Note that this leaves ﬂ“eg for k = 1 as a ds-cycle, since
ds(Efed) = E1ds(e3) = €165 = da(es)€1 163 = 0,
and we also have &F¢&e2 for k > 1 for similar reasons.

Proposition 7.8. As an F3[&1,&]-module, Eg is
Fa[61,&2]/(6163,63) D Fa[&r, &1/(€3) - {€reg}

We now remark that, in the abutment Fa[€1,&2]/((3,(4) of this spectral sequence,
there is an unexpected relation:

G0 =G+ (E+86+E)=0

Therefore, £1% must be the target of a differential. The only class available to
accomplish this is fleg. We deduce the following.

Proposition 7.9. We have di5-differentials

d15(§{€e§> = 115+k and d15(§{€€2€§) _ ]1-5-4—](2527
for k> 1.



28 AB, MAH, TL, XDS, AND MZ

This leaves an E14-page

Folé1,£]/(4165,€5,61°).

All generators here are permanent cycles, so the spectral sequence degenerates at
this point.

Remark 7.10. The differentials correspond to relations that are not homogeneous
with respect to the degree filtration, imposing multiplicative extensions on the spec-
tral sequence. To solve them, we must carefully remember to expand all formulse
modulo the corresponding jump in filtration. For example, trying to work with (4
modulo only filtration at least 6 gives an incorrect pattern of differentials including
d13 and d17.

Careful calculation of the differentials is equivalent to calculation of the leading
terms in a Grobner basis for the ideal ((gy1,...,Cak). More specifically, there is
an ordering on the monomials of F5[&y, ..., &,] such that the targets of differentials
are the leading terms in the associated Grobner basis. This ordering is primarily
by monomial degree, and then by reverse lexicographic order: for example, £; > &7
and & > &11."

Remark 7.11. The relations imposed by setting ¢; = 0 are complicated enough
to make determining the exact structure of the finite-dimensional algebras A(k),
complex. Calculations with Sage indicate some conjectural patterns:

(1) for j <k, 226=7+1 is the smallest power of &; which is zero in A(k),, and

(2) the element fﬁk“d generates the topmost nonzero degree in A(k), .

7.3. The homotopy of A(2) A4 End(M;). In this section, we will discuss the
coefficient ring of

/I<2>2 Enda(M;) ~ 2*2A<2>2M12M1.
Since this is an associative algebra under /~1<2>, the relative Adams spectral sequence
is a spectral sequence of modules over that of A(2). We present a picture through
a range with all differentials and extensions in Figure 2.

Our descriptions of the homologies and relative Adams FEs-terms for A(k) and
for End 4 (M«y) give the following.

Corollary 7.12. As an associative algebra over the relative Adams Ex-term for
A(2), the relative Adams Ea-term for my (A<2>2 End4(My)) is

Falé1,62] ® E(B2)/ (6182, &1 + £2B-2) ® Fales]/(eg),
with P.o,eg in relative Adams filtration 0.
The differential d3(eg) = £1£3 for /Nl<2> carries through directly, using the relation
& =&l
Proposition 7.13. There are ds-differentials
ds(es) = 535-2 and d3(€§) = 535—2€§~

Similarly, the differential ds(e2) = &5 carries over without change.

ln Sage, this is implemented by negdegrevlex ordering.
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FIGURE 2. The relative Adams spectral sequence for A<2>2 End 4 (M;)

Proposition 7.14. There are ds-differentials
ds(ef) = € and d5(e3f.2) = EJesfla
Proposition 7.15. There are hidden & -multiplications
& - 3B = EiesPa
& - &6 = Eresfa

Proof. This follows from the duality of Section 6. We apply Proposition 6.3, item (2)
in the case r = 1 and k = 2. We find that the homotopy groups of this spectrum
are, as a module, self-dual with a shift of 18. The &;-multiplication out from degrees
0 and 3 then resolves the &£ -multiplication into degrees 18 and 15. O

7.4. The homotopy of A(3) A4 Enda(Mc<s). In this section, we will discuss the
coefficient ring of

[1<3>2 Endy(M<y) ~ E‘SA<3>QM<22M<2.
This ring spectrum is an associative algebra over the spectrum A(¢3) and its relative

Adams spectral sequence is an algebra over the relative Adams spectral sequence
of A(3).

Proposition 7.16. The relative Adams Ea-term for (jl<3>/g Endy (M) is:

Fol€1,&2,€3] ® E(Bo2, Ba)/ (&1 + E2B-2, &2 + £38.4) @ Falers]/els.

The differentials in Theorem 7.4 will imply all the differentials in the relative
Adams spectral sequence for 7 (A<3>ﬁ End(Mc,)). All the differentials are shown
in Figure 3, and the F,-page, together with the exotic multiplications by & and
&, are shown in Figure 4.

Proposition 7.17. For 0 < k < 3, there are ds-differentials

d3(efgt!) = EleltBapBa.

Proof. Since e¥g is a ds-cycle, it suffices to show the case k = 0. There, we have by
naturality

d3(e16) = £3& = £3628.2 = E3B2B.u. O
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Note that this leaves dg-cycles
et6 T Bas el B, and €35t BB
Proposition 7.18. For all e; = 0,1 and €5 = 0,1, we have ds-differentials
ds (63:{461 (e1682)) = &3 €15 (e166.2)2.
Proof. Naturality shows that we have the differential
ds(els) = &360 = €384

The remaining differentials follow from the ring structure. t

With the ring structure and the relation imposed by the ds-differential, we see
that the classes

2+4e

2tdarg,  and ela tPa

€16
are ds-cycles.

Proposition 7.19. There are dg-differentials
do(efs) = &3

d9(616ﬂ 2) = 535 2
do(e76B-2) = EJe16-2
d9(616ﬂ 1) = 536165 4
dy(e wﬁ 2) = 536165 2
dy (e 165 1) = 6165 4
(elﬁﬂ 1) = 536165 4
do(e]¢B2B-4) = £3€365-2.4.

Proof. These differentials all follow from applying the Leibniz rule to the dg-differential
dy(e1g) = &3
in the relative Adams spectral sequence for 7, (A{(3)/(£4,&5,E6))- O

Proposition 7.20. There is a hidden & -multiplication

& - elgBa = EersBaBu
into degree 31.

Proof. The previous results show that we have a ds-differential

d3(e1g) = &3 B-28.4.
The surviving class ej6/3.23.4 then detects the Massey product {B.28.4, 8.2, 5 5.4)-
There is also a ds-differential
ds(elg) = &30,
and the surviving class e%;3.o then detects the Massey product {(B.o,&38.4,£3).
Multiplying by &1 = €35.20.4, we get a juggling formula:
BroBa(B2, 3P4, £5) = §3(Bafa, B2, 6550

Multiplying through by &3, we find that &1 (e248.2) = £3(e166.28.4) up to indetermi-
nacy. The indeterminacy consists of multiples of £33.53.4, of which there are none
in this degree. ([
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After multiplication with &3, the extension in Proposition 7.20 also implies that
there is a hidden &;-multiplication

& - E3ei6B.2 = E3e168.28.4
into degree 38.
Proposition 7.21. We have the following hidden &1 -multiplications:
& - 6%66_4 = §§616ﬁ_4 (into degree 61)
&1 - E3elgBa = EiereBa (into degree 68)
&1 - €56B2B4 = it BaBu (into degree 91)
& '536?65_25_4 = 556‘;’66_25_4 (into degree 98)
and the following hidden &;-multiplications:
&2 - €l6B28.4 = E5e1654
& - E3eleB2B4 = E5e16P.

(into degree 61)
( )
& - eleBa = E5elsBa (into degree 63)
( )
( )
( )

into degree 68

& - fge%Gﬂ_Al = fgefGB_4 into degree 70
&2 '5%6%66-4 = 5??6%65—4
& - ﬁge%ﬂA = 556566_4 into degree 84
& - €l5Bafa = 3368204 (into degree T7
&o - E3€36B0B.4 = &5l BaBu (into degree 84
& - E3efs B2 = ElelsB 2B (into degree 91
o - E3efsBaBa = E3elsBaBy (into degree 98
& - 6204 = ElelsBa (into degree 93)
&y - &3€86B.20.4 = E5e3sBu (into degree 100).

These extensions are shown in Figure 4.

into degree 77

O — — ~—

Proof. By Proposition 6.3, item (2) with k& = 3 and r = 2 we find that the homotopy
groups of this spectrum are, as a module, self-dual with a shift of 98. By duality, all
the extensions now follow from known extensions (Proposition 7.20) and product
structures on the Es-page. ([l

APPENDIX A. MULTIPLICATIVE OPERATIONS

Important to our calculations of the quotient rings A//a is the knowledge that
the Dyer—Lashof operation Q; preserves the kernel of the map A, — 7. (A4//a). To
show this, we need a brief operadic digression.

The main precedent for this is the transgression. Serre’s transgression theorems
assert the compatibility of maximal-length differentials in the Serre spectral se-
quence with the Steenrod squaring operations in H*(X) [Ser51], and May showed
similar results for the Dyer-Lashof operations in Hy (2% X) [May70]. On the chain
level, a cycle 2 € C' has an extended power Q(x) represented by Steenrod’s cup-k
product  — x. If f: C — D is a map of algebras with these operations, and
f(z) = dy, then

f(Qr(®)) =2[f(x) =k y+y —r-1y]



AB, MAH, TL, XDS, AND MZ

32

AANw§v<v:m @Amvﬁ.v *1 10J 90uaNbos [rI1100ds SWRPY SAIJR[DI O, "¢ HYNDI]

TeT 8c1 el ozt 91T [aas 80T Vot 00T 96 @6 88 8 08 9L L 89 79

| e

I S
So

/ e
pas
w or 9e o 8T i 0% 91 a8 8 v 0 =
L L L L L L L L L L L L
. . . e . . . SPT  rY . o
T B ) o [T let T T R o f et F
o f R oo e o T letr T F
e
e le o o t
B e
e lle e . o =




33

QUOTIENT RINGS OF HF2 A HF3

SUOISU9)Xa USPPIY [IIm AA TS py) Vpuyg «Amvv\v *1 10] 9ouanbaes [e110ads surepy aarye[al a3 jo a8ed-%4 oy,

B HUNOL]
et Ll el 0zt 91T arn 80T 701 001 96 w6 88 78 08 9L ) 89 79
| I I | I I I I I I I I I I I I I I
e
! b .
. . . |
. .
. . . . v
N 1 .
; ; o[ ol e ;
! o
. . . ‘ . . 8
et
o1
- 0z
9 09 9¢ 4 S w or 96 43 8T i 0z 91 a1 0 v
I I I I I I I I I I I I I I I I
pd b . . -. . . . . . o e . ¢« 0
| . § e . o
. . o . . . . . . . .
/ e e .
| . . . . . . . . Fv
i .
! . . . .
.
. . -8




34 AB, MAH, TL, XDS, AND MZ

The formula on the right only depends on a cup-(k — 1) product in D and a cup-k
product expressing that the image of f is, in some sense, central in D. In this sec-
tion, we will show that this is part of a more general story. Similar power operations
as obstructions to commutativity also appear in work of Strickland [Str99].

A.1. Cup-k algebras.

Notation A.1. For k > 1, let S(ko) denote the unit sphere in the k-dimensional
real sign representation of Cy: a (k — 1)-sphere with the antipodal Cy-action. Let
D(ko) be the corresponding closed disk.

Definition A.2. Suppose that R is a commutative ring spectrum. A cup-k algebra
over R is an R-module spectrum A with a map

mg: S((k+1)o) A(ArA) — A.
Cz R
A map of cup-k algebras is a map preserving this structure.

Remark A.3. Equivalently, a cup-k algebra is a Cy-equivariant map
S((k+1)o) - MapR(AQA, A).

Any Ej1-operad O has a Cy-equivariant homotopy equivalence
S((k+1)o) ~ O(2).
Forgetting all but the binary operations then determines a forgetful functor from

FE41 algebras to cup-k algebras.

Example A.4. A cup-zero algebra is an R-module A with a binary multiplication
map m: Ag A— A

More generally, we can get an inductive description of cup-k algebras.
Definition A.5. Suppose that A is a cup-k algebra. The bracket is the composite
map

zk(AgA) ~ (Coy A skfl)g (AnA)— S((k+ 1)0)+&A/1%A — A.

2

Remark A.6. On homotopy groups, the bracket induces a 7, R-bilinear (up to sign)
Browder bracket

[7’ 7]: ,/Tm(A) X 7T71(A) - 7Tm+k’+n(A)'

Proposition A.7. A cup-k algebra is equivalent to a cup-(k — 1) algebra with a
chosen nullhomotopy of the bracket Zk_lAﬁA — A.

Proof. We have a natural equivariant inclusion S(ko) < S((k + 1)o), and the
quotient is the pointed space Cyy A S*. Stably, this determines a cofiber sequence

Coy ASPSF T - BPS(ko) — SLS((k + 1)0).
Smashing over Cy with AQA gives us a cofiber sequence of R-modules, and the

result follows by definition of cup-k structures. O

Example A.8. A cup-one algebra structure is equivalent to a choice of a binary
multiplication m: AQA — A, and a chosen “commutativity homotopy” h: m =

m o 7, where 7 is the twist map.
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A.2. Operations. Analogously to the work of Bruner [BMMSS86, §IV.7], a cup-k
algebra has power operations.

Proposition A.9. Suppose that A is a cup-k algebra and that a: S™ — A is a
map. Then there is an induced natural map

Q(a): RAX"RP™F A
from a shifted stunted projective space to A, whose restriction to the bottom cell

S2" s the square of «.

Proof. The Cs-equivariant map o A a: S™ A S™ — A A A determines a composite
map of R-modules

R A (S((k +1)o)A(S™ A S")) — S((k+ 1)0)6/) A/]%A — A.

The equivariant smash product S((k + 1)0)+$ (8™ A S™) appearing on the left is
2

the Thom spectrum of the equivariant bundle (n + no) on S((k + 1)0)/Cy = RP*,

and this Thom spectrum is a shifted stunted projective space. (See [BMMSS6,

Theorem V.2.14].)
By definition, the multiplication m: A/éA — A is the composite

A/ﬁA ~ CQ+C<\2(A§A) - S((k+ 1)0)+c/*\2(A§A) — A.

If we compose with the map a A a: S™ A S™ — A/I%A, the result is the square of
Q. ]

Corollary A.10. If n is even or 2 = 0 in wo(R), there exist natural operations
(sometimes called cup-1 squares)

Q1: T (A) = mapi1(A)

for cup-one R-algebras.

Proof. The stunted projective space R]P’ZH is the cofiber of the attaching map
(1—(—1)"): 5" - 8"
for the (n + 1)-cell. If n is even or 2 = 0 in mo(R), this implies that there is a
splitting
RARP! ~ ¥"R v SR,
Choosing such a splitting in the homotopy category, any map a: S™ — A deter-
mines a natural composite operation

§2+1 L, ynp A RPE 2, 4 O

Example A.11. When R is HFF3, Q1 is the Dyer-Lashof operation of the same name.

Remark A.12. Two different splittings may determine two different operations Q1
and Q). However, the difference involves the square: by considering the homotopy
groups of "R v "1 R, there exists some element u € 7, R such that

Q1(a) = Qi(a) = ua’

for all @. This means that Q1(a) may involve choices, but the ideal generated by
a and @1(a) does not.
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A.3. Centrality.

Definition A.13. Suppose that A is a cup-k algebra. A central cup-(k—1) algebra
over A consists of the following data:

(1) a cup-(k — 1) algebra B,
(2) amap n: A— B of cup-(k — 1) algebras, and
(3) a factorization

(Stho)s A ApB) oy, naya (D)1 A ApA)

D(ko)s A AN \ B.

Here the diagonal map from the pushout is induced by the commutative
diagram

S(ko)y A AQA D(ko)s+ A AQA

l

S(ko)y A AQB — S(ko)+ A BQB _—

O

with the upper-right vertical arrow being the map that trivializes the bracket
operation of A.

Remark A.14. This last commutative square helps to clarify the definition. The
map D(ko)y A Ag A — A encodes the trivialization of the bracket on A. Centrality

asks for a compatible trivialization of the bracket Ek_lAﬁB — B, and so the

Browder bracket [n(a), b] always vanishes. One aspect of this compatibility is that
the two trivializations of [n(a),n(a’)] = n[a, a’] are equivalent.

Remark A.15. Our definition of centrality for these cup products captures the
degree-2 part of a more complicated structure. Namely, suppose that A is an E},
algebra. The tensor product over A gives the category LMod 4 of left A-modules an
E}_1-monoidal structure. If B is an Ej_1-algebra in LMod 4, then B is a central
cup-(k — 1) algebra over A.

Ezxample A.16. Suppose that B is an Ej_; R-algebra. The object R is a strict unit
for the tensor product of R-modules, which gives it a cup-k algebra structure via
the projection

S((k + 1)U)+C/‘\2R/I$R — R.

The fact that R is a strict unit for the Fj_;-multiplication on B makes B a central
cup-(k — 1) algebra over R.

Unwinding the adjoint maps in the definition of a central cup-(k — 1) algebra,
we obtain the following alternative definition of the structure in terms of mapping
spaces.
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Proposition A.17. A central cup-k-algebra structure on B is equivalent to a com-
mutative diagram of spaces:

T

D(ko) —— Mapl.%(A/B\:A7 A)

S(ko)

MapR(B/I%B7 B)

S

MapR(AgB7 B) — MapR(AgA,B)

The back square of this diagram is Cs-equivariant: by assumption, the twist
isomorphisms of Aﬁ A and B n B are compatible with the action on S(ko). This al-
lows us to glue this diagram together with its mirror image along the back square,
getting a cubical diagram. Moreover, this diagram will have a Cs-action: writ-

ing this cube as a functor F' from {0 — 1}3 to spaces, there is an isomorphism
¢: F(a,b,c) — F(b,a,c) of cubical diagrams satisfying ¢* = 1 [Dot16].

Corollary A.18. A central cup-k-algebra gives rise to a commutative diagram

S(ko) D(ko)'
D(ko)"” l MapR(AgA, A)
MapR(BgB,B) MapR(BgA,B)
T~ T~
MapR(AgB,B) MapR(AgA,B)

Moreover, this diagram has a Cs-action, via the maps between function spaces in-
duced by twist isomorphisms and the Cy-action on spheres and disks.

A.4. The transgression. Our goal in this section is to prove the following result,
analogous to the transgression.

Proposition A.19. Suppose that A is a cup-k R-algebra, and that B is a central

cup-(k — 1) algebra over A with unit n. If a: X — A is a map of R-modules such

that n o a is nullhomotopic, then the induced map S((k + 1)0)6\ (X/ﬁX) — B is
2

trivial.

Proof. Choose a nullhomotopy of «, in the form of a factorization X - CX — B
of noa where C'X is contractible. This gives rise to a cubical diagram of R-modules
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with a Cs-action:

XAX CXAX
R \
XACX ‘ CXACX
R R
AnA BAA
R \ R \
AnB BAB
R R

We can then apply Mapy(—, B) and stack with the cube from Corollary A.18. This
gives a cubical diagram with a Cy-action:

S(ko) D(ko)’
\ D(ko)" l Mapp(AnA, A)
MapR(CXQCX,B) MapR(CXgX,B)
\ \
MapR(X%C'X,B) MapR(XﬁX,B)

Note that CX /F\iX and CX %CX are contractible, making three terms on the bot-

tom of this cube into contractible spaces.

A commutative square has a natural map from the homotopy pushout to the
final object. Applying this to the top and bottom faces of this cubical diagram
gives us the horizontal maps in the following commutative square of Cy-equivariant
spaces:

hocolim(D (ko) «— S(ko) — D(ko)") —— MapR(AﬁA,A)

| |

hocolim(# « % — %) ——— Map(X/I%X,B).

This is re-expressed as a homotopy commutative diagram of Cs-spaces
S((k+1)o) — MapR(AQA, A)
*r——————— Map(XgX,B).

The top map defines the cup-k algebra structure on A, while the right-hand one is
fr—mnofo(anaa). Taking adjoints gives a homotopy commutative diagram
S((k+1Do)A(XAX) —— S(E+1)o)nANA —— A
Co R C: R J{

* B.
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This is precisely a trivialization as desired. O

Corollary A.20. Let A and B be as in Proposition A.19. For a: S™ — A such
that n o « is nullhomotopic, the map nQ(a): L"RP"™ — B is trivial.

Corollary A.21. Suppose that R is a commutative ring spectrum and B is an
associative R-algebra, with unit n: R — B. Ifn is even or 2 = 0 in R, and
a € mp(R) satisfies n(a) = 0, then n(Q1(a)) = 0.
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