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Abstract. We study modules over the commutative ring spectrum HF2 ^

HF2, whose coefficient groups are quotients of the dual Steenrod algebra by
collections of the Milnor generators. We show that very few of these quotients

admit algebra structures, but those that do can be constructed simply: killing

a generator ξk in the category of associative algebras freely kills the higher
generators ξk`n. Using new information about the conjugation operation in

the dual Steenrod algebra, we also consider quotients by families of Milnor

generators and their conjugates. This allows us to produce a family of asso-
ciative HF2 ^HF2-algebras whose coefficient rings are finite-dimensional and

exhibit unexpected duality features. We then use these algebras to give de-

tailed computations of the homotopy groups of several modules over this ring
spectrum.

1. Introduction

In stable homotopy theory, the mod-2 Moore spectrum M is a “quotient” of the
sphere that does not admit a unital multiplication. This has several proofs: one uses
mod-2 cohomology, while another observes that π˚M does not admit the structure
of a ring. As a result, this particular example is often employed to illustrate a barrier
between stable homotopy theory and more classical algebra. It is tempting to blame
these problems on the non-algebraic nature of the stable homotopy category itself,
the difficult nature of the coefficient ring π˚S, general unpleasant behavior of the
prime 2, or similar factors. Examples of similar phenomena have been found in
stable module categories by Langer [Lan09] and in exotic triangulated categories
by Muro–Schwede–Strickland [MSS07].

If HF2 is the mod-2 Eilenberg–Mac Lane spectrum, the smash product

A “ HF2 ^HF2

is a commutative ring spectrum. The coefficient ring is Milnor’s dual Steenrod
algebra, a polynomial algebra on generators in degree 2i ´ 1 [Mil58]. Following
previous authors (e.g. [MT68; BMMS86]), we denote the standard generators by
ξi so that

A˚ – F2rξ1, ξ2, . . . s.

We also denote the conjugate of ξi by ζi.
The spectrum A is an algebra over HF2. By work of Shipley [Shi07], this implies

that it is equivalent to a differential graded algebra over F2. Even further, it can
be shown that it is formal: this differential graded F2-algebra is equivalent to the
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graded polynomial algebra A˚ with zero differential, and as an associative HF2-
algebra A is equivalent to the generalized Eilenberg–Mac Lane spectrum HpA˚q.
This gives the category of left A-modules a concrete algebraic model: the category
of differential graded A˚-modules.

However, these equivalences ignore commutativity in the multiplicative struc-
ture: A is not equivalent to HpA˚q as a commutative algebra, and these two rings
give incompatible monoidal structures on the category of left A-modules. Our goal
in this paper is to study the gap between the theory of algebras and modules over
A and A˚. We will find that examples behaving like the mod-2 Moore spectrum are
abundant, despite left A-modules being very algebraic and despite the coefficient
ring A˚ being very tame.

Overview and results. One of our chief approaches in this paper is to use the
relative homology

HA
˚ pMq “ π˚pHF2^

A
Mq

and the corresponding relative Adams spectral sequence. These relative groups give
us an indispensable tool for the study of A-modules and A-algebras.

Section 2 is dedicated to these topics. In §2.1, we discuss this relative Adams
spectral sequence: Baker–Lazarev’s HF2-based Adams spectral sequence in the
category of A-modules [BL01]. Computing with it requires an understanding of
relative homology groups as comodules over the Hopf algebra

Γ “ π˚pHF2^
A
HF2q,

which we will identify with Bökstedt’s topological Hochschild homology.
In §2.2, we compute the relative homology of quotients of A by classes in its

homotopy, and describe their comodule structure over Γ. We find that, homotopi-
cally, coning off a class does not kill it. This brings us to our first main result,
which we prove in §2.3.

Theorem 1.1. Given any element α P A˚ such that α ” ξi mod decomposable
elements, with mapping cone Cpαq, the multiplication-by-α map induces the zero
map on π˚Cpαq but not on π˚pCpαq^

A
Cpαqq. In particular, α is not the trivial

self-map of Cpαq as an A-module.

As in the case of the mod-2 Moore spectrum, a consequence of this calculation
is that these cones Cpαq have no A-linear multiplication. It may, at first, seem
that Theorem 1.1 is at odds with our algebraic description of the category of left
modules. However, the multiplication-by-α map M Ñ M does not naturally have
the structure of a map of left modules without assuming some commutativity from
A.

Iterated cones are related to endomorphism algebras in §2.4, and we compute
the relative Adams E2-page for these and other related endomorphism objects.

While Section 2 is mostly focused on modules, in Section 3 we consider the effect
of coning off classes in the category of associative algebras. We begin with general
definitions and results about associative algebra quotients in §3.1: given an element
α P π˚A, there is a universal associative A-algebra A{{α with a chosen nullhomotopy
of α. In §3.2, we apply the relative Adams spectral sequence to calculate with
these associative algebra quotients of A. By computing the relative homology and
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Adams E2-term, we obtain a surprising result that identifies the associative algebra
quotient A{{ξk`1 with one of the iterated cones A{pξk`1, ξk`2, . . .q from Section 2.

Theorem 1.2. The universal associative A-algebra Axky :“ A{{ξk`1 with a chosen
nullhomotopy of ξk`1 has, as coefficient ring, the following A˚-algebra:

Axky˚ “ A˚{pξk`1, ξk`2, . . . q.

Similarly, Axky :“ A{{ζk`1 has the following coefficient ring:

Axky˚ “ A˚{pζk`1, ζk`2, . . . q.

This follows from a general result that we prove only later in Appendix A.

Theorem 1.3. Suppose that B has a multiplication in A-modules with unit η : AÑ
B. Then the ideal

kerpηq Ă A˚

must be closed under the Dyer–Lashof operation Q1.

This is perhaps unexpected: the operation Q1 usually does not have to be pre-
served by η because it is not even defined on B. This result very strongly constrains
the ideals that can appear as kernels of quotients because the operation Q1 on A˚
is highly nontrivial by work of Steinberger [BMMS86, §III.2].

The C2-action on A makes the quotient algebras Axky and Axky conjugate to

each other, and this lets us extend A to a C2-equivariant algebra Axky^
A
Axky that

we would like to understand for future applications to equivariant homotopy theory.
As a prerequisite to understanding further quotient rings of A like these, Section 4
(which is largely independent) addresses purely algebraic questions about the dual
Steenrod algebra A˚ and its quotients. In it, we prove the following nontrivial fact
about the conjugation operation.

Theorem 1.4. In the quotient Axky˚ of the dual Steenrod algebra, the sequence of
elements

ζm`1, ζm`2, . . . , ζm`k

is regular for any m ě 0, and all higher ζi are in the ideal generated by them.
Consequently, Axky˚{pζm`1, . . . , ζm`kq is a commutative, graded Frobenius alge-

bra over F2 with top class in degree 2m`k`1 ´ 2m`1 ´ 2k`1 ` 2.

Our proof of the regularity of these sequences will require some commutative
algebra; our efforts to give this fact a simple proof using Milnor’s formula for
conjugation have not been successful.

In Section 5, we return to homotopy theory and the study of associative algebras
under Axky^

A
Axmy. The surprise continues: many quotients by a finite sequence of

classes ζi beyond the regularity range still admit ring structures.

Theorem 1.5. For any natural numbers k,m, n ě 0, there is an associative algebra
structure on the iterated mapping cone

Axky{pζm`1, . . . , ζm`k`nq,

and these all receive associative A-algebra maps from

Axky^
A
Axmy.
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When n “ 0, the coefficient ring of Axky{pζm`1, . . . , ζm`kq is the quotient

F2rξ1, . . . , ξks{pζm`1, . . . , ζm`kq.

When n ą 0, there is a splitting into indecomposable A-modules:

Axky{pζm`1, . . . , ζm`k`nq » Axky{pζm`1, . . . , ζm`kq ^

˜

2n´1
ł

j“0

Sjp2
m`k`1

q

¸

In fact, these quotients Axky{pζm`1, . . . , ζm`k`nq arise as Postnikov stages of

Axky^
A
Axmy. The splitting into suspensions of Axky{pζm`1, . . . , ζm`kq allows us to

conclude that their relative homology and relative Adams spectral sequences are
completely determined by that of of Axky{pζm`1, . . . , ζm`kq.

In Section 6 we discuss duality. We first isolate a few facts about connective
associative ring spectra whose coefficient ring is a Frobenius algebra, which turn out
to include the quotients Axky{pζm`1, . . . , ζm`k`nq. The duality on their coefficient
rings has consequences, including spectral Gorenstein duality and duality for the
coefficient groups of modules.

Theorem 1.6. Fix any natural numbers k,m, n ě 0, and let

δ “ δpk,m, nq “ 2m`k`n`1 ´ 2m`1 ´ 2k`1 ` 2.

For any dualizable A-module M , the A-module Spanier–Whitehead dual DAM has
an isomorphism of Axky˚{pζm`1, . . . , ζm`kq-modules:

π˚
`

Axky{pζm`1, . . . , ζm`k`nq^
A
DAM

˘

–

´

πδ´˚
`

Axky{pζm`1, . . . , ζm`k`nq^
A
M

˘

¯_

Here the right-hand side is the F2-linear dual. In particular,

πd
`

Axky{pζm`1, . . . , ζm`k`nq
˘

–

´

πδ´d
`

Axky{pζm`1, . . . , ζm`k`nq
˘

¯_

.

This fact implies that any iterated quotient of Axky{pζm`1, . . . , ζm`kq by classes
in the homotopy of A is self-dual up to a shift.

In Section 7, we illustrate the effectiveness of the theory by computing the relative
Adams spectral sequence for a series of examples. Our first result in §7.1 is to prove
a family of differentials in the Adams spectral sequence of Axky{pζm`1, . . . , ζm`kq.
In §7.2 we completely compute the relative Adams spectral sequence of Ax2y{pζ3, ζ4q,
in §7.3 that of Ax2y{pξ1, ζ1, ζ3, ζ4q, and in §7.4 that of Ax3y{pξ1, ζ1, ξ2, ζ2, ζ4, ζ5, ζ6q.
In these examples, duality proves to be extremely useful for solving extension prob-
lems.

Since it is technical and thematically significantly different from the rest of the
paper, we have left the proof of Theorem 1.3, about the Dyer–Lashof operation
Q1, to Appendix A. We start in §A.1 by defining cup-k algebras and discussing an
inductive approach to understanding them. In §A.2 we review the associated power
operations. In §A.3 we define a notion of centrality for a cup-pk ´ 1q algebra over
a cup-k algebra and explore a few consequences of this definition. Finally, in §A.4,
we prove that for a central cup-pk´1q algebra B over a cup-k algebra A, the kernel
of π˚AÑ π˚B is closed under power operations.

1.1. Acknowledgements. The authors would like to thank Andrew Baker, Ian
Coley, Drew Heard, Mike Hopkins, Lennart Meier, Haynes Miller, and Doug Ravenel
for discussions related to this work. We would also like to thank the anonymous
referee for numerous suggestion on the paper.
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2. The relative Adams spectral sequence and mapping cones

2.1. The relative Adams spectral sequence. The key computational tool we
use is Baker–Lazarev’s relative Adams spectral sequence based on HF2-homology
in the category of A-modules [BL01]. For this, we need to compute the A-module
version of the dual Steenrod algebra. In our case, however, this is due to Bökstedt
[Bök]; see also Franjou–Lannes–Schwartz for a published reference [FLS94].

Theorem 2.1. The commutative ring spectrum HF2^
A
HF2 is the topological Hochschild

homology of HF2. The coefficient ring is

π˚
`

HF2^
A
HF2

˘

– F2rus,

where |u| “ 2.

Since π˚
`

HF2^
A
HF2

˘

is flat over π˚HF2, the pair

pA,Γq “
`

F2,F2rus
˘

forms a Hopf algebra, and u is primitive for degree reasons. By Baker–Lazarev’s
extension of Adams’ original argument, the relative homology

HA
˚ pMq “ π˚pHF2^

A
Mq

of any A-module is a comodule over this Hopf algebra, and we have a relative
Adams spectral sequence. This particular relative Adams spectral sequence has
been employed in equivariant homotopy theory by Hahn–Wilson [HW19].

Corollary 2.2. For any A-modules M and N , there is a relative Adams spectral
sequence with

Es,t2 “ Exts,tF2rus

`

HA
˚ pMq, H

A
˚ pNq

˘

,

converging (conditionally) to the homotopy classes of A-module maps from M to
N .

When we take M “ N “ A, giving the relative Adams spectral sequence for the
homotopy of A, this takes the form

Exts,tF2rus
pF2,F2q ñ F2rξ1, ξ2, . . . s,

The dual to the coalgebra F2rus is an exterior algebra on duals to the primitives

u2
i

. The E2-term is therefore polynomial on classes

ru2
k´1

s P Ext1,2
k

pF2,F2rusq
pF2,F2q,

and comparing with the abutment, we see that the spectral sequence collapses at

E2. The class ru2
k´1

s detects the homotopy element ξk. This gives us an algebraic
interpretation of the relative Adams filtration: the relative Adams filtration of A˚
is the filtration by monomial degree in the ungraded sense, while the topological
degree records the fact that A˚ is a graded ring.

More generally, for any A-module M the relative Adams spectral sequence

Exts,tF2rus

`

F2, H
A
˚ pMq

˘

ñ π˚M

is always a module over the relative Adams spectral sequence for A itself, and this
module structure recovers the associated graded of the action of A˚ on π˚M .
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2.2. Homology of Mapping Cones. We can now apply the relative Adams spec-
tral sequence machinery of §2.1 to study the effect of killing various classes in the
homotopy of A.

Definition 2.3. For any α P A˚ “ π˚A, let Cpαq “ A{α denote the mapping cone
of the self-map Σ|α|AÑ A.

Let Mk be the A-module Cpξkq “ A{ξk. More generally, for any subset I of the
positive natural numbers, let

MI :“
A
ľ

iPI

Mi.

There is a natural map AÑMI , and as an A˚-module, we have

π˚pMIq – A˚{pξi | i P Iq.

This implies that MNą0
– HF2, and, more generally, we can view any of the modules

MI as augmented to HF2.
We can compute the relative homology of any of these cones fairly directly. Recall

a key observation about the relative Adams filtration: if f : N Ñ M is a map of
relative Adams filtration at least 1, then the relative homology of the cone on f ,
Cpfq, sits in an exact sequence

0 Ñ HA
˚ pMq Ñ HA

˚

`

Cpfq
˘

Ñ ΣHA
˚ pNq Ñ 0.

Moreover, this extension of comodules is the extension corresponding to the class in
Ext1 detecting f . If f has relative Adams filtration at least 2, then the extension is

trivial. The classes u2
k´1

are the primitives in the Hopf algebra Γ, which generically
makes them appear in Ext1. The following proposition expands upon this when N
is a shift of A.

Proposition 2.4. Let M be an A-module and yn P πnM with relative Hurewicz
image ȳn P H

A
n pMq. Let α P πk´1A be any element that maps to zero in F2, and

consider the cofiber sequence

Σk`n´1A
αyn
ÝÝÑM Ñ Cpαynq

so that Cpαynq is the mapping cone on αyn in A-modules. Then

(1) the relative homology of Cpαynq is given by

HA
˚

`

Cpαynq
˘

– HA
˚ pMq ‘ F2 ¨ x̄k`n,

where |x̄k`n| “ k ` n, and
(2) the coaction is determined by

ψpx̄k`nq “

#

1b x̄k`n ` u
2n´1

b ȳn if α ” ξn mod decomposables,

1b x̄k`n otherwise.

Corollary 2.5. The relative homology of Mk, as a comodule, is

HA
˚ pMkq – F2tb0, b2ku,

with |bi| “ i, where the coaction is given by

ψpb2kq “ 1b b2k ` u
2k´1

b b0

and b0 is primitive.
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For any of our modules Mk, the natural maps

AÑMk Ñ HF2

are isomorphisms on π0. On relative homology, these maps become

F2 Ñ F2tb0, b2ku Ñ F2rus.

The class b0 is the image of 1 under the first map, while the second map sends b0
to 1 and b2k to u2

k´1

.
The general Künneth spectral sequence for modules over a ring spectrum, defined

in Elmendorf–Kriz–Mandell–May [EKMM97, Theorem IV.4.1], then allows us to
deduce the more general case, since everything is flat over F2.

Corollary 2.6. If I is a subset of the positive natural numbers, then the relative
homology of MI , as a comodule, is

HA
˚ pMIq –

â

iPI

F2tb0, b2iu,

with |bj | “ j and where the coaction is the one on the tensor product induced by the
Hopf algebra structure.

Note that in this tensor product, each factor has a primitive element b0 in degree
zero and a unique non-primitive element b2i . Each of these non-primitive elements
is in a distinct degree, so we can rewrite this using dyadic expansions.

Notation 2.7. If I is a subset of the natural numbers, then let

DI “

#

ÿ

iPS

2i | S Ă I finite

+

be the set of natural numbers whose dyadic expansions only involve terms of the
form 2i with i P I.

Corollary 2.8. If I is a subset of the positive natural numbers, then the relative
homology of MI is

HA
˚ pMIq – F2tbj | j P DIu,

with |bj | “ j. The coproduct is given by

ψpbjq “
ÿ

iPDI

ˆ

j

i

˙

u

`

j´i
2

˘

b bi.

The augmentation

HA
˚ pMIq Ñ HA

˚ pHF2q “ F2rus

is injective, and sends bj to uj{2.

This gives an algebraic “no-go theorem” for ring structures. Although the ho-
motopy groups π˚MI form a quotient ring of A˚, these spectra typically cannot
have A-algebra structures.

Theorem 2.9. Let I be a subset of the positive natural numbers. If MI is a unital
ring object in the homotopy category of A-modules, then whenever i P I we must
have pi`1q P I. In particular, if I is nonempty and finite there can be no such ring
structure.
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Proof. The class b2i P H
A
2ipMIq has coproduct

ψpb2iq “ 1b b2i ` u
2i´1

b b0,

and hence if there be a ring structure, we must have

ψpb22iq “ 1b b22i ` u
2i b b20.

The element b0 is the only possible image of the unit, and hence the square must
be again b0, making this coproduct non-zero. This forces b22i ‰ 0. However, the

only possible non-zero class in degree 2i`1 would be b2i`1 , which exists if and only
if pi` 1q P I. �

Remark 2.10. Our identification of the comodule structure in Proposition 2.4 shows
that the comodule structure depends only on the image of a class modulo decom-
posables. The same “no-go theorem” holds for any sequence of classes

tχk | k P I, χk ” ξk mod decomposablesu.

This remark applies to the conjugate classes ζk, but there is also a general
procedure for studying conjugates.

Definition 2.11. If M is an A-module, then let M denote the pullback of M along
the automorphism AÑ A induced by the swap on HF2 ^HF2.

Example 2.12. For any subset I of the positive natural numbers, M I is the quotient
of A by the classes ζi with i P I.

We pause to connect the coaction on a module M to that on M .

Proposition 2.13. For any A-module M , we have a natural isomorphism of F2rus-
comodules

HA
˚ pMq – HA

˚ pMq.

Proof. In this instance, it can be clarifying to discuss the general case first. For a
ring homomorphism f : R Ñ S, an S-algebra E, and an S-module M , the map f
induces a commutative diagram

E^
R
f˚pMq pE^

R
Eq^

E
pE^

R
f˚pMqq

E^
S
M pE^

S
Eq^

E
pE^

S
Mq.

We will assume ΓR “ π˚pE^
R
Eq and ΓS “ π˚pE^

S
Eq are flat over π˚E. On

homotopy groups, this becomes a commutative diagram

ER˚ pf
˚pMqq ΓR bπ˚E E

R
˚ pf

˚pMqq

ES˚ pMq ΓS bπ˚E E
S
˚ pMq.

ψ

ψ

The map f̄ : pπ˚E,ΓRq Ñ pπ˚E,ΓSq induced by f is a map of Hopf algebroids,
and so this diagram expresses the existence of a natural map of comodules

pf̄q˚
`

ER˚ pf
˚Mq

˘

Ñ ES˚ pMq
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over pπ˚E,ΓSq. If f is an equivalence, then this natural map of comodules is an
isomorphism.

Now take f to be the swap automorphism of A, so that f˚M “M by definition.
We get an isomorphism of F2rus-comodules

pf̄q˚H
A
˚

`

M
˘

Ñ HA
˚ pMq.

In this case, however, the conjugation automorphism f of A induces the trivial
automorphism of F2rus: the conjugation in A˚ is the identity mod decomposables.
Therefore, pf̄q˚ is the identity. �

Remark 2.14. We see the algebraic isomorphism of Proposition 2.13 reflected in an
identification between the corresponding relative Adams spectral sequences. This
is simply recording that modulo elements of higher monomial degree, ξi ” ζi.

2.3. Double killing classes resurrects them. One of the most curious features
of this framework is that iterated quotients by classes often see multiplication by
those classes reappear. This was an early observation that led us to this general
framework, starting with the guess that in M1^

A
M1, multiplication by ξ1 is non-

trivial.
The following results on comodule structure follow from the calculation of the

relative homology of Mk by the Künneth theorem.

Proposition 2.15. We have isomorphisms

HA
˚

`

Mk^
A
Mk

˘

– HA
˚

`

Mk^
A
Mk

˘

– F2tb0 b b0, b2k b b0, b0 b b2k , b2k b b2ku,

and the coproduct on b2k b b2k is

ψpb2k b b2kq “ 1b b2k b b2k ` u
2k´1

b
`

b2k b b0 ` b0 b b2k
˘

` u2
k

b b0 b b0.

Proof. Proposition 2.13 shows that the relative homologies of Mk and Mk agree as
comodules. The result follows from the Künneth theorem. �

Note that since both the left and right copies of b2k in Proposition 2.15 support
the same coproduct, the sum

e2k :“ b2k b b0 ` b0 b b2k

is actually a primitive element in the comodule. Of course, the element e0 :“ b0bb0
is also primitive.

Remark 2.16. The calculation of the comodule structure here is essentially the same
as the calculation that the smash square of the mod 2 Moore spectrum has a non-
trivial Sq2 connecting the bottom and top cells. In the category of A-modules, this
is part of a family.

An immediate consequence of Proposition 2.15 is that we have a non-trivial
multiplication by ξk in the relative Adams spectral sequence for Mk^

A
Mk.

Corollary 2.17. The relative Adams E2-term for Mk^
A
Mk or Mk^

A
Mk is

F2rξ1, . . . ste0, e2ku{pξk ¨ e0, ξk ¨ e2k ` ξk`1 ¨ e0q,

where the bidegree pt´ s, sq of ej is pj, 0q and that of ξi is p2i ´ 1, 1q.
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Remark 2.18. Either module M “ Mk^
A
Mk or M “ Mk^

A
Mk sits in a cofiber

sequence

Mk ÑM Ñ Σ2kMk.

The relative Adams spectral sequence for Mk collapses at E2 to

F2rξ1, . . . ste0u{ξk ¨ e0,

and similarly for the 2k-fold suspension. Corollary 2.17 says that this is a non-trivial
extension on relative Adams E2-terms.

Using Remark 2.18, we can also determine the homotopy. The connecting map
in the long exact sequence on homotopy induced by this cofiber sequence is exactly
multiplication by ξk or ζk in the module

F2rξ1, . . . ste0u{ξk ¨ e0.

In the former case, the map is identically zero and the spectral sequence collapses
at E2. In the latter, Milnor’s formula tells us

k
ÿ

i“0

ξ2
k´i

i ζk´i “ 0,

so modulo ξk, we find two cases:

(1) if k “ 1, then ζk “ ξk ” 0, while
(2) if k ą 1, then ζk ” ξ1ξ

2
k´1 ` . . ., where the elided terms are elements of

monomial degree at least 5.

Corollary 2.19. In the relative Adams spectral sequence for Mk^
A
Mk, when k ą 1

we have a d3-differential:

d3pe2kq “ ξ1ξ
2
k´1 ¨ e0

The spectral sequence collapses at E4.

Proof. The image ξ1ξ
2
k ¨e0 of ζk ¨e0 must be zero on the E8 page, and the only class

available to support this differential is e2k . It remains only to show that the spectral
sequence collapses at E4. Multiplication by ξ1ξ

2
k´1 is injective in the module

F2rξ1, . . . ste0u{pξk ¨ e0q,

so the E4-page is

F2rξ1, . . . ste0u{pξk, ξ1ξ
2
k´1q ¨ e0.

For degree reasons, e0 is a permanent cycle, and therefore all multiples of e0 are as
well. �

The elided terms in the formula for ζk will reappear as multiplicative extensions:
the class ξ1ξ

2
k´1 is only the leading term of ζk modulo ξk. We will expand on this

in §7.1.
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2.4. Endomorphism algebras of cones. The endomorphism ring of a module
is a natural example of an associative algebra. When we consider finite cell A-
modules, the underlying homotopy type can be easily determined, such as in the
case of the algebras

EndApMIq

when I is a finite set.
Since the cones Mk are self dual in the sense that the A-module Spanier–

Whitehead dual DAMk has an equivalence

DAMk » Σ´2kMk,

we have an equivalence of A-module spectra:

EndApMkq » Σ´2kMk^
A
Mk

Notation 2.20. We will write EpSq for the exterior algebra on a graded set S.

Proposition 2.21. The homotopy of EndApMkq, as an A˚-algebra, is

A˚ b Epβ-2kq{pξkβ-2k , rkq,

where the relation rk satisfies

rk ” ξk ` ξk`1β-2k mod higher order monomials.

Proof. Corollary 2.17 says that the E2-term of the relative Adams spectral sequence
is the following:

A˚ b Epβ-2kq{pξkβ-2k , ξk`1β-2k ` ξkq,

where β-2k is in degree p´2kq. For degree reasons, β-2k is necessarily exterior and
a permanent cycle.

This spectral sequence degenerates at E2 because all generators of this algebra
are permanent cycles. In π˚ EndApMkq, therefore, ξk is divisible by ξk`1 mod terms
that are quadratic and higher in A˚. �

Remark 2.22. One consequence of this theorem is that the “generating hypothesis”,
as in Lockridge [Loc07], fails in the category of A-modules: there are nontrivial self-
maps of the finite complex Mk that induce the zero map on homotopy groups.

When k “ 1, there is no indeterminacy in the relation r1: the relation ξ1β-2 “ 0
implies that in degree 1, the only possible relation r1 must be that ξ1 “ ξ2β-2.
Working inductively, we get a family of algebras where we have good control: the
algebras EndApMďkq.

Proposition 2.23. The relative Adams spectral sequence for EndApMďkq collapses
at E2, and there is an isomorphism of algebras

π˚ EndApMďkq – F2rξk`1, ξk`2, . . . s b Epβ-2, . . . , β-2kq.

For j ď k, the image of ξj in this algebra is ξj`1β-2j .

Proof. We use the equivalence Mďk “M1^
A
. . .^

A
Mk to deduce that

EndApMďkq » EndApM1q^
A
. . .^

A
EndApMkq.

The homology

HA
˚ pEndApMkqq – Σ2´2k`1

HA
˚ pMďkq bH

A
˚ pMďkq
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is cofree over the quotient coalgebra F2rus{pu
2kq – HA

˚ pMďkq. The Cartan-Eilenberg
spectral sequence then degenerates, and so the E2-term of the relative Adams spec-
tral sequence is

ExtF2ru2k s
pF2,Σ

2´2k`1

HA
˚ pMďkqq – F2rξk`1, ξk`2, . . . s b Epβ-2, . . . , β-2kq.

This again collapses at E2: the maps EndApMjq Ñ EndApMďkq show, by naturality
of the relative Adams spectral sequence, that the elements β-2j are permanent cycles
that square to zero and that the extensions ξj “ ξj`1β-2j persist to this E2-term.

The first nonzero element higher than the 1-line is ξ2k`1β-2β-4 . . . β-2k in total

degree 2k`1. This means that there are no classes in the same total degree as
ξj ` ξj`1β-2j of higher relative Adams filtration, so the relations on E2 are in fact
exact. �

Proposition 2.24. For all k, there are equivalences

EndApMďkq^
A
Mk`1 » EndApMďkq^

A
Mk`1.

Proof. The previous proposition shows that, for j ď k, the image of the element
ξj in π˚ EndApMďkq is ξj`1β-2j , and this squares to zero. The image of Mil-
nor’s formula for conjugation then shows that ξk`1 and ζk`1 become equal in
π˚ EndApMďkq, and so their mapping cones are equivalent as left modules over
EndApMďkq. �

Corollary 2.25. There is an equivalence of A-modules

Mďk^
A
Mďk » Σ2k`1

´2 EndApMďkq.

Proof. This follows by induction on k. �

3. Killing ξis in associative algebras

The ring A “ HF2 ^HF2 is an associative ring spectrum, so we can universally
kill off elements in homotopy by attaching A8-cells. Doing so in the category
of A-algebras has an added wrinkle that arises from ensuring that the new null-
homotopy commutes with A. Using results from Appendix A, we will see that
killing an element in homotopy in associative algebras has the effect of killing a
swath of Dyer–Lashof operations on that element.

3.1. Killing generators. The method of killing generators here is closely related
to work of Baker–Richter and Szymik [BR08; Szy14].

Definition 3.1. For a commutative ring spectrum R and an R-module M , we
define TRpMq to be the free associative R-algebra on M :

TRpMq “
ł

ně0

M
^
R
n
.

Definition 3.2. Suppose that R is a commutative ring spectrum and α P πnpRq,
represented by a map ΣnRÑ R. The associative quotient R{{α is the (homotopy)
pushout

TRpΣnRq TRpCΣnRq

R R{{α

α
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in the category of associative R-algebras. Here CΣnR is the cone ΣnR^ I » ˚.

Proposition 3.3. The algebra R{{α is the free associative R-algebra on a null-
homotopy of α in the following sense. For an associative R-algebra B, a map
R{{αÑ B of associative R-algebras is equivalent to a choice of nullhomotopy of the

composite map ΣnR
α
Ñ RÑ B of R-modules.

Proposition 3.4. For a map f : RÑ S of commutative ring spectra and α P π˚R,
there is an equivalence

S^
R
pR{{αq » S{{fpαq

of associative algebras over S.

Example 3.5. A choice of nullhomotopy of the zero map Sn Ñ B is equivalent to
a map Sn`1 Ñ B. As a result, if α “ 0 in π˚R, then the universal property shows
that R{{α is a free algebra:

R{{α – TRpΣn`1Rq »
ł

kě0

Σkpn`1qR.

More generally, if f : R Ñ S is a map of commutative ring spectra such that
fpαq “ 0, then this shows that there is an equivalence

S^
R
pR{{αq » TSpΣn`1Sq

of S-algebras.

3.2. Applications to A-modules.

Proposition 3.6. Suppose that α P A˚ is such that α ” ξk`1 mod decomposables.
Then there is an isomorphism

π˚pHF2^
A
A{{αq – F2ru

2k s

of comodules over F2rus.

Proof. The element α maps to zero in HF2. By Example 3.5, there is an equivalence

of HF2^
A
pA{{αq with the free algebra THF2

pS2k`1

q . In particular,

HA
˚ pA{{αq “ π˚pHF2^

A
A{{αq – F2rb2k`1s.

The universal property of A{{α gives it a map A{{α Ñ HF2 of A-algebras,
factoring the map Cpαq Ñ HF2. Applying HA

˚ p´q, we get a factorization

F2tb0, b2k`1u Ñ F2rb2k`1s Ñ F2rus,

where the composite sends b0 to 1 and b2k`1 to u2
k

. Since the second map is a
map of algebras, this identifies π˚pHF2^

A
A{{αq, as a comodule, with the subalgebra

F2ru
2k s. �

Calculation of the relative Adams E2-term then gives the following.

Proposition 3.7. Let α be as in Proposition 3.6. The relative Adams spectral
sequence computing the homotopy of A{{α^

A
M has a change-of-rings isomorphism

Es,t2 – Exts,t
F2rus{pu

2k q

`

F2, H
A
˚ pMq

˘

.
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Proof. The Hopf algebra F2ru
2k s is cotensored up from F2 along the quotient map

q : F2rus Ñ F2rus{pu
2kq.

In particular, for any comodule M , we have an isomorphism of comodules

F2ru
2k s bM – F2rus l

F2rus{u2k
q˚M,

where q˚M is the “restriction” of M along the surjective map of Hopf algebras
q. �

Corollary 3.8. Let α be as in Proposition 3.6. The relative Adams spectral se-
quence for π˚pA{{αq degenerates at E2, with E8-page given by

F2rξ1, . . . , ξks.

This gives the π˚A-algebra structure up to associated graded. We do not know
a priori the images of ξj for j ą k; we know only that ξj is zero modulo elements
of monomial degree at least 2, and this may depend on the exact terms in α.
Identifying the relations imposed will require an operadic digression in Appendix A.

Definition 3.9. Let Axky “ A{{ξk`1 be the free associative A-algebra with ξk`1 “

0, and Axky “ A{{ζk`1 be its conjugate.

Theorem 3.10. As an A˚-algebra, the coefficient ring π˚pAxkyq is

A˚{pξk`1, ξk`2, . . . q – F2rξ1, ξ2, . . . , ξks.

Similarly, the coefficient ring π˚pAxkyq is

A˚{pζk`1, ζk`2, . . . q – F2rζ1, ζ2, . . . , ζks.

Proof. We will prove the statement for Axky “ A{{ζk`1 first. The elements ζ1, . . . , ζk
of A˚ have the same images as ξ1, . . . , ξk in the relative Adams spectral sequence,
and so they determine polynomial generators of the E8 page of the relative Adams
spectral sequence for π˚pA{{αq. In particular, there are no possible hidden multi-
plicative relations between them.

Therefore, the composite

F2rζ1, . . . , ζks Ă A˚ Ñ π˚pAxkyq

is an isomorphism, and so A˚ Ñ π˚Axky is surjective. This forces

π˚pAxkyq – A˚{J

as an A˚-algebra. We would like to determine this ideal J ; the element ζk`1 is
in J by construction. By Corollary A.21 in §A.4, the ideal J is closed under the
Dyer–Lashof operation Q1. In [BMMS86, §III.2], Steinberger showed that in the
dual Steenrod algebra, the Dyer–Lashof operations satisfy

Q1pζjq “ ζj`1.

Therefore, the map A˚ Ñ A˚{J factors through A˚{pζk`1, ζk`2, . . . q and this fac-
torization is already forced to be an isomorphism.

The same result holds for the ξk because conjugation is realized by a self-
equivalence of HF2 ^HF2 as a commutative ring spectrum. �
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Remark 3.11. This can also be shown directly. If we apply Q1 to Milnor’s formula
ř

i`j“n ξ
2j

i ζj “ 0 and use the Cartan formula Q1pxyq “ Q1pxqy
2 ` x2Q1pyq, it is

possible to instead calculate directly that Q1ξj “ ξj`1 ` ξ1ξ
2
j . Since ξk`1 maps to

zero, all ξj for j ą k must be in the ideal by induction.

Corollary 3.12. There is an equivalence of A-modules

Axky »Mąk.

Similarly, Axky »Mąk.

Proposition 3.13. As an F2rus-comodule algebra,

HA
˚

`

Axky^
A
Axmy

˘

– F2ru
2k s b F2ru

2ms.

Proof. The follows immediately from Propositions 3.6 and 2.13, as well as the
Künneth theorem. �

Corollary 3.14. If m ě k, then we have an isomorphism of F2rus-comodule alge-
bras

HA
˚

`

Axky^
A
Axmy

˘

– F2ru
2k s b F2re2m`1s,

where e2m`1 is a primitive element in degree 2m`1.

Proof. If m ě k, then both u2
m

b1 and 1bu2
m

have the same coproduct. Their sum

e2m`1 is therefore primitive, and the two classes u2
k

b 1 and e2m`1 are generators
for the polynomial algebra. �

This gives the relative Adams E2-term, via the change-of-rings isomorphism.

Corollary 3.15. For m ě k, the relative Adams E2-term for Axky^
A
Axmy is

F2rξ1, . . . , ξks b F2re2m`1s.

However, we need more algebraic information before we can analyze the relative
Adams spectral sequence completely.

4. Regularity in dual Steenrod algebra quotients

In this section, we prove a series of algebraic results about the dual Steenrod
algebra. Many of the inputs we need are standard facts in commutative algebra,
and for convenience we will largely refer to Matsumura’s text [Mat89].

Definition 4.1. Let Axky˚ be the (graded) A˚-algebra

A˚{pξk`1, ξk`2, . . . q – F2rξ1, . . . , ξks,

let Zm`1,m`k be the (graded) algebra

F2rζm`1, ζm`2, . . . , ζm`ks Ă A˚,

and let

Ãxky˚ “ Axky˚{pζk`1, . . . , ζ2kq.

In this section, our goal is to analyze the structures of the (graded) A˚-algebras

A˚{pζm`1, . . . , ζm`kq, such as Ãxky˚.

Proposition 4.2. In Axky˚, we have ζn P pζm`1, ζm`2, . . . , ζm`kq for all n ą m.
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Proof. This is true by definition for m ă n ď m ` k. Milnor’s formula for the
conjugate classes states that

0 “
ÿ

i`j“n

ξ2
j

i ζj .

In the ring Axky˚, this becomes the identity

ζn “
k
ÿ

i“1

ξ2
n´i

i ζn´i

whenever n ą k. If n ą m ` k, then n ´ i ą m for all 1 ď i ď k that appear in
the sum. By induction on n, these elements ζn´i are in the ideal, and so the result
follows. �

Recall that A˚, as a Hopf algebra, represents the automorphisms of the additive
formal group law over rings of characteristic 2: the formal power series

fpxq “
ÿ

iě0

ζix
2i ,

gives the universal automorphism, with composition inverse the power series

gpxq “
ÿ

iě0

ξix
2i .

Here ξ0 “ ζ0 “ 1 by convention.

Proposition 4.3. Let I, J Ă N be co-finite sets of natural numbers. Then the ring

B :“ A˚{
`

ξi, ζj | i P I, j P J
˘

is a zero-dimensional ring and is finite-dimensional as an F2-vector space.

Proof. Suppose that p is a (not necessarily graded) prime ideal of B; this gives us
a ring homomorphism

q : A˚ Ñ B{p,

and hence automorphisms of the additive formal group law over B{p

αpxq “
ÿ

iě0

qpζiqx
2i and βpxq “

ÿ

jě0

qpξjqx
2j

which are composition-inverse to each other. By the co-finiteness assumption on I
and J , both of these automorphisms are polynomials in x.

However, the only composition-inverse polynomials with coefficients in an inte-
gral domain are linear, because the lead coefficient of the composite is a product of
powers of leading coefficients. Therefore, for all i, ξi “ 0 in B{p, and hence ξi P p.

This shows that the elements ξi are in every prime ideal, which means they are
nilpotent. As B is generated by finitely many nilpotent generators, it is a finite-
dimensional vector space. Moreover, the ideal pξ1, ξ2, . . . q is already maximal, so it
is the only prime ideal of B. �

Corollary 4.4. For any m ě 0, the algebra Axky˚{pζm`1, . . . , ζm`kq is a finite-
dimensional F2-vector space, and a zero-dimensional ring.

Proof. By construction, we kill all but finitely many ξi, and by Proposition 4.2,
only finitely many ζj are non-zero modulo the ideal pζm`1, . . . , ζm`kq. �
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Corollary 4.5. The ring Axky˚ is a finitely-generated module over the ring Zm`1,m`k,
with generators given by lifts of the basis of the quotient ring.

Proposition 4.6. The composite ring homomorphism

Zm`1,m`k Ñ A˚ Ñ Axky˚

is one-to-one.

Proof. We have shown that the ring homomorphism g : Zm`1,m`k Ñ Axky˚ is
finite; the image of g is therefore an integral extension in the sense of [Mat89,
§9]. Such extensions preserve proper inclusions of primes: if p Ĺ q is a proper
inclusion of prime ideals of Axky˚, then the inclusion p X Impgq Ă q X Impgq of
prime ideals is also proper [Mat89, Theorem 9.3]. Therefore, we have a proper
inclusion g´1ppq Ĺ g´1pqq of their inverse images in Zm`1,m`k. (Alternatively, this
directly shown in [Sta21, Lemma 00GT].)

We then have a chain of prime ideals of Zm`1,m`k of length pk ` 2q:

0 Ă g´1p0q Ĺ g´1pξ1q Ĺ g´1pξ1, ξ2q Ĺ ¨ ¨ ¨ Ĺ g´1pξ1, . . . , ξkq.

However, Zm`1,m`k is a polynomial algebra in k variables over a field, and so it has
Krull dimension k [Mat89, Theorem 5.6]: the maximal number of distinct prime
ideals in a chain in Zm`1,m`k is pk ` 1q. Therefore, the first containment must be
an equality. �

Proposition 4.7. The ring Axky˚ is a flat module over Zm`1,m`k.

Proof. The ring Axky˚ is a finitely-generated graded module over the graded subring
Zm`1,m`k. The ring Axky˚ is polynomial over a field, and hence Cohen–Macaulay
[Mat89, Theorem 17.7].

Let m “ pζm`1, . . . , ζm`kq be the augmentation ideal of the graded ring Zm`1,m`k;

the quotient Ãxky˚ “ Axky˚{m is zero-dimensional by Corollary 4.4. The ring
Axky˚ is a flat module over Zm`1,m`k if and only if the (ungraded) localization
`

Axky˚
˘

m
is a flat module over the local ring

`

Zm`1,m`k

˘

m
[Mat89, §22, Remark].

Applying the “miracle flatness” theorem [Mat89, Theorem 23.1] to the local homo-
morphism

`

Zm`1,m`k

˘

m
Ñ

`

Axky˚
˘

m
,

we find that Axky˚ is flat, and hence free, as a Zm`1,m`k-module. �

Theorem 4.8. For any m ě 0, the elements ζm`1, . . . , ζm`k form a regular se-
quence in Axky˚, and Axky˚ is a free module over Zm`1,m`k.

Proof. These elements form a regular sequence in Zm`1,m`k, and this property is
preserved by flat extensions. �

As a consequence of this regular sequence, we can determine the dimension
function of these finite-dimensional quotients.

Proposition 4.9. The finite-dimensional graded ring Axky˚{pζm`1, . . . , ζm`kq has
the following properties.

(1) The Poincaré polynomial is given by the following rational function:
śk
i“1p1´ t

2m`i
´1q

śk
i“1p1´ t

2i´1q

https://stacks.math.columbia.edu/tag/00GT
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(2) The dimension of Ãxky˚ as a vector space is the Gaussian binomial
`

m`k
k

˘

q

evaluated at q “ 2.
(3) The maximal degree of a nonzero element is 2p2m ´ 1qp2k ´ 1q.

Proof. The first formula is an immediate consequence of the fact that we have the
quotient of a graded polynomial ring on generators in degrees 2i ´ 1 for 1 ď i ď k
by a regular sequence on generators in degrees 2m`i ´ 1 for 1 ď i ď k.

The second formula is obtained by evaluating at t “ 1, which we can calculate
by either cancelling or via limit:

lim
tÑ1

śk
i“1p1´ t

2m`i
´1q

śk
i“1p1´ t

2i´1q
“

śk
i“1p2

m`i ´ 1q
śk
i“1p2

i ´ 1q

This is the definition of the Gaussian binomial at q “ 2.
Finally, the degree of the Poincaré polynomial is the difference in degrees between

numerator and denominator:
k
ÿ

i“1

p2m`i´1q´
k
ÿ

i“1

p2i´1q “ p2m`k`1´2m`1q´p2k`1´2q “ 2p2m´1qp2k´1q. �

Proposition 4.10. The ring Axky˚{pζm`1, . . . , ζm`kq is a (commutative, graded)
Frobenius algebra over F2:

(1) if δ “ 2p2m´1qp2k´1q, then Axky˚{pζm`1, . . . , ζm`kq is a one-dimensional
F2-vector space in degree δ, and

(2) for any t, the multiplication followed by the projection to ΣδF2 is a perfect
pairing between degrees t and δ ´ t.

As a result, it is injective as a module over itself.

Proof. As the quotient of a polynomial ring by a regular sequence of length the
Krull dimension, the ring Axky˚{pζm`1, . . . , ζm`kq is a zero-dimensional complete
intersection ring. In particular, it is Gorenstein by [Mat89, Theorem 21.3], and by
[EGH96, Proposition 7] this means that the multiplication is a perfect pairing. By
definition, this makes it a Frobenius algebra. �

We briefly recall the following result, re-expressing algebraic duality. These
results can be found in work of Baker [Bak20].

Proposition 4.11. Suppose R is a graded Frobenius algebra over a field F, with top
nonzero degree δ. For any graded left R-module M , there is a natural isomorphism

HomRpM,Rq – HomFpM,ΣδFq.
In particular, R is injective as a left module over itself. If R is commutative, then
this natural isomorphism is one of R-modules.

Proof. The multiplication pairing

x-, -y : Rt bRδ´t Ñ F2

is a perfect pairing that satisfies xxa, yy “ xx, ayy. As a result, y ÞÑ x´, yy is an
isomorphism RÑ HomF2

pR,ΣδF2q of graded left R-modules. If R is commutative,
we also have xax, yy “ xx, yay, extending it to an isomorphism of R-bimodules.

Applying HomRpM,´q gives the desired natural isomorphism of abelian groups,
which is an isomorphism of R-modules in the commutative case (using the right
module structure). Taking F-linear duals is exact, so R is injective. �
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5. Finite Axky^
A
Axmy-algebras and splittings

The graded algebra computation of Axky˚ actually greatly simplifies the study

of Axky^
A
Axmy. From Theorem 3.10, as an A-module, the ring Axmy is a colimit

of modules of the form
N
ľ

j“m`1

M j ,

and hence Axky^
A
Axmy is a colimit of left Axky-modules of the form

Axky^
A

N
ľ

j“m`1

M j .

Definition 5.1. For natural numbers k,m, n ě 0, let

Axky{pζm`1, . . . , ζm`k`nq “ Axky^
A

˜

m`k`n
ľ

j“m`1

M j

¸

.

For the special case k “ m and n “ 0, let

Ãxky “ Axky{pζk`1, . . . , ζ2kq.

Theorem 4.8 shows that the collection of elements ζm`1, . . . , ζm`k forms a regular
sequence. In particular, the associated Tor spectral sequence collapses.

Corollary 5.2. As an Axky˚-module, we have

π˚
`

Axky{pζm`1, . . . , ζm`kq
˘

– Axky˚{pζm`1, . . . , ζm`kq.

In particular, π˚pÃxkyq – Ãxky˚.

Since Axky˚{pζm`1, . . . , ζm`kq is a finite algebra, with its top degree class in

2p2m ´ 1qp2k ´ 1q, the A-module Axky{pζm`1, . . . , ζm`kq is also co-connective. In
particular, there are no maps from more highly connected modules. This splits the
quotients by later ξs and ζs.

Proposition 5.3. For each j ą m` k, we have an equivalence of A-modules:

Axky{pζm`1, . . . , ζm`kq^
A
Mj » Axky{pζm`1, . . . , ζm`kq_Σ2jAxky{pζm`1, . . . , ζm`kq

The same result also holds for M j.

Proof. By Proposition 4.9, the degree of the top class in the Frobenius algebra
Axky˚{pζm`1, . . . , ζm`kq is

2p2m ´ 1qp2k ´ 1q “ 2m`k`1 ´ 2m`1 ´ 2k`1 ` 2.

If N is any A-module that is at least
`

2p2m ´ 1qp2k ´ 1q ` 1
˘

-connective, then the
space of maps

MapA
`

N,Axky{pζm`1, . . . , ζm`kq
˘

is contractible and all maps are null-homotopic as maps of A-modules. Applying
this to the map

ξj : Σ2j´1Axky{pζm`1, . . . , ζm`kq Ñ Axky{pζm`1, . . . , ζm`kq,

we see that since j ě m ` k ` 1, the source of the multiplication-by-ξj may is
sufficiently highly connected to guarantee that this map is actually null-homotopic.
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The mapping cone Axky{pζm`1, . . . , ζm`kq^
A
Mj then splits, and the result follows.

The same proof applies to M j . �

Inductively applying this result gives us the following splittings.

Proposition 5.4. For any set I of natural numbers that are all greater than m`k,
there is a splitting of A-module spectra

Axky{pζm`1, . . . , ζm`kq^
A
MI » Axky{pζm`1, . . . , ζm`kq ^

˜

ł

jPDI

Sj

¸

,

where DI is as in Notation 2.7. The same result also holds for M I .

Corollary 5.5. For any set I of natural numbers that are all greater than m` k,
the homotopy of Axky{pζm`1, . . . , ζm`kq^

A
MI is the Axky˚-module

Axky˚{pζm`1, . . . , ζm`kq b F2tej | j P DIu,

where |ej | “ j. The same result also holds for M I .

These results can now be specialized to the set I “ tm` k ` d | 1 ď d ď nu.

Corollary 5.6. For any n ě 0, including n “ 8, we have a splitting

Axky{pζm`1, . . . , ζm`k`nq » Axky{pζm`1, . . . , ζm`kq ^

˜

2n´1
ł

j“0

Sjp2
m`k`1

q

¸

of modules over A.

Corollary 5.7. For each n ě 0, the homotopy of Axky{pζm`1, . . . , ζm`k`nq is the
Axky˚-module

Axky˚{pζm`1, . . . , ζm`kq b

˜

2n´1
à

j“0

F2tejp2m`k`1qu

¸

.

These homotopy modules are all finite F2-vector spaces, and the top degree class
is in dimension

2p2m ´ 1qp2k ´ 1q ` p2n ´ 1q2m`k`1 “ 2m`k`n`1 ´ 2m`1 ´ 2k`1 ` 2.

Definition 5.8. For positive natural numbers k and m and natural number n, let

δ “ δpk,m, nq “ 2m`k`n`1 ´ 2m`1 ´ 2k`1 ` 2.

Using this, we have a surprising consequence: these intermediate stages are
actually all A-algebras.

Theorem 5.9. The A-module Axky{pζm`1, . . . , ζm`k`nq is equivalent to a Post-

nikov stage of Axky^
A
Axmy: there is an equivalence of A-modules

Axky{pζm`1, . . . , ζm`k`nq » P δpk,m,nq
´

Axky^
A
Axmy

¯

.

For any m, k and n, Axky{pζm`1, . . . , ζm`k`nq has an associative algebra struc-
ture such that the unit

AÑ Axky{pζm`1, . . . , ζm`k`nq

is the natural map.
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Proof. Let δ “ δpk,m, nq. Corollary 5.6 says that we have an equivalence of A-
module spectra

Axky^
A
Axmy » Axky{pζm`1, . . . , ζm`k`nq_

ł

rě1

Σr¨2
m`k`n`1

Axky{pζm`1, . . . , ζm`k`nq.

The first summand is pδ ` 1q-co-connective while the second is at least pδ ` 1q-
connective, so we deduce that the inclusion

Axky{pζm`1, . . . , ζm`k`nq ãÑ Axky^
A
Axmy

becomes an equivalence on δ’th Postnikov sections.
Since A is connective, there is a Postnikov tower in A-modules that preserves

associative algebras, meaning that all Postnikov truncations are natural associative
A-algebras and all truncation maps are associative algebra maps, as shown by
Dugger–Shipley [DS06]. This gives us an associative algebra structure on

P δ
`

Axky^
A
Axmy

˘

» Axky{pζm`1, . . . , ζm`k`nq,

with a canonical map of algebras from Axky^
A
Axmy. �

Corollary 5.10. There is an equivalence of A-algebras

Axky{pζm`1, . . . , ζm`k`nq » Axmy{pξk`1, . . . , ξk`m`nq.

Proof. These two algebras are equivalent Postnikov stages of Axky^
A
Axmy. �

Remark 5.11. Because of this equivalence, we can focus almost exclusively moving
forward on the case where m ě k.

We can also describe the relative homology of these ring spectra as comodules
using the Künneth isomorphism; the following shows that the algebra structure is
forced.

Proposition 5.12. For any natural numbers k,m, n ě 0, we have an isomorphism
of F2rus-comodule algebras

HA
˚

`

Axky{pζm`1, . . . , ζm`k`nq
˘

– F2ru
2k sbF2ru

2ms{

´

u2
k`m`n

b 1` 1b u2
k`m`n

¯

Proof. Theorem 5.9 shows that the composite map of A-modules

Axky{pζm`1, . . . , ζm`k`nq Ñ Axky^
A
Axmy Ñ P δ

`

Axky^
A
Axmy

˘

,

is an equivalence, and the latter map is a map of algebras. Applying the Künneth
isomorphism gives us a composite

F2ru
2k s bHA

˚ pMm`1,...,m`k`nq Ñ F2ru
2k s b F2ru

2ms Ñ HA
˚

´

P δ
`

Axky^
A
Axmy

˘

¯

,

where the first map is a map of comodules and the second is a map of comodule
algebras. In particular, the second map is surjective, and by Corollary 2.8 the image
of the first is

F2ru
2k s b t1, u2

m

, . . . , u2
k`m`n

´1u.

The kernel must be generated by a primitive element with leading term 1bu2
k`m`n

,
but there is only one such element. We deduce that the Postnikov truncation
induces a quotient map of rings

F2ru
2k s b F2ru

2ms Ñ F2ru
2k s b F2ru

2ms{

´

u2
k`m`n

b 1` 1b u2
k`m`n

¯
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as desired. �

Corollary 5.13. For any natural numbers m ě k and n ě 0, we have an isomor-
phism of comodule algebras

HA
˚

`

Axky{pζm`1, . . . , ζm`k`nq
˘

– F2ru
2k s b F2re2m`1s{pe2

k`n

2m`1q

where e2m`1 is the primitive of Corollary 3.14.

Corollary 5.14. When m ě k, the map on relative homology induced by the ring
map

Axky{pζm`1, . . . , ζm`k`nq Ñ Axky{pζm, . . . , ζm`k`nq

is the ring map specified by

e2m`1 ÞÑ e22m .

Remark 5.15. This calculation rules out any way to make the map

Axky{pζm`1, . . . , ζm`k`nq Ñ Axky^
A
Axmy

into a map of algebras that is compatible with the Postnikov identification, because
there is no section of the map of algebras on relative homology.

By Corollary 5.13, we also have a nice finitary result for relative Adams spectral
sequences.

Corollary 5.16. For any natural numbers m ě k and n ě 0, the relative Adams
spectral sequence computing the homotopy of Axky{pζm`1, . . . , ζm`k`nq has

Es,t2 – F2rξ1, . . . , ξks b F2re2m`1s{pe2
n`k

2m`1q.

For n ě 0, all of the relative Adams spectral sequences carry essentially the same
information, due to the A-module splitting of these into Axky{pζm`1, . . . , ζm`kq-
modules from Corollary 5.6.

Proposition 5.17. For any n ě 1, the class

e2m`k`1 “ e2
k

2m`1

is a permanent cycle in the relative Adams spectral sequence for Axky{pζm`1, . . . , ζm`kq.

Proof. The splitting

Axky{pζm`1, . . . , ζm`k`nq »
2n´1
ł

j“0

Σjp2
m`k`1

qAxky{pζm`1, . . . , ζm`kq

shows that we have a non-trivial homotopy class ẽ2m`k`1 in degree 2m`k`1 which
has a non-trivial Hurewicz image. The class e2m`k`1 is the only primitive in ho-
mology in that degree, and must therefore be a permanent cycle. �

Corollary 5.18. We have an isomorphism of algebras for any n ě 0:

π˚
`

Axky{pζm`1, . . . , ζm`k`nq
˘

– Axky˚{pζm`1, . . . , ζm`kq b F2rẽ2m`k`1s{ẽ2
n

2m`k`1 .

In fact, the topological splitting shows an even stronger result.
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Proposition 5.19. For any A-module M , the relative Adams spectral sequence for
the homotopy of Axky{pζm`1, . . . , ζm`k`nq^

A
M is a direct sum of suspensions of

copies of the relative Adams spectral sequence for Axky{pζm`1, . . . , ζm`kq^
A
M : for

all r ě 2,

Er
`

Axky{pζm`1, . . . , ζm`k`nq^
A
M

˘

–

Er
`

Axky{pζm`1, . . . , ζm`kq^
A
M

˘

b F2re2m`k`1s{e2
n

2m`k`1 ,

and e2m`k`1 is a permanent cycle.

Proof. This follows from smashing the splitting of Axky{pζm`1, . . . , ζm`k`nq with
M . �

6. Duality

Recall from Proposition 4.10 that the graded ring

F2rξ1, . . . , ξks{pζm`1, . . . , ζm`kq – π˚ pAxky{pζm`1, . . . , ζm`kqq

is a commutative graded Frobenius algebra. We can promote such algebraic duality
on the coefficient ring of Axky{pζm`1, . . . , ζm`kq to a spectral duality, including
Gorenstein duality.

Theorem 6.1. Suppose that R is a connective associative ring spectrum over HF
whose coefficient ring is a commutative graded Frobenius algebra over a field F
with top-dimensional class in degree δ. Then, for R-modules M , there is a natural
isomorphism

π˚DRM – pπδ´˚pMqq
_

as modules over π˚R, where p´q_ denotes the F-vector space dual.

Proof. Because π˚R is self-injective, the universal coefficient spectral sequence

Exts,tπ˚Rpπ˚M,π˚Rq ñ πt´sDRM

always degenerates. This gives a natural isomorphism

π˚DRM – Homπ˚Rpπ˚M,π˚Rq.

(In other words, Spanier–Whitehead duality is a type of Brown–Comenetz duality in
the category of R-modules.) Expanding the identification π˚R – HomFpπ˚R,Σ

δFq
from Proposition 4.11, this becomes an isomorphism

Homπ˚Rpπ˚M,π˚Rq – HomFpπ˚M,ΣδFq
as desired. �

This gives us spectral Gorenstein duality as in Dwyer–Greenlees–Iyengar [DGI06].

Corollary 6.2. A ring spectrum R as in Theorem 6.1 satisfies a Gorenstein duality
condition of shift δ: we have an equivalence of R-module spectra

FR
`

HF, R
˘

» ΣδHF.

Spectral duality for such R then gives us duality for its modules.

Proposition 6.3. Suppose that R is an A-algebra whose coefficient ring is a com-
mutative graded Frobenius algebra over F2, with top-dimensional class in degree
δ.
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(1) For I, J Ď N finite subsets, with spI, Jq “
ř

iPI

2i `
ř

jPJ

2j, there is an iso-

morphism

π˚

´

R^
A
MI^

A
MJ

¯

–

´

πδ`spI,Jq´˚

´

R^
A
MI^

A
MJ

¯¯_

of π˚R-modules.
(2) There is an isomorphism

π˚

´

R^
A

EndApMďrq

¯

–

´

πδ´˚

´

R^
A

EndApMďrq

¯¯_

of π˚R-modules.

Here p´q_ denotes the F2-vector space dual.

Remark 6.4. By Proposition 4.10 and Corollary 5.18, the algebras

π˚pAxky{pζm`1, . . . , ζm`k`nqq

are Frobenius algebras, and so Proposition 6.3 holds for all of the A-algebras
Axky{pζm`1, . . . , ζm`k`nq, with shift factor δpk,m, nq.

Proof. Let DApMq :“ FApM,Aq be the Spanier–Whitehead duality functor in the
category of A-modules. Then

DApMI^
A
MJq » Σ´spI,JqMI^

A
MJ .

Therefore, the same is true after base change to R, i.e.,

DRpR^
A
MI^

A
MJq » Σ´spI,JqR^

A
MI^

A
MJ .

Combining this with Theorem 6.1, we get:

π˚`spI,Jq

´

R^
A
MI^

A
MJ

¯

– π˚DR

`

R^
A
MI^

A
MJ

˘

–

´

πδ´˚

´

R^
A
MI^

A
MJ

¯¯_

This proves item (1). For (2), the proof is completely analogous, using the fact that
EndApMďrq is Spanier–Whitehead self-dual because it is the endomorphism ring of
a dualizable object:

DApEndApMďrqq » DA

`

Mďr^
A
DApMďrq

˘

» EndApMďrq. �

7. Computations of relative Adams spectral sequences

The homotopy rings of the ring spectra Axky can immediately be read out of
the computations, since they are just the quotients by collections of generators.
For the ring spectra Ãxky (or more generally Axky{pζm`1, . . . , ζm`k`nq), the ho-
motopy rings were determined in Corollary 5.18, but this formulation can be hard
to parse due to the complicated formulæ for the classes ζi in terms of the ξi. The
relative Adams spectral sequence can be used here to describe what happens up to
associated graded.

For more general quotients, the relative Adams spectral sequence is a very helpful
approach. In this case, we can simplify the procedure by finding the smallest quo-
tient algebra Axky of A over which a given object is a module. The relative Adams
spectral sequence here is a spectral sequence of modules, giving the desired result.
Prototypical examples of this are given by the associative algebras EndApMăkq,
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especially when base changed to Ãxky. Here, the differentials we describe control
almost everything.

7.1. Some families of differentials. The relative Adams spectral sequence for
modules over Axky are the most important by Proposition 5.19. We begin by
describing some basic differentials. For any n ą k, Corollary 2.5 shows that the
relative Adams spectral sequence for Axky^

A
Mn has E2-term

F2rξ1, . . . , ξks b F2tb0, b2nu.

Proposition 7.1. For any n “ kq ` r with q ě 1 and 1 ď r ď k, in the relative
Adams spectral sequence for Axky^

A
Mn we have a differential

d1`2r`2r`k`¨¨¨`2n´kpb2nq “ ξrξ
2r`2r`k

`¨¨¨`2n´k

k .

The next page is E8:

F2rξ1, . . . , ξks{pξrξ
2r`2r`k

`¨¨¨`2n´k

k q.

Proof. Since we have a cofiber sequence

Σ2n´1Axky
ζn
ÝÑ Axky Ñ Axky^

A
Mn,

the long exact sequence in homotopy gives us that the homotopy of the quotient is

π˚
`

Axky^
A
Mn

˘

– F2rξ1, . . . , ξks{pζnq.

The image of ζn in the relative Adams spectral sequence must then be hit by a
differential. This image records only the leading term of ζn in terms of monomial
degree. By Lemma 7.2 below, this is the stated term. �

Lemma 7.2. For any n “ kq ` r with q ě 1 and 1 ď r ď k, we have

ζn ” ξrξ
2r`2r`k

`¨¨¨`2n´k

k mod pξk`1, ξk`2, . . . q ` higher degree monomials.

Proof. Let jq “ 2r ` 2r`k ` ¨ ¨ ¨ ` 2n´k, and let m denote the augmentation ideal of
F2rξ1, . . . , ξks. We will verify the formula by induction on q, working modulo terms
of degree greater than j. Since we are working modulo ξk`1 and higher, Milnor’s
formula gives

ζn “
k
ÿ

i“1

ζn´iξ
2n´i

i ” ζn´kξ
2n´k

k mod mjq`2.

If q “ 1, then ζn´k “ ζr, which gives the base case. If q ą 1, then by induction,

ζn´k ” ξrξ
2jm´1

k mod mjq´1`2,

so

ζn ” ζn´kξ
2n´k

k ” ζrξ
2jq´1`2n´k

k mod mjq´1`2n´k
`2

as needed. �

Remark 7.3. It is only in identifying the leading term of ζn that we used the
assumption that q ě 1. For m “ 0, the homology changes, since HA

˚ pMnq no longer

restricts to a trivial F2ru
2ns-comodule.
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We can apply this in the more general case of the quotient by all ζm`i for
1 ď i ď k. Recall from Corollary 5.16 that the relative Adams E2 term for
Axky{pζm`1, . . . , ζm`kq, for m ě k, is

F2rξ1, . . . , ξks b F2re2m`1s{e2
k

2m`1 .

Theorem 7.4. For each 1 ď i ď k, write m ` i “ kq ` r, with 1 ď r ď k. In the
relative Adams spectral sequence for Axky{pζm`1, . . . , ζm`kq, we have

ds
`

e2
i´1

2m`1

˘

“

"

0 s ă 1` 2r ` 2r`k ` ¨ ¨ ¨ ` 2m`i´k

ξiξ
2r`2r`k

`¨¨¨`2m`i´k

k s “ 1` 2r ` 2r`k ` ¨ ¨ ¨ ` 2m`i´k.

Proof. On relative homology, the map

Axky^
A
Mm`i Ñ Axky{pζm`1, . . . , ζm`kq

takes the class b2m`i to the class e2
i´1

2m`1 . The result follows from naturality of the
relative Adams spectral sequence. �

Corollary 7.5. In the relative Adams spectral sequence for Ãxky, for each 1 ď i ď
k, we have

dr
`

pe2k`1q2
i´1˘

“

"

0 r ă 2i ` 1

ξiξ
2i

k r “ 2i ` 1.

More difficult is understanding the remaining differentials. The reason is that,
while the classes ζk`1, . . . , ζ2k form a regular sequence in Axky˚, the leading terms

do not. This forces some higher differentials. We now spell this out for Ãx2y. More

surprising, however, is that in various quotients of Ãxky wherein we kill also lower
ξs and ζs, these differentials control the entire relative Adams spectral sequence.
We show examples of this in Sections 7.3 and 7.4.

7.2. The relative Adams spectral sequence for Ãx2y. As a comodule algebra,
Proposition 5.12 shows we have

HA
˚

`

Ãx2y
˘

– F2ru
4s b F2re8s{e

4
8,

where e8 is a primitive degree 8 class. The relative Adams E2-term is therefore

E2 “ F2rξ1, ξ2s b F2re8s{e
4
8,

with e8 in relative Adams filtration 0. Figure 1 shows the spectral sequence from
E5 on; we encourage the reader to use this as a guide to the computation. In this,
bullets indicate copies of F2. The red dashed lines are “exotic” ξ1-multiplications.
The classes in blue are the submodule generated by the class e28.

Proposition 7.1 (or Corollary 2.19) gives our first differential, killing ξ3 ` ζ3.

Proposition 7.6. There is a d3-differential

d3pe8q “ ξ1ξ
2
2 .

This gives an E4 page

F2rξ1, ξ2s{pξ1ξ
2
2q b Epe

2
8q.

Proposition 7.1 then gives the differential on e28, killing ξ4 ` ζ4.

Proposition 7.7. There is a d5-differential

d5pe
2
8q “ ξ52 .
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Figure 1. The relative Adams spectral sequence starting at E5 for Ãx2y

Note that this leaves ξk1 e
2
8 for k ě 1 as a d5-cycle, since

d5pξ
k
1 e

2
8q “ ξk1d5pe

2
8q “ ξk1 ξ

5
2 “ d3pe8qξ

k´1
1 ξ32 “ 0,

and we also have ξk1 ξ2e
2
8 for k ě 1 for similar reasons.

Proposition 7.8. As an F2rξ1, ξ2s-module, E6 is

F2rξ1, ξ2s{pξ1ξ
2
2 , ξ

5
2q ‘ F2rξ1, ξ2s{pξ

2
2q ¨ tξ1e

2
8u.

We now remark that, in the abutment F2rξ1, ξ2s{pζ3, ζ4q of this spectral sequence,
there is an unexpected relation:

ξ161 “ ξ1ζ4 ` pξ
3
2 ` ξ

6
1ξ2 ` ξ

9
1qζ3 ” 0

Therefore, ξ161 must be the target of a differential. The only class available to
accomplish this is ξ1e

2
8. We deduce the following.

Proposition 7.9. We have d15-differentials

d15pξ
k
1 e

2
8q “ ξ15`k1 and d15pξ

k
1 ξ2e

2
8q “ ξ15`k1 ξ2,

for k ě 1.
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This leaves an E16-page

F2rξ1, ξ2s{pξ1ξ
2
2 , ξ

5
2 , ξ

16
1 q.

All generators here are permanent cycles, so the spectral sequence degenerates at
this point.

Remark 7.10. The differentials correspond to relations that are not homogeneous
with respect to the degree filtration, imposing multiplicative extensions on the spec-
tral sequence. To solve them, we must carefully remember to expand all formulæ
modulo the corresponding jump in filtration. For example, trying to work with ζ4
modulo only filtration at least 6 gives an incorrect pattern of differentials including
d13 and d17.

Careful calculation of the differentials is equivalent to calculation of the leading
terms in a Gröbner basis for the ideal pζk`1, . . . , ζ2kq. More specifically, there is
an ordering on the monomials of F2rξ1, . . . , ξns such that the targets of differentials
are the leading terms in the associated Gröbner basis. This ordering is primarily
by monomial degree, and then by reverse lexicographic order: for example, ξ1 ą ξ21
and ξi ą ξi`1.1

Remark 7.11. The relations imposed by setting ζi “ 0 are complicated enough
to make determining the exact structure of the finite-dimensional algebras Ãxky˚
complex. Calculations with Sage indicate some conjectural patterns:

(1) for j ă k, 22k´j`1 is the smallest power of ξj which is zero in Ãxky˚, and

(2) the element ξ2
k`1

´2
k generates the topmost nonzero degree in Ãxky˚.

7.3. The homotopy of Ãx2y ^A EndApM1q. In this section, we will discuss the
coefficient ring of

Ãx2y^
A

EndApM1q » Σ´2Ãx2y^
A
M1^

A
M1.

Since this is an associative algebra under Ãx2y, the relative Adams spectral sequence

is a spectral sequence of modules over that of Ãx2y. We present a picture through
a range with all differentials and extensions in Figure 2.

Our descriptions of the homologies and relative Adams E2-terms for Axky and
for EndApMďkq give the following.

Corollary 7.12. As an associative algebra over the relative Adams E2-term for
Ãx2y, the relative Adams E2-term for π˚pÃx2y^

A
EndApM1qq is

F2rξ1, ξ2s b Epβ-2q{pξ1β-2, ξ1 ` ξ2β-2q b F2re8s{pe
4
8q,

with β-2, e8 in relative Adams filtration 0.

The differential d3pe8q “ ξ1ξ
2
2 for Ãx2y carries through directly, using the relation

ξ1 “ ξ2β-2.

Proposition 7.13. There are d3-differentials

d3pe8q “ ξ32β-2 and d3pe
3
8q “ ξ32β-2e

2
8.

Similarly, the differential d5pe
2
8q “ ξ52 carries over without change.

1In Sage, this is implemented by negdegrevlex ordering.
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Figure 2. The relative Adams spectral sequence for Ãx2y^
A

EndApM1q

Proposition 7.14. There are d5-differentials

d5pe
2
8q “ ξ52 and d5pe

3
8β-2q “ ξ52e8β-2.

Proposition 7.15. There are hidden ξ1-multiplications

ξ1 ¨ e
2
8β-2 “ ξ32e8β-2

ξ1 ¨ ξ2e
2
8β-2 “ ξ42e8β-2.

Proof. This follows from the duality of Section 6. We apply Proposition 6.3, item (2)
in the case r “ 1 and k “ 2. We find that the homotopy groups of this spectrum
are, as a module, self-dual with a shift of 18. The ξ1-multiplication out from degrees
0 and 3 then resolves the ξ1-multiplication into degrees 18 and 15. �

7.4. The homotopy of Ãx3y ^A EndApMď2q. In this section, we will discuss the
coefficient ring of

Ãx3y^
A

EndApMď2q » Σ´6Ãx3y^
A
Mď2^

A
Mď2.

This ring spectrum is an associative algebra over the spectrum Ãx3y and its relative
Adams spectral sequence is an algebra over the relative Adams spectral sequence
of Ãx3y.

Proposition 7.16. The relative Adams E2-term for π˚
`

Ãx3y^
A

EndApMď2q
˘

is:

F2rξ1, ξ2, ξ3s b Epβ-2, β-4q{
`

ξ1 ` ξ2β-2, ξ2 ` ξ3β-4
˘

b F2re16s{e
8
16.

The differentials in Theorem 7.4 will imply all the differentials in the relative
Adams spectral sequence for π˚

`

Ãx3y^
A

EndpMď2q
˘

. All the differentials are shown

in Figure 3, and the E8-page, together with the exotic multiplications by ξ1 and
ξ2 are shown in Figure 4.

Proposition 7.17. For 0 ď k ď 3, there are d3-differentials

d3pe
2k`1
16 q “ ξ33e

2k
16β-2β-4.

Proof. Since e216 is a d3-cycle, it suffices to show the case k “ 0. There, we have by
naturality

d3pe16q “ ξ23ξ1 “ ξ23ξ2β-2 “ ξ33β-2β-4. �
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Note that this leaves d3-cycles

e2k`1
16 β-2, e

2k`1
16 β-4, and e2k`1

16 β-2β-4.

Proposition 7.18. For all ε1 “ 0, 1 and ε2 “ 0, 1, we have d5-differentials

d5
`

e2`4ε1
16 pe16β-2q

ε2
˘

“ ξ53β-4e
4ε1
16 pe16β-2q

ε2 .

Proof. Naturality shows that we have the differential

d5pe
2
16q “ ξ43ξ2 “ ξ53β-4.

The remaining differentials follow from the ring structure. �

With the ring structure and the relation imposed by the d3-differential, we see
that the classes

e2`4ε1
16 β-2 and e2`4ε1

16 β-4

are d5-cycles.

Proposition 7.19. There are d9-differentials

d9pe
4
16q “ ξ93

d9pe
4
16β-2q “ ξ93β-2

d9pe
5
16β-2q “ ξ93e16β-2

d9pe
5
16β-4q “ ξ93e16β-4

d9pe
6
16β-2q “ ξ93e

2
16β-2

d9pe
6
16β-4q “ ξ93e

2
16β-4

d9pe
7
16β-4q “ ξ93e

3
16β-4

d9pe
7
16β-2β-4q “ ξ93e

3
16β-2β-4.

Proof. These differentials all follow from applying the Leibniz rule to the d9-differential

d9pe
4
16q “ ξ93

in the relative Adams spectral sequence for π˚pAx3y{pξ4, ξ5, ξ6qq. �

Proposition 7.20. There is a hidden ξ1-multiplication

ξ1 ¨ e
2
16β-2 “ ξ33e16β-2β-4

into degree 31.

Proof. The previous results show that we have a d3-differential

d3pe16q “ ξ33β-2β-4.

The surviving class e16β-2β-4 then detects the Massey product xβ-2β-4, β-2, ξ
3
3β-4y.

There is also a d5-differential

d5pe
2
16q “ ξ53β-2,

and the surviving class e216β-2 then detects the Massey product xβ-2, ξ
3
3β-4, ξ

2
3y.

Multiplying by ξ1 “ ξ3β-2β-4, we get a juggling formula:

β-2β-4xβ-2, ξ
3
3β-4, ξ

2
3y “ ξ23xβ-2β-4, β-2, ξ

3
3β-4y

Multiplying through by ξ3, we find that ξ1pe
2
16β-2q “ ξ33pe16β-2β-4q up to indetermi-

nacy. The indeterminacy consists of multiples of ξ23β-2β-4, of which there are none
in this degree. �
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After multiplication with ξ3, the extension in Proposition 7.20 also implies that
there is a hidden ξ1-multiplication

ξ1 ¨ ξ3e
2
16β-2 “ ξ43e16β-2β-4

into degree 38.

Proposition 7.21. We have the following hidden ξ1-multiplications:

ξ1 ¨ e
4
16β-4 “ ξ73e16β-4 pinto degree 61q

ξ1 ¨ ξ3e
4
16β-4 “ ξ83e16β-4 pinto degree 68q

ξ1 ¨ e
6
16β-2β-4 “ ξ73e

3
16β-2β-4 pinto degree 91q

ξ1 ¨ ξ3e
6
16β-2β-4 “ ξ83e

3
16β-2β-4 pinto degree 98q

and the following hidden ξ2-multiplications:

ξ2 ¨ e
4
16β-2β-4 “ ξ73e16β-4 pinto degree 61q

ξ2 ¨ ξ3e
4
16β-2β-4 “ ξ83e16β-4 pinto degree 68q

ξ2 ¨ e
4
16β-4 “ ξ53e

2
16β-4 pinto degree 63q

ξ2 ¨ ξ3e
4
16β-4 “ ξ63e

2
16β-4 pinto degree 70q

ξ2 ¨ ξ
2
3e

4
16β-4 “ ξ73e

2
16β-4 pinto degree 77q

ξ2 ¨ ξ
3
3e

4
16β-4 “ ξ83e

2
16β-4 pinto degree 84q

ξ2 ¨ e
5
16β-2β-4 “ ξ53e

3
16β-2β-4 pinto degree 77q

ξ2 ¨ ξ3e
5
16β-2β-4 “ ξ63e

3
16β-2β-4 pinto degree 84q

ξ2 ¨ ξ
2
3e

5
16β-2β-4 “ ξ73e

3
16β-2β-4 pinto degree 91q

ξ2 ¨ ξ
3
3e

5
16β-2β-4 “ ξ83e

3
16β-2β-4 pinto degree 98q

ξ2 ¨ e
6
16β-2β-4 “ ξ73e

3
16β-4 pinto degree 93q

ξ2 ¨ ξ3e
6
16β-2β-4 “ ξ83e

3
16β-4 pinto degree 100q.

These extensions are shown in Figure 4.

Proof. By Proposition 6.3, item (2) with k “ 3 and r “ 2 we find that the homotopy
groups of this spectrum are, as a module, self-dual with a shift of 98. By duality, all
the extensions now follow from known extensions (Proposition 7.20) and product
structures on the E2-page. �

Appendix A. Multiplicative operations

Important to our calculations of the quotient rings A{{α is the knowledge that
the Dyer–Lashof operation Q1 preserves the kernel of the map A˚ Ñ π˚pA{{αq. To
show this, we need a brief operadic digression.

The main precedent for this is the transgression. Serre’s transgression theorems
assert the compatibility of maximal-length differentials in the Serre spectral se-
quence with the Steenrod squaring operations in H˚pXq [Ser51], and May showed
similar results for the Dyer–Lashof operations in H˚pΩ

kXq [May70]. On the chain
level, a cycle x P C has an extended power Qkpxq represented by Steenrod’s cup-k
product x !k x. If f : C Ñ D is a map of algebras with these operations, and
fpxq “ By, then

fpQkpxqq “ B rfpxq !k y ` y !k´1 ys .
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Ã
x
3y
^ A

E
n

d
A
pM

ď
2
q˘

,
w

it
h

h
id

d
en

ex
te

n
si

on
s



34 AB, MAH, TL, XDS, AND MZ

The formula on the right only depends on a cup-pk ´ 1q product in D and a cup-k
product expressing that the image of f is, in some sense, central in D. In this sec-
tion, we will show that this is part of a more general story. Similar power operations
as obstructions to commutativity also appear in work of Strickland [Str99].

A.1. Cup-k algebras.

Notation A.1. For k ě 1, let Spkσq denote the unit sphere in the k-dimensional
real sign representation of C2: a pk ´ 1q-sphere with the antipodal C2-action. Let
Dpkσq be the corresponding closed disk.

Definition A.2. Suppose that R is a commutative ring spectrum. A cup-k algebra
over R is an R-module spectrum A with a map

mk : Sppk ` 1qσq`^
C2

pA^
R
Aq Ñ A.

A map of cup-k algebras is a map preserving this structure.

Remark A.3. Equivalently, a cup-k algebra is a C2-equivariant map

Sppk ` 1qσq Ñ MapRpA^
R
A,Aq.

Any Ek`1-operad O has a C2-equivariant homotopy equivalence

Sppk ` 1qσq » Op2q.
Forgetting all but the binary operations then determines a forgetful functor from
Ek`1 algebras to cup-k algebras.

Example A.4. A cup-zero algebra is an R-module A with a binary multiplication
map m : A^

R
AÑ A.

More generally, we can get an inductive description of cup-k algebras.

Definition A.5. Suppose that A is a cup-k algebra. The bracket is the composite
map

ΣkpA^
R
Aq »

`

C2` ^ S
k´1

˘

^
C2

pA^Aq Ñ Sppk ` 1qσq`^
C2

A^
R
AÑ A.

Remark A.6. On homotopy groups, the bracket induces a π˚R-bilinear (up to sign)
Browder bracket

r´,´s : πmpAq ˆ πnpAq Ñ πm`k`npAq.

Proposition A.7. A cup-k algebra is equivalent to a cup-pk ´ 1q algebra with a
chosen nullhomotopy of the bracket Σk´1A^

R
AÑ A.

Proof. We have a natural equivariant inclusion Spkσq ãÑ S
`

pk ` 1qσ
˘

, and the

quotient is the pointed space C2` ^ S
k. Stably, this determines a cofiber sequence

C2` ^ Σ8Sk´1 Ñ Σ8`Spkσq Ñ Σ8`S
`

pk ` 1qσq.

Smashing over C2 with A^
R
A gives us a cofiber sequence of R-modules, and the

result follows by definition of cup-k structures. �

Example A.8. A cup-one algebra structure is equivalent to a choice of a binary
multiplication m : A^

R
A Ñ A, and a chosen “commutativity homotopy” h : m ñ

m ˝ τ , where τ is the twist map.
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A.2. Operations. Analogously to the work of Bruner [BMMS86, §IV.7], a cup-k
algebra has power operations.

Proposition A.9. Suppose that A is a cup-k algebra and that α : Sn Ñ A is a
map. Then there is an induced natural map

Qpαq : R^ ΣnRPn`kn Ñ A

from a shifted stunted projective space to A, whose restriction to the bottom cell
S2n is the square of α.

Proof. The C2-equivariant map α^ α : Sn ^ Sn Ñ A^A determines a composite
map of R-modules

R^

ˆ

Sppk ` 1qσq^
C2

pSn ^ Snq

˙

Ñ Sppk ` 1qσq^
C2

A^
R
AÑ A.

The equivariant smash product Sppk ` 1qσq`^
C2

pSn ^ Snq appearing on the left is

the Thom spectrum of the equivariant bundle pn` nσq on Sppk ` 1qσq{C2 “ RPk,
and this Thom spectrum is a shifted stunted projective space. (See [BMMS86,
Theorem V.2.14].)

By definition, the multiplication m : A^
R
AÑ A is the composite

A^
R
A – C2`^

C2

pA^
R
Aq Ñ Sppk ` 1qσq`^

C2

pA^
R
Aq Ñ A.

If we compose with the map α ^ α : Sn ^ Sn Ñ A^
R
A, the result is the square of

α. �

Corollary A.10. If n is even or 2 “ 0 in π0pRq, there exist natural operations
(sometimes called cup-1 squares)

Q1 : πnpAq Ñ π2n`1pAq

for cup-one R-algebras.

Proof. The stunted projective space RPn`1
n is the cofiber of the attaching map

`

1´ p´1qn
˘

: Sn Ñ Sn

for the pn ` 1q-cell. If n is even or 2 “ 0 in π0pRq, this implies that there is a
splitting

R^ RPn`1
n » ΣnR_ Σn`1R.

Choosing such a splitting in the homotopy category, any map α : Sn Ñ A deter-
mines a natural composite operation

S2n`1 Ñ ΣnR^ RPn`1
n

Qpαq
ÝÝÝÑ A. �

Example A.11. When R is HF2, Q1 is the Dyer-Lashof operation of the same name.

Remark A.12. Two different splittings may determine two different operations Q1

and Q11. However, the difference involves the square: by considering the homotopy
groups of ΣnR_ Σn`1R, there exists some element u P π1R such that

Q1pαq ´Q
1
1pαq “ uα2

for all α. This means that Q1pαq may involve choices, but the ideal generated by
α and Q1pαq does not.
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A.3. Centrality.

Definition A.13. Suppose that A is a cup-k algebra. A central cup-pk´1q algebra
over A consists of the following data:

(1) a cup-pk ´ 1q algebra B,
(2) a map η : AÑ B of cup-pk ´ 1q algebras, and
(3) a factorization

´

Spkσq` ^A^
R
B
¯

š

Spkσq`^A^
R
A

´

Dpkσq` ^A^
R
A
¯

Dpkσq` ^A^
R
B B.

Here the diagonal map from the pushout is induced by the commutative
diagram

Spkσq` ^A^
R
A Dpkσq` ^A^

R
A

A

Spkσq` ^A^
R
B Spkσq` ^B^

R
B B,

with the upper-right vertical arrow being the map that trivializes the bracket
operation of A.

Remark A.14. This last commutative square helps to clarify the definition. The
map Dpkσq`^A^

R
AÑ A encodes the trivialization of the bracket on A. Centrality

asks for a compatible trivialization of the bracket Σk´1A^
R
B Ñ B, and so the

Browder bracket rηpaq, bs always vanishes. One aspect of this compatibility is that
the two trivializations of rηpaq, ηpa1qs “ ηra, a1s are equivalent.

Remark A.15. Our definition of centrality for these cup products captures the
degree-2 part of a more complicated structure. Namely, suppose that A is an Ek
algebra. The tensor product over A gives the category LModA of left A-modules an
Ek´1-monoidal structure. If B is an Ek´1-algebra in LModA, then B is a central
cup-pk ´ 1q algebra over A.

Example A.16. Suppose that B is an Ek´1 R-algebra. The object R is a strict unit
for the tensor product of R-modules, which gives it a cup-k algebra structure via
the projection

Sppk ` 1qσq`^
C2

R^
R
RÑ R.

The fact that R is a strict unit for the Ek´1-multiplication on B makes B a central
cup-pk ´ 1q algebra over R.

Unwinding the adjoint maps in the definition of a central cup-pk ´ 1q algebra,
we obtain the following alternative definition of the structure in terms of mapping
spaces.
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Proposition A.17. A central cup-k-algebra structure on B is equivalent to a com-
mutative diagram of spaces:

Spkσq

Dpkσq MapRpA^
R
A,Aq

MapRpB^
R
B,Bq

MapRpA^
R
B,Bq MapRpA^

R
A,Bq

The back square of this diagram is C2-equivariant: by assumption, the twist
isomorphisms of A^

R
A and B^

R
B are compatible with the action on Spkσq. This al-

lows us to glue this diagram together with its mirror image along the back square,
getting a cubical diagram. Moreover, this diagram will have a C2-action: writ-
ing this cube as a functor F from t0 Ñ 1u3 to spaces, there is an isomorphism
φ : F pa, b, cq Ñ F pb, a, cq of cubical diagrams satisfying φ2 “ 1 [Dot16].

Corollary A.18. A central cup-k-algebra gives rise to a commutative diagram

Spkσq Dpkσq1

Dpkσq2 MapRpA^
R
A,Aq

MapRpB^
R
B,Bq MapRpB^

R
A,Bq

MapRpA^
R
B,Bq MapRpA^

R
A,Bq

Moreover, this diagram has a C2-action, via the maps between function spaces in-
duced by twist isomorphisms and the C2-action on spheres and disks.

A.4. The transgression. Our goal in this section is to prove the following result,
analogous to the transgression.

Proposition A.19. Suppose that A is a cup-k R-algebra, and that B is a central
cup-pk ´ 1q algebra over A with unit η. If α : X Ñ A is a map of R-modules such
that η ˝ α is nullhomotopic, then the induced map Sppk ` 1qσq^

C2

pX^
R
Xq Ñ B is

trivial.

Proof. Choose a nullhomotopy of α, in the form of a factorization X Ñ CX Ñ B
of η˝α where CX is contractible. This gives rise to a cubical diagram of R-modules
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with a C2-action:

X^
R
X CX^

R
X

X^
R
CX CX^

R
CX

A^
R
A B^

R
A

A^
R
B B^

R
B

We can then apply MapRp´, Bq and stack with the cube from Corollary A.18. This
gives a cubical diagram with a C2-action:

Spkσq Dpkσq1

Dpkσq2 MapRpA^
R
A,Aq

MapRpCX^
R
CX,Bq MapRpCX^

R
X,Bq

MapRpX^
R
CX,Bq MapRpX^

R
X,Bq

Note that CX^
R
X and CX^

R
CX are contractible, making three terms on the bot-

tom of this cube into contractible spaces.
A commutative square has a natural map from the homotopy pushout to the

final object. Applying this to the top and bottom faces of this cubical diagram
gives us the horizontal maps in the following commutative square of C2-equivariant
spaces:

hocolimpDpkσq1 Ð Spkσq Ñ Dpkσq2q MapRpA^
R
A,Aq

hocolimp˚ Ð ˚ Ñ ˚q MappX^
R
X,Bq.

This is re-expressed as a homotopy commutative diagram of C2-spaces

Sppk ` 1qσq MapRpA^
R
A,Aq

˚ MappX^
R
X,Bq.

The top map defines the cup-k algebra structure on A, while the right-hand one is
f ÞÑ η ˝ f ˝ pα^ αq. Taking adjoints gives a homotopy commutative diagram

Sppk ` 1qσq^
C2

pX^
R
Xq Sppk ` 1qσq^

C2

A^
R
A A

˚ B.
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This is precisely a trivialization as desired. �

Corollary A.20. Let A and B be as in Proposition A.19. For α : Sn Ñ A such
that η ˝ α is nullhomotopic, the map ηQpαq : ΣnRPn`kn Ñ B is trivial.

Corollary A.21. Suppose that R is a commutative ring spectrum and B is an
associative R-algebra, with unit η : R Ñ B. If n is even or 2 “ 0 in R, and
α P πnpRq satisfies ηpαq “ 0, then ηpQ1pαqq “ 0.
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