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Volcanic earthquake catalogs are an essential data product used to interpret
subsurface volcanic activity and forecast eruptions. Advances in detection
techniques (e.g., matched-filtering, machine learning) and relative relocation
tools have improved catalog completeness and refined event locations.
However, most volcano observatories have yet to incorporate these techniques
into their catalog-building workflows. This is due in part to complexities in
operationalizing, automating, and calibrating these techniques in a satisfactory
way for disparate volcano networks and their varied seismicity. In an effort to
streamline the integration of catalog-enhancing tools at the Alaska Volcano
Observatory (AVO), we have integrated four popular open-source tools: REDPy,
EQcorrscan, HypoDD, and GrowClust. The combination of these tools offers
the capability of adding seismic event detections and relocating events in a
single workflow. The workflow relies on a combination of standard triggering
and cross-correlation clustering (REDPy) to consolidate representative templates
used in matched-filtering (EQcorrscan). The templates and their detections
are then relocated using the differential time methods provided by HypoDD
and/or GrowClust. Our workflow also provides codes to incorporate campaign
data at appropriate junctures, and calculate magnitude and frequency index
for valid events. We apply this workflow to three datasets: the 2012–2013
seismic swarm sequence at Mammoth Mountain (California), the 2009 eruption
of Redoubt Volcano (Alaska), and the 2006 eruption of Augustine Volcano
(Alaska); and compare our results with previous studies at each volcano. In
general, our workflow provides a significant increase in the number of events and
improved locations, and we relate the event clusters and temporal progressions
to relevant volcanic activity. We also discuss workflow implementation best
practices, particularly in applying these tools to sparse volcano seismic networks.
We envision that our workflow and the datasets presented here will be useful for
detailed volcano analyses in monitoring and research efforts.
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1 Introduction

Volcanic earthquake catalogs are a crucial data product used
by volcano observatories in tracking the migration of volcano-
seismic activity and assessing the intensity of volcanic unrest (e.g.,
Roman and Cashman, 2006; McNutt and Roman, 2015). At volcano
observatories, seismic analysts often undertake the arduous task of
determining the onset times of seismic phase arrivals in order to
locate candidate earthquakes picked up by automated triggering
algorithms. However, this manual procedure can sometimes fall
short due to human limitations, especially during peak volcanic
activity where thousands of earthquakes can occur within the span
of a few days (White et al., 1998; Buurman et al., 2013a). Further,
with the rapid expansion of seismic networks around the globe, the
quantity of seismic data is substantially increasing,makingmanually
driven operations less sustainable and desirable.

Due to the aforementioned reasons, automated seismic data
processing has long been a subject of interest within the volcano
seismology community. From standard triggering algorithms
(Withers et al., 1998) and correlation detectors (Gibbons and
Ringdal, 2006; Beaucé et al., 2018; Chamberlain et al., 2018) to
machine learning methods (Ross et al., 2018; Zhu and Beroza,
2019; Mousavi et al., 2020), there is no shortage of tools available
to automate and reduce the workload of the seismic analyst.
Instead, the main pitfalls that discourage observatories from
incorporating such tools are the complexities in calibrating and
operationalizing them (Orozco-Alzate et al., 2012; Malfante et al.,
2018; Retailleau et al., 2022; Woollam et al., 2022). Different
observatories store seismic data in different formats, sometimes even
in separate databases, and the variable background noise levels at
different volcanoes may also necessitate specifically tuned algorithm
settings as well. The dependence of certain tools on dense seismic
networks may also cause them to fail in areas with sparse networks
(Frank and Abercrombie, 2018; Lomax and Savvaidis, 2022), further
complicating their use. As such, the implementation ofmost of these
tools is non-trivial, and they usually require expert intervention in
order to acquire believable results at an adequate confidence level.
For example, Lapins et al. (2021) leveraged transfer learning (Pan
and Yang, 2010; Zhuang et al., 2020) to adapt the Generalized Phase
Detection algorithm (Ross et al., 2018) for earthquake detection
at volcanoes and produced an increase in detected seismicity
beyond the capabilities of the base algorithm. Additionally, the
types of volcano seismicity vary widely (e.g., long period events
vs. volcano tectonic events (McNutt and Roman, 2015)), and no
single algorithm may be appropriate for identifying or locating the
seismicity.

In this study, we have developed a Python-based catalog
enhancement framework to streamline the integration of four
popular and open-source seismological tools at the Alaska Volcano
Observatory (AVO), as part of the NSF-funded PREEVENTS
eruption forecasting project. The framework integrates detection,
matched-filtering, and relocation tools to improve analyst-derived
seismic catalogs, creating high-precision catalogs that can inform
interpretations of volcanic unrest and/or provide insight into
subsurface volcanic processes. Unlike numerous popular machine
learning methods that commence from the phase-picking stage, our
workflow leverages the analyst-derived catalog and uses their events
as a starting set of located earthquake templates, and introduces an

option of adding more templates through an independent scan of
the continuous seismic data. We also provide additional utilities in
ourworkflow, such as sample plotting scripts, earthquakemagnitude
and frequency index (Buurman and West, 2010) calculations, and
integration of campaign or backfilled (non-real-time) data.

While we acknowledge the extraordinary results demonstrated
by recent implementations of machine learning methods, here we
focus on the novel integration of the selected tools which have each
been broadly tested by the volcano seismology community. Notably,
our framework does not require training data in a way that many
machine learning methods do; although the analyst-derived catalog
is capitalized upon for event locations, it is not required to derive
an event list to interpret changes in event rate. The focus of our
framework is to address the unique challenges of sparse networks,
poorly resolved velocity models, and often undesirable station
geometries at remoteAlaska volcanoes (Dixon et al., 2019).We hope
to supplement the current operational tools at AVO rather than to
replace them. Further, we aim to provide a more human-verified
method of deriving a complete, high-precision catalog, which can
serve as a stepping stone for research and operational confidence
toward the variety of hands-off, automated methods available in
the seismology literature. In addition, we discuss the caveats of
our selected tools, and offer reasonable starting configurations and
recommendations on how key parameters can or should be adjusted.
Although designed for use at AVO, our open-source workflow can
be easily implemented at other volcano observatories and on stand-
alone research projects.

2 Methods

Our workflow, illustrated in Figure 1, integrates the
tools REDPy (Hotovec-Ellis and Jeffries, 2016), EQcorrscan
(Chamberlain et al., 2018), HypoDD (Waldhauser and Ellsworth,
2000; Waldhauser, 2001), and GrowClust (Trugman and Shearer,
2017) into three key steps: 1) constructing a comprehensive and
curated set of matched-filter templates, 2) running the matched-
filter scan, and 3) executing relative relocation. REDPy and
EQcorrscan, which both require continuous seismic data for their
implementation, can be applied directly to data queried off an
online client or on locally stored miniseed files, the latter being
a significantly faster option. Our workflow also provides the option
to incorporate campaign seismic data at different junctures, as
well as the ability to calculate magnitudes for new matched-filter
detections.We also provide within our tool package template scripts
to plot hypocenters using PyGMT (Uieda et al., 2021). Our code
is open source and publicly maintained on Github (see Data and
Resources for link). Interested users should note, however, that our
code primarily caters to the AVO seismic network and catalogs,
and certain adjustments might be required prior to use at different
volcano-seismic settings.

2.1 Constructing a comprehensive and
curated set of matched-filter templates

Most matched-filter efforts in volcano seismology have relied
on a pre-existing, analyst-derived earthquake catalog to create
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FIGURE 1
Flowchart encompassing REDPy (red dotted box), EQcorrscan (green dotted boxes) and relative relocation tools HypoDD and GrowClust (blue dotted
box). Light gray lines represent optional utilities, which include the incorporation of campaign data, magnitude calculation and frequency index
calculation. Note that a key comparison is made between the AVO catalog and the REDPy detections in order to grant matching REDPy cluster
representatives phase picks, hypocenter, and magnitude information (this is further illustrated in Supplementary Figure S1). The two divergent
EQcorrscan pathways stemming from the REDPy output are separated based on the possibility of producing event locations in the output data
product. HypoDD and GrowClust can be used independently or in combination with one another for relative relocation in our workflow.

template waveforms (Aso et al., 2011; Zhang and Wen, 2015;
Lengliné et al., 2016), with some studies using a clustering algorithm
beforehand so as to reduce the total number of templates and
the subsequent matched-filter processing time (Salvage et al., 2018;
Abramenkov et al., 2020). While our workflow follows a similar
convention, we first conduct an independent scan on the seismic
data using REDPy (Hotovec-Ellis and Jeffries, 2016) in order to
capture additional low frequency earthquakes and low magnitude
volcano-tectonic events. Such events are often omitted in analyst-
derived catalogs due to their failure in satisfying the minimumAVO
requirement of having 3 P-arrivals and 2 S-arrivals, and a travel-
time root-mean-square error (RMSE) below 0.30 s for hypocenter
finalization (Dixon et al., 2019). REDPy is an increasingly popular
tool used to detect and analyze the temporal evolution of repeating
seismicity, and its applicability has been demonstrated in numerous
volcanic settings (Salvage et al., 2018; Wellik et al., 2021; Hotovec-
Ellis et al., 2022). In particular, REDPy utilizes a standard short-
time average/long-time average (STA/LTA) algorithm (Allen, 1978)
to trigger on events, before cross-correlating each event with
successive triggers in an attempt to group them into clusters.
Events which manage to correlate with a successive trigger above
a user-defined threshold are stored as “repeaters,” while events
that fail to match another event within a user-defined time
window are retired as “orphans.” As a tool, REDPy stores event
amplitudes and cross-correlation coefficients, and computes the
inter-event time and frequency index of each repeater event.
Frequency index (FI), which is calculated on a stacked spectrum
across selected local seismic stations, describes the ratio of high
frequency to low frequency energy of an earthquake, and its
often-bimodal distribution has been used to distinguish between
volcano-tectonic and low frequency earthquakes at several Alaska
volcanoes (Buurman and West, 2010; Ketner and Power, 2013).

REDPy also identifies the representative event of each cluster
(hereinafter called the “core”) using the Ordering Points To Identify
Clustering Structure (OPTICS) algorithm (Ankerst et al., 2008).The
cluster cores, when ported forward as matched-filtering templates
(Figure 2), allow us to represent the variety of detected seismic
signals with a significantly smaller subset of events. Comparisons
between the analyst-derived catalog and the REDPy cores also allow
us to transfer the phase picks, magnitudes, and locations of analyst-
derived events to their coincident REDPy core event (Figure 1).
However, it should be noted that some analyst-derived events can
be missed by REDPy if they are of low amplitude or show non-
repeating behavior, and REDPy itself might not consistently pick
up low frequency events given its fixed STA/LTA trigger setting.
Nevertheless, the set of events that we recommend as templates
for the subsequent matched-filter step are the set of all REDPy
cores and the leftover analyst-derived events that do not have a
coincident REDPy detection. In instances where REDPy cores do
not match with any analyst-derived event, the user can also opt to
select the matched event with the highest magnitude within the
REDPy cluster as a replacement for the unmatched core. Doing
so will maximize the number of templates with hypocenter and
magnitude information, which in turn maximizes the number of
relocatable detections entering the relocation step.

2.2 Running the matched-filter scan

The second step in our workflow involves using EQcorrscan
(Chamberlain et al., 2018) to execute a matched-filter scan using the
curated set of events obtained from the previous step. EQcorrscan
is another popular, open-source tool that detects and characterizes
repeating seismicity by cross-correlating template waveforms on
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FIGURE 2
Example of how a REDPy cluster stack (panel 1, in red) correlates well with the OPTICS-derived cluster core (panel 1, in gray, almost fully obscured),
which in turn coincides with an analyst-derived event with phase picks on more stations (panel 2). EQcorrscan trims the waveforms from this selected
event about its phase arrivals on each channel (panel 3, black), before cross-correlating them on the continuous seismic data (panel 3, in gray). Two
successful detections with average channel cross-correlation coefficients exceeding 0.7 are shown with the template waveform overlying the
matching segment. All waveforms shown are obtained from our analysis of the 2009 eruption of Redoubt Volcano, Alaska.

continuous seismic data. However, unlike REDPy, it does not
require an increase in seismic amplitude to trigger, and is therefore
better suited to detect low amplitude events or overlapping
events buried in noise. EQcorrscan has been used in numerous
volcanic applications (Hotovec-Ellis et al., 2018; Wech et al., 2018;
Giron et al., 2020), including some studies where REDPy detections
are used as templates (Salvage et al., 2018; Salvage and Eaton, 2022).
EQcorrscan extensively leverages ObsPy (Beyreuther et al., 2010)
for its waveform processing procedures. In order to construct
templates, EQcorrscan first loads the corresponding seismic data of
each input event on every phase-picked channel, before trimming
the data around each phase arrival (Figure 2) and filtering them
based on user specifications. A minimum signal-to-noise ratio
threshold can also be set to exclude noisy data channels when
constructing these templates. After template creation, EQcorrscan is
able to execute templatematching across the continuous seismic data
using any of its three available threshold parameters: the Median
Absolute Deviation (MAD) of the summed correlation across all

channels for a predetermined time period (e.g., daily), the absolute
summed correlation across all channels, or the average correlation
across all channels. The use of MAD has been popular in many
implementations of the matched-filter technique (Shelly et al., 2007;
Kato et al., 2015; Yukutake et al., 2019), but our testing using visual
corroboration has shown that the desirable MAD threshold varies
greatly for our tested Alaska volcanoes. When experimenting with
commonly used MAD thresholds between 9 and 15, we obtain an
overwhelming number of bad detections (>106) that resemble noise
when individually observed. Absolute correlation sum was also
found to be an inappropriate choice for our applications, as many
templates derived from volcanic earthquakes possess a different
number of channel waveforms due to station outages caused by the
eruption. As such, for the examples in this study, we opted for the
average correlation option, which, although rudimentary, remains
an easily interpretable and visually verified choice. An illustration
of how a REDPy core evolves into a productive template is shown
on Figure 2, and recommendations on threshold values, template
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lengths and trigger intervals are discussed further in Section 4 or
summarized in Supplementary Table S12.

After the matched-filtering process, our workflow diverges into
two paths that produce unique data products (dashed green boxes in
Figure 1).The first path is straightforward—the event times of every
detection, regardless of their parent template, are stored in what we
term as a temporally enhanced event list. This event list is best used
to determine seismic rates and analyze trends in frequency index.
However, as not all detections are derived from a parent template
with an analyst-derived hypocenter location, there is no spatial
information offered by this data product. The second path, on the
other hand, only carries forward detections whose parent templates
are associated with an analyst-derived event.These detections would
adopt their parent template’s picks (offset by the time difference
between the template and detection events), and are assigned
the same hypocenter location as their parent template, thereby
overlapping them in space. Both the transference of pick information
and the colocation assumption are necessary for the subsequent
relative relocation step, which serves to “disperse” the matched-
filter detections around their parent template’s hypocenter location
using miniscule differences in phase arrival times at commonly
picked stations.We further illustrate the distinction between the two
data products and transference of pick and location information in
Supplementary Figure S1.

2.3 Executing relative relocation methods

The final step of our workflow involves the use of relative
relocation methods to relocate clusters of detected seismicity
(Figure 1). This process creates higher precision hypocenter
locations, ideally providing insight into subsurface volcanic features
and their spatio-temporal processes (Pesicek et al., 2008; Statz-
Boyer et al., 2009; Matoza et al., 2021). For this step, we use
two standout double-difference relocation tools that have been
extensively used in volcano seismology: HypoDD (Waldhauser and
Ellsworth, 2000; Waldhauser, 2001), and GrowClust (Trugman and
Shearer, 2017). Although both tools similarly relocate earthquakes
by minimizing the observed and calculated travel-time differences
between event pairs, there exist several noteworthy differences in
their double-difference solutions. HypoDD associates event pairs
by hypocenter proximity, and executes its relocations using both
phase differential travel times and cross-correlation differential
travel times. On the other hand, GrowClust associates event pairs by
waveform similarity, and executes its relocations using only cross-
correlation differential times. The two tools also use different misfit
functions: HypoDD relies on the commonly used L2 norm, but
GrowClust uses the L1 norm which penalizes outliers to a lesser
extent. Although GrowClust has been shown to produce similar
relocations asHypoDDwhen sufficient cross-correlation differential
time observations are used (Trugman and Shearer, 2017), we find
that differences in relocations in areas with sparse networks (e.g., at
most Alaska volcanoes) can be drastic and clustering and relocations
are often unrealistic. This is due in part to the undesirably low
number of cross-correlation differential time observations at Alaska
volcanoes, which we find to be usually less than 6 even at the better-
instrumented volcanoes (Ruppert et al., 2011; Power et al., 2020). In
the Trugman and Shearer (2017) “sparse network” example, using a

minimumof 8 differential times per event pair resulted in significant
differences between HypoDD and GrowClust relocations. Other
independent implementations of GrowClust and HypoDD have
required a minimum of 8 differential time observations per event
pair to consider events well-relocated (Shelly and Hill, 2011;
Montgomery-Brown et al., 2019; Matoza et al., 2021), although this
number can go up to more than 20 observations per event pair at
densely instrumented study areas (Shelly, 2020). Requiring at least 8
differential time observations is necessary to cover the total number
of free parameters being solved for in the inversion, assuming no
hypocenter parameters are fixed (Kintner et al., 2022). In addition,
passing only cross-correlation differential times for relocations (such
as in GrowClust) in sparse network settings might introduce an
azimuthal bias, as only stations that demonstrate acceptably high
correlation values between template and detection waveforms are
considered in the relocation process. The inclusion of catalog
differential times or absolute phase times (such as in HypoDD and
tomoDD (Zhang and Thurber, 2003; 2006)) helps to address this.
Solely relying on cross-correlation differential times is therefore
challenging and potentially undesirable for sparsely instrumented
volcanic settings.

As such, for our workflow, we propose that every template
event should first be relocated using HypoDD’s phase differential
time approach (i.e., using the dt.ct HypoDD input file) as a first-
pass. Doing so revises the independently determined observatory
hypocenter locations, shifts cluster centroids, and reduces the
reliance on the seismic velocity model which may be inaccurate.
The cross-correlation differential times HypoDD input file (dt.cc)
can then be created using EQcorrscan’s write_correlations function,
where we cross-correlate all matched-filter templates and detections
with one another. The relocation by cross-correlation differential
times can then be executed using either HypoDD or GrowClust,
though we find that HypoDD is preferred for sparse networks due
to the greater number of control parameters available (the user
will be able to discard outliers and damp solutions more harshly
as necessary). Such a hybrid approach has also been suggested in
the relocation methods described in machine learning workflows
(Zhang et al., 2022). Lastly, our workflow provides the necessary
wrappers to extract the relocation outputs as ObsPy Catalog objects,
regardless of the relocation tool used. Users are then able to easily
save the relocated, enhanced catalog in any ObsPy-compatible
format.

2.4 Other utilities

Within our open-source repository, we also provide a method
to calculate earthquake magnitudes of the new matched-filter
detections using an amplitude-ratio and cross-correlation based
method available in EQcorrscan (Chamberlain et al., 2018).
Specifically, the method calculates the relative magnitude of a new
detection by comparing its amplitudewith that of its parent template,
while accounting for a bias due to the degradation of waveform
similarity between event pairs (Schaff and Richards, 2014).The bias,
which is removed via magnitude subtraction, is determined by an
analytical expression that uses the cross-correlation coefficient and
signal-to-noise ratios of both events. In addition to the magnitude
calculation tool, we also provide a simple function that calculates
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frequency indices of the new detections (Buurman and West,
2010), and several plotting scripts to visualize both the temporally
enhanced event list and relocated, enhanced catalog. Lastly, we
include the option to incorporate campaign or backfilled data at two
junctures: the first being prior to REDPy, where the data are used to
enhance network sensitivities to generate more templates, and the
second being after template creation, where the data are used to add
picks to already-determined template events to better anchor them
during relocation. Although the former method of incorporating
the data allows the workflow to detect more events, it will inevitably
skew event rate interpretations during the campaign period due to
heightened network sensitivity.

3 Workflow calibration and
application to Alaska volcanoes

In order to test and calibrate our workflow described in
Section 2, we first implement the described tools on a dataset of
deep seismic swarms located below Mammoth Mountain between
October 2012 and January 2013. Previous work has shown that
the seismicity during this 4 month period consisted of a notable
“forked” distribution around an interpreted partial melt zone, and
also showed several instances of migrating seismic bursts (Hotovec-
Ellis et al., 2018). Applying our methods on a previously studied
volcano-seismic swarm (detailed in the Supplementary Text S2)
enables us to compare and benchmark our methods against a
more curated implementation of EQcorrscan and HypoDD in
Hotovec-Ellis et al. (2018). Specifically, Hotovec-Ellis et al. (2018)
conducted a swarm-specific matched-filter scan, restricting their
search for matches in a 24 h window before and after each template
event to reduce computational overhead and focus on temporal
changes. Further, they conducted relative relocation using a dt.cc
file built with a more sophisticated weighting scheme, and relocated
events had to meet a stricter requirement of having 20 differential
time pairs. In comparison, our implementation scans the full
duration-of-interest (4 months) using a smaller but representative
set of template events, and we opt to use an unmodified dt.cc
weighting scheme instead. Despite the differences, our workflow
produces comparable detection numbers and relocation results
(Supplementary Figures S3–S5), and this agreement gives us the
confidence in our implementation to attempt more challenging
volcanic settings in Alaska. We proceed to reanalyze seismic data
from the 2009 eruption at Redoubt Volcano and the 2006 eruption
at Augustine Volcano, which both have corresponding seismic
catalogs published by AVO (Dixon et al., 2008; Dixon et al., 2010)
and are well-studied in the literature. Although AVO’s catalog
construction method has evolved over time (Power et al., 2019), the
determination of earthquake hypocenters has consistently followed
the same semi-automatic procedure where coincident amplitude
triggers are visually inspected and subsequently located by a seismic
analyst. It is worth noting that AVO requires several conditions to
be met before an event is selected for hypocenter and magnitude
determination: 1) itmust have a P- and S-wave separation of less than
5 s on the closest station, 2) it must have 3 P-phases and 2 S-phases
detected across at least 3 seismic stations, 3) hypocentral errorsmust
be less than 15 km, and 4) travel-times must have an RMSE <0.30 s
(Dixon et al., 2019). Ensuring that AVO events have a low azimuthal

gap on top of these requirements is also particularly important,
as the relocation process of matched-filter detections are reliant
on the assumed colocation with the hypocenter of their template
event. We note that both the AVO Redoubt and Augustine Volcano
catalogs retrieved from Power et al. (2019) had events with higher
than desired travel-time RMSEs and azimuthal gaps. We therefore
applied an extra check to enforce the AVO requirements and remove
events with azimuthal gaps >210° and >190° from the Redoubt and
Augustine Volcano catalogs, respectively. Similar catalog filters have
also been applied on AVO catalogs prior to relocation efforts at
other volcanoes (Lanza et al., 2022). In addition, the need for S-wave
arrivals is also a crucial AVO requirement to bear inmind. Although
S-waves are essential in constraining the depth versus origin time
trade-off in hypocenter inversions (Gomberg et al., 1990), they are
often unclear or even absent in volcanic earthquake waveforms,
particularly for low amplitude and low frequency events (Chouet,
1996). As such, published catalogs are often incomplete due to
the omission of events with insufficient S-wave observations. Our
proposed workflow aims to enhance these earthquake catalogs by
supplementing them with previously omitted earthquakes, and by
providing locations for these new detections should they show
sufficient waveform similarities with an analyst-derived event.

3.1 Application to Redoubt Volcano’s 2009
eruption

Redoubt Volcano is an andesitic stratovolcano located in south-
central Alaska, approximately 170 km southwest of Anchorage,
Alaska’s most populous city. In March 2009, Redoubt Volcano
erupted explosively after approximately 6 months of precursory
seismic activity (Bull et al., 2013). The eruption had multiple
explosive phases and occurred over 4.5 months, producing
numerous seismic swarms and several notable shifts in background
seismic rate. Redoubt Volcano’s pre-, syn- and post-eruptive
seismicity have been analyzed thoroughly by numerous studies
(Buurman et al., 2013a; Haney et al., 2013; Ketner and Power, 2013;
Power et al., 2013; Roman and Gardine, 2013), most of which
opted to improve upon the AVO catalog by using independent
methods to make automated detections or recalculate hypocenter
locations. Substantial effort has been made to characterize the
seismic swarms which preceded explosions and accompanied dome
growth (Buurman et al., 2013a; Ketner and Power, 2013), as well
as to draw comparisons with Redoubt Volcano’s previous eruption
in 1989–1990 (Power et al., 1994). In particular, Power et al. (2013)
hypothesized that Redoubt Volcano is composed of 3 seismogenic
zones: 1) a deep magmatic source zone at 28–32 km depth marked
by deep long-period earthquakes, 2) a mid-crustal magma storage
zone at 3–9 km depth, and 3) a shallow system of cracks from
3 km depth that penetrate the crater floor. It is also suggested that
Redoubt Volcano’s shallowmagma storage is likely a network of sills
and dykes – previous tomographic inversions show no evidence of
a large low velocity zone (Benz et al., 1996; DeShon et al., 2007).

For this eruption, we run our workflow on seismic data recorded
on 10 stations situated within 25 km of the volcano’s summit
(Figure 3A) over the timespan between April 2008 (before the onset
of deformation in May (Grapenthin et al., 2013)) and September
2009 (return to background). Although 10 stations might seem
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FIGURE 3
Map of Redoubt Volcano (A) and Augustine Volcano (B) showing the locations of the seismic stations used in our analysis. Black triangles represent
permanent short-period stations, black squares represent permanent broadband stations, and red squares represent temporary broadband stations.
The solid red triangle represents the main lava dome location during Redoubt Volcano’s eruption in 2009 and Augustine Volcano’s eruption in 2006.

like a reasonably dense distribution for volcanoes, network and
noise issues often plague active stations in the region, causing
the count of useful stations to often drop to 5 or 6 for our
scenario. We additionally note that there are some short bursts
of seismicity detected later in December 2009 and April 2010
(Buurman et al., 2013c), but we find them to be separated from the
main eruptive unrest by months of quiescence, and choose not to
extend our scan further for computational reasons. We bandpass
filter seismic data from the Redoubt Volcano network between 1 and
10 Hz for triggering and cross-correlating purposes. In commencing
the workflow, we run REDPy on the vertical channels of three
permanent short-period seismic stations: REF, RDN and RSO, that
each demonstrated minimal data gaps and high signal-to-noise,
until RSO had to be dropped due to it being disabled by the first
explosion on 23 March 2009. A coincident trigger on at least 2
stations is required to register a detection, and a cross-correlation
coefficient of 0.85 is used to group REDPy detections into clusters.
In total, REDPy detects 22,814 repeater events spanning 871 clusters
over the study period. Of the 871 cluster cores, 111 are found to
be associated (i.e., event time difference less than 4 s to account for
early or late arrivals) with one of the 3,587 AVO analyst-derived
events identified during the same timespan. All cluster cores are
then consolidated with the 1,796 unmatched AVO events to be used
as EQcorrscan templates in the subsequent steps. At this juncture,
we leverage 4 additional campaign broadband instruments (RD01,
RD02, RD03, and RDW) deployed on Redoubt Volcano from 21
March 2009 (Figure 3A), and use a simple STA/LTA algorithm
(Allen, 1978) to assign additional P-picks for all template events that
occurred from the start of the campaign to the end of the eruption.
Using EQcorrscan, the waveform on each picked channel of each
template event is filtered, downsampled to 50 Hz, and trimmed
to 8-second-long segments starting from 1 s prior to the time of
each phase pick. Through the matched-filter process, we derive a
temporally enhanced event list with 33,281matched-filter detections

using an average cross-correlation threshold of 0.7, of which 5,719
are candidates for relocation. The relocatable events are then fed
into HypoDD, where their hypocenters are iteratively shifted using
first the catalog differential times, and then the cross-correlation
differential times. We require a minimum of 8 catalog differential
times and 3 cross-correlation differential times for event pairs to be
included. Although these requirements remove a significant number
of candidate events, we find that including poorly linked event pairs
reduces the overall quality of the relocation results. By using the
same 1D velocity model used by AVO to locate Redoubt Volcano
earthquakes (Power et al., 2019), we arrive at an enhanced catalog
with 3,328 successfully relocated events and 2,391 unshifted events.
As a comparison, Ketner and Power (2013) detected a total of
126,789 events from January 1 to 30 June 2009, albeit using only
a single station trigger, and Buurman et al. (2013b) derived a much
smaller relocated catalog of 346 events thatmostly occurred between
April and June of 2009.

Using the temporally enhanced event list, we calculate and plot
trends in frequency index revealed by ourworkflow over the analysis
time period in Figure 4. Although the Redoubt Volcano seismic
network struggled with data availability and noise issues throughout
2008 (Buurman et al., 2013a) with only 2 active stations in the
indicated network impairment period (Figure 4A), a noticeable
increase in the seismic rate can be observed when pre- and post-
impairment seismic rates are compared. Specifically, the week-long
histogram bins in Figure 4A record approximately 60 events per
week prior to mid-April 2008, and approximately 120 events per
week in late-June 2008. This observed increase coincides with the
recovery of a key station near the summit of the volcano (REF).
While we cannot definitively conclude that the June 2008 uptick is
the onset of pre-eruptive seismicity, comparison with background
rates prior to REF’s data quality issues suggest that the observed
uptick could be considered as a late time bound to the pre-eruptive
ramp up. This means that seismic unrest could have picked up at
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FIGURE 4
Redoubt Volcano’s temporally enhanced event list (April 2008 to September 2009) plotted as seismic event count and frequency index vs. time. (A)
Number of events detected per week plotted as a log-scale histogram, along with the cumulative count of events plotted as stepped lines on a linear
scale. (B) Frequency indices of all detections, sized by magnitude. Analyst-derived events from the original AVO catalog are colored in dark red while
newly-detected earthquakes are colored in light red (magnitude calculated) and gray (no magnitude due to unmatched template). Black vertical lines
indicate explosions recorded by AVO, and AVO color codes are illustrated as a horizontal bar at the top of each subplot. Two periods-of-interest (blue
bars) are shown using a finer time axis: (C) the explosive phase in March 2009 and (D) an extensive May 2009 seismic swarm not present in the AVO
catalog.

least 9 months prior to the onset of the eruption, and 5 months
before AVO first raised the color code from Green to Yellow.
According to Power et al. (2013), the earliest reported sign of unrest
of Redoubt Volcano was a strong sulfur smell downwind observed
in mid-July 2008, and retrospective seismic analysis found no
unusual earthquake activity associated with the onset of observable
unrest (Ketner and Power, 2013). Other retrospective analyses
suggest a subtle increase in radiant heat flux starting in mid-2006
(Girona et al., 2021), volcanic deformation starting from May 2008
(Grapenthin et al., 2013), and anomalous high-temperature thermal
activitywas not observed until after the first explosion inMarch 2009
(Webley et al., 2013).

When analyzing the same plots in finer time scales, we observe
the additional identification of low magnitude, high frequency
earthquakes during the explosive phase in March 2009 and a sizable
seismic swarm before the final recorded explosion on 5 April 2009
(light red and gray markers in Figure 4C, respectively). Perhaps
of greater interest is the cluster of more than 14,000 events that
we detect over a span of a week in May 2009 (Figure 4D). This
extremely populous seismic swarm inMay was previously identified
by Ketner and Power (2013) as well, but no attempts at magnitude
calculation, hypocenter determination, or source processes were
made. Ketner and Power (2013) did note, however, that the swarm

was contemporaneous with increased gas emissions (Lopez et al.,
2013) and changes in dome extrusion behavior and composition
(Bull et al., 2013; Coombs et al., 2013). The transition in frequency
index just before May 7 was also noted to be synchronous with the
onset of intense rockfalls (Ketner and Power, 2013). As the templates
used to detect the swarm are not derived from an AVO catalog event
nor an associated REDPy core, we do not have reference events to
compute relative magnitudes and locations for the events. It is likely
that this large swarmwas omitted from the routine catalog due to the
sheer number of events needed to be picked by the seismic analyst,
and the difficulty of picking S arrivals for hypocenter finalization
given the intensity of seismic activity.

Figure 5 compares the hypocenter distribution between the
original AVO catalog and the relocated enhanced catalog. Although
we do not see any clear spatial trends in time or frequency index
(Supplementary Figures S6, S7), we observe a clustering of events
underneath the location of Redoubt Volcano’s lava dome during
its 2009 eruption. A large majority of the relocated seismicity
congregates at 0–6 km depth below sea level (BSL), which is
consistent with prior relocation work done by Buurman et al.
(2013b). Plotting the same hypocenters as a 2D histogram
(Supplementary Figure S8) also reveals that seismicity is primarily
concentrated in the 0–3 km BSL depth range, which is interpreted
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FIGURE 5
Hypocenter plots of the original AVO catalog (left) and relocated enhanced catalog (right) for Redoubt Volcano. Successfully relocated events are
colored orange, while unrelocated events are colored gray. The red triangle marks the lava dome location. (A) shows the top-down view of all
hypocenters from the original catalog, while (B,C) show N-S and E-W cross-sections centered on the coordinates of the dome with 0 km depth
representing sea level. (D) shows the focus area relative to the wider area of Redoubt Volcano. (E–G) shows the hypocenters from the relocated
enhanced catalog in the same layout as (A–C). The relocated enhanced catalog demonstrates a tighter cluster of events underneath the lava dome
location, and most of the relocated seismicity congregate at 0–6 km depth below sea level. Supplementary Figure S8 plots the same hypocenters as a
2D histogram on each panel, in order to highlight finer earthquake density distribution patterns obscured by the dense cloud of seismicity.

as a seismogenic, shallow system of cracks by Power et al. (2013).
Omitted from Figure 5 are several deep, long-period earthquakes
recorded in December 2008 in the AVO catalog. Our workflow
found no additional deep events through matched-filtering despite
the templates having high signal-to-noise on their picked stations.
The original deep events were also rejected by our relocation
algorithm, presumably due to poor inter-event correlation.

3.2 Application to Augustine Volcano’s
2006 eruption

Augustine Volcano is another active volcano in the eastern
Aleutian arc, located on its own volcanic island in Cook Inlet,
290 km from Anchorage. In January 2006, Augustine Volcano
ended a 20-year repose with 13 recorded explosions over a span
of 20 days. Prior to the onset of its explosive eruptions, past
work noted approximately 8 months of precursory seismic activity,
as well as other indicators of unrest such as edifice inflation,
increased gas emissions and thermal anomalies (Cervelli et al.,
2006; Zhan et al., 2022). Similar to Redoubt Volcano, the seismic
activity spanning Augustine Volcano’s eruption sequence was well
explored by numerous previous studies (Buurman and West, 2010;
DeShon et al., 2010; Jacobs and McNutt, 2010; Power and Lalla,
2010; Dawson et al., 2011; Syracuse et al., 2011), many of which
relied on additional detections and relocation efforts for their
analyses. Out of the many interpretations on Augustine Volcano’s

eruptive seismicity, of note are the decreased b-values in its pre-
eruptive earthquake swarm (Jacobs and McNutt, 2010) and low
FI events occurring contemporaneously with Augustine Volcano’s
many explosions (Buurman andWest, 2010). Power and Lalla (2010)
suggested that Augustine Volcano’s subsurface magmatic system in
2006 was comprised of a magma source at approximately 3–5 km
depth BSL—an interpretation supported by seismic, geodetic, and
petrologic evidence (Cervelli et al., 2006; Larsen et al., 2010).

For this eruption, we use 15 permanent and campaign seismic
stations installed on Augustine Island over the course of the
eruption (Figure 3B) and analyze the time period between April
2005 (increase in seismic and rockfall activity) to May 2006 (return
to background (Jacobs and McNutt, 2010; Power and Lalla, 2010)).
Like the network situation at Redoubt Volcano, noise conditions
and data coverage vary greatly over the course of the eruption,
which significantly reduces the number of useful stations at any
given time. All seismic data are bandpass filtered between 1 and
10 Hz. Although previous seismic studies found that Augustine
Island earthquakes exhibit substantial high frequency energy in the
10–20 Hz range (Buurman and West, 2010), preliminary runs of
REDPy and EQcorrscan that retained higher frequency components
of the data introduced more noise and lowered correlations instead,
which impaired each tool’s performance. In executing REDPy, we
opt to use vertical channels of 4 seismic stations at a time. We start
with short-period stations AUH, AUI, AUP, and AUS (Figure 3B),
and whenever any of these were destroyed by a volcanic explosion
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FIGURE 6
Augustine Volcano’s temporally enhanced event list (April 2005 to May 2006) plotted as seismic event count and frequency index vs. time. Figure set up
is the same as Figure 4. (A) Number of events detected per week plotted as a log-scale histogram, along with the cumulative event count plotted as
stepped lines on a linear scale. (B) Frequency indices of all detections, sized by magnitude. Analyst-derived events from the original AVO catalog are
colored in dark red while newly detected earthquakes are colored in light red (magnitude calculated) and gray (no magnitude due to unmatched
template). Black vertical lines indicate explosions recorded by AVO, and AVO color codes are illustrated as a horizontal bar at the top of each subplot.
Two periods-of-interest (blue bars) are shown using a finer time axis: (C) the explosive phase in January 2006, and (D) a prominent swarm of drumbeat
earthquakes omitted by the AVO catalog during the dome building phase in March 2006. The mid-swarm seismic gap shown in (D) is due to the
drumbeat earthquakes occurring so rapidly in time such that individual events cannot be distinguished.

we replace them with the next best (i.e., next highest signal-to-
noise) station available. Specifically, AUW replaces AUS on 15
Dec 2005, AUE replaces AUP on 13 Jan 2006, and campaign
broadband station AU13 replaces AUH on 27 Jan 2006. The final
set of stations, AU13, AUI, AUE, and AUW, cover the final effusive
phase of the Augustine Volcano’s 2006 eruption: 3 March to 16
March 2006. Although this set of stations is a mix of short-period
and broadband instruments, the data are re-sampled and similarly
filtered to maintain consistency in trigger sensitivity. Similar to
Redoubt Volcano, we require a coincident trigger on at least 2
stations for REDPy detections, and a cross-correlation coefficient
of 0.85 to group detections into clusters. In total, REDPy detects
1754 repeater events spanning 257 clusters, and of the 257 cluster
cores, 78 are found to be associated with one of the 1,635 AVO
analyst-derived events identified during the same timespan. All
cluster cores are consolidated with the 1,285 unmatched AVO
events, and additional P-picks are added using 5 out of 6 campaign
stations (AU11, AU12, AU13,AU14, AU15) that were deployed from
20 December 2005 through the eruption sequence. The omitted
campaign station, AU10, suffered from water damage and did not
return any useful data. Using EQcorrscan, waveforms are filtered,
downsampled to 50 Hz, and trimmed to 8-second-long segments on

each channel before being used as templates. Altogether, we obtain
4,420 matched-filter detections in our temporally enhanced event
list using a cross-correlation threshold of 0.6, and 2,084 of them are
candidates for relocation. Relocations done using HypoDD with a
minimum requirement of 8 catalog differential times and 3 cross-
correlation differential times ultimately provide us with a relocated
enhanced catalog of 1,585 events. Notably, we use a sub-sampled 1D
velocity model for Augustine Volcano adapted from Syracuse et al.
(2011), as preliminary relocations conducted with the AVO velocity
model for Augustine Volcano (Power et al., 2019) led to skyward
hypocenter migrations and numerous earthquake locations above
the surface (“airquakes”).

Similar to the plots derived for Redoubt Volcano, we calculate
and plot temporal trends in frequency index for the temporally
enhanced event list (Figure 6), and plot hypocenter comparisons
between the original AVO catalog and the relocated enhanced
catalog (Figure 7). In Augustine Volcano’s case, our workflow
detects a comparable number of earthquakes compared to the
original AVO catalog, with notable exceptions including several
clusters of low magnitude events in January and March 2006
(Figures 6A, C, D). The obvious seismic gap in the swarm of
drumbeat earthquakes (Bell et al., 2017) highlighted in Figure 6D
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FIGURE 7
Hypocenter plots of the original AVO catalog (A–D) and relocated enhanced catalog (E–G) for Augustine Volcano. Figure set up is the same as
Figure 5. The relocated enhanced catalog demonstrates a lower number of airquakes, and a compact cluster of events skewed toward the area south
of the dome close to the summit, similar to relocations obtained by Syracuse et al. (2011) and Power and Lalla (2010). Overall, most of the relocated
seismicity at Augustine Volcano congregates close to the surface. Supplementary Figure S11 plots the same hypocenters as a 2D histogram on each
panel, in order to highlight finer earthquake density distribution patterns obscured by the dense cloud of seismicity.

is artificial. The seismic rate during this time was so high that a
continuous signal was formed and individual events could not be
distinguished (Power and Lalla, 2010). This extensive swarm was
also noted to coincide with the final effusive phase at Augustine
Volcano (Coombs et al., 2010).

In Figure 7, we observe a slight narrowing in the spread of
hypocenters immediately underneath the edifice of Augustine
Volcano. Our relocated catalog also consists of only two-thirds
the number of events in the original AVO catalog. This seemingly
low number of relocated events is somewhat expected, as
previous attempts at double-difference relocation at Augustine
Volcano have failed to produce stable results due to noisy site
conditions, topography-induced errors, and poor station geometry
(Sumiejski et al., 2009; DeShon et al., 2010). Correlation analyses
by DeShon et al. (2010) also revealed that the events that occurred
during Augustine Volcano’s 2006 eruption show a low degree of
similarity, which limits the usefulness of double-difference methods
in our workflow as they rely on cross-correlation links between
event pairs. Nevertheless, the number of observed “airquakes” (as
seen by the artificial suspended ceiling features in Figure 7 and
Supplementary Figure S11) are reduced through our relocation
efforts, and relocated events show a congregation toward the area
south of the dome close to the summit. This result is similar to
the relocations obtained by Syracuse et al. (2011), although their
methods involve the inversion for a more accurate 3D velocity
model as well. Plotting the hypocenters colored by FI or by time
(Supplementary Figures S9, S10) revealed no apparent spatio-
temporal trends. Lastly, we note that our hypocenter plot omits a few

relocated earthquakes that are scattered at depths of 4–5 km below
sea level. The omitted earthquakes are infrequently repeating low
frequency events, and they are likely associated with the inferred
shallow magma source at Augustine Volcano (Power and Lalla,
2010).

4 Discussion and recommendations

Our workflow provides a convenient and consistent means of
augmenting analyst-derived catalogs at volcano observatories by
constructing temporally enhanced, high-precision catalogs using
accepted, open-source seismological tools. However, users should
still exercise caution as different numerical inputs for each tool
within the workflow could potentially result in variable, or even
less credible, outcomes. In this section we discuss some caveats of
each tool and provide recommendations for their implementation.
A summary of suggested parameter values and corresponding
remarks is provided in Supplementary Table S12 in the
supplement.

4.1 REDPy

Firstly, REDPy offers the option of utilizing any number of
stations to search for coincident STA/LTA triggers. Although single
station implementations of REDPy have been able to pick up
anomalous seismic activity at volcanoes (Grapenthin et al., 2022),

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2023.1158442
https://https//www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tan et al. 10.3389/feart.2023.1158442

if possible we recommend users to use at least 3 to 5 stations for
coincident triggering. Using more stations provides better detection
sensitivity and more accurate event cluster determinations, but
comes at the expense of increased computational cost. In order to
avoid an excessive number of false triggers, we also recommend
the user to either use a conservative STA/LTA trigger ratio
to register events or a high cross-correlation value to define
repeaters. The former will ensure that REDPy permits only the
most certain signals, while the latter relies on the repetitive
nature of volcanic seismicity to ensure accurate detections. Using
a high cross-correlation value (>0.8) is generally recommended,
as each cluster will have marginal members that do not directly
correlate with the established cluster core. After REDPy concludes,
we suggest users conduct a visual scan of all REDPy-derived
clusters, in order to assess the quality of the selected cores and
remove clusters that are clearly noise, anthropogenic, or artificial.
These undesirable signals often show symptoms such as clipped
waveforms, oddly shaped spectra, overly long signal durations, or
occur systematically during regular working hours. Users can also
consider removing all poorly repeating clusters (e.g., those with less
than 5 events) to automatically omit poorly repeating templates.
The exclusion of these clusters (and hence their corresponding
templates) would avoid the poor trade-off between marginally
increasing catalog completeness and excessively increasing the
matched-filter computational cost.

4.2 EQcorrscan

For EQcorrscan, we recommend that the user first looks at
the waveforms from a subset of analyst-derived events, in order
to determine a suitable filter band that maximizes signal-to-noise
for both the templates and the continuous data to which they
will be correlated. Waveforms should also be downsampled prior
to template building, to a frequency that corresponds to the
lowest sampling rate in the seismic network for computational
compatibility. When waveforms are trimmed about their phase
arrivals, users should ensure that the pre-pick time captures pick
uncertainty, and that the segment length captures the coda of the
seismic arrivals. When conducting the actual matched-filter scan,
users should also set a trigger interval that is at least as long as the
segment length of template waveforms, so that codas of long signals
are not detected as separate events. Users should also start their
matched-filter scans with a relaxed threshold value (e.g., average
channel cross-correlation of 0.6) to capture as many events as
possible, before using the rethreshold function in EQcorrscan to
raise the threshold such that lower-scoring, erroneous detections
are largely filtered out. Doing so will eliminate the need to re-
run the scan at a lower threshold should users find that their
initial threshold is too high. To find a desirable threshold, users
can conduct a sensitivity test by comparing the cumulative event
counts between the matched-filter catalog and the base catalog,
and visually compare the waveforms from the poorest-scoring
detections with that of their templates. Lastly, users must ensure
that they implement EQcorrscan’s decluster function, which serves
to preserve only the best template match in instances where
multiple templates correlate with the same signal in the continuous
data. This is especially important as EQcorrscan’s trigger interval

setting applies only to individual templates, meaning that relatively
similar waveform templates (which remain ungrouped by REDPy)
can detect and classify a single earthquake as many coincident
earthquakes.

4.3 HypoDD/GrowClust

For relocations, we recommend crafting the dt.cc file using
even shorter pre-pick and segment lengths (e.g., using 2.5 s
long segments starting 0.15 s before the pick time). Unlike the
matched-filter case, we want to omit signal coda to avoid overlaps
between P and S phases. The trimmed segment should mainly
capture the immediate onset of the phase arrival, and the segment
should be cross-correlated with a maximum allowed time shift
of approximately 0.4 s, although this value can go as low as 0.2 s
for high quality picks. Overly small time shifts might miss the
actual cross-correlation peak, while overly long time shifts increase
the chance of giving erroneous lag times due to cycle skipping.
We refer readers to Schaff et al. (2004) for a detailed discussion
on optimizing correlation techniques. Through trial and error,
we also find that only cross-correlation differential times that
register a cross-correlation coefficient above 0.7 or 0.75 should
be kept; any lower threshold results in inaccurate event linkages
within GrowClust, which could lead to inaccurate convergence
during relocation. Using a low cross-correlation threshold may
also increase the possibility of incorrectly matching noise with
the reference pick. As mentioned earlier in the Methods section,
GrowClust performs best when event pairs have a large number of
differential time observations per event pair across well-distributed
stations, with the recommended number of observations being 8
and above. For error reporting, it is also suggested that users allow
GrowClust to perform at least 50 bootstrap cycles, though 100 cycles
might be more comprehensive if system memory permits. As for
HypoDD, recommended starting iteration configurations adapted
from previous relative relocation studies (Pesicek et al., 2008;
Hotovec-Ellis et al., 2018; DeGrandpre et al., 2019) are covered in
Supplementary Table S12. Typically, HypoDD starts off by using
more relaxed search parameters and high catalog differential time
weights in order to converge to the LSQR solution rapidly in
its first few iterations. Parameters are then gradually tightened
to solve for finer scale features, before the process is repeated
for the cross-correlation differential times. The HypoDD manual
suggests that condition numbers between 60 and 120 are desirable
for these iterations, though our tests have shown that condition
numbers that exceed those values (up to 200) can still provide
reasonable relocations. Overall, the easiest and most intuitive way
to identify a reasonable result is to assess the stability of the
solution when starting locations, damping and outlier thresholds
are varied. For rigorous error reporting, users are encouraged
to refer to the HypoDD manual for suggestions, which include
jackknifing of stations/events, changing the starting location of
events, and perturbing the input velocity model. Other relevant
works has also used HypoDD’s Singular Value Decomposition
(SVD) method to estimate least square uncertainties (Pesicek et al.,
2008), and conducted synthetic data location tests to evaluate
the effects of limited seismic network aperture (Ruppert et al.,
2011).
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4.4 Implications and future developments

Numerous studies that retrospectively analyze pre-, syn- and
post-eruptive seismic data often conduct independent, automated
scans for detections and relocate events using pre-existing open
source tools. Our open-source workflow aims to fulfill that role
in producing both a temporally enhanced event list and relocated
enhanced catalog for research and operational analyses. Our
workflow provides a many-fold increase in the number of events
detected at Redoubt Volcano, including a potential seismic uptick
at least 9 months before the eruption and 4 months prior to what
was previously reported. Although event waveforms are generally
poorly correlated at Augustine Volcano, we show a more than 2-
fold increase in the number of events there, and identify a modest
number of swarms previously omitted by the AVO catalog. It is
not entirely clear why our enhanced Augustine Volcano catalog has
a smaller increase in the number of events and lower number of
relocated events compared to Redoubt Volcano. The low degree of
waveform similarity highlighted by DeShon et al. (2010) and the
smaller difference between event-station and event pair distances
may have contributed to the poorer performance of the matched-
filter and double-difference relocation tools at Augustine Volcano.
In addition, our decision to filter waveforms using bandpass limits
below the high frequency component observed for Augustine
Volcano events (Buurman and West, 2010) could have limited the
number of detected earthquakes. The denser seismic network and
the nature of seismicity at Augustine Volcano (mostly VT events
with clear P and S phases) might have also allowed the analyst
to locate most of the events present in the data, resulting in a
smaller margin for catalog improvement. The apparent variability
in the performance of cross-correlation based methods at different
volcanic settings remains to be rigorously tested or determined.
Future work could explore why catalog enhancing techniques
perform “better” at some volcanoes than others.

The data products derived from our workflow can be helpful for
situational awareness for volcano monitoring (Thelen et al., 2022),
eruption forecasting (Pesicek et al., 2018), and comparison with
other independently determined datasets. The higher precision
hypocenter locations that our workflow produces can also support
(or refute) prior interpretations of subsurface magma storage
zones. Magnitudes are computed when possible and provide
additional information on seismic energy release. Compared
to previous work at each volcano, our workflow generates a
comparable number of new detections beyond the AVO catalog
without excessive fine-tuning or human intervention, and provides
additional event relocations which align with previously determined
cluster centroids.

Our streamlined workflow can provide a consistent and
easily transferable method in arriving at the aforementioned
data products, which will prove useful when comparing results
across eruptions from different times and different volcanoes.
Building a comprehensive library of earthquake templates would
open up the possibility of near-real-time matched-filtering, where
historic templates from a particular volcano can be cross-correlated
on telemetered data as they arrive. Although our tools are
currently not designed for real-time data, they can be applied
relatively quickly (e.g., daily if a volcano demonstrates heightened
unrest). We have since successfully applied all or portions of our

workflow to recent unrest at Alaska volcanoes, including Mount
Edgecumbe (Grapenthin et al., 2022), Davidof Volcano and Great
Sitkin Volcano in the 2021–2022 period.The acquired data products
directly contribute to observatory monitoring efforts by AVO,
most notably by providing better event count estimates. Beyond
volcanic seismicity, our workflow can also be used to examine
swarms and aftershock sequences in tectonic regions (Warren-
Smith et al., 2017; Hughes et al., 2021), where enhanced catalogs
can be used to highlight active faults and derive progressions in
cumulative moment. However, it should be noted that our workflow
is inherently computationally expensive due to its correlation-
heavy procedure and is best suited for quantifying and relocating
well-correlated, repetitive seismicity. The processing time of the
full workflow on 1–2 years of data (like in our Augustine and
Redoubt Volcano case studies) is often in the order of multiple
days, but this can vary significantly depending on the number of
stations used, REDPy triggers and clusters, EQcorrscan templates,
and relocatable detections. Subsets of the workflow can be
employed in order to timely address observatory needs as they
arise.

Lastly, we highlight that although technological advances
are increasing the frequency at which research scientists or
observatories are generating well-populated high precision catalogs,
it remains unclear how their results should be archived or
preserved. All observatories rely on some form of database system;
observatories in the United States store catalogs in the Advanced
National Seismic System (ANSS) Quake Monitoring System
(AQMS), and partners worldwide rely on a variety of other systems
such as SeisComP, Antelope, and Atlas among others. However,
these databases mainly incorporate and maintain first-order
observatory data products, and rarely host research or reanalysis
catalogs which are otherwise poorly preserved in journal articles.
Considering that automated catalogs will continue to be produced
frequently in the near future, we suggest that observatories work
toward expanding their database schema to include new or revised
hypocenter information and alternative datasets. A prime example
of how this can be donewould be the 2018–2019 earthquake catalogs
from the Alaska Amphibious Community Seismic Experiment
(Barcheck et al., 2020), which are currently being hosted in the
ANSS Comprehensive Earthquake Catalog (ComCat). Within
the scope of the PREEVENTS eruption forecasting project, a
dedicated database developer will be integrating and organizing
cross-disciplinary research data products as automated tools are run
for a targeted subset of Alaska volcanoes. As new and robust catalog
creation tools continue to be developed in the literature, the ability
of observatories to keep data products organized and accessible
must keep up as well.

5 Conclusion

By integrating four popular open-source tools for earthquake
detection and relocation, we have developed an end-to-end, open-
source workflow that can enhance volcanic earthquake catalogs
derived by volcano observatories and researchers worldwide.
Our Python-based, modular workflow also enables users to run
tools independently or in conjunction with one another, and
assess relocations derived through the popular double-difference
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algorithms HypoDD, GrowClust, or a combination of both. After
testing ourmethods on the 2012–2013 unrest sequence atMammoth
Mountain, we apply our workflow to the 2009 eruption of
Redoubt Volcano and the 2006 eruption of Augustine Volcano
and evaluate our workflow’s performance, highlight caveats, and
make comparisons with previous results from each volcano. Our
temporally enhanced event lists reveal a considerable amount of
new seismicity not present in the AVO analyst-derived catalogs,
including notable unrest at Redoubt Volcano that precedes the
previous onset of seismicity by 4 months. In addition, our relocated
enhanced catalogs concentrate the previously dispersed cloud of
seismicity underneath the eruptive domes of both volcanoes. Our
workflow provides a versatile and modular pipeline of tools that can
derive research-grade data products and complement observatory
monitoring efforts.
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