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istic machine learning approach to
model industrial network dynamics for sustainable
design of emerging carbon capture and utilization
technologies†

Abhimanyu Raj Shekhar,a Raghav R. Moar‡b and Shweta Singh *acd

Industrial networks consist of multiple industrial nodes interacting with each other through material

exchanges that support the overall production goal of the network. These industrial networks exhibit

complex nonlinear dynamics arising due to the multiscale nature of interactions among industries and

the inherent dynamics of each industrial node. Furthermore, these overall dynamics have a significant

impact on the sustainable design of these networks, along with the resource consumption and emission

dynamics of the overall network. However, understanding the overall dynamics of industrial networks is

challenging as digital models do not exist for the whole network dynamics, especially for emerging

industrial systems, and simulative analyses of the same can be computationally expensive. To overcome

this limitation, we propose a hybrid mechanistic machine learning approach based on data-driven

system identification to build surrogate dynamic models of industrial nodes, which can be coupled to

evaluate the overall industrial network dynamics. Furthermore, we propose utilizing the overall network

dynamics to quantify the dynamic carbon footprint and design of industrial networks for a maximum

carbon sink. We apply our methodology to evaluate the dynamic carbon footprint of an algal-biodiesel

industrial network comprising 5 separate dynamic industrial systems. The redesign of the network with

the modified technological parameters informed by overall network dynamics results in an approximately

2% enhanced CO2 sequestration rate of 29 750.34 kg h−1, with the net CO2 footprint being accurately

calculated as −1485069.47 kg for 50 hours of operation based on the nonlinear model obtained for the

network. The dynamic models were also used to analyze the net neutralization time required to

completely remove the energy-related CO2 emissions using this specific algal biodiesel network for

a specific region in a particular year, providing insights into the potential of this technology to meet the

climate mitigation goals. Hence, the proposed approach establishes a pathway to evaluate industrial

network dynamics for any emerging system by relying on mechanistic models and data-driven system

identification and informing the sustainable design of future industrial networks.
1 Introduction

Industrial decarbonization is a major objective for meeting the
climate change goals aimed towards limiting global warming to
1.5 °C set forth by the IPCC.1 Industrial emissions for the year
2020 accounted for 1426.2 million metric tonnes CO2 eq. of
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GHG emissions globally which are 24% of the total US GHG
emissions distinguished by economic sectors.2 In order to meet
the goals of industrial decarbonization, several technologies in
the US are being proposed for carbon capture & utilization,
primarily being operational in 5 industrial sectors, viz. chemical
production, hydrogen production, fertilizer production, natural
gas processing, and power generation.3 Furthermore, the tran-
sitions away from a fossil fuel-based economy towards waste
reutilization for the manufacturing of value-added products are
being proposed, for instance, conversion of vegetable oil into
bioadsorbents for wastewater treatment,4 thermolysis of waste
plastics to liquid fuel,5 biofuel production from grape marc,6

upcycled carbon black in the formation of battery anodes,7 etc.
These emerging technologies will be embedded in existing
industrial networks, which are a group of industries interacting
through the exchange of materials to meet a goal of production.
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5129
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Such industrial networks are complex dynamic systems that
interact on multiple scales, and each node in the network
represents an individual industrial process governed by specic
chemical, biological, or physical mechanisms. Furthermore,
there exists inherent nonlinearity within the dynamics of each
industrial node, which results in a nonlinear dynamic rela-
tionship between different material streams in the overall
production network. Hence, the overall dynamics of the
industrial network on the macroscale is driven by the dynamics
at each node and interactions among these nodes which
determine the overall production dynamics of the network, the
exact characteristics and their underlying governing equations
are generally unknown. However, understanding the overall
dynamics of existing and emerging industrial networks is
necessary to accurately quantify the resource consumption and
emission dynamics from these networks in long term, which is
critical to evaluate the sustainability of these systems as a whole
rather than at individual industrial nodes.

There are several systematic techniques like Life Cycle
Assessment (LCA),8 Material Flow Assessment (MFA),9 Agent
Fig. 1 Industrial production network comprising multiple smaller individ
comprises multiple unit operations. The industrial systems are connected
supply chain framework.

5130 | Sustainable Energy Fuels, 2023, 7, 5129–5146
Based Modeling (ABM),10 Statistical Process Control,11–13 and
System Dynamics (SD)14 that are widely being used for
sustainability assessment of industrial systems. One principal
limitation of LCA and MFA methods is the lack of accounting
for the nonlinear dynamics between various system
components.15–17 Capturing such nonlinear relationship is
important for accurate assessment of resource consumption
and emissions over time as the system response to changes
cannot be linearly extrapolated. While the system dynamics
method does account for this dynamic behavior, it relies on
causal loop diagrams which are generally unknown for
emerging industrial networks.18 Similarly, ABMs rely on accu-
rate information about the effect of participating components
on each other, which is also unknown for emerging industrial
networks.19 Hence, to overcome these gaps in modeling the
dynamics of industrial networks for sustainability assessment,
we propose a hybrid mechanistic machine learning approach
inspired by data-driven system identication. Since the existing
methods do not capture the overall dynamics of industrial
networks and do not focus on the network design for
ual industrial systems operating on different time scales, which further
together by thematerial interdependencies existing in a sub-economic

This journal is © The Royal Society of Chemistry 2023
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sustainability, a direct comparative analysis of the proposed
approach in this work with existing methods cannot be done.

Data-driven system identication is an age-old technique for
solving inverse problems, that can recover the governing equa-
tions for the dynamics of a system based on experimental
observations and known physical laws.20,21 The recovery of the
underlyingmathematical relationship which governs the systems
establishes the governing rst principles physical, chemical, and
biological informed laws. These laws can then be experimentally
validated for smaller systems; however for large scale complex
industrial networks, it is not feasible to experimentally validate
these inverse equations. Therefore, as the direct application of
experiment-based system identication is a challenging as well as
nearly impractical procedure to apply to the emerging industrial
networks, it becomes important to utilize themultiscale nature of
these networks for the evaluation of dynamics. Thus, in our
approach, we propose to build surrogate models for individual
nodes (industrial system) in the industrial network using
machine learning and couple these models to study the overall
dynamics of the industrial networks. As it is feasible to experi-
mentally validate the individual node models, it provides con-
dence in using these surrogate models to evaluate the dynamics
of the overall complex industrial network.

The eld of data-driven system identication itself has been
growing rapidly due to the availability of large-scale data and
increased computational power in the last few years. Several
recent papers have shown the promise of novel data driven
system identication in elds such as uid mechanics,22

chemical reaction networks,23–25 single unit operations such as
distillation columns,26,27 chemical process plants,28 mechanical
systems,29,30 etc. These machine learning algorithms seem
promising to build surrogate models for the industrial nodes in
large scale industrial networks, which can then be utilized to
evaluate the overall dynamics of networks without missing any
critical causal relationships that drive the dynamics of overall
networks. As mechanistic models are known for several of the
industrial systems or can be built when a new industrial tech-
nology is being proposed, we propose this hybrid approach that
utilizes the strength of mechanistic knowledge to generate data
and machine learning to create surrogate dynamic models. We
utilize the Sparse Identication of Non-Linear Dynamics
(SINDy) algorithm in our work, based on its recent success in
model identication in several scenarios such as nonlinear
optics,31 thermal uids,32 chemical reaction dynamics,33 struc-
tural modelling,34 models for partial differential equations,35,36

and stochastic systems.37 Recently SINDy has also shown
promising results in identifying governing equations for the
overall dynamics of single-unit operation and multi-unit oper-
ation manufacturing systems.27,28 We demonstrate our hybrid
approach on an emerging industrial network of algal biodiesel
production, which is a promising technology for carbon capture
& utilization and waste water reutilization for value added
production in the economy. Fig. 1 shows an example of multi-
scale interaction in an industrial network for an algal biodiesel
network as modeled in our work. It shows interactions all the
way from the unit operations to industrial systems and further
to the network. The overall dynamics of this network is then
This journal is © The Royal Society of Chemistry 2023
used for sustainability assessment of aspects such as dynamic
carbon footprint calculation, identifying optimal values for
control parameters to design a “net carbon negative” industrial
network and evaluating the time feasibility of meeting net zero
carbon goals based on the optimal operational design of
industries in the network. We demonstrate these applications
using the analyses for the modeled algal bio-diesel network.

The methodology proposed is described in detail in Section
2, results of application and sustainability analysis of the algal
bio-diesel industrial network are discussed in Section 3 and
conclusions along with future applications or advancements of
the method are provided in Section 4.
2 Methodology

We propose a two part methodology shown in Fig. 2 to evaluate
the overall dynamics of industrial networks. In the rst part of
the methodology, we propose a three-step procedure to build
a surrogate dynamic model for industrial systems in the
production network using a hybrid mechanistic machine
learning approach (Section 2.1). The second part of the meth-
odology focuses on coupling the individual node models and
evaluating overall network dynamics for scenarios related to
sustainability assessment of the system (Section 2.2).
2.1 Hybrid mechanistic machine learning for surrogate
dynamic model construction of industrial systems

The hybrid mechanistic machine learning approach is devel-
oped based on a data-driven system identication technique
that relies on supervised machine learning algorithms. Conse-
quently, there are three steps for developing the dynamic
models for the industrial systems in the network. Step 1
involves data generation, where we utilize the computationally
designed mechanistic models of each industry to generate
reliable time-series data of the state variables based on the
excitation variables of the system for each block. Next in step 2,
we use data from mechanistic models in step 1 and apply
a white-box machine learning algorithm to perform system
identication and obtain the governing dynamics model as
Ordinary Differential Equations (ODEs) for each industrial
system. In the nal third step, the obtained ODEs from step 2
are numerically integrated, to test the accuracy of these models
for dynamic reconstruction. Thus, the models are validated
both qualitatively using visual inspection and quantitatively
using appropriate accuracy testing metrics. These evaluations
are used for accepting the models with appropriate complexity.
Details for implementing these steps and considerations for
data generation, model training and validation are discussed
next.

2.1.1 Step 1 – Data generation using mechanistic models.
The system identication technique relies on the availability of
correct data that can capture the mechanisms of the process.38

For any industrial process, the data can be obtained from the
real-time operations and the same can be used. But oen such
data are proprietary in nature and are not available for the use.
Additionally, for emerging technologies that are not yet under
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5131
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Fig. 2 Methodical schematic of the hybrid mechanistic machine learning approach for industrial network dynamics and sustainability
assessment.
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commercial operations, such data are not available. Hence, the
primary challenge of obtaining data has been proposed to be
overcome through the use of mechanistic process simulations.
In this work, we rely on Aspen Plus and Aspen Dynamics so-
ware, a versatile process simulation tool that can be operated in
the static and dynamic modes, respectively. Aspen Plus aids in
the design and formulation of a process-scale ow diagram
while Aspen Dynamics provides insight into the temporal vari-
ation of the state variables (output) upon the excitation of
control variables (input). The state variables are dened to be
the key parameters of the process system which shows dynamic
variation with time and capture the overall state of the system,
governed by underlying physical and chemical laws. The control
variables are the parameters of a process that can be controlled
by the user and the excitation of the same over time results in
the dynamic variation pattern of the state variables. For
instance, the control variable can be the ow rate or tempera-
ture of the input stream, while the state variable can be the ow-
rate or temperature of the output stream, the heat duty of the
reactor being used in the process as a unit operation, etc.

For data generation, rst we design a process ow-sheet
under “Flow-driven” static conditions using Aspen Plus and
thereaer transfer it to the Aspen Dynamics environment. Once
the ow-sheet is uploaded in the dynamic environment, the
second and most-important step is the qualitative choice of
control variables and the state variables that are of interest.
Ideally, several system variables are chosen in the state space
and based on the non-linear pattern of variation shown by each
throughout the dynamic simulation, the state variables are
nalized. If a state variable does not show dynamic variation to
the excitation used, it is not selected as one of the state variables
for model construction. Additionally, among collinear variables
5132 | Sustainable Energy Fuels, 2023, 7, 5129–5146
only one is selected. In addition to selecting the right state
variables from a quantitative i.e. system dimensionality, and
qualitative i.e. model recovery perspective, it is also important
to choose appropriate control variables that need to be per-
turbed for the system. Importantly, such control variables need
to be close to the realistic perturbation that occurs during the
industrial operations, and have to be meaningful for the later
use of models such as in industrial node–node coupling and
sustainability analyses.

Aer the selection of control variables and state variables,
excitation input is given to the control variable to generate time
series data for state variables in response to the excitation input.
In our study, the forcing function for excitation is written in the
Aspen Dynamics environment using FORTRAN. Key parameters
to set up the dynamic simulation are: (i) type of dynamic jump
given to the control variable such as ramp function or sine-ramp
function; (ii) total simulation time till which the state variables
show dynamics before converging to a stable value; (iii)
sampling time for the time stamp to collect data. The sampling
time is dependent on the total simulation time and the number
of data points required. For instance, if the total simulation
time is 100 hours and 1000 data points are desired for training
models, the sampling time selected will be 0.1 hours.

Eventually the process ow system is initialized at time t =
0 hours with the chosen forcing function of control variables.
The system is then run in the dynamic mode where the dynamic
variation time is assigned in a way similar to the time variation
that occurs in the actual industrial operation for the corre-
sponding control variables. This is done to maintain the
consistency of the computational model with the real world
processes. This dynamic simulation generates a time series
array of data for the selected state variables and control
This journal is © The Royal Society of Chemistry 2023
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variables, which is exported as a CSV le serving to be the input
le for the machine learning algorithm.

For the case of material ows occurring within a large
complex industrial operation comprising smaller sub-
industries, a decoupling scheme can be utilized in order to
ease the computational load on dynamic data generation
providing an easier approach for the convergence of the solu-
tion while using Aspen Plus and Aspen Dynamics. In order to
decouple the industry into sub-industrial nodes, the selection of
nodes for an industrial network is based on the division of the
processes in an industry and the material exchanges occurring
between different industries, in which case the nodes represent
the individual industries that can be easily modeled. To
decouple, the material ows from one “industry” to another
“industry” within the complex is identied and each industry is
modeled separately. This is realistically valid since there exists
different processes comprising several unit operations in an
industry and each process is connected by shared material
interdependencies owing via pipelines.

2.1.2 Surrogate dynamic model construction using the
machine-learning approach. In this step, we use a data-driven
system identication technique to create surrogate models
governing dynamics for each individual industrial node via
utilizing the time series dynamic data generated in the previous
step. Data-driven system identication approaches include
a diverse range of techniques like Symbolic regression,39 Sparse
regression,40 Gaussian processes,41 Sure-independence-
screening sparsifying-operator regressor (SISSO),42 and Deep
learning.43 For this particular work, we utilize the Sparse iden-
tication of non-linear dynamics (SINDy)40 approach for recov-
ering the governing mathematical model for an industrial node
operation. SINDy is based on sparse linear regression that is
highly extensible and requires signicantly fewer data in
comparison to other techniques, for instance, neural networks.
It makes two assumptions about the structure of the model; the
rst one is that only a few essential terms in the space of
possible functions actually govern the dynamics of the chosen
system, thus reducing the dimensionality of the governing
equations making it parsimonious. The second assumption is
that the space of possible functions comes from a predened
set of library functions that a user can either choose or dene.
Both these assumptions hold for a wide range of complex
physical systems following reduced order representation for the
dynamics of the system. Furthermore, SINDy models have
certain advantages over other methods, like having the char-
acteristics of interpretability, tending to generalize the system
over a wide range of control dynamics and also preventing the
model from overtting.

The goal of SINDy is to discover a model for dynamic systems
in the form given in eqn (1).

dðxðtÞÞ
dt

¼ f ðxðtÞÞ (1)

where x(t) ˛ Rn is time-series data of the state variables and the
dynamics encoded by the function f.

For modeling of non-linear dynamic systems with a known
external forcing function given as u(t) ˛ Rn, f(x(t),u(t)) is a linear
This journal is © The Royal Society of Chemistry 2023
combination of non-linear functions of x(t) and u(t). This leads
to eqn 2

x
�

t ¼
Xk

i¼1

xiqiðxðtÞ; uðtÞÞ (2)

where qs are non-linear functions called the candidate terms of
f(x,u) that can comprise a user provided function which can be
of the form constant, polynomial, Fourier, or any custom
dened function as well, while xs are the coefficients of the
terms identied by the SINDy algorithm. It is crucial to choose
the library of candidate functions carefully, and can include any
function that might describe the data. Additionally, numerical
differentiation methods such as nite differences or smoothed
nite differences method are used to calculate the time deriv-
ative of state variable dynamic data that are used in SINDy.

The system in eqn (2) can be written in terms of these data
matrices

_Xt = Q(X(t),u(t))X (3)

SINDy uses a sparsity-promoting optimization algorithm to
identify the sparse matrix of coefficients X, i.e. to select only
a few model terms from a library of candidate functions. The
optimization algorithm is typically based on a regularization
approach that can be L1 regularization such as (LASSO)44 or
Sequentially Thresholded Least Squares (STLSQ),45 L2 regulari-
zation (Ridge Regression),46 TV regularization such as Sparse
Relaxed Regularized Regression (SR3),47 Elastic Nets,48 etc. The
sparsity is controlled by the use of l, which is the regularization
hyperparameter. For the implementation of SINDy, we use
PySINDy,49 a python package that provides various tools to apply
the SINDy approach for model discovery. PySINDy is scikit-learn
compatible and also includes options for user customization.
The data from step 1 are fed to the algorithm and models for
each industrial node, and are iteratively trained with specic l

values, which are tested and validated in the next step.
2.1.3 Model validation and accuracy estimation of surro-

gate dynamic models. Finally, we validate the surrogate models
for dynamic reconstruction using visual and quantitative
approaches. The ODEs obtained from training models are
numerically integrated using an Initial Value Problem (IVP)
approach. To perform this numerical integration, we have
utilized an inbuilt Python function in the PySINDY library. The
arguments for the integration function include (i) the initial
values of the state variable initialized at t= 0 hours, (ii) the array
of values of the control variable expanding up till the total
dynamic simulation time, and (iii) the array of total time up to
which the numerical integration needs to be performed with an
appropriate time step. The selection of the integrator available
also needs to be done in the function. One can choose to use
explicit integration techniques like RK45, DOP853, RK23, etc. or
implicit integration techniques like Radau, BDF, LSODA, etc.
The choice of integrator type is correlated with the system of
ODEs being stiff (implicit integrators) or non-stiff (explicit
integrators). Importantly, depending on the stiffness of the ODE
system, the time step for the total time of integration needs to
be adjusted as well, where the stiff system usually works best for
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5133
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the extremely small time step. As the selection is dependent on
the type of ODE obtained, there is no generalized approach;
however most ODEs potentially can be solved using the avail-
able solvers. In the terminating step, the solution of the system
of ODEs for each of the state variables is obtained as an array of
values spanning across the overall time of integrative simula-
tion, which is also the total dynamic simulation time.

These integrated values from ODEs are used for graphical
visualization of dynamic construction against the simulated
data from mechanistic models, thus qualitatively testing the
accuracy of ODE models to trace the dynamics of the system.
Furthermore, the data from ODE integration are also used for
the calculation of quantitative metrics for model accuracy
testing. From the data obtained via the dynamic simulation of
the mechanistic models, 10% of the dataset has been used for
the quantitative accuracy calculation. There are several metrics
available in the machine learning (ML) literature that can be
used such as Mean Absolute Error (MAE), Mean Square Error
(MSE), R-Squared Error (R2), Root mean Square Error (RMSE),
etc. In our study, we have used RMSE to test the accuracy of the
obtained ODE models for each industrial node. RMSE is very
similar to the Euclidean distance between two data points,
except it takes into consideration all the n data points in the test
set and heuristically denes the normalized distance between
the vector of numerically integrated values and the vector of
dynamically simulated values. RMSE is calculated using eqn (4)
and the model with minimum RMSE is accepted as the surro-
gate model to represent the dynamics of the node.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðŷi � yiÞ2
n

s
(4)
Fig. 3 Variable-transformation coupling of the surrogate models obta
mathematical model for an industrial network.

5134 | Sustainable Energy Fuels, 2023, 7, 5129–5146
where ŷ1,ŷ2,ŷ3,..., ŷn: numerically integrated values of the
system identied ODEs and y1, y2, y3, ..., yn: values obtained
via Aspen Dynamics simulation n: number of data points in the
class of the test data set.

2.2 Coupled nonlinear dynamics analysis for sustainability
assessment of industrial networks

The second part of the methodology focuses on the application of
the nonlinear dynamicmodels obtained in part 1 for sustainability
assessment of coupled industrial networks. To achieve this goal,
the rst step is to couple the models of each industrial node in the
production network via identication of appropriate coupling
parameters in the form of state variables. The second step is the
calculation of selected sustainability metrics (e.g. resource
consumption, emissions, etc.) for long term using integrated
dynamics for the coupled system and scenario analysis based on
varying dynamics of key forcing variables (e.g. water availability).

2.2.1 Coupling dynamic models of industrial nodes for
overall industrial network dynamics. The validated ODEs upon
the accuracy check obtained from the rst part represent the
governing equations for the individual industry node. In order to
couple models to evaluate the coupled dynamics, we rst identify
the coupling parameters, which is used to modify the mathe-
matical model (ODEs) obtained for the state variables of each
individual node. Such modication is performed by replacing the
control variable term of the next node with the coupling variable
term that establishes a conjoining link between the previous and
the next node. The modication of the ODEs in this manner
provides a mathematical model structure of higher dimension,
which consists of all the state variables of the coupled industrial
network. A binary coupling consisting of two individual systems
ined for the individual industrial systems generates a single coupled

This journal is © The Royal Society of Chemistry 2023
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has been portrayed in Fig. 3 where the rst system consists of 3
state variables and 2 control variables, while the second system
also consists of 3 state variables and 2 control variables, but one of
the state variables of System A is the control variable of System B,
which is the coupling parameter. This can be a direct coupling
when industries are co-located and streams are connected or
indirect coupling (also called tele-coupling) in the case when
industries are at a distance but System A provides the input to
System B. Both scenarios can be simulated using the coupled ODE
system set up.

With the modied equations to represent overall network
dynamics, the coupled ODEs can be integrated for user specied
time. The time specied for the numerical integration here should
be less than or equal to the time utilized for running the dynamic
simulation for the least time-consuming mechanistic process
model, since the coupling beyond this time value will not make
physical sense for the coupled node operation. For integration, the
stiffness of the coupled mathematical model needs to be checked
and the type of integrator, whether implicit or explicit, needs to be
selected based on the stiffness of the ODEs.

2.2.2 Sustainability assessment of industrial networks via
coupled dynamics. The overall industrial network dynamics
using the coupled ODEs can be utilized to provide insights into
sustainability issues including resource utilization, minimization
of waste/emissions over time in the whole network, design
parameters for each node to attain overall carbon neutrality in the
supply chain over time etc. In this work, we address three key
challenges for the design of sustainable industrial networks
utilizing the dynamics of the overall network, as described below.

2.2.2.1 Dynamic carbon footprint of industrial networks. A net
dynamic carbon footprint of the whole industrial network can be
calculated using the CO2 sequestration and CO2 generation
proles for each node in the network. For this, it is proposed to
use the coupled surrogate models for resource consumption
(when CO2 is feedstock) and emissions generation (CO2 as emis-
sions from nodes) integrated over time to calculate the net carbon
footprint over time. The benet of utilizing this coupled dynamics
approach is that a more accurate representation of carbon utili-
zation and emissions in the whole network is done by accounting
for the non-linear dynamics of each node in the network. This
overcomes the existing limitation of carbon footprint calculations
in life cycle analysis, which only accounts for static representation
of carbon footprint and does not account for nonlinear interac-
tions between different subsystems of the overall network. For the
ease of understanding and application, the concept is shown on
CO2 only, which can be extended to other GHGs associated with
carbon footprint in future.

2.2.2.2 Identication of optimal control parameter values to
create a carbon negative industrial network. From the dynamical
graphs for overall CO2 sequestration and CO2 emissions, the
control variable values at which the overall network attains the
state of maximum net negative can be obtained, implying the
rate of net CO2 sequestration becomes highest under the steady
state operations. Since these dynamic graphs were obtained by
perturbations of the control variables, the time stamp of the net
negative system can be used to obtain the parameter values of
control variables for all nodes in the network to create an overall
This journal is © The Royal Society of Chemistry 2023
carbon negative industrial network. These identied control
variables values can then be used to operate the individual
nodes at a steady state which will lead to achieve the desired net
negative industrial network on the macroscale. We apply this
technique to design the algal biodiesel network towards a net-
negative industrial network.

2.2.2.3 Quantifying time for sequestering regional energy
emissions. With the information on the rate of carbon seques-
tration in the overall network as discussed above, the total time
required to neutralize the energy production related emissions
can be calculated. The net neutralization time is dened as eqn
(5), where sneutralize is the time needed to neutralize the energy-
related CO2 emissions, [(C)emission]year=A is the overall amount of
energy-related CO2 emissions of a particular region extracted
from the EIA in a specic year A, and (C)in and (C)out are the
rates of CO2 sequestration and generation, respectively, in the
industrial network. These values are calculated with the optimal
control parameters from the previous step, in kg y−1. The value
h signies the number of similar industrial networks working
towards the neutralization of the energy-related CO2 emission.
The assessment of the net neutralization time becomes
important to inform technological scale up necessary for
meeting the climate mitigation goals. For example, if sneutralize is
large such as 100 years, h will need to be increased by higher
investment in the specic technology. This can also be used to
perform a comparative analysis of time required by different
technologies for carbon sequestration.

sneutralize ¼
�ðCÞemission

�
year¼A

h�
h�

C
� �

in
�
�
C
� �

out

i
(5)

3 Results

The hybridized approach proposed has been demonstrated on
the algal biodiesel production network. We consider the
conversion of CO2 and nutrients into biodiesel via the utilization
of technology involving algal strains, which is a promising carbon
capture & utilization technology. Five industrial nodes are
considered in this industrial network, where the prime function
of each node are algae growth, pretreatment, fermentation &
extraction, purication, and anaerobic digestion. Process models
for each of these nodes were developed following an overall
process given by NREL.50 The characteristic details of each
process are given in ESI Section 2† describing the process ow
diagrams of each industrial node in Fig. S2–S6,† along with the
initial values of the state space parameters and the characteristics
of the forcing function for the control variables. Henceforth, we
discuss the results of applying the proposed two part method-
ology to this industrial production network.
3.1 Surrogate dynamic models for nodes in the algal
biodiesel industrial network using the hybrid mechanistic
machine learning approach

3.1.1 Step 1: Data generation using mechanistic models.
To obtain surrogate dynamic models for the network,
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5135
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Table 1 Control variables and state variables chosen for each industrial node in the algal biodiesel production network

Industrial
node

Time of
operation Control variables (CV) CV composition State variables (SV) SV composition

Algae growth 500 hours Flowrate stream G120 Algal complex Flowrate stream
BIOMASS

Algal biomass

Flowrate stream G300 CO2 Flowrate stream O-
EVAP

Gas mixture

Density stream LOSS Water loss
Reactor B4 temperature Initial algae growth reactor

Pretreatment 400 hours Flowrate stream
BIOMASS

Algal biomass Flowrate stream
TANKPROD

Pretreated slurry

Flowrate stream 170 Water Flowrate stream FLASH Water
Reactor NH4TNK
temperature

Ammonia mixing reactor

Fermentation
& extraction

1000 hours Flowrate stream
TANKPROD

Pretreated slurry Flowrate stream
OILPROD

Algal oil

Flowrate stream
RECTBOT

Water

Flowrate stream 230 CO2

Flowrate stream 500 Extraction mixture
Flowrate stream O-
ETOH

Ethanol

Purication 1000 hours Flowrate stream
OILPROD

Algal oil Flowrate stream
COOLRDB

Renewable diesel
blendstock

Flowrate stream O-
NAPTHA

Long carbon chain naptha

Flowrate stream 510 CO + CO2 + H2 + propane
Flowrate stream 450 Phosphoric acid

Anaerobic 1000 hours Flowrate stream 510 CO + CO2 + H2 + propane Flowrate stream
FLUGASLP

Flue gas

Digestion Flowrate stream 520 Hexane + lipid impurities +
water

Flowrate stream 550 Centrifugation mixture

Reactor COMBUST
temperature

Combustion reactor
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mechanistic models (MMs) were designed for each sub-
industrial node which is the process owsheet generated
using Aspen Plus. These models were rstly generated at
a steady state, and then converted to ow-driven Aspen
dynamics models to obtain time series data of each state vari-
able in response to perturbations in control variables (CVs) for
each of the industrial nodes, thus facilitating dynamic
modeling. The control variables and state variables (SVs) to
obtain the time series data for all the 5 industrial nodes are
given in Table 1, along with the underlying details for the
characteristics of each of the variables such as the composition
of the stream. For this work, the CVs have been chosen as the
Table 2 Characteristics of the surrogate model obtained upon the imple
RMSE score metric

Industrial node State variables
Regularization
approach

Regularisati
hyperparam

Algae growth 4 STLSQ 8
Pretreatment 3 STLSQ 7
Fermentation & extraction 5 STLSQ 0.2
Purication 4 TrappingSR3 0.1
Anaerobic digestion 3 STLSQ 3

5136 | Sustainable Energy Fuels, 2023, 7, 5129–5146
input stream ow rates in each of the nodes that represent
material ow streams, therefore providing an ease in the
coupling of industrial nodes and drive the overall network
dynamics. These CVs were also selected in such a way that the
reduced order surrogate models can be used to study the overall
material ow dynamics aligned with the sustainability goals
such as total carbon sequestration, additional resource
consumption and carbon neutrality of the whole production
network over long term. Each node was run for different
numbers of hours, and the total amount of time for each node is
given in Table 1. Based on the dynamic simulation runs, a total
of 10 000 data points were generated for each node in the
mentation of SINDy, and the performance of the model in terms of the

on
eter (l) Function library

RMSE
score Complexity

Complexity
(l = 0)

Polynomial (degree = 3) 11.551 38 336
Polynomial (degree = 3) 4.908 45 168
Polynomial (degree = 3) 0.431 24 140
Fourier (exclude = cosine) 8.156 30 30
Polynomial (degree = 2) 4.102 8 63

This journal is © The Royal Society of Chemistry 202
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network, which was fed to the SINDy algorithm. For training the
MLmodel, a total of 9000 data points were used as a training set
and 1000 data points were reserved for the surrogate model
accuracy testing. The obtained data were standardized before
training the model, a standard protocol followed in the domain
of ML.

3.1.2 Step 2: Surrogate dynamic model construction for
nodes in the algal biodiesel industrial network. Table 2 shows
the characteristics of nal surrogate models identied for each
node using the SINDy algorithm. The nal complexity of the
models is signied by the number of terms present in the
surrogate model with the sparsication approach of SINDy.
This implies that the number of terms in the Ordinary Differ-
ential Equations (ODEs) for each of the state variables is
counted and the net sum calculated is presented as the
complexity of themodel. Additionally, the column for themodel
complexity with the regularization parameter l = 0 shows the
number of terms in the model had it been the case of nonlinear
regression and there was no sparsication involved. As can be
seen for each node, the nonlinear regularization approach
provides a less complex model i.e. a reduced order model that
captures the overall dynamics of the nodes. This leads to ease of
system interpretability and reducing computational load to
simulate the dynamics of industrial node coupling. Hence, the
approach of creating reduced order surrogate models can
provide a powerful tool for studying the overall network
dynamics of coupled industrial production networks as
compared to mechanistic model simulations over long term
due to lower computational needs.

3.1.2.1 Optimization. The surrogate models were obtained
using the optimization approach of sequentially thresholded
least square (STSLQ)45 for the algae growth, pretreatment,
fermentation and extraction, and anaerobic digestion nodes in
the network, and sparse relaxed regularized regression (SR3)
approach47 for the purication node in the SINDy algorithm.
These optimizers are computationally more efficient than
LASSO and converge in a smaller number of iterations towards
a sparse solution, providing bounded ODEs with good accuracy.

3.1.2.2 Regularization for sparsication of models. For
obtaining the accurately performing bounded ODEs based on
the regularization approach, the selection of appropriate regu-
larization hyperparameter l becomes important. Fig. 5 shows
the selection of l for the pretreated slurry state variable in the
pretreatment industrial node. It can be seen in this gure that
model complexity is reduced as the regularization parameter l
increases. However, model accuracy measured by R2 shows that
it remains reasonably close till l = 7. Hence, models of lower
complexity at l = 7 were selected as surrogate models to
represent the dynamics of this block. The nal values of the
regularization hyperparameter l for all blocks were selected
using the same graphical approach and are given in Table 2.
This approach is not bound by the choice of the accuracy metric
since any other accuracy metric will provide a similar kind of
behavior of nding the knee where the accuracy will have
a sudden drop at the hyperparameter value. Fig. 5 represents
the relationship of model accuracy vs. regularization parameter
for the pretreatment industrial node in the algae biodiesel
This journal is © The Royal Society of Chemistry 2023
network. Additionally, the gure shows the reduction in the
complexity of the model as the regularization parameter
increases. In the gure, the rst knee point for the accuracy plot
occurs at l = 7, which is then selected as the regularization
parameter for the model. The selection of such a non-zero
regularization parameter has led to a reduction of model
complexity from 168 (l = 0) to 45 (l = 7).

Fig. 5 also contains the nal learned model for the state
variable of stream owrate of pretreatment slurry of the
pretreatment node at l = 0 and l = 7 for comparison. The
model at l = 0 is the same as the model at l = 7 aer the rst
iteration (of the optimisation). Before the second iteration, the
coefficients with absolute values less than 7, for instance the
terms like x6, x4x6, x52 and others, are set to zero. These terms,
therefore, don't appear in the nal model at l = 7. Terms like
x0u22 and x42u2 with high absolute values at l = 0 don't appear
in the equation at l = 7 because their coefficients in the
subsequent iterations have become less than 7, and therefore
were set to zero.

3.1.2.3 Model characteristics. For most of the nodes in the
algal biodiesel production network, the accurately performing
surrogate models had a second or third order polynomial
function capturing the nonlinearity of different SVs while the
node demonstrating the purication process also shows Fourier
terms which possibly capture the periodic behavior of the state
variables in the system. A total of 20 ODEs representing the 20
SVs were obtained, which describe the dynamics of each block
in the reduced order form driven by the specic set of CVs as
given in Table 1 and themodel characteristics shown in Table 2.

An example, the surrogate model obtained for the dynamics
of the algae growth industrial node is shown in Fig. 4 along with
the process ow diagram for this node. This model captures the
overall dynamics of the algae growth node as ODEs for the SVs
of the biomass ow rate, evaporator loss rate, separator loss
stream as density stream, and reactor temperature in response
to perturbations to inputs of the owrate of the algal complex
and CO2. From Fig. 4, it is observed that the surrogate model for
the algae growth node has a complexity of 38 (dened as the
total number of terms). In contrast, if the regularization
approach was not taken and the model is identied by
nonlinear regression, the complexity would have been 336,
thereby making it a challenging task to analyse and physically
interpret the model. Thus, applying the regularization tech-
nique reduced the number of terms in the model by almost 10
fold. The identied ODEs for the rest of the industrial nodes
that capture the dynamics are given in detail in ESI Section 3.†

3.1.3 Step 3: Model validation and accuracy estimation of
surrogate models for the algal biodiesel industrial network. The
ODEs obtained as surrogate models for state variables of each
node are IVPs which were solved using the LSODA solver of
Python. Due to the multiple time scale of variations of different
state variables i.e. some variables varying at a more rapid rate
than other variables in the system, these ODEs were stiff, thus
leading to an anomaly during integration. In order to solve the
stiffness challenge, the integration for the system of ODEs is
therefore performed with an extremely small time step of the
order 10−5.51 For solving the ODEs obtained using the LSODA
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5137
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Fig. 4 Surrogate mathematical model for the algae growth node in the algal biodiesel production network.
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solver with an extremely small time step, the dataset of control
variables has been expanded using the cubic interpolation
technique between two subsequent data points in order to
generate the optimal number of data points. Since the time step
of 0.00005 hours has been used in the integration of ODEs for
most of the nodes, the interpolation has been performed to
generate t/0.00005 data values, where the ‘t’ signies the total
time of dynamical simulation using Aspen Dynamics.

3.1.3.1 Qualitative testing. The integrated values were used
for qualitative accuracy testing by constructing the dynamic
reconstruction plots for state variables and comparing against
the originally obtained data from mechanistic simulations. The
reconstruction plots for each node have been shown in Figures
S13–S17 in ESI Section 4,† where the reconstruction has been
plotted for the entire dynamic simulation time taken by the
individual nodes. An example is shown in Fig. 6, where the
reconstruction of state variables for each state variable in the
algae growth node has been plotted for a smaller time frame.
The graph in blue signies the originally obtained data from the
Aspen Dynamics simulation, while the graph in orange portrays
the array of numerically integrated values obtained from the
surrogate mathematical models. From the visual representation
of the reconstructed plots, it is evident that the surrogate
mathematical model performs well for the entire set of the
dynamic data that has been obtained for most of the non-
temperature based state variables. The poor reconstruction of
5138 | Sustainable Energy Fuels, 2023, 7, 5129–5146
temperature-based state variable is due to the absence of energy
balance in the node. This implies that the mechanistic models
that has been designed portrays an optimal material balance
but fails to account for the energy balance. The design can be
further improved via utilization of heat exchangers at the
precise location in the node structure ow diagram which will
regulate the temperature parameter, thus enabling SINDy to
effectively learn from the new training data set for the temper-
ature state variable and allowing a better reconstruction plot for
this state variable.

3.1.3.2 Quantitative testing. Integrated values were also used
to calculate RMSE for quantitative accuracy testing using eqn
(4). RMSE was calculated against the test data set of 1000 data
points reserved from the originally obtained data. The model
performance is classied to be better when the value of the
RMSE score is low. The RMSE score for each node has been
tabulated in Table 2.

Aer the visual and quantitative validation, the ODEs were
accepted as surrogate models for further investigation of
network dynamics. It is to be noted that most of the white-box
ML algorithms which aid in the system identication and
interpretation oen offer lower accuracy than other black-box
predictive algorithms; however they provide ODEs that can be
coupled to study overall network dynamics. Additionally, the
surrogate models obtained upon the use of the SINDy algorithm
also accumulates errors while undergoing the numerical
This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Correlation of the accuracy and complexity with the regularization hyperparameter. When the hyperparameter exceeds a value of 7, there
is a stark drop in the accuracy. The equation below for the pretreated slurry state variable distinguishes between the complexity for hyper-
parameter values of 7 and 0 respectively.
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integration procedure; therefore the low accuracy is also
accounted due to the numerical integration operation.
3.2 Coupled nonlinear dynamics analysis for sustainability
assessment of the algal biodiesel industrial network

The validated surrogate models as ODEs were next utilized for
dynamic sustainability assessment of the overall network. To
achieve this goal, we rst couple the individual node models for
obtaining overall dynamics of network 3.2.1 and then evaluate
the dynamic carbon footprint of the overall network along with
potential time for sequestering energy related emissions using
the algal biodiesel network 3.2.2.
This journal is © The Royal Society of Chemistry 2023
3.2.1 Coupling dynamic models of nodes for overall algal
biodiesel network dynamics. In order to couple the surrogate
models of individual nodes to obtain overall network dynamics,
we rst identify the coupling variables to link the dynamics of
each node following the approach shown in Fig. 3. The variables
mapping to exchange of materials between nodes are used as
the coupling variables. For example, the coupling parameter
between the Algae Growth Block and the Pretreatment Block in
the network is the “BIOMASS” streamow. Other coupling
variables for all the other nodes are shown in Fig. 7, where the
green arrows signify the control variable for node dynamics, the
black arrows signify the state variables, and the blue arrows
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5139
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Fig. 6 Dynamic Reconstruction visualization plotted for a time length of 10 hours of the 4 state variables obtained for the algae growth industrial
node in the algal biodiesel production network.
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signify the state variables which are also the coupling param-
eter. Once all the coupling variables are identied, the surrogate
ODEs for each block are modied by renaming the SVs to link
the ODEs of two nodes which creates a coupled ODE model for
overall network dynamics. This modication leads to the vari-
able name alteration of the control variable of the subsequent
node with the name of the SV of the direct previous node. The
modied ODEs that represent a coupled ODE model for overall
algal biodiesel network dynamics is given in ESI Section 3.† This
coupled ODE model is next numerically integrated for different
initialization values of the SVs found at t= 0, for a specic set of
the CVs and perturbation signals to CVs.

3.2.2 Sustainability assessment of the algal biodiesel
industrial network via coupled dynamics. The coupled ODE
model representing overall network dynamics is solved using
the LSODA solver from the solve_ivp class in Python. The
numerical integration operation was run for an overall compute
time of 50 hours for a time step of 0.00005 hours, generating the
dynamic projection of the network for 50 hours. In this algal
biodiesel network, each node has its own dynamics of CO2

emissions and sequestration. Particularly, the algae growth
node sequesters a high amount of CO2 while also generating
a small amount of CO2, whereas the fermentation & extraction
node and the anaerobic Digestion & CHP node are the major
sources of CO2 emission. With the use of solved values obtained
via the numerical integration of coupled surrogate ODEmodels,
5140 | Sustainable Energy Fuels, 2023, 7, 5129–5146
optimal decision making can be enforced to reduce the carbon
footprint of the entire network by accounting for the dynamics,
eventually strategizing towards carbon neutrality of the whole
industrial network, as we show in the following analyses.

3.2.2.1 Dynamic carbon footprint of the algal biodiesel
industrial network. To calculate the dynamic carbon footprint
for the network, the streams (SVs) representing CO2 sequestra-
tion and emissions were calculated over time using numerical
integration of coupled ODEs for 50 hours. The CO2 sequestra-
tion streams are G300 and CO2-Rec in the algae growth node,
where G300 is also a CV whereas CO2-Rec is a standalone input
state variable (showing resource consumption). The CO2 emis-
sion streams are O-EVAP in the algae growth node, stream 230
from the Fermentation & Extraction node and stream FLU-
GASLP from the anaerobic digestion & CHP node. The simula-
tion of coupled ODEs for the whole network enables calculation
of the net CO2 footprint in the network accounting for all
internal non-linear dynamics of each node and node
interactions.

With the given perturbation, the total CO2 sequestered over
50 hours is 4 516 196.43 kg in the whole network, calculated by
numerical integration and adding the streams G300 and CO2-
REC. Similarly, the array of values obtained aer numerical
integration of coupled ODEs for the streams O-EVAP, 230, and
FLUGASLP was combined for the run of 50 hours, and again
integrated using the Simpson method to obtain the total
This journal is © The Royal Society of Chemistry 2023
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Fig. 7 Block flow visualization of the algal biodiesel production network functioning in the coupled manner with the material exchange shown
among the 5 individual industrial systems.

Fig. 8 Net amount of CO2 sequestered evaluated upon calculating the area under the curve of the net CO2 sequestration rate (green), and net
amount of CO2 produced evaluated upon calculating the area under the curve of the net CO2 production rate (red).
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amount 3 031 126.96 of CO2 generated in the network. The net
carbon footprint is calculated by subtracting the amount of CO2

sequestered with the amount of CO2 generated, thus giving us
a net carbon footprint of −1 485 069.47 kg of CO2, thus estab-
lishing that the network in the entirety of its operation has
consumed 1 485 069.47 kg of CO2 for the 50 hours of processing.
Visually, temporal CO2 sequestration and emissions are shown
in Fig. 8 and the area under the curve gives the total seques-
tration and emissions over the time scale.

3.2.2.2 Identication of the optimal control parameter value to
create a carbon negative algal biodiesel industrial network. Next,
we utilize the dynamic prole of CO2 emissions and seques-
tration to identify the values of control variables that lead to
a maximum difference between the rate of CO2 sequestration
and the rate of CO2 emissions. For this production network
where the coupled ODEs have been solved for 50 hours, the time
stamp of the maximum difference occurs at 31.45 hours, as
observed from Fig. 9. This indicates that if the entire network is
operated with the control parameter obtained at t= 31.45 hours
from the data set of control variables, the network will achieve
This journal is © The Royal Society of Chemistry 2023
the best case scenario of carbon negativity, always sequestering
a specic amount of CO2. This provides the optimal value of the
control variable to operate the network in a steady state for
maximum net carbon sequestration. The control variables for
the entire network are the four stream ow rates viz. G120 and
G300 in the algae growth node, 170 in the pretreatment node,
and 520 in the anaerobic digestion node (refer to Fig. 7 for
stream composition). An important step is the validation of the
hypothesis about the network representing the best case
scenario for carbon negativity, which was performed by running
the Aspen steady state simulation on the mechanistic models
with the values of control variables found at 31.45 hours while
the stand alone stable input values were the same, since they do
not change.

Furthermore, in order to establish that the parameter values
at t = 31.45 hours lead to the best case carbon negative
ecosystem, the hypothesis was tested by extracting the values of
the control parameters at a time stamp of 22.85 hours, which is
the worst case carbon negative scenario, and at a random time
stamp of 19.9 hours which is neither the best case C-negative
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5141
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Fig. 9 Control parameters obtained for the three scenarios of the carbon negative network via the implementation of the proposed hybrid
mechanistic machine learning approach.
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nor the worst case C-negative. Again, the “worst case carbon
negative” here implies that the network stays carbon negative,
but here the difference between the rate of CO2 sequestration
and the rate of CO2 generation is minimum. Therefore, the
parameters found at these three time stamps were used to run
the Aspen steady state simulation and the hypothesis was vali-
dated with the sequestration rate value obtained for the best
case C-negative scenario to be the highest while the value found
out in the worst case C-negative scenario was the lowest. From
Table 3 Total time required (in years) to sequester the regional energy-re
2050 using three different capacities of the algal biodiesel network utiliz

Region/year 1970 1975 1980 1985 1990 1995 2000

n = 50 RDB throughput = 6.273 MMT per year
Pacic 36.4 39.5 43.5 42.3 48.4 48.7 53.3
Mountain 16.9 22.1 26.8 29.1 34 36 42.2
West Midwest 29.1 32 34.6 34.8 37.7 41.6 45.5
East Midwest 90.5 91.6 88.9 81.2 85.1 89.2 97.5
New England 18.3 16.6 14.8 14.8 16 15.6 17.1
Middle Atlantic 67.3 59.9 58.6 51.5 54.3 55.2 57.5
West South Central 55.5 62.1 77 75.7 84.1 88.7 98.7
East South Central 28.5 30.8 33.6 33.3 35.8 41 44.8
South Atlantic 54.6 58.3 66.4 67.4 73.8 79.6 91.4

n = 75 RDB throughput = 9.41 MMT per year
Pacic 24.3 26.3 29 28.2 32.2 32.4 35.5
Mountain 11.3 14.7 17.9 19.4 22.7 24 28.2
West Midwest 19.4 21.3 23 23.2 25.1 27.7 30.3
East Midwest 60.3 61.1 59.3 54.2 56.7 59.5 65
New England 12.2 11.1 9.8 9.9 10.7 10.4 11.4
Middle Atlantic 44.9 39.9 39 34.3 36.2 36.8 38.3
West South Central 37 41.4 51.3 50.5 56 59.1 65.8
East South Central 19 20.5 22.4 22.2 23.9 27.3 29.8
South Atlantic 36.4 38.9 44.3 44.9 49.2 53 60.9

n = 100 RDB throughput = 12.546 MMT per year
Pacic 18.2 19.7 21.8 21.2 24.2 24.3 26.6
Mountain 8.5 11 13.4 14.6 17 18 21.1
West Midwest 14.6 16 17.3 17.4 18.8 20.8 22.8
East Midwest 45.3 45.8 44.4 40.6 42.6 44.6 48.7
New England 9.1 8.3 7.4 7.4 8 7.8 8.6
Middle Atlantic 33.7 30 29.3 25.7 27.2 27.6 28.7
West South Central 27.8 31.1 38.5 37.9 42 44.3 49.3
East South Central 14.3 15.4 16.8 16.6 17.9 20.5 22.4
South Atlantic 27.3 29.2 33.2 33.7 36.9 39.8 45.7
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these simulations at the steady state, the carbon negative rate
(rate at which CO2 is being sequestered) for the best case was
found out to be 29 750.34 kg h−1, while the carbon negative rate
for the worst case and random case scenario was evaluated to be
28 956.14 kg h−1 and 29 687.11 kg h−1 respectively.

The evaluated values of the sequestration rate upon valida-
tion imply that the optimal control parameter for the best case
carbon negative scenario for the network exists at t = 31.45
hours for a 50 hour coupled operation. The four control variable
lated CO2 emissions that are generated for the year 1970 up till the year
ed in this research

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

54.2 49.3 48.5 43 46.3 46.6 45.5 46.1 47 48.6
45.3 44 42.4 37.4 35.1 34.4 34 34.9 35.6 36.5
47.6 47.6 44.7 39.8 38.6 38.8 38.3 37.6 38 38.5
98.6 90.1 82.3 68.5 70.4 67.2 66.4 67.5 68.4 69.6
17.8 15 14.2 11.9 12.5 11.8 11.6 11.5 11.4 11.5
58.2 51 47.7 39.3 45.3 43 41.8 41.6 42.6 43.1
94.6 92.5 93.4 88.3 88.7 90.3 91.1 90.6 92.1 95.4
46 42.8 38.3 32.4 32.7 29.6 28 28 28.7 28.9
97 89.1 80.3 68.4 70 69.9 67.7 68.1 68.6 70.2

36.1 32.9 32.3 28.6 30.9 31 30.4 30.8 31.3 32.4
30.2 29.4 28.2 24.9 23.4 22.9 22.7 23.2 23.7 24.3
31.7 31.7 29.8 26.5 25.8 25.9 25.5 25.1 25.3 25.7
65.7 60.1 54.9 45.7 46.9 44.8 44.3 45 45.6 46.4
11.9 10 9.5 7.9 8.3 7.8 7.7 7.7 7.6 7.7
38.8 34 31.8 26.2 30.2 28.7 27.9 27.7 28.4 28.7
63.1 61.7 62.2 58.9 59.1 60.2 60.7 60.4 61.4 63.6
30.6 28.5 25.6 21.6 21.8 19.7 18.7 18.6 19.1 19.3
64.7 59.4 53.5 45.6 46.7 46.6 45.1 45.4 45.7 46.8

27.1 24.7 24.2 21.5 23.1 23.3 22.8 23.1 23.5 24.3
22.7 22 21.2 18.7 17.6 17.2 17 17.4 17.8 18.3
23.8 23.8 22.4 19.9 19.3 19.4 19.1 18.8 19 19.3
49.3 45.1 41.2 34.3 35.2 33.6 33.2 33.7 34.2 34.8
8.9 7.5 7.1 5.9 6.2 5.9 5.8 5.7 5.7 5.8

29.1 25.5 23.9 19.6 22.6 21.5 20.9 20.8 21.3 21.6
47.3 46.3 46.7 44.2 44.4 45.2 45.6 45.3 46.1 47.7
23 21.4 19.2 16.2 16.4 14.8 14 14 14.3 14.5
48.5 44.5 40.1 34.2 35 34.9 33.8 34 34.3 35.1

This journal is © The Royal Society of Chemistry 2023

https://doi.org/10.1039/d3se01032e


Paper Sustainable Energy & Fuels

Pu
bl

is
he

d 
on

 0
2 

Se
pt

em
be

r 2
02

3.
 D

ow
nl

oa
de

d 
by

 P
ur

du
e 

U
ni

ve
rs

ity
 o

n 
11

/1
7/

20
23

 1
2:

42
:3

9 
A

M
. 

View Article Online
values extracted for each of the three cases are shown in Fig. 9.
Thus, utilizing the overall dynamics of the network, we can
identify the optimal value of control variables to operate this
network at the steady state for creating a net carbon negative
industrial network. This steady state rate of carbon sequestra-
tion in the network is next used to calculate the time required
for mitigating the energy related emissions in a region.

3.2.2.3 Time to sequester regional energy related CO2 emis-
sions using the algal biodiesel network. We utilize the best case
carbon sequestration scenario of 29 750.34 kg h−1 based on the
optimal control variables at t = 31.45 hours to operate the
industrial network at the steady state. At this rate, the algal
biodiesel network will sequester 2.60 × 108 kg CO2 per year.
Table 3 provides spatial accumulation of the US states into 9
major geographical regions,52 where the time (in years) to
sequester the energy related CO2 emissions present for
a particular year from 1970 to 2050 has been detailed for
different numbers of the algal biodiesel network. These three
cases involve 50, 75, and 100 of the same bio-diesel network
giving a total algal biodiesel throughput of 6.273 MMT per year,
9.41 MMT per year, and 12.546 MMT per year respectively.
These values are close to the existing capacity of soybean bio-
diesel production with 68 plants operating at a capacity of about
10.009 MMT per year,53 and hence the proposed expansion for
biodiesel production capacity seems reasonable.

Table 3 shows the time required to sequester energy related
emissions in various regions for different years and future
projections using this algal biodiesel network. As can be seen,
increasing the number of plants allows the mitigation of the
carbon emissions sooner, and hence rapid efficient investments
into algae based technology can provide sustainable solution to
both the energy crisis and goal of removing atmospheric carbon
emissions. From Table 3, it can be inferred that the Mountain
and New England region has the shortest set of time frames
among other regions required to neutralize the CO2 footprint,
with the future outlook for 50 biodiesel networks being in the
order of 35 years and 11 years respectively. In contrast, the West
South Central and the East Midwest regions requires a longer
time to neutralize among other regions, where the future
outlook for 50 biodiesel networks has the timemagnitude of the
order of 90 years and 68 years respectively. This kind of
analytical inference provides insight into the spatial distribu-
tion of such algal biodiesel networks that can be established in
the entire US region for the sequestration of energy related CO2

in an optimal timeframe; for instance, more biodiesel network
plants in the West South Central and East Midwest regions
while fewer plants in the Mountain and New England regions
can be established from a set of N such networks. The amount
of N here has been hypothetically varied among three different
values of 50, 75, and 100 networks; however, from the viewpoint
of realistic establishments and set-ups of these plants it is
important to set the limit of such networks in accordance with
the availability of the chemical precursors and supply of the
upstream materials required to be processed into algal
biodiesel.

In our work, the mechanistic model has been designed
based on the plant situated at NREL in Colorado. Using the
This journal is © The Royal Society of Chemistry 2023
energy-related CO2 emission in Colorado for the year 2020 of
79.9 × 109 kg,54 the time taken to completely neutralize the
emission in the presence of 10 algal biodiesel carbon sinks was
calculated using eqn (5), which gives a value of approximately 36
years. This implies that if there exist 10 such algal biodiesel
networks operating with the same control technology in the
state of Colorado, the atmospheric energy-related CO2 accu-
mulated in the year 2020 will be neutralized completely in 36
years. The high values of years shown in Table 3 needed to
neutralize energy related emissions in different US regions
indicate that more aggressive policies need to be implemented
for achieving the goal of creating net zero systems.

4 Conclusions

The hybrid mechanistic machine learning approach proposed
in this work provides a robust computational approach for
studying the overall dynamics of industrial networks. Utilizing
the surrogate models built for the dynamics of each individual
node and coupling these models to study the overall dynamics
of resource consumption and emissions etc., help in the eval-
uation of the industrial network to meet the sustainability goals
over time. As industrial networks are large complex systems,
modeling the dynamics of a whole integrated industrial
network with a large number of nodes proves to be challenging
and computationally prohibitive. Hence, this data driven
approach to build surrogate models overcomes a major chal-
lenge to study the overall dynamics of industrial networks by
preserving the essential dynamics of each node in the surrogate
models. The nonlinear mathematical surrogate models that are
obtained capture the precise functional relationship among
several parameters existing in the state space and control space
of the industrial network, thus giving insight into key variables
effecting the overall dynamics of the network.

A crucial aspect of sustainability assessment of such complex
networks is the temporal behavior of the overall system under
various external forcing functions and accounting for the
nonlinear interactions between the nodes. Existing sustain-
ability assessment methods such as process life cycle assess-
ment (LCA) or dynamic LCAs do not address this aspect and
focus mainly on the linear extrapolation of relationships
between two nodes of the system, thus missing a true dynamic
evaluation of the overall system. Here, as the surrogate model
coupling allows for accounting for nonlinear interactions
between nodes, this approach is able to capture the dynamic
behaviour of the overall system for the evaluation of resource
consumption and emissions etc. Utilizing this strength of the
proposed approach, we demonstrate calculation of the net
carbon footprint for industrial networks. It is more precise to
analyze the carbon footprint using the mathematical model,
where the precision can be attributed to capturing the nonlinear
relationship of the ow of CO2 with other industrial variables
existing in the state space and control space. In our case study,
the algal bio-diesel network is a carbon sink as the net carbon
footprint comes out to be negative. This provides a way to
accurately evaluate the net carbon footprint of emerging
industrial networks based on carbon capture technologies
Sustainable Energy Fuels, 2023, 7, 5129–5146 | 5143
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accounting for complex dynamics of interactions between
different industries in the network. Hence, this proposed
approach can be applied to quantify the carbon footprint of
various industrial networks utilizing the data collected from
each industrial node and developing dynamic models for each
node. Such data collection will become easier as more indus-
tries adopt automated manufacturing processes and sensor
data are readily available.

Another crucial aspect for emerging industrial networks is
identifying the design and optimal parameters for the most
sustainable network. Most sustainability assessment methods
provide a comparative analysis of different designs, thus
showing if one design is better than the other. However, these
methods do not help in identifying the most sustainable design
by analyzing the dynamics of the overall system under consid-
eration. In this hybrid mechanistic machine learning approach,
the surrogate models not only inform the industries about the
mathematical relationship between state variables and the
underlying governing equation that exists behind an industry
operation, but can also be used to inform the industries on how
to effectively design the process and identify the optimal values
of control variables of the overall network to meet the sustain-
ability goals. This has been demonstrated in the undertaken
case study where the surrogate model for the coupled algal
biodiesel industrial network has successfully provided the
information on the values of 4 principal control parameters viz.
owrate of the algal complex, owrate of CO2 required for algal
growth, owrate of water required for pretreatment, and ow-
rate of lipid impurities to anaerobic digestion. The operation of
the industrial network at the optimal control values (identied
from the dynamics of emissions and sequestration) sequesters
the highest amount of CO2 in the network at a rate of 29 750.34
kg h−1. Such utility of surrogate models for the coupled
dynamics of the overall network bridges an important research
gap existing for the sustainable design of the industrial
networks. Again, industries implementing the IoT can use
sensor data to develop surrogate models that can be used in the
proposed approach for informing the design of industrial
networks towards net zero emission operation or net carbon
negative operation.

Subsequently, with the control values set and the network
operating at the best possible carbon sequestration rate, the
time necessary for complete neutralization of energy-related
CO2 emissions in a particular region can be evaluated based
on the available valid data for different years. Such a type of
surrogate model facilitated assessment for a regional industrial
network can aid policymakers and government organizations to
effectively make decisions and implement the policy for the
establishment of industrial carbon sinks at certain geospatial
locations where the years for net neutralization of energy-
related CO2 are well optimized. In each of these applications,
the hybrid mechanistic machine learning approach offers
a unique advantage over traditional methods. Via a combina-
tion of the strengths of mechanistic modeling and machine
learning, it can create accurate and reliable surrogate models of
complex systems which can capture the dynamics of the system,
allowing for the design of macroscale networks. Since this
5144 | Sustainable Energy Fuels, 2023, 7, 5129–5146
approach is exible and modular as data from different systems
can be integrated, it can therefore be applied to a wide range of
systems and processes, from plant scale, supply chains, indus-
trial symbiosis to waste management. Additionally, since the
hybrid approach is data-driven, it can learn from the data as and
when available from sensors, allowing it to continuously
improve its models and predictions as more data becomes
available. This makes it a powerful tool for dealing with the
complexity and uncertainty of real-world manufacturing
industrial networks.

However, the approach will face some challenges as the
complexity and size of the industrial network increase. These
challenges include handling of stiff nonlinear surrogate
models, iterative training for varying dynamic regimes, and
signicant domain expertise to facilitate the coupling of ODEs.
These challenges can easily be overcome with the increase in
computational power, utilizing advanced numerical integration
methods specically designed for stiff systems such as LSODA
used in this work, higher availability of sensor data from
automated manufacturing systems, etc. The domain expertise is
an invaluable skill and cannot be replaced in the foreseeable
future. Furthermore, the non-availability of the temporal data
that have been used in the algorithm can prove to be a big
challenge in benchmarking and validation of the models since
the data are oen proprietary in nature. However, the models
can be regenerated and updated accordingly upon the avail-
ability of the data, thus maintaining the novelty of the proposed
methodology and assessment technique.

The proposed approach of amalgamating mechanistic
modeling with the machine learning approaches set forth
a novel way of the nonlinear dynamic assessment technique
and design of industrial networks in the domain of sustain-
ability science and industrial ecology. Resonating with the
emphasis on the transition towards dynamic sustainability
assessment,55 this research study proves to be one of the rst
steps amidst upcoming novel techniques that exist enabling an
efficient quantication and assessment of the sustainability
metrics of the industries. As physics informed machine
learning approaches have shown great promise in novel mate-
rial discovery, chemical engineering design, reaction pathways
etc., this paper demonstrates that design of complex industrial
networks can benet signicantly from this hybrid approach.
While in this work we have only used the SINDy approach,
numerous other algorithms can be used to improve the inter-
pretable surrogate models for industrial systems. Furthermore,
the approach is scalable to expand the size of the network, as
new industries can be added into the system with their own
surrogate model for the new node. For instance, in our case
study of the algal biodiesel production the network consists of 5
industrial systems for which the surrogate models have been
coupled. The networked surrogate model for these 5 industries
can be changed with the addition of an extra industrial system
of the hydrogen production process where the exchange of
hydrogen gas takes place between the hydrogen production and
the purication process. Thus, in this way any existing indus-
trial network of interest can be expanded if a new industrial
system is introduced with which there exists certain material
This journal is © The Royal Society of Chemistry 2023
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interdependency. If the regional industrial network needs to
test a novel technology, it can also be inserted as a surrogate
model to simulate and design the network. The technique can
also be expanded to study other sustainability metrics such as
water consumption, other resource consumption etc. that are
relevant for the network, and thus a multivariable design space
for sustainable operation of the industrial network can be
explored. The assessment of the dynamic impacts of circular
economy implementation via reuse of waste material (such as
wastewater) is also feasible through this approach.

In conclusion, to meet the future goals of sustainable
development, a macroscale design assessment of industrial
networks is necessary accounting for the dynamics of overall
networks. This hybrid mechanistic approach helps in dynamic
coupling between several individual industrial nodes, thus
helping to evaluate design space for using emerging technolo-
gies in a synergistic manner with existing industries. The
approach also provides modularity to study the overall
dynamics of industrial networks, as the recovered surrogate
models can be coupled with many systems. The coupled
dynamics of the overall network(s) can be used to inform the
most sustainable design for emerging industrial networks in
terms of overall resource requirement, carbon capture potential
and emissions by accounting for the non-linear interactions
between different nodes of the networks over time.
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