Winning the lottery with neural connectivity constraints: faster learning across cognitive tasks with

spatially constrained sparse RNNs

Mikail Khona*!2, Sarthak Chandra*™3, Joy J. Mal?, and Ila R. Fiete!?

'Massachusetts Institute of Technology
2Physics, MIT
3Brain and Cognitive Sciences, MIT

"Denotes equal contribution

Abstract

Recurrent neural networks (RNNs) are often used to model circuits in the brain, and can solve
a variety of difficult computational problems requiring memory, error-correction, or selection
(Hopfield, 1982; Maass, Natschldger, & Markram, 2002; Maass, 2011). However, fully-connected
RNNs contrast structurally with their biological counterparts, which are extremely sparse
(~ 0.1%). Motivated by the neocortex, where neural connectivity is constrained by physical
distance along cortical sheets and other synaptic wiring costs, we introduce locality masked
RNNs (LM-RNNs) that utilize task-agnostic predetermined graphs with sparsity as low as 4%.
We study LM-RNNs in a multitask learning setting relevant to cognitive systems neuroscience
with a commonly used set of tasks, 20-Cog-tasks (Yang, Joglekar, Song, Newsome, & Wang,
2019). We show through reductio ad absurdum that 20-Cog-tasks can be solved by a small
pool of separated autapses that we can mechanistically analyze and understand. Thus, these
tasks fall short of the goal of inducing complex recurrent dynamics and modular structure in
RNNs. We next contribute a new cognitive multi-task battery, Mod-Cog, consisting of upto
132 tasks that expands by ~ 7-fold the number of tasks and task-complexity of 20-Cog-tasks.
Importantly, while autapses can solve the simple 20-Cog-tasks, the expanded task-set requires
richer neural architectures and continuous attractor dynamics. On these tasks, we show that
LM-RNNs with an optimal sparsity result in faster training and better data-efficiency than fully

connected networks.



1 Introduction

Connectivity in biological neural networks are constrained by wiring-length costs, with a preference towards
shorter synapses. The neocortex is effectively a two dimensional sheet which geometrically restricts physical
distances between neurons — correspondingly, the spatial extent of connectivity in cortical circuits has been
found to be significantly skewed towards shorter connections(Ercsey-Ravasz et al., 2013; Markov et al., 2013;
Theodoni et al., 2022) (in particular connectivity extent appears to follow an exponential distribution).

Inspired by such biological constraints, we modify the architecture of a vanilla fully-connected RNN in
one particular fashion — we construct a fixed sparse graph chosen by allowing local connections among
neurons laid on a two-dimensional sheet. We then use this sparse graph for the RNN, by only training
weights between nodes that correspond to edges on the graph, and setting all other weights to zero. We
refer to an RNN in this set up as a ‘Locality Masked RNN’ (LM-RNN). Another motivation for our work
comes from continuous attractor network models of grid cells (Khona, Chandra, & Fiete, 2022), where it
was shown analytically that fixed and local topographic connectivity encouraged the formation of discrete
modules.

Exploiting such simple locality constraints in LM-RNNs, when applied to multitask regimes relevant to
cognitive systems neuroscience, results in distinct advantages: these networks require far fewer parameters to
train, there is no cost to performance relative to an unconstained network, and in fact learning is more rapid,
sample-efficient and can acheive higher asymptotic performance. In contrast to other machine-learning
approaches to network sparsification (see related work), we do not need any sophisticated pruning methods,
any algorithms to construct and modify sparse skeletons nor any training data.

We focus our results on multitasking regimes for RNNs, by training them to simultaneously learn many
cognitive tasks. We expect our results on the improvements conferred by LM-RNNs to primarily apply in
this multitask learning setting, where the recognition of modular structure across tasks is important for
generalization and effective learning.

Our main contributions are summarized by:

e We show that LM-RNNs can perform as well or better than dense networks, when accounting for
the total number of nodes or the total number of synapses. Locality masking is thus an efficient
prescription for choosing sparse subnetworks in a task agnostic and data independent fashion while

still achieving high performance.

e We show that LM-RNNs reach this high performance faster and with lesser training than dense
networks, indicating that sparse networks may be preferable to dense networks in memory and

data-limited regimes for learning multiple tasks.



e We show that the tasks defined in (Yang et al., 2019) (an increasingly commonly used set of 20
tasks (Driscoll, Shenoy, & Sussillo, 2022; Hummos, 2022; Flesch, Nagy, Saxe, & Summerfield, 2022;
Marton, Lajoie, & Rajan, 2021; Riveland & Pouget, 2022; da Costa, Popescu, Leech, & Lorenz, 2019;
Duncker, Driscoll, Shenoy, Sahani, & Sussillo, 2020; Masse, Rosen, Tsao, & Freedman, 2022; Kao,
Jensen, van de Ven, Bernacchia, & Hennequin, 2021) to study representations in networks performing
many cognitive tasks) can be solved by a small pool of unconnected autapses, which is essentially a

feedforward structure.

e Despite not have any lateral recurrent connections, the pool of autapses shows the existence of cell
clusters according to the nodal task variance metric used in (Yang et al., 2019). Thus, our work reveals
the limitations of using correlations or covariances between neurons to study recurrent mechanisms of
computation. The shared inputs and input weights are a fundamental confound when using metrics
such as nodal task variance used in (Yang et al., 2019). We thus highlight the need for creation of

better metrics.
e We mechanistically study how this pool of unconnected autapses solves 20-Cog-tasks.

e We then introduce Mod-Cog, a large battery consisting of upto 132 tasks inspired by cognitive science
problems such as interval estimation, mental navigation and sequence generation which provides a
useful setting to examine multitask learning and representation across tasks relevant to cognitive

systems neuroscience.

1.1 Related work

Recent work has shown that effective pruning in recurrent networks can be done by biologically pruning
plausible algorithms based on noise correlations between the presynaptic and postsynaptic neurons (Moore
& Chaudhuri, 2020) that preserve the spectrum. In vision neuroscience, recent works have studied cortical
topography by using a pretrained vision frontend with a readout layer with an additional spatial loss
to encourage spatially nearby cells to have correlated receptive fields (Finzi, Margalit, Kay, Yamins, &
Grill-Spector, 2022; H. Lee et al., 2020; Obeid & Konkle, 2021). Other work has studied representations in
RNNs trained to do simple tasks that have been embedded in 3-dimensional space (Achterberg, Akarca,
Strouse, Duncan, & Astle, 2022).

Several works in the realm of machine learning have tried to operationalize the idea of sparsity. These
methods can be roughly categorized into 2 main classes:

Dense-to-sparse Ref. (Han, Pool, Tran, & Dally, 2015) experimentally showed that training followed

by pruning and retraining can give sparse networks with no loss of accuracy and ignited an interest in



pruning methods. Following this work, the lottery ticket hypothesis states that dense, randomly-initialized,
feed-forward networks contain subnetworks (“winning tickets”) that — when trained in isolation — reach
test accuracy comparable to the original network in a similar number of iterations (Frankle & Carbin, 2018).
The best method to identify such winning tickets is Iterative Magnitude-based Pruning (IMP) (Frankle
& Carbin, 2018; Frankle, Dziugaite, Roy, & Carbin, 2019), which is computationally expensive and has
to be run thoroughly for every different network. It has also been shown that parameters of the sparse
initialization distribution and sign of weights at initialization are important factors (Zhou, Lan, Liu, &
Yosinski, 2019) which determine winning tickets. Overall, iterative pruning and retraining methods involve
3 steps: (1) pre-training a dense all-to-all model, (2) pruning synapses based on some criteria, and (3)
re-training the pruned model to improve performance. This cycle needs to be done atleast once and in
many cases, multiple times, to get good performance. So this procedure requires at least the same training
cost as training a dense model and often even more than that. In contrast, our proposed method for RNNs
does not require seeing any data before pruning and trains over only the sparse remaining synapses; thus
we do not require multiple cycles of pruning and training.

Other methods involving ways to encourage sparsity during the training process include L;(Lasso)
regularization (Wen et al., 2018), L regularization (Louizos, Welling, & Kingma, 2017; Savarese, Silva, &
Maire, 2020) and pruning using dynamically varying thresholds (Narang, Elsen, Diamos, & Sengupta, 2017,
Kusupati et al., 2020). Unfortunately, all of the aforementioned methods require training the original dense
network, in varying amounts, thus precluding the benefits that can be obtained by having a predetermined
exact sparsity on the computation during training.

A class of methods which do not involve training data like SynFlow (Tanaka, Kunin, Yamins, & Ganguli,
2020), GraSP (Wang, Zhang, & Grosse, 2020), SNIP (N. Lee, Ajanthan, & Torr, 2019; N. Lee, Ajanthan,
Gould, & Torr, 2020) and FORCE (de Jorge et al., 2020) have been studied for only feedforward networks,
while we study RNNs.

Sparse-to-sparse Another line of work concerning sparse-to-sparse training is most relevant to our
study. This involves using a sparse interaction graph which is used to mask gradient updates. Older
works maintained a static graph (Mocanu, Mocanu, Nguyen, Gibescu, & Liotta, 2016) and dealt only with
feedforward networks but newer methods such as dynamic sparse training (DST) (Evci, Gale, Menick,
Castro, & Elsen, 2020; Liu, Mocanu, Pei, & Pechenizkiy, 2021) have been proposed for both feedforward
networks and RNNs which dynamically improve the sparse graph and provide better performance. These
methods generally involve changing the topology of the sparse graph during training. Ref. (Liu et al.,
2021) considers static Erdos-Renyi (ER) type sparse RNNs but for relatively denser values of sparsity (0.53
and 0.67) and more complex architectures like stacked LSTMs and Recurrent Highway Networks (Zilly,



Srivastava, Koutnik, & Schmidhuber, 2017). Here we explore more extreme values of sparsity (~ 5% and
below) and show that they are optimal in the context of multitask learning regimes.

Lastly, static sparse networks have also found common usage in reservoir computing architectures, where
large sparse networks are preferred to fully-connected networks to increase heterogeneity across nodes and

allow for “richer” dynamics (Jaeger, 2001; Lukosevicius & Jaeger, 2009).

2 Results

2.1 Locality masked RNNs (LM-RNNs)

We restrict ourselves to simple RNNs for interpretability in the context of systems neuroscience. Our RNNs

follow dynamics defined by:

hip1 = ¢(Wh, + Wi, u, + bh);

0141 = Wyyuthiy + b7

Corresponding to the biological arrangement on neurons on a two-dimensional cortical sheet, we arrange
the nodes of an RNN on the lattice points of a two-dimensional plane, as shown in Fig. la. Then, we
constrain the weights for recurrent connections within the nodes of the RNN to be always zero for pairs
nodes that lie at a Euclidean distance of larger than d. The training of the RNN then proceeds in the usual
fashion by using back propogation of the loss to update the unconstrained weights. We refer to such an
RNN as a Locality Masked RNN (LM-RNN).

This constraint on the weights of the RNN is implemented through a graph G, whose nodes are the
units of the RNN, and edges correspond to pairs of units with unconstrained weights, determined by the
spatial distance d. Operationally, the adjacency matrix of the graph, G, is point-wise multiplied with the
interaction matrix W after each gradient step, effectively constraining which elements of the interaction

matrix can be learnt by gradient descent:
W—GaoW (1)

This graph adjacency matrix G is static and unchanged throughout training.

In effect, the two-dimensional LM-RNN consists of a sparse subgraph G of the fully connected network,
with each node connected to the ~ 7d? nearest nodes to it. We posit that this sparse subgraph is like a
“winning lottery ticket”, such that when trained in isolation the LM-RNN achieves comparable performance

to a fully recurrently trained network. Moreover, we will demonstrate that these winning lottery tickets
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Figure 1: Local connectivity constraint (locality masking) and schematic of cognitive multi-
tasking RNN. (a) In LM-RNNs neurons are arranged on a two-dimensional sheet, with nonzero weights
permitted for nodes up to a distance < d apart. (b) Locality masking on a two-dimensional sheet can be
treated as a sparse mask on the hidden-to-hidden weights of an RNN (c¢) Schematic of the RNN setup in
the context of 20-Cog-tasks and Mod-Cog: the network receives inputs encoding directions on two rings, a
fixation signal and a rule input. The network is trained to output a fixation signal and a direction on a ring
of output nodes. (d) A battery of graph theoretic metric to distinguish the connectivity graph of LM-RNNs
from a random sparse (Erdos-Renyi) graph (left to right): Graph diameter, Clustering coefficient, Average
path length.



perform better in a more data-efficient manner than fully connected counterparts with a similar number of
nodes or a similar number of synapses. This approach can be implemented easily in all training frameworks
and is agnostic to the specific optimization algorithm being used.

Constructing a sparse graph in this particular fashion is distinct from a sparse random graph. To
distinguish between our locality masks and sparse random graphs (Erdés-Rényi networks) with the same
number of edges, we borrow several metrics from graph theory. In particular we examine three metrics —
the average length of the shortest path between nodes, the graph diameter (i.e., the longest shortest path
between two nodes) and correlation coefficient which (i.e., the density of mutually connected triplets of
nodes)(Borner, Sanyal, Vespignani, et al., 2007). Notably, these metrics are properties fundamental to
the structure of the connectivity in a graph, and are invariant to re-lableing and permutation of nodes in
the graph. As can be seen in Fig.1d, there is a sharp contrast between the graph of an LM-RNN when
compared with a random sparse RNN, with LM-RNNs having longer diameters and path lengths, but

smaller clustering coefficients.

2.2 LM-RNNs learn the ‘20-Cog-tasks’ more rapidly than fully-connected
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Figure 2: LM-RNNSs learn 20-Cog-tasks faster than fully connected networks with matched
neuron or synapse number: (a) LM-RNNs for all choices of locality mask sizes, d, perform better than
fully-connected RNNs with the same number of nodes. This includes d = 0, i.e., a disconnected pool of
autapses which also outperforms the fully-connected network. Inset: performance at 2 x 10® gradient
steps across different values of d demonstrates a small optimal d that leads to the best performance.
(b) LM-RNNs also outperform fully-connected RNNs constructed with the same number of synapses.
RNN(N = 196) and RNN(N = 256) have 5.2 x 10* and 8.3 x 10* parameters respectively; N = 625 autapses,
LM-RNN(N = 25 x 25, d = 2) and LM-RNN(N = 25 x 25, d = 4) have 4.4 x 10*, 5.2 x 10* and 7.4 x 10*

parameters respectively



We apply LM-RNNs to a dataset used commonly in systems neuroscience, a set of 20 cognitive tasks
introduced in (Yang et al., 2019), which we henceforth refer to as the 20-Cog-tasks. Each of these 20
tasks are constructed on the same input stimulus modalities — two rings of input units are used that
each support a single activity bump, encoding a one-dimensional circular variable (which could represent
direction of motion, for example), which we represent with vectors u; "' (6;) and u}"#*(6,). Along with the
two rings, the input into the RNN also comprises two additional inputs: first, a one-hot encoded rule input

taskrule (“gask name”); and second, a

vector, indicating which task is to be performed, which we denote u
fixation input, a decrease of which is treated a ‘go’ signal for the RNN to provide the appropriate output,
which we denote ufi*.

The expected output for each task is a response direction, which is again encoded in a ring of output
units (which could represent, for example, a reach or saccade direction). These networks are trained using
supervised learning with a cross entropy loss where the supervised target is a one-hot vector y representing

the required location of the bump on the ring, and the model’s output probabilities are constructed through

a soft-max of the outputs, o;.

Les(ony) == Lwilos s+ o 2
A schematic of the setup of the RNN is shown in Fig. 1lc. For each trial of each task, the inputs are
constructed as a gaussian bump on each of the two rings whose mean is drawn independently from a uniform
distribution on the rings.

We compare LM-RNNs with different values of d against fully-connected RNNs with the same number
of neurons (and hence many more parameters; cf. Fig. 2a) and fully-connected RNNs of a smaller size but
with the same number of parameters (cf. Fig. 2b). In all cases, LM-RNNs for any value of d are far more
sample-efficient and learn the tasks with same asymptotic performance as compared to the fully-connected
counterparts. We also compare the performance of these models at the same fixed number of gradient steps
early in training to show sample efficiency differences (Fig. 2a, inset). We hypothesize that this increased
efficiency for LM-RNNs may be due to the ability to use a high-dimensional computational space, while
having a significantly smaller number of parameters to be learned, resulting in the faster training observed

at a similar level of performance.

2.3 ‘20-Cog-tasks’ are rapidly learned with simple autapse networks

While we demonstrated that LM-RNNs at all d perform better than fully-connected networks, we particularly
note that d = 0, (i.e., a ‘network’ where each node is only connected to itself; in this case the network
is simply a pool of disconnected autapses, and G is an identity matrix) also performs better than a

fully-connected network in terms of learning speed while reaching the same asymptotic performance as
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Figure 3: A suite of 20 cognitive tasks induces apparent modularity but is equally well-learned
by a network of autapses (extreme spatial masking). (a) An autapse network from Fig.1 trained
on the original 20-Cog-tasks showing the formation of 12 specialized clusters; (b) The weights of model
including the diagonal hidden to hidden matrix which clearly show the existence of no modular structure.
(¢) Normalized rule-input weight correlations show block structure that is consistent with the 20-Cog-tasks
family structure. (d) Rule input weights are orthogonal to fixation input weights (e) Rule input weights
are orthogonal to stimulus input weights and (inset) stimulus input weight correlations show a circulant
structure. (f) A histogram of autapse weights shows the existence of 2 clusters of autapses, those with
autapse weight close to 1 and those with autapse weight close to 0. (g) Ablating the small weight autapses
results in no loss of task performance while ablating the high weight autapses reduces all task performances to
random chance, apart from the 2 reaction-time tasks rt-go and rt-anti which do not need memory. (h)
Explicitly adding the appropriate input vectors is sufficient to solve the tasks without the need for dynamics:
(left) for task go and (right) for task anti. (i) A pool of frozen autapses can learn the 20-Cog-tasks faster

than a pool of autapses and reach the same asymptotic performance.



a larger fully connected network. Remarkably, as seen in Fig. 3, this pool of autapses continues to show
‘modularity’” in the network through the nodal-task-variance based metrics similar to the results of fully
connected RNNs in (Yang et al., 2019) — however this apparent modularity clearly cannot be a result of
any modular structures in the network due to the absence of any inter-node network connections. The
autapse networks have no lateral connectivity and thus no way to share and reuse subtask structure
across neurons. This suggests that such a task variance metric may simply be reflecting correlations
between common inputs and similar input weights to hidden neurons. We verify this hypothesis in
Fig. 3c where we plot the correlation between projection of the rule inputs to the hidden nodes, i.e.,
ptaskrule(“tagk name”) = Witaskruleytaskerule (“tagk name”) where Wtaskrule jg the submatrix of input weights
formed by the rule-input appropriate columns of W,,. Since the u'**™ is presented as simply one-hot
encoded vectors, the correlation of the rule inputs is simply [Wtaskrule]Tyytaskrule \We observe that this
correlation matrix of input projections in itself appears to cluster corresponding to the common subtask
structure of 20-Cog-tasks.

We thus hope that our results motivate the study of better metrics and techniques to inspect functional
modularity in RNNs; which we leave for future work.

While these results are in themselves indicative of the advantages conferred by LM-RNNs, we note
that the 20-Cog-tasks are evidently too simplistic to make any strong claims, since they do not even
require a network of connected neurons to accomplish the task. We present here first a simplified analysis
demonstrating how a pool of disconnected autapses can solve 20-Cog-tasks, and thereafter present a more

rigorous battery of cognitive tasks to more robustly demonstrate the utility of LM-RNNs.

2.4 Mechanistic analysis of the pool of autapses: A game of vector addition

For mechanistic interpretability, we first examine the dynamics of a single linear autapse in the presence of

an input b; = Wy, u,

hys1 = Why + by (3)
This gives
t
he=W'ho+ Y W', (4)
n=0

For a constant input, and for 0 < W < 1 this can be simplified to give

b ., b
h’*_[ho_pw}w Tiow

Hence, we see that the autapse weight W defines an effective timescale for the autapse dynamics. Over

1
log W

the weight-dependent timescale 7 = the autapse relaxes to a fixed point given by h* = ﬁ Thus,
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autapses with low weight (W = 0) very quickly converge to their associated bias dependent fixed point
given by h* &~ b while autapses with high weight (W = 1) effectively function as perfect memory, retaining

their initial state hg and perform addition of the network inputs as they are received:

t
n=0

Examining the weights of autapses in the trained autapse pool reveals that the weights appear to be
seprable into two classes that correspond to the described above (Fig. 3f) — those with weights close to
zero, that would be expected to rapidly approach a fixed point; and those with weights close to one, that
would be expected to perform vector addition. We also observe that the rule inputs are approximately
orthogonal to the fixation and ring inputs, Fig.3d,e, suggesting that the dynamics due to the rule inputs
act in a subspace that is independent from the fixation and input stimuli.

We hypothesized that performing vector addition would be sufficient to be able to solve the 20-Cog-tasks.
We verified this in two ways: firstly, we found that ablating autapses with lower weights resulted in no
loss in performance, whereas ablating the larger weight synapses lead to significant performance deficits
reducing the performance on almost all tasks to chance !, Fig. 3g; secondly, we found that explicit addition
of the btaskrule(“tagk rule”) vectors to the inputs from the other modalities was sufficient to generate outputs

that performed the task, Fig. 3h.

2.4.1 A frozen pool of autapses

Motivated by these ablation studies, we trained an autapse pool with untrainable fixed autapse weights set
to 1. We refer to this pool as the “frozen autapse pool". This setup also learns all 20 tasks notably faster
than a regular autapse pool, Fig. 3i. In this case the autapses are effectively “copy gates", storing perfect
memory of their previous input and adding them to the input vector currently being received (cf. equation

).

2.5 Mod-Cog: An expanded battery of cognitive tasks

The reason the 20-Cog-tasks were trivially solved by a pool of (frozen) autapses is that the tasks were
static, involving memory and fixed points but no dynamical computation like integration and sequence

generation. These computations involve the manipulation of the information held in working memory. A

!The chance performance for the delay match to sample family of tasks dms,dnms,dmc,dnmc is 50% due
to the way samples are drawn: half of the trials are matching and the other half are non-matching, refer to
methods of (Yang et al., 2019). The performance of reaction-time tasks rt-go and rt-anti is not affected

since they do not require memory.
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Figure 4: Mod-Cog: A more-complex suite of upto 132 cognitive tasks. Schematic of the tasks in
Mod-Cog, that extend the 20-Cog-tasks. (a,b) Tasks D1yGo_IntL and D1yGo_IntL as interval estimation
extensions to the D1yGo task from 20-Cog-tasks for two different lengths of delay periods. (c,d) Tasks
Go_SeqR and Go_SeqL as sequence generation extensions to the Go task from 20-Cog-tasks. (e) The
compositional extension D1yGo_IntL_SeqR that combines both interval estimation as well as sequence

generation. (f) Mod-Cog introduces significantly more complex tasks as compared to 20-Cog-tasks, which

can no longer be solved by a pool of autapses, regardless of their number.
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circuit with integration properties is able in principle to powerfully generalize across tasks in a way that
networks that exhibit the same set of states only as stable fixed points are not able to (Klukas, Lewis, &
Fiete, 2020; Khona & Fiete, 2022) . To perform a more robust demonstration of the utility of LM-RNNs,
we construct a battery of new tasks based on the principle of integration, and related to cognitive science
problems such as interval estimation, physical and mental navigation, and sequence generation. We build a
set of modular and compositionally constructed tasks, using the neurogym framework (Molano-Mazon et
al., 2022), which in turn was built on the Al opengym environment.

In particular, we build extensions, that incorporate additional complexity in two main forms: integration
and sequence generation.

In the case of integration, we consider the set of ‘delay’ based tasks in the 20-Cog-tasks. In the
20-Cog-tasks, 12 out of 20 tasks involve a delay period in the presented input, wherein the network is
expected to persistently hold the input presented in an internal memory before performing a task-relevant
computation. To incorporate interval estimation in these tasks, we require the output to be discplaced
with respect to the orignally expected output by a magnitude dependent on the length of the delay
period. To this end, we choose the delay length randomly from a uniform distribution (as opposed to the
fixed delay length considered in 20-Cog-tasks). As representative examples, in Fig. 4a,b we show the
inputs and expected outputs for two different delay period lengths in the D1yGo_IntL task, constructed
as an interval estimation extension to the D1yGo task from 20-Cog-tasks. For each of the 12 tasks, the
interval-dependent-discplacement may be either of clockwise or anti-clockwise, resulting in the introduction
of 24 new tasks.

In the case of sequence generation, the output of each task is modified to not be a single static direction,
but instead a time-varying output corresponding to a drifting direction starting at a particular point
(dependent on the particular task). The direction of drift can be changed dependent on the particular task.
As representative examples, in Fig. 4c,d we show the inputs and expected outputs for the Go_SeqL and
Go_SeqR tasks, constructed as an sequence generation extensions to the Go task from 20-Cog-tasks. This
introduces 40 new tasks based on the earlier set of 20 tasks, with the output of each task drifting either
clockwise or anti-clockwise.

This completes the construction of the 64 new tasks that we use in conjunction with the original 20
tasks as the tasks used for our main set of results hereafter in this paper. We refer to this set of 84 tasks as
Mod-Cog. We note however that our modifications to the tasks are modular in nature (which is similar in
spirit to the already existing modular subtask structure in the 20-Cog-tasks). This allows for an additional
extension of 48 more tasks that may be generated by a composition of the sequence generation and interval

estimation extensions (such as the D1yGo_IntL_SeqR task shown in Fig. 4e). For simplicity, we do not use
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these additional 48 tasks in our main results; however they are included in the repository of tasks that we
provide at github link (will be inserted upon acceptance; provided as .zip file in supplementary material).

The rule input used for Mod-Cog is encoded as a one-hot vector, similar to the setup used in (Yang et
al., 2019). This ensures that, by construction, the rule input cannot be directly used as a signal to help
decompose tasks into having common subtasks.

To demonstrate that Mod-Cog is significantly harder than 20-Cog-tasks, we demonstrate in Fig. 4f
that a pool of autapses is incapable of acheiving significant performance levels, in sharp contrast with the
20-Cog-tasks. Moreover, this is independent of the number of autapses — even pools that are ~ 6 times
larger than those necessary for solving 20-Cog-tasks are unable to produce larger than 50% performance

accuracy.

2.6 RNN and LM-RNN performance on Mod-Cog

As earlier, we examine the performance of LM-RNNs with varying d on Mod-Cog, and compare them with
fully-connected RNNs as a function of the number of gradient steps in training (cf. Fig. 5a). Here again we
see that LM-RNNSs, for appropriately chosen values of d train significantly more rapidly as compared to
fully connected networks. Due to the increased task complexity (as evidenced by Fig. 4f), locality masks
corresponding to very small values of d result in suboptimal performance (which is nonetheless similar to
the d — oo corresponding to the fully connected network). Instead, intermediate small values d outperform
all other values of d, as shown in Fig. 5b, indicating an optimal nontrivial locality mask d. For smaller
networks, the optimal value of d corresponds to increasingly larger fractions of all edges in the network (cf.
Fig. 5d), indicating that the optimal may depend more directly on the complexity of the tasks to be solved,
rather than scaling with the number of nodes in the network.

For most LM-RNNSs, a random sparse graph with the same number of incoming edges from each node
performs almost as well as the graph chosen through locality masking, as shown in Fig. 5c. Nevertheless,
in each case the locality mask performs as well as or slightly better than the random sparse graph, while
performing significantly better than dense fully-connected networks. For the case of small values of d, we
hypothesize that the slight improvement of locality masks may arise from the presence of disconnected
components in random sparse graphs in networks with low degrees. For clustering visualizations based on
nodal task variance (Yang et al., 2019), see Appendix.

We also examined small-world networks (Watts & Strogatz, 1998) as graphs that interpolate between
random sparse graphs and the locality masks of LM-RNNs. In particular, we considered graphs with a fixed
number of total synapses corresponding to an LM-RNN with d = 8. Small-world graphs were constructed

with this number of synapses: connections were formed between nodes within a ‘local radius’ distance of
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Figure 5: Faster learning and better asymptotic performance of LM-RNNs and sparse RNNs

on Mod-Cog (a) LM-RNNs for all values of d perform equally well or better than a fully-connected network

with the same number of nodes. This improvement takes the form of faster learning as well as better

asymptotic performance. (b) Network performance at 10* gradient steps for different values of d and

networks of size 50 x 50, demonstrating an optimal locality size that leads to the fastest learning. (c)

LM-RNN performance for varying system size for a fixed network sparsity of ~4%, as compared with

fixed random sparse networks with the same sparsity. Performance for sparse RNNs is similar to or only

slightly worse than LM-RNNs with the same sparsity (d) Network performance as a function of system

size (N? = System Size) and sparsity of the locality mask (i.e., the fraction of nonzero entries in the

hidden-to-hidden weight matrix). At larger system sizes, the optimal sparsity for best performance is lower.

(e-f) Results for small-world masks.
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Performance at | No. of nonzero No. of nonzero
10k gradient steps weights hidden-to-hidden weights
LM-RNN(N = 50 x 50,d = 6) 0.799 + 0.007 6.17 x 10° 2.82 x 10°
LM-RNN(N = 50 x 50,d = 10) || 0.815 = 0.005 1.13 x 10° 7.92 x 10°
RNN(N = 676) 0.69 +0.01 5.47 x 10° 4.57 x 10°
RNN(N = 2500) 0.71 +0.02 6.58 x 10° 6.25 x 10°
L; RNN(N = 2500), A = 1074 0.59 +£0.02 4.00 x 10° 6.51 x 10*
L; RNN(N = 2500), A = 1075 0.72 £0.01 5.16 x 10° 1.81 x 10°
Ly RNN(N = 2500), A =107 0.73 £ 0.02 1.02 x 108 6.87 x 10°
L; RNN(N = 2500), A = 1077 0.71£0.01 1.86 x 108 1.52 x 108

Table 1: Comparison across networks with similar number of trainable parameters and nonzero
weights. L; RNNs are fully-connected RNNs with an L; regularization to promote sparse solutions. In
this case, the number of nonzero weights is counted as the number of weights above a small threshold in

the trained RNN. See Appendix for learning curves

each other, and random sparse connections were added until the target total number of synapses. A local
radius of zero then corresponds to a completely random sparse graph, and a local radius of 8 corresponds to
the LM-RNN that we have been considering thus far. We observed that there was no significant variation
of performance across different local radi at 10® gradient steps, however, at 2 x 10 gradient steps the

LM-RNN appears to perform slightly better than any small world network, Fig. 5f (left).

2.7 Controls — comparisons with various baselines for sparsity

We perform comparisons across 3 baselines. First, fully-connected networks with the same number of nodes;
second, fully-connected networks with the same number of synapses; and third, fully-connected networks
with the same number of nodes, but with an additional L; regularization term in the loss function to
promote the discovery of sparse solutions through training. As we demonstrate in Table 1, LM-RNNs reach
a higher performance earlier than all other comparable models. While sparse networks acheived through L,
regularized models perform better than fully-connected models at some choices of regularization strengths,
they acheive this better performance slower than LM-RNNs with static sparsity. Thus while sparsity is
clearly benefecial to improved performance in the multitask setting of Mod-Cog, choosing this sparsity in a

fixed, task-independent fashion at the start of training results in faster training.
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3 Discussion

Through our results, we have demonstrated that a simple fixed sparse graph can provide a large increase
in the sample-efficiency of the training process in single-layer recurrent networks. These results could in
principle be extended to other architectures and tasks but we restricted our experiments to simple RNNs
and cognitive tasks for their relevance to systems and computational neuroscience.

As RNNs trained on multitask learning problems become more popular as models of PFC and other
associated brain regions (Driscoll et al., 2022; Hummos, 2022; Riveland & Pouget, 2022; da Costa et al.,
2019; Duncker et al., 2020; Masse et al., 2022; Kao et al., 2021), we need to be more cognizant about
how the computational complexity of the task set used affects learnt representations. By demonstrating
that a pool of unconnected autapses can solve the 20-Cog-tasks (Yang et al., 2019), we have shown that
this apparently complex set of tasks can be solved without any communication between neurons. This
raises the hypothesis that appropriately tuned input weights corresponding to the “rule inputs" along
with static memory are enough to solve many tasks. Here we constructed Mod-Cog as a set of tasks with
increased complexity by adding more modular subcomponents that require the RNN to perform non-trivial
computations. Thus we provide a more reasonable multitask setting that leads to richer solutions and
may be a better testbed for exploring shared motifs and representations across modular subtasks. Another
possible direction for future study to increase task complexity for 20-Cog-tasks has been to eliminate rule
inputs and force the network to infer the task needed to be solved. This would likely involve some flavor of
predictive coding. A recent work (Hummos, 2022) makes progress in this direction.

We have found that given a certain amount of task complexity and network size, there is an optimal
amount of locality masking that provides the most benefit to learning, both in terms of sample efficiency
and asymptotic performance. While we have shown this result for recurrent networks, qualitatively similar
results on an optimal value of sparsity have been derived analytically for cerebellum-like feedforward
architectures (Litwin-Kumar, Harris, Axel, Sompolinsky, & Abbott, 2017). It remains an open question
to theoretically investigate the relationship between task complexity and the amount of sparsity that is
needed: if the network is too sparse, it will not have enough expressivity to perform well on the dataset,
while if the network is too dense, the benefits provided by sparsity will not be exploited.

Although our matrices are extremely sparse and would be well suited to sparse matrix representations,
we still maintain dense matrix dataypes for all of the training and evaluation processes since standard
libraries like PyTorch do not have native support for these data structures. As sparse matrices get more
common and their usefulness more apparent, as has been pointed out before (Liu et al., 2021), it will
be very useful for native deep learning software and hardware implementations on GPUs to exploit the

potential efficiencies of very sparse matrix structures.
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