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Abstract

Recurrent neural networks (RNNs) are often used to model circuits in the brain, and can solve

a variety of difficult computational problems requiring memory, error-correction, or selection

(Hopfield, 1982; Maass, Natschläger, & Markram, 2002; Maass, 2011). However, fully-connected

RNNs contrast structurally with their biological counterparts, which are extremely sparse

(∼ 0.1%). Motivated by the neocortex, where neural connectivity is constrained by physical

distance along cortical sheets and other synaptic wiring costs, we introduce locality masked

RNNs (LM-RNNs) that utilize task-agnostic predetermined graphs with sparsity as low as 4%.

We study LM-RNNs in a multitask learning setting relevant to cognitive systems neuroscience

with a commonly used set of tasks, 20-Cog-tasks (Yang, Joglekar, Song, Newsome, & Wang,

2019). We show through reductio ad absurdum that 20-Cog-tasks can be solved by a small

pool of separated autapses that we can mechanistically analyze and understand. Thus, these

tasks fall short of the goal of inducing complex recurrent dynamics and modular structure in

RNNs. We next contribute a new cognitive multi-task battery, Mod-Cog, consisting of upto

132 tasks that expands by ∼ 7-fold the number of tasks and task-complexity of 20-Cog-tasks.

Importantly, while autapses can solve the simple 20-Cog-tasks, the expanded task-set requires

richer neural architectures and continuous attractor dynamics. On these tasks, we show that

LM-RNNs with an optimal sparsity result in faster training and better data-efficiency than fully

connected networks.
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1 Introduction

Connectivity in biological neural networks are constrained by wiring-length costs, with a preference towards

shorter synapses. The neocortex is effectively a two dimensional sheet which geometrically restricts physical

distances between neurons — correspondingly, the spatial extent of connectivity in cortical circuits has been

found to be significantly skewed towards shorter connections(Ercsey-Ravasz et al., 2013; Markov et al., 2013;

Theodoni et al., 2022) (in particular connectivity extent appears to follow an exponential distribution).

Inspired by such biological constraints, we modify the architecture of a vanilla fully-connected RNN in

one particular fashion — we construct a fixed sparse graph chosen by allowing local connections among

neurons laid on a two-dimensional sheet. We then use this sparse graph for the RNN, by only training

weights between nodes that correspond to edges on the graph, and setting all other weights to zero. We

refer to an RNN in this set up as a ‘Locality Masked RNN’ (LM-RNN). Another motivation for our work

comes from continuous attractor network models of grid cells (Khona, Chandra, & Fiete, 2022), where it

was shown analytically that fixed and local topographic connectivity encouraged the formation of discrete

modules.

Exploiting such simple locality constraints in LM-RNNs, when applied to multitask regimes relevant to

cognitive systems neuroscience, results in distinct advantages: these networks require far fewer parameters to

train, there is no cost to performance relative to an unconstained network, and in fact learning is more rapid,

sample-efficient and can acheive higher asymptotic performance. In contrast to other machine-learning

approaches to network sparsification (see related work), we do not need any sophisticated pruning methods,

any algorithms to construct and modify sparse skeletons nor any training data.

We focus our results on multitasking regimes for RNNs, by training them to simultaneously learn many

cognitive tasks. We expect our results on the improvements conferred by LM-RNNs to primarily apply in

this multitask learning setting, where the recognition of modular structure across tasks is important for

generalization and effective learning.

Our main contributions are summarized by:

• We show that LM-RNNs can perform as well or better than dense networks, when accounting for

the total number of nodes or the total number of synapses. Locality masking is thus an efficient

prescription for choosing sparse subnetworks in a task agnostic and data independent fashion while

still achieving high performance.

• We show that LM-RNNs reach this high performance faster and with lesser training than dense

networks, indicating that sparse networks may be preferable to dense networks in memory and

data-limited regimes for learning multiple tasks.
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• We show that the tasks defined in (Yang et al., 2019) (an increasingly commonly used set of 20

tasks (Driscoll, Shenoy, & Sussillo, 2022; Hummos, 2022; Flesch, Nagy, Saxe, & Summerfield, 2022;

Marton, Lajoie, & Rajan, 2021; Riveland & Pouget, 2022; da Costa, Popescu, Leech, & Lorenz, 2019;

Duncker, Driscoll, Shenoy, Sahani, & Sussillo, 2020; Masse, Rosen, Tsao, & Freedman, 2022; Kao,

Jensen, van de Ven, Bernacchia, & Hennequin, 2021) to study representations in networks performing

many cognitive tasks) can be solved by a small pool of unconnected autapses, which is essentially a

feedforward structure.

• Despite not have any lateral recurrent connections, the pool of autapses shows the existence of cell

clusters according to the nodal task variance metric used in (Yang et al., 2019). Thus, our work reveals

the limitations of using correlations or covariances between neurons to study recurrent mechanisms of

computation. The shared inputs and input weights are a fundamental confound when using metrics

such as nodal task variance used in (Yang et al., 2019). We thus highlight the need for creation of

better metrics.

• We mechanistically study how this pool of unconnected autapses solves 20-Cog-tasks.

• We then introduce Mod-Cog, a large battery consisting of upto 132 tasks inspired by cognitive science

problems such as interval estimation, mental navigation and sequence generation which provides a

useful setting to examine multitask learning and representation across tasks relevant to cognitive

systems neuroscience.

1.1 Related work

Recent work has shown that effective pruning in recurrent networks can be done by biologically pruning

plausible algorithms based on noise correlations between the presynaptic and postsynaptic neurons (Moore

& Chaudhuri, 2020) that preserve the spectrum. In vision neuroscience, recent works have studied cortical

topography by using a pretrained vision frontend with a readout layer with an additional spatial loss

to encourage spatially nearby cells to have correlated receptive fields (Finzi, Margalit, Kay, Yamins, &

Grill-Spector, 2022; H. Lee et al., 2020; Obeid & Konkle, 2021). Other work has studied representations in

RNNs trained to do simple tasks that have been embedded in 3-dimensional space (Achterberg, Akarca,

Strouse, Duncan, & Astle, 2022).

Several works in the realm of machine learning have tried to operationalize the idea of sparsity. These

methods can be roughly categorized into 2 main classes:

Dense-to-sparse Ref. (Han, Pool, Tran, & Dally, 2015) experimentally showed that training followed

by pruning and retraining can give sparse networks with no loss of accuracy and ignited an interest in
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pruning methods. Following this work, the lottery ticket hypothesis states that dense, randomly-initialized,

feed-forward networks contain subnetworks (“winning tickets”) that — when trained in isolation — reach

test accuracy comparable to the original network in a similar number of iterations (Frankle & Carbin, 2018).

The best method to identify such winning tickets is Iterative Magnitude-based Pruning (IMP) (Frankle

& Carbin, 2018; Frankle, Dziugaite, Roy, & Carbin, 2019), which is computationally expensive and has

to be run thoroughly for every different network. It has also been shown that parameters of the sparse

initialization distribution and sign of weights at initialization are important factors (Zhou, Lan, Liu, &

Yosinski, 2019) which determine winning tickets. Overall, iterative pruning and retraining methods involve

3 steps: (1) pre-training a dense all-to-all model, (2) pruning synapses based on some criteria, and (3)

re-training the pruned model to improve performance. This cycle needs to be done atleast once and in

many cases, multiple times, to get good performance. So this procedure requires at least the same training

cost as training a dense model and often even more than that. In contrast, our proposed method for RNNs

does not require seeing any data before pruning and trains over only the sparse remaining synapses; thus

we do not require multiple cycles of pruning and training.

Other methods involving ways to encourage sparsity during the training process include L1(Lasso)

regularization (Wen et al., 2018), L0 regularization (Louizos, Welling, & Kingma, 2017; Savarese, Silva, &

Maire, 2020) and pruning using dynamically varying thresholds (Narang, Elsen, Diamos, & Sengupta, 2017;

Kusupati et al., 2020). Unfortunately, all of the aforementioned methods require training the original dense

network, in varying amounts, thus precluding the benefits that can be obtained by having a predetermined

exact sparsity on the computation during training.

A class of methods which do not involve training data like SynFlow (Tanaka, Kunin, Yamins, & Ganguli,

2020), GraSP (Wang, Zhang, & Grosse, 2020), SNIP (N. Lee, Ajanthan, & Torr, 2019; N. Lee, Ajanthan,

Gould, & Torr, 2020) and FORCE (de Jorge et al., 2020) have been studied for only feedforward networks,

while we study RNNs.

Sparse-to-sparse Another line of work concerning sparse-to-sparse training is most relevant to our

study. This involves using a sparse interaction graph which is used to mask gradient updates. Older

works maintained a static graph (Mocanu, Mocanu, Nguyen, Gibescu, & Liotta, 2016) and dealt only with

feedforward networks but newer methods such as dynamic sparse training (DST) (Evci, Gale, Menick,

Castro, & Elsen, 2020; Liu, Mocanu, Pei, & Pechenizkiy, 2021) have been proposed for both feedforward

networks and RNNs which dynamically improve the sparse graph and provide better performance. These

methods generally involve changing the topology of the sparse graph during training. Ref. (Liu et al.,

2021) considers static Erdos-Renyi (ER) type sparse RNNs but for relatively denser values of sparsity (0.53

and 0.67) and more complex architectures like stacked LSTMs and Recurrent Highway Networks (Zilly,
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Srivastava, Koutnık, & Schmidhuber, 2017). Here we explore more extreme values of sparsity (∼ 5% and

below) and show that they are optimal in the context of multitask learning regimes.

Lastly, static sparse networks have also found common usage in reservoir computing architectures, where

large sparse networks are preferred to fully-connected networks to increase heterogeneity across nodes and

allow for “richer” dynamics (Jaeger, 2001; Lukoševičius & Jaeger, 2009).

2 Results

2.1 Locality masked RNNs (LM-RNNs)

We restrict ourselves to simple RNNs for interpretability in the context of systems neuroscience. Our RNNs

follow dynamics defined by:

ht+1 = φ(Wht +Winut + bh),

ot+1 = Woutht+1 + bo.

Corresponding to the biological arrangement on neurons on a two-dimensional cortical sheet, we arrange

the nodes of an RNN on the lattice points of a two-dimensional plane, as shown in Fig. 1a. Then, we

constrain the weights for recurrent connections within the nodes of the RNN to be always zero for pairs

nodes that lie at a Euclidean distance of larger than d. The training of the RNN then proceeds in the usual

fashion by using back propogation of the loss to update the unconstrained weights. We refer to such an

RNN as a Locality Masked RNN (LM-RNN).

This constraint on the weights of the RNN is implemented through a graph G, whose nodes are the

units of the RNN, and edges correspond to pairs of units with unconstrained weights, determined by the

spatial distance d. Operationally, the adjacency matrix of the graph, G, is point-wise multiplied with the

interaction matrix W after each gradient step, effectively constraining which elements of the interaction

matrix can be learnt by gradient descent:

W← G⊗W (1)

This graph adjacency matrix G is static and unchanged throughout training.

In effect, the two-dimensional LM-RNN consists of a sparse subgraph G of the fully connected network,

with each node connected to the ∼ πd2 nearest nodes to it. We posit that this sparse subgraph is like a

“winning lottery ticket”, such that when trained in isolation the LM-RNN achieves comparable performance

to a fully recurrently trained network. Moreover, we will demonstrate that these winning lottery tickets
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Figure 1: Local connectivity constraint (locality masking) and schematic of cognitive multi-

tasking RNN. (a) In LM-RNNs neurons are arranged on a two-dimensional sheet, with nonzero weights

permitted for nodes up to a distance ≤ d apart. (b) Locality masking on a two-dimensional sheet can be

treated as a sparse mask on the hidden-to-hidden weights of an RNN (c) Schematic of the RNN setup in

the context of 20-Cog-tasks and Mod-Cog: the network receives inputs encoding directions on two rings, a

fixation signal and a rule input. The network is trained to output a fixation signal and a direction on a ring

of output nodes. (d) A battery of graph theoretic metric to distinguish the connectivity graph of LM-RNNs

from a random sparse (Erdos-Renyi) graph (left to right): Graph diameter, Clustering coefficient, Average

path length.
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perform better in a more data-efficient manner than fully connected counterparts with a similar number of

nodes or a similar number of synapses. This approach can be implemented easily in all training frameworks

and is agnostic to the specific optimization algorithm being used.

Constructing a sparse graph in this particular fashion is distinct from a sparse random graph. To

distinguish between our locality masks and sparse random graphs (Erdős-Rényi networks) with the same

number of edges, we borrow several metrics from graph theory. In particular we examine three metrics —

the average length of the shortest path between nodes, the graph diameter (i.e., the longest shortest path

between two nodes) and correlation coefficient which (i.e., the density of mutually connected triplets of

nodes)(Börner, Sanyal, Vespignani, et al., 2007). Notably, these metrics are properties fundamental to

the structure of the connectivity in a graph, and are invariant to re-lableing and permutation of nodes in

the graph. As can be seen in Fig.1d, there is a sharp contrast between the graph of an LM-RNN when

compared with a random sparse RNN, with LM-RNNs having longer diameters and path lengths, but

smaller clustering coefficients.

2.2 LM-RNNs learn the ‘20-Cog-tasks’ more rapidly than fully-connected

RNNs
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Figure 2: LM-RNNs learn 20-Cog-tasks faster than fully connected networks with matched

neuron or synapse number: (a) LM-RNNs for all choices of locality mask sizes, d, perform better than

fully-connected RNNs with the same number of nodes. This includes d = 0, i.e., a disconnected pool of

autapses which also outperforms the fully-connected network. Inset : performance at 2 × 103 gradient

steps across different values of d demonstrates a small optimal d that leads to the best performance.

(b) LM-RNNs also outperform fully-connected RNNs constructed with the same number of synapses.

RNN(N = 196) and RNN(N = 256) have 5.2×104 and 8.3×104 parameters respectively; N = 625 autapses,

LM-RNN(N = 25× 25, d = 2) and LM-RNN(N = 25× 25, d = 4) have 4.4× 104, 5.2× 104 and 7.4× 104

parameters respectively

7



We apply LM-RNNs to a dataset used commonly in systems neuroscience, a set of 20 cognitive tasks

introduced in (Yang et al., 2019), which we henceforth refer to as the 20-Cog-tasks. Each of these 20

tasks are constructed on the same input stimulus modalities — two rings of input units are used that

each support a single activity bump, encoding a one-dimensional circular variable (which could represent

direction of motion, for example), which we represent with vectors uring1
t (θ1) and uring2

t (θ2). Along with the

two rings, the input into the RNN also comprises two additional inputs: first, a one-hot encoded rule input

vector, indicating which task is to be performed, which we denote utask-rule(“task name”); and second, a

fixation input, a decrease of which is treated a ‘go’ signal for the RNN to provide the appropriate output,

which we denote ufixt .

The expected output for each task is a response direction, which is again encoded in a ring of output

units (which could represent, for example, a reach or saccade direction). These networks are trained using

supervised learning with a cross entropy loss where the supervised target is a one-hot vector y representing

the required location of the bump on the ring, and the model’s output probabilities are constructed through

a soft-max of the outputs, ot.

LCE(ot,y) = −
∑
i

yi log
eot,i∑
j e

ot,j
(2)

A schematic of the setup of the RNN is shown in Fig. 1c. For each trial of each task, the inputs are

constructed as a gaussian bump on each of the two rings whose mean is drawn independently from a uniform

distribution on the rings.

We compare LM-RNNs with different values of d against fully-connected RNNs with the same number

of neurons (and hence many more parameters; cf. Fig. 2a) and fully-connected RNNs of a smaller size but

with the same number of parameters (cf. Fig. 2b). In all cases, LM-RNNs for any value of d are far more

sample-efficient and learn the tasks with same asymptotic performance as compared to the fully-connected

counterparts. We also compare the performance of these models at the same fixed number of gradient steps

early in training to show sample efficiency differences (Fig. 2a, inset). We hypothesize that this increased

efficiency for LM-RNNs may be due to the ability to use a high-dimensional computational space, while

having a significantly smaller number of parameters to be learned, resulting in the faster training observed

at a similar level of performance.

2.3 ‘20-Cog-tasks’ are rapidly learned with simple autapse networks

While we demonstrated that LM-RNNs at all d perform better than fully-connected networks, we particularly

note that d = 0, (i.e., a ‘network’ where each node is only connected to itself; in this case the network

is simply a pool of disconnected autapses, and G is an identity matrix) also performs better than a

fully-connected network in terms of learning speed while reaching the same asymptotic performance as
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Figure 3: A suite of 20 cognitive tasks induces apparent modularity but is equally well-learned

by a network of autapses (extreme spatial masking). (a) An autapse network from Fig.1 trained

on the original 20-Cog-tasks showing the formation of 12 specialized clusters; (b) The weights of model

including the diagonal hidden to hidden matrix which clearly show the existence of no modular structure.

(c) Normalized rule-input weight correlations show block structure that is consistent with the 20-Cog-tasks

family structure. (d) Rule input weights are orthogonal to fixation input weights (e) Rule input weights

are orthogonal to stimulus input weights and (inset) stimulus input weight correlations show a circulant

structure. (f) A histogram of autapse weights shows the existence of 2 clusters of autapses, those with

autapse weight close to 1 and those with autapse weight close to 0. (g) Ablating the small weight autapses

results in no loss of task performance while ablating the high weight autapses reduces all task performances to

random chance, apart from the 2 reaction-time tasks rt-go and rt-anti which do not need memory. (h)

Explicitly adding the appropriate input vectors is sufficient to solve the tasks without the need for dynamics:

(left) for task go and (right) for task anti. (i) A pool of frozen autapses can learn the 20-Cog-tasks faster

than a pool of autapses and reach the same asymptotic performance.
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a larger fully connected network. Remarkably, as seen in Fig. 3, this pool of autapses continues to show

‘modularity’ in the network through the nodal-task-variance based metrics similar to the results of fully

connected RNNs in (Yang et al., 2019) — however this apparent modularity clearly cannot be a result of

any modular structures in the network due to the absence of any inter-node network connections. The

autapse networks have no lateral connectivity and thus no way to share and reuse subtask structure

across neurons. This suggests that such a task variance metric may simply be reflecting correlations

between common inputs and similar input weights to hidden neurons. We verify this hypothesis in

Fig. 3c where we plot the correlation between projection of the rule inputs to the hidden nodes, i.e.,

btask-rule(“task name”) = Wtask-ruleutask-rule(“task name”) where Wtask-rule is the submatrix of input weights

formed by the rule-input appropriate columns of Win. Since the utask-rule is presented as simply one-hot

encoded vectors, the correlation of the rule inputs is simply [Wtask-rule]TWtask-rule. We observe that this

correlation matrix of input projections in itself appears to cluster corresponding to the common subtask

structure of 20-Cog-tasks.

We thus hope that our results motivate the study of better metrics and techniques to inspect functional

modularity in RNNs, which we leave for future work.

While these results are in themselves indicative of the advantages conferred by LM-RNNs, we note

that the 20-Cog-tasks are evidently too simplistic to make any strong claims, since they do not even

require a network of connected neurons to accomplish the task. We present here first a simplified analysis

demonstrating how a pool of disconnected autapses can solve 20-Cog-tasks, and thereafter present a more

rigorous battery of cognitive tasks to more robustly demonstrate the utility of LM-RNNs.

2.4 Mechanistic analysis of the pool of autapses: A game of vector addition

For mechanistic interpretability, we first examine the dynamics of a single linear autapse in the presence of

an input bt = Winut,

ht+1 = Wht + bt. (3)

This gives

ht = W th0 +
t∑

n=0

W t−nbn. (4)

For a constant input, and for 0 ≤ W < 1 this can be simplified to give

ht =

[
h0 −

b

1−W

]
W t +

b

1−W

Hence, we see that the autapse weight W defines an effective timescale for the autapse dynamics. Over

the weight-dependent timescale τ = − 1
logW

the autapse relaxes to a fixed point given by h∗ = b
1−W

. Thus,
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autapses with low weight (W ≈ 0) very quickly converge to their associated bias dependent fixed point

given by h∗ ≈ b while autapses with high weight (W = 1) effectively function as perfect memory, retaining

their initial state h0 and perform addition of the network inputs as they are received:

ht = h0 +
t∑

n=0

bn. (5)

Examining the weights of autapses in the trained autapse pool reveals that the weights appear to be

seprable into two classes that correspond to the described above (Fig. 3f) — those with weights close to

zero, that would be expected to rapidly approach a fixed point; and those with weights close to one, that

would be expected to perform vector addition. We also observe that the rule inputs are approximately

orthogonal to the fixation and ring inputs, Fig.3d,e, suggesting that the dynamics due to the rule inputs

act in a subspace that is independent from the fixation and input stimuli.

We hypothesized that performing vector addition would be sufficient to be able to solve the 20-Cog-tasks.

We verified this in two ways: firstly, we found that ablating autapses with lower weights resulted in no

loss in performance, whereas ablating the larger weight synapses lead to significant performance deficits

reducing the performance on almost all tasks to chance 1, Fig. 3g; secondly, we found that explicit addition

of the btask-rule(“task rule”) vectors to the inputs from the other modalities was sufficient to generate outputs

that performed the task, Fig. 3h.

2.4.1 A frozen pool of autapses

Motivated by these ablation studies, we trained an autapse pool with untrainable fixed autapse weights set

to 1. We refer to this pool as the “frozen autapse pool". This setup also learns all 20 tasks notably faster

than a regular autapse pool, Fig. 3i. In this case the autapses are effectively “copy gates", storing perfect

memory of their previous input and adding them to the input vector currently being received (cf. equation

5).

2.5 Mod-Cog: An expanded battery of cognitive tasks

The reason the 20-Cog-tasks were trivially solved by a pool of (frozen) autapses is that the tasks were

static, involving memory and fixed points but no dynamical computation like integration and sequence

generation. These computations involve the manipulation of the information held in working memory. A
1The chance performance for the delay match to sample family of tasks dms,dnms,dmc,dnmc is 50% due

to the way samples are drawn: half of the trials are matching and the other half are non-matching, refer to

methods of (Yang et al., 2019). The performance of reaction-time tasks rt-go and rt-anti is not affected

since they do not require memory.
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Figure 4: Mod-Cog: A more-complex suite of upto 132 cognitive tasks. Schematic of the tasks in

Mod-Cog, that extend the 20-Cog-tasks. (a,b) Tasks DlyGo_IntL and DlyGo_IntL as interval estimation

extensions to the DlyGo task from 20-Cog-tasks for two different lengths of delay periods. (c,d) Tasks

Go_SeqR and Go_SeqL as sequence generation extensions to the Go task from 20-Cog-tasks. (e) The

compositional extension DlyGo_IntL_SeqR that combines both interval estimation as well as sequence

generation. (f) Mod-Cog introduces significantly more complex tasks as compared to 20-Cog-tasks, which

can no longer be solved by a pool of autapses, regardless of their number.
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circuit with integration properties is able in principle to powerfully generalize across tasks in a way that

networks that exhibit the same set of states only as stable fixed points are not able to (Klukas, Lewis, &

Fiete, 2020; Khona & Fiete, 2022) . To perform a more robust demonstration of the utility of LM-RNNs,

we construct a battery of new tasks based on the principle of integration, and related to cognitive science

problems such as interval estimation, physical and mental navigation, and sequence generation. We build a

set of modular and compositionally constructed tasks, using the neurogym framework (Molano-Mazon et

al., 2022), which in turn was built on the AI opengym environment.

In particular, we build extensions, that incorporate additional complexity in two main forms: integration

and sequence generation.

In the case of integration, we consider the set of ‘delay’ based tasks in the 20-Cog-tasks. In the

20-Cog-tasks, 12 out of 20 tasks involve a delay period in the presented input, wherein the network is

expected to persistently hold the input presented in an internal memory before performing a task-relevant

computation. To incorporate interval estimation in these tasks, we require the output to be discplaced

with respect to the orignally expected output by a magnitude dependent on the length of the delay

period. To this end, we choose the delay length randomly from a uniform distribution (as opposed to the

fixed delay length considered in 20-Cog-tasks). As representative examples, in Fig. 4a,b we show the

inputs and expected outputs for two different delay period lengths in the DlyGo_IntL task, constructed

as an interval estimation extension to the DlyGo task from 20-Cog-tasks. For each of the 12 tasks, the

interval-dependent-discplacement may be either of clockwise or anti-clockwise, resulting in the introduction

of 24 new tasks.

In the case of sequence generation, the output of each task is modified to not be a single static direction,

but instead a time-varying output corresponding to a drifting direction starting at a particular point

(dependent on the particular task). The direction of drift can be changed dependent on the particular task.

As representative examples, in Fig. 4c,d we show the inputs and expected outputs for the Go_SeqL and

Go_SeqR tasks, constructed as an sequence generation extensions to the Go task from 20-Cog-tasks. This

introduces 40 new tasks based on the earlier set of 20 tasks, with the output of each task drifting either

clockwise or anti-clockwise.

This completes the construction of the 64 new tasks that we use in conjunction with the original 20

tasks as the tasks used for our main set of results hereafter in this paper. We refer to this set of 84 tasks as

Mod-Cog. We note however that our modifications to the tasks are modular in nature (which is similar in

spirit to the already existing modular subtask structure in the 20-Cog-tasks). This allows for an additional

extension of 48 more tasks that may be generated by a composition of the sequence generation and interval

estimation extensions (such as the DlyGo_IntL_SeqR task shown in Fig. 4e). For simplicity, we do not use
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these additional 48 tasks in our main results; however they are included in the repository of tasks that we

provide at github link (will be inserted upon acceptance; provided as .zip file in supplementary material).

The rule input used for Mod-Cog is encoded as a one-hot vector, similar to the setup used in (Yang et

al., 2019). This ensures that, by construction, the rule input cannot be directly used as a signal to help

decompose tasks into having common subtasks.

To demonstrate that Mod-Cog is significantly harder than 20-Cog-tasks, we demonstrate in Fig. 4f

that a pool of autapses is incapable of acheiving significant performance levels, in sharp contrast with the

20-Cog-tasks. Moreover, this is independent of the number of autapses — even pools that are ∼ 6 times

larger than those necessary for solving 20-Cog-tasks are unable to produce larger than 50% performance

accuracy.

2.6 RNN and LM-RNN performance on Mod-Cog

As earlier, we examine the performance of LM-RNNs with varying d on Mod-Cog, and compare them with

fully-connected RNNs as a function of the number of gradient steps in training (cf. Fig. 5a). Here again we

see that LM-RNNs, for appropriately chosen values of d train significantly more rapidly as compared to

fully connected networks. Due to the increased task complexity (as evidenced by Fig. 4f), locality masks

corresponding to very small values of d result in suboptimal performance (which is nonetheless similar to

the d→∞ corresponding to the fully connected network). Instead, intermediate small values d outperform

all other values of d, as shown in Fig. 5b, indicating an optimal nontrivial locality mask d. For smaller

networks, the optimal value of d corresponds to increasingly larger fractions of all edges in the network (cf.

Fig. 5d), indicating that the optimal may depend more directly on the complexity of the tasks to be solved,

rather than scaling with the number of nodes in the network.

For most LM-RNNs, a random sparse graph with the same number of incoming edges from each node

performs almost as well as the graph chosen through locality masking, as shown in Fig. 5c. Nevertheless,

in each case the locality mask performs as well as or slightly better than the random sparse graph, while

performing significantly better than dense fully-connected networks. For the case of small values of d, we

hypothesize that the slight improvement of locality masks may arise from the presence of disconnected

components in random sparse graphs in networks with low degrees. For clustering visualizations based on

nodal task variance (Yang et al., 2019), see Appendix.

We also examined small-world networks (Watts & Strogatz, 1998) as graphs that interpolate between

random sparse graphs and the locality masks of LM-RNNs. In particular, we considered graphs with a fixed

number of total synapses corresponding to an LM-RNN with d = 8. Small-world graphs were constructed

with this number of synapses: connections were formed between nodes within a ‘local radius’ distance of
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Figure 5: Faster learning and better asymptotic performance of LM-RNNs and sparse RNNs

on Mod-Cog (a) LM-RNNs for all values of d perform equally well or better than a fully-connected network

with the same number of nodes. This improvement takes the form of faster learning as well as better

asymptotic performance. (b) Network performance at 104 gradient steps for different values of d and

networks of size 50 × 50, demonstrating an optimal locality size that leads to the fastest learning. (c)

LM-RNN performance for varying system size for a fixed network sparsity of ∼4%, as compared with

fixed random sparse networks with the same sparsity. Performance for sparse RNNs is similar to or only

slightly worse than LM-RNNs with the same sparsity (d) Network performance as a function of system

size (N2 = System Size) and sparsity of the locality mask (i.e., the fraction of nonzero entries in the

hidden-to-hidden weight matrix). At larger system sizes, the optimal sparsity for best performance is lower.

(e-f) Results for small-world masks.
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Performance at No. of nonzero No. of nonzero

10k gradient steps weights hidden-to-hidden weights

LM-RNN(N = 50× 50,d = 6) 0.799± 0.007 6.17× 105 2.82× 105

LM-RNN(N = 50× 50,d = 10) 0.815± 0.005 1.13× 106 7.92× 105

RNN(N = 676) 0.69± 0.01 5.47× 105 4.57× 105

RNN(N = 2500) 0.71± 0.02 6.58× 106 6.25× 106

L1 RNN(N = 2500), λ = 10−4 0.59± 0.02 4.00× 105 6.51× 104

L1 RNN(N = 2500), λ = 10−5 0.72± 0.01 5.16× 105 1.81× 105

L1 RNN(N = 2500), λ = 10−6 0.73± 0.02 1.02× 106 6.87× 105

L1 RNN(N = 2500), λ = 10−7 0.71± 0.01 1.86× 106 1.52× 106

Table 1: Comparison across networks with similar number of trainable parameters and nonzero

weights. L1 RNNs are fully-connected RNNs with an L1 regularization to promote sparse solutions. In

this case, the number of nonzero weights is counted as the number of weights above a small threshold in

the trained RNN. See Appendix for learning curves

each other, and random sparse connections were added until the target total number of synapses. A local

radius of zero then corresponds to a completely random sparse graph, and a local radius of 8 corresponds to

the LM-RNN that we have been considering thus far. We observed that there was no significant variation

of performance across different local radi at 103 gradient steps, however, at 2 × 103 gradient steps the

LM-RNN appears to perform slightly better than any small world network, Fig. 5f (left).

2.7 Controls – comparisons with various baselines for sparsity

We perform comparisons across 3 baselines. First, fully-connected networks with the same number of nodes;

second, fully-connected networks with the same number of synapses; and third, fully-connected networks

with the same number of nodes, but with an additional L1 regularization term in the loss function to

promote the discovery of sparse solutions through training. As we demonstrate in Table 1, LM-RNNs reach

a higher performance earlier than all other comparable models. While sparse networks acheived through L1

regularized models perform better than fully-connected models at some choices of regularization strengths,

they acheive this better performance slower than LM-RNNs with static sparsity. Thus while sparsity is

clearly benefecial to improved performance in the multitask setting of Mod-Cog, choosing this sparsity in a

fixed, task-independent fashion at the start of training results in faster training.
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3 Discussion

Through our results, we have demonstrated that a simple fixed sparse graph can provide a large increase

in the sample-efficiency of the training process in single-layer recurrent networks. These results could in

principle be extended to other architectures and tasks but we restricted our experiments to simple RNNs

and cognitive tasks for their relevance to systems and computational neuroscience.

As RNNs trained on multitask learning problems become more popular as models of PFC and other

associated brain regions (Driscoll et al., 2022; Hummos, 2022; Riveland & Pouget, 2022; da Costa et al.,

2019; Duncker et al., 2020; Masse et al., 2022; Kao et al., 2021), we need to be more cognizant about

how the computational complexity of the task set used affects learnt representations. By demonstrating

that a pool of unconnected autapses can solve the 20-Cog-tasks (Yang et al., 2019), we have shown that

this apparently complex set of tasks can be solved without any communication between neurons. This

raises the hypothesis that appropriately tuned input weights corresponding to the “rule inputs" along

with static memory are enough to solve many tasks. Here we constructed Mod-Cog as a set of tasks with

increased complexity by adding more modular subcomponents that require the RNN to perform non-trivial

computations. Thus we provide a more reasonable multitask setting that leads to richer solutions and

may be a better testbed for exploring shared motifs and representations across modular subtasks. Another

possible direction for future study to increase task complexity for 20-Cog-tasks has been to eliminate rule

inputs and force the network to infer the task needed to be solved. This would likely involve some flavor of

predictive coding. A recent work (Hummos, 2022) makes progress in this direction.

We have found that given a certain amount of task complexity and network size, there is an optimal

amount of locality masking that provides the most benefit to learning, both in terms of sample efficiency

and asymptotic performance. While we have shown this result for recurrent networks, qualitatively similar

results on an optimal value of sparsity have been derived analytically for cerebellum-like feedforward

architectures (Litwin-Kumar, Harris, Axel, Sompolinsky, & Abbott, 2017). It remains an open question

to theoretically investigate the relationship between task complexity and the amount of sparsity that is

needed: if the network is too sparse, it will not have enough expressivity to perform well on the dataset,

while if the network is too dense, the benefits provided by sparsity will not be exploited.

Although our matrices are extremely sparse and would be well suited to sparse matrix representations,

we still maintain dense matrix dataypes for all of the training and evaluation processes since standard

libraries like PyTorch do not have native support for these data structures. As sparse matrices get more

common and their usefulness more apparent, as has been pointed out before (Liu et al., 2021), it will

be very useful for native deep learning software and hardware implementations on GPUs to exploit the

potential efficiencies of very sparse matrix structures.
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