

1
2 **Versatile Computer Aided Design of Freeform DNA Nanostructures and Assemblies**

3
4 Wolfgang G. Pfeifer^{1, 2, *}, Chao-Min Huang^{1, 3, *}, Michael G. Poirier^{2, 4, 5}, Gaurav Arya^{3, †},
5 Carlos E. Castro^{1, 4, †}

6
7
8 1 Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210.
9 2 Department of Physics, The Ohio State University, Columbus, OH 43210, USA.

10 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708

11 4 Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.

12 5 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210

13 † Corresponding author. Email: castro.39@osu.edu; gaurav.arya@duke.edu

14 * These authors contributed equally to this work.

15
16 **Abstract**

17 Recent advances in structural DNA nanotechnology have been facilitated by design tools
18 that continue to push the limits of structural complexity while simplifying an often-tedious
19 design process. We recently introduced the software MagicDNA, which enables design of
20 complex 3D DNA assemblies with many components; however, the design of structures
21 with freeform features like vertices or curvature still required iterative design guided by
22 simulation feedback and user intuition. Here, we present an updated design tool,
23 MagicDNA 2.0, that automates the design of freeform 3D geometries, leveraging design
24 models informed by coarse-grained molecular dynamics simulations. Our GUI-based,
25 stepwise design approach integrates a high level of automation with versatile control over
26 assembly and sub-component design parameters. We experimentally validated this
27 approach by fabricating a range of DNA origami assemblies with complex freeform
28 geometries, including a 3D Nozzle, G-clef, and Hilbert and Trifolium curves, confirming
29 excellent agreement between design input, simulation, and structure formation.

30
31 **Teaser**

32 Design algorithms informed by simulations allow users to arrange and bend DNA into
33 complex 3D structures and assemblies.

34
35 **Introduction**

36 Since its inception in the 1980s (1), structural DNA nanotechnology has found applications
37 across a vast array of fields, including biosensing, nanoelectronics, gene and drug delivery,
38 computing, optics, and plasmonics (2-6). The unique and exact molecular programmability
39 inherent in the antiparallel and complementary base-pairing of double-stranded DNA
40 enables the realization of nanoscale devices of high precision and geometric complexity.
41 Additionally, the ability to integrate single- and double-stranded (ds) DNA with rigid
42 bundles of dsDNA helices enables tailoring of both the dynamic and mechanical properties
43 of these devices (7-9). This ability to precisely design structures with tunable stiffness and
44 dynamics makes DNA nanotechnology highly suited for translating macroscopic
45 mechanisms and machine- and materials-design concepts to the nanoscale. However,
46 realizing advanced design concepts, such as compliant mechanisms and architected
47
48

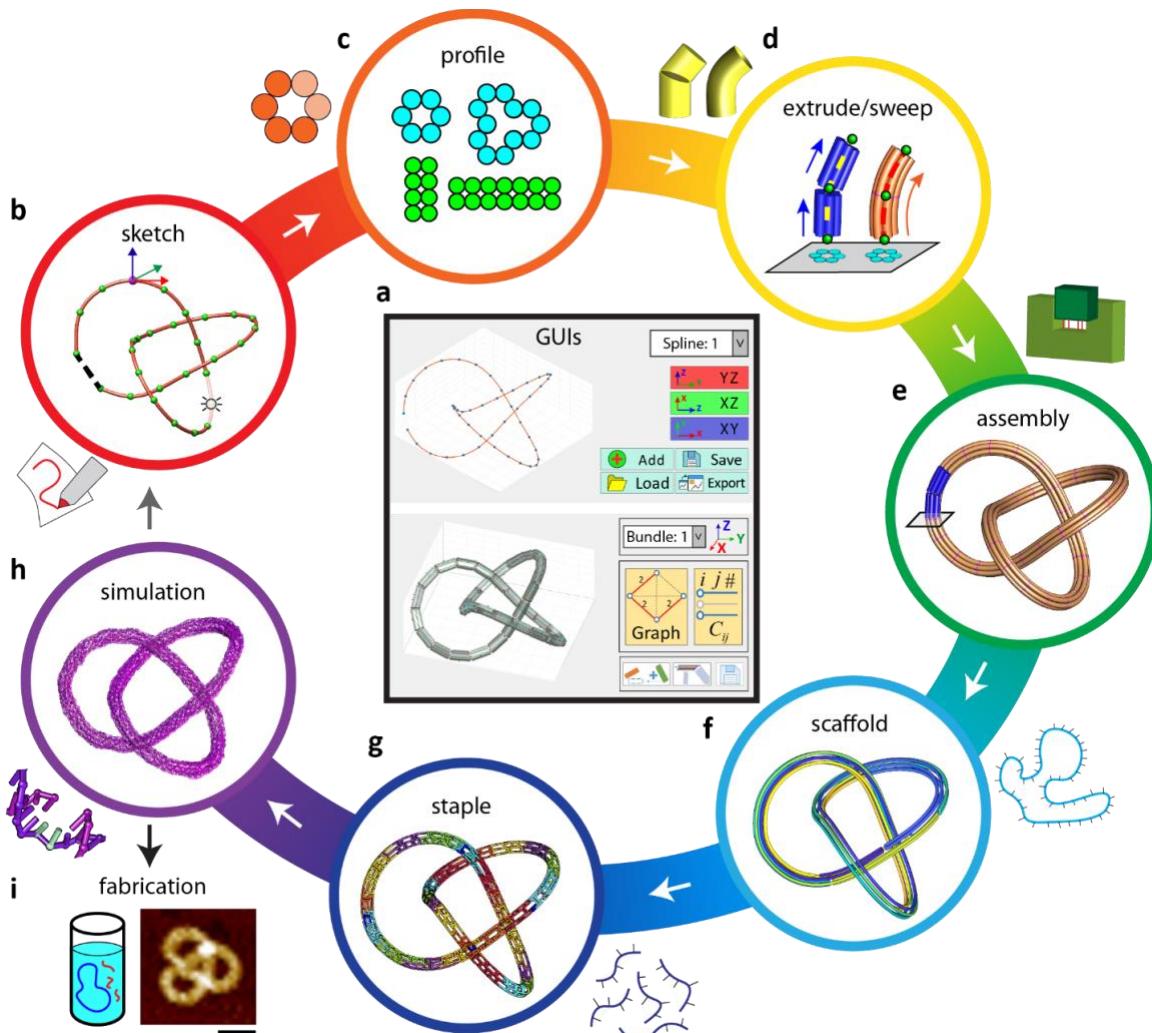
49 materials that contain intricate features like bends and vertices in 3D (“freeform”)
50 geometries remains challenging, often requiring substantial design iterations even for
51 experts. Here, we introduce a new design algorithm and tool to automate the design of
52 freeform structures, and we validate them both with current computational tools and
53 experimental fabrication. Our results establish a powerful computer aided design (CAD)
54 approach that will allow lay users to create complex 3D structures and assemblies without
55 needing to learn the underlying molecular design concepts.
56

57 Scaffolded DNA origami is one approach particularly well-suited for the design of complex
58 3D DNA nanostructures (10, 11) In this approach, many short oligonucleotides (~20–60
59 nucleotide [nt] long) called “staples” bind to a long (typically ~7,000–8,000 nt long) single
60 stranded DNA (ssDNA) termed “scaffold” to drive folding of the scaffold into a compact
61 defined shape. The staples drive folding by binding to and bridging multiple distant
62 contiguous sites of the scaffold to form dsDNA helices connected by migrationally
63 immobile Holliday junctions that, if appropriately positioned, yield bundles of parallel
64 dsDNA helices that can be arranged into a huge variety of 2D and 3D geometries.
65

66 As the DNA origami technique matured, CAD tools have become integral to facilitating a
67 rational design process. A recent review article by Dey et al. (12) categorized available
68 software tools for designing DNA origami structures into three generations. The first-
69 generation design tools like caDNAno (13) and Tiamat (14) implemented graphical user
70 interfaces (GUIs) to allow users to manually specify the routing and base-pairing
71 relationship among DNA strands to generate staple strand sequence lists for folding.
72 Second-generation design tools leveraged commercial CAD software to specify input
73 geometries and developed algorithms to automate the underlying strand routings. These
74 tools largely circumvent user inputs other than the original geometry, making structure
75 design simpler for non-experts, but limiting the ability to tune local mechanical and dynamic
76 properties (15–21). Lastly, third-generation software tools combine features from the first
77 and second-generation tools to improve versatility for both expert and non-experts (22, 23).
78 Within this realm, we recently introduced the tool MagicDNA (24) which combines the
79 advantage of GUI and inherited routing algorithm to design complex DNA nanostructures.
80

81 Yet one limitation of all these CAD tools is that they inherently build up structures from
82 straight segments of dsDNA helices or their bundles. Features like vertices and bends are
83 achieved by coupling helices of different lengths together either to form bundles with angled
84 edges (*i.e.*, gradients) that can be connected to form a vertex or bundles that accumulate
85 continuous bending stresses across their length to form curved features (25, 26). The
86 integration of CAD tools with simulation tools (27–32) has been critical to enabling accurate
87 design of these complex geometric features. In particular, the recently developed CAD tool
88 MagicDNA facilitates integration with the oxDNA coarse-grained simulations (30, 31, 33,
89 34) to acquire 3D conformation feedback for design iteration. MagicDNA’s combination of
90 graphical interfaces for 3D design manipulation and design parameter input, automated
91 routing algorithms, and coupling to simulation to facilitate iterative design enables
92 realization of complex multi-component assemblies with user control over local mechanical
93 and dynamic properties. Additionally, the newly developed tool DNAxiS leverages
94 simulation to design shapes with curvature, however currently limited to structures with
95 revolved symmetry, either axisymmetric or periodic circular symmetry (35). However, even
96 with these advanced design tools, achieving true freeform geometric designs is still
97 challenging and often requires many iterations to tune the desired geometry.
98

To achieve true freeform design capability, we introduce here a simulation-guided algorithm for automated vertex and curvature design that we experimentally validate and implement in a new GUI in the MagicDNA package. Our algorithm takes sketched freeform spline curves as user input and converts these mathematical splines into physical DNA bundles. We introduce an analytical algorithm called *extrude* to automate the design of a vertex of defined vertex angle formed by the connection between two neighboring wedge-shaped bundles. This algorithm is informed by a series of oxDNA simulations of vertex joint designs that model the relationship between bending angle and vertex design parameters (*i.e.*, edge gradients and bundle cross-section geometry). We also introduce an approach called *sweep* to design continuous, curved shapes in 3D from a series of subtly bending segments following similar simulation-based analytical models. These two algorithms are coupled to other useful features of MagicDNA such as 3D multi-component assembly, scaffold and staple routing algorithms, multi-scaffold design, and coarse-grained simulation feedback, providing a powerful platform for rapid design of freeform DNA architectures. To illustrate the versatility of our approach, we fabricated a range of 3D curved DNA origami structures designed using our platform and found excellent agreement between experiments and design predictions. Our results demonstrate outstanding control over the 3D geometry of DNA origamis through computer aided design and leverages the design versatility of integrated computer aided design and engineering through MagicDNA (24), allowing for rapid realization of complex DNA nanostructures, even by researchers from other fields.

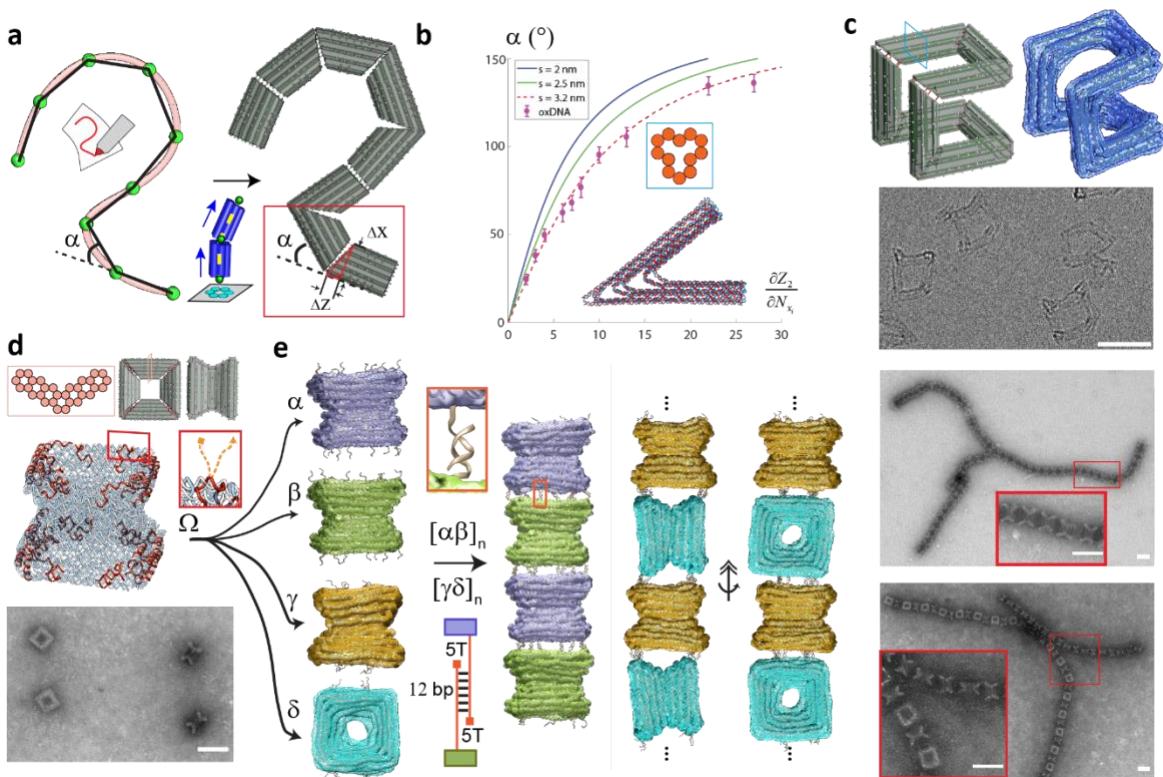

Results

Overall approach: From freeform splines to DNA bundles

To realize freeform DNA origami structures, we developed a GUI where users can manually define their design using a series of points (Fig. 1A, B). These “control” points are connected either by straight discrete segments with the input points defining vertices (*extrude*), or by smooth splines (of 4th order polynomials), which are then broken into smaller segments with small relative angles to closely approximate the continuous curvature (*sweep*). Next, the mathematical straight-segment or smooth spline is converted into a DNA nanostructure of physical dimensions taking the dsDNA length and bundle cross-section into account (Fig. 1C). The cross-section can consist of any even number of duplexes in a square or honeycomb lattice. This conversion between conceptual lines to tangible DNA bundles involves the calculation of edge gradients for bending angles, local orientations for bundles, or non-linear duplex lengths within a bundle for continuous geometries (Fig. 1D, details discussed in *extrude* and *sweep* sections). Once DNA bundles are created with approximate positions and orientations in the assembly model (Fig. 1E), the connectivity matrix based on distances between connection sites serves as a high-level bridge between the user-defined bundle layout and the scaffold routing algorithm that connects all the DNA bundles via scaffold routing (Fig. 1F). The staple strand routing with frequent, periodic crossovers is mostly adapted from caDNAno (13), as in the original implementation of MagicDNA (24), to locally define the shape of the individual DNA bundles (Fig. 1G), with a few adaptions for continuous geometries and higher-order assembly through overhangs. Finally, oxDNA simulations (Fig. 1H) provide rapid feedback on the 3D conformation of the structure for fine-tuning the design before fabrication (Fig. 1I).

Extrude method for generating piecewise curved structures with vertices

148
149 The extrude tool allows users to connect individual bundle components with desired angles
150 by automating the design of vertices (*i.e.*, automatically specifying edge gradients)
151 according to the defined input parameters (vertex angle and bundle cross-section). This
152 involves the calculation of (1) bundle orientations (for projecting cross-section profiles
153 along the helical axis direction) and (2) edge gradients for the two bending directions. The
154 3D orientation of each bundle is specified using two orthogonal unit vectors: one vector is
155 normal to the cross-section profile (*i.e.*, the helical axis) and the other points along the cross-
156 section describing its rotation about the normal vector. Using a straight-line representation
157 (connecting the control points of splines in a chain, Fig. 2A left), the algorithm takes the
158 orientation of the first bundle as the reference frame and keeps propagating the orientations
159 of the subsequent bundle relative to the prior bundle. Once all bundle orientations are
160 identified, the user can define the cross-section for individual bundle components.
161


162
163 **Fig. 1. Flow chart of the key steps involved in the design of freeform DNA origami**
164 **structures. (A)** GUI of the software, showing the spline and bundle panel. **(B-H)** Steps
165 involved in freeform design. **(I)** Experimental fabrication of the design for validation. The
166 trefoil knot used here is purely for illustrative purposes: to show 3D spline curves and
167 continuous geometries. In reality, this structure exhibited low experimental yields, likely
168 due to kinetic traps arising from its unique topology. Scale bar = 50 nm.
169

170 The bending angle α at a vertex is related to the edge gradients of the two adjoining bundles
171 on either side of the vertex, where the edge gradient is defined as the ratio of the difference
172 in duplex lengths between neighboring layers of dsDNA helices to the layer, *i.e.*, the center-
173 to-center distance between duplexes in successive layers (Fig. 2B). Although one could
174 utilize the geometry of DNA duplexes to derive an analytical relationship between the
175 symmetric edge gradients and α , previous work has shown that the layer width is larger than
176 the nominal 2 nm diameter of the DNA helix. Thus, to evaluate the relationship between α
177 and the edge-gradient parameters, we performed oxDNA simulations of a single DNA
178 origami joint with four commonly used cross-sections (Fig. 2B, and Fig. S1 and S2). Our
179 results show that larger cross-sections allow for more precise control of the bending angle.
180 We also compared the simulation results to a geometric model of the vertex angle that
181 depends on the difference in length between successive layers of dsDNA helices and the
182 inter-helical spacing (Fig. S1 and S2). We found that an effective helical spacing of 3.2 nm
183 near vertices best captures the vertex geometry (Fig. 2B). While prior work has found an
184 effective inter-helical spacing of 2.1-2.4 nm (36) in DNA origami bundles, we attribute our
185 slightly larger spacing to base pair fraying at the bundle edges commonly observed in
186 regions with lower cross-over densities (Fig. S1) (27, 37, 38). Therefore, we implemented
187 this geometric vertex model with the 3.2 nm spacing to automate the vertex design process
188 in our algorithm.
189

190 We implemented this vertex design model into the MagicDNA software tool and integrated
191 it with the bundle location, orientation, and scaling calculations to automate the design of
192 “extruded” 3D geometries consisting of straight segments with user defined length and
193 cross-section connected by vertices. To illustrate the robustness of our automated extrude
194 design approach, we designed and fabricated two structures: a Hilbert-curve structure with
195 a 12-helix cross-section, which contains eight well-defined vertices forming a first order
196 Hilbert-curve in 3D (Fig. 2C, top); and a Nozzle structure, which contains four well-defined
197 vertices adjoining four bundles with a V-shaped cross-section to form a 3D nozzle geometry
198 (Fig. 2D, top). Implementing common DNA origami protocols (12, 39), we realized high
199 yields of properly folded structures, (Figs. 2C and 2D). TEM imaging revealed a
200 homogeneous set of structures for both the Hilbert-curve and Nozzle designs. As the Hilbert
201 structure has a more open geometry that could collapse upon surface deposition, we used
202 cryogenic electron microscopy (cryo-EM) to reveal multiple orientations of this structure
203 and confirm its 3D geometry. For the Nozzle structure, we observed various orientations in
204 negative-stain TEM clearly illustrating different design features and validating successful
205 folding.
206

207 We next used the Nozzle structure to demonstrate and validate an overhang design tool in
208 MagicDNA, where ssDNA overhangs can be positioned at precise locations on the surface
209 of the structure for connecting them into higher-order assemblies. We folded four versions
210 (α , β , γ , and δ) of the Nozzle structure with unique overhangs. Versions α and β were
211 designed with corresponding patterns of mutually complementary overhangs on the ends of
212 the structure, while γ was designed with an overhang pattern on its ends that matches an
213 overhang pattern on the side of δ . We then performed an ABAB type multimerization by
214 mixing these structures. We realized two varieties of 1D filaments: one where both subunits
215 are oriented similarly (Fig. 2E, $[\alpha\beta]_n$) with the Nozzle axis aligned along the length of the
216 filament, and another where the Nozzles alternate between aligned and perpendicular
217 orientations with respect to the filament axis (Fig. 2E, $[\gamma\delta]_n$). TEM imaging revealed proper
218 multimerization of both filaments (Fig. 2E, right panel) and agarose gel-electrophoresis
219 shows that multimerization works over a broad range of MgCl₂ concentrations (Fig. S14).

220
221
222
Gel electrophoresis analysis, folding yields, and additional TEM images are provided in
Table S1, Figs. S4 – 5, S7-13, and 15-18 for all extrude designs explored in this work.

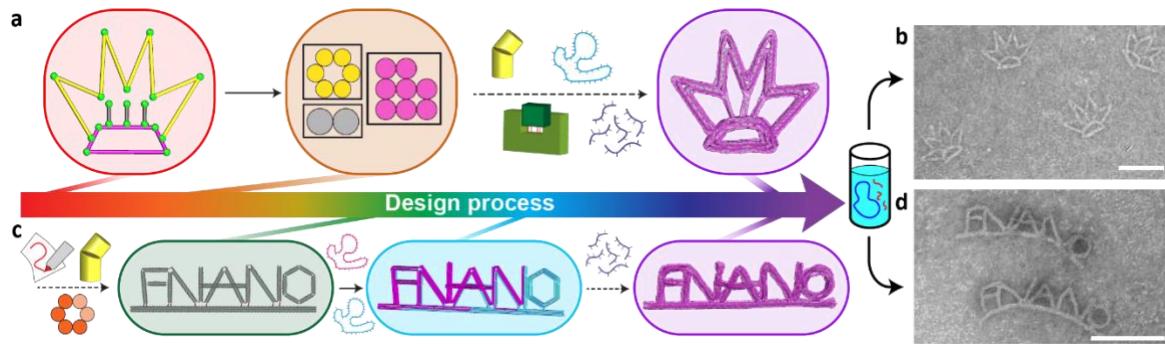
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
Fig. 2. Extrude tool for creating piecewise curved structures from straight bundles
which can be connected using overhangs to form larger arrays. (A) Conversion of a
spline into a series of connected DNA origami bundle components with edge-gradients to
approximate the target shape. (B) Single-joint oxDNA simulation to determine bending
angles based on the input edge gradient (*i.e.*, dZ/dX , dZ/dY) and cross-section. (C) Bundle
model (left), oxDNA simulation average rendered with the outer surface (right), and cryo-
EM image of the Hilbert structure (bottom). (D) From top to bottom: Cross-section, bundle
model, helical routing model, and TEM image of the Nozzle structure. Inset shows overhang
positions (orange). (E) oxDNA simulation averages with surface rendering of versions α , β ,
 γ , and δ , showing the different overhang positions (left). The inset shows the formed, stable
duplex of two complementary overhangs of the multimer $[\alpha\beta]_n$. The sketch depicts our
utilized overhang design, *i.e.*, using a 5T spacer between the DNA origami interface and the
sequence used in base-pairing to form the higher ordered structure. Results of the simulation
of multimeric Nozzle filaments $[\alpha\beta]_n$ and $[\gamma\delta]_n$ and their respective, experimental validation.
Inset show zoomed in structures. Scale bars = 50 nm.

239 240 241 **Sweep method for design of continuously curved structures**

242
243
244
245
246
247
248
249
Although one could adopt the extrude method and keep adding control points in splines to
form increasingly shorter bundles with more subtle bending angles for close to continuous
curved geometries. A less tedious alternative is to exploit the smoothness of the splines to
automatically sub-divide splines into DNA bundles that closely track the curved geometry.
We refer to this approach as the sweep method (Fig. 3a). In this method, the algorithm treats
the spline as a parametric curve, in terms of variable s , and takes the first derivative of the
positions $\mathbf{p}(s) \equiv [x(s), y(s), z(s)]$ on the spline to obtain the unit tangent vector $\hat{\mathbf{e}}_k(s)$
describing the normal vector of the cross-section profile in a continuous manner. Then, the

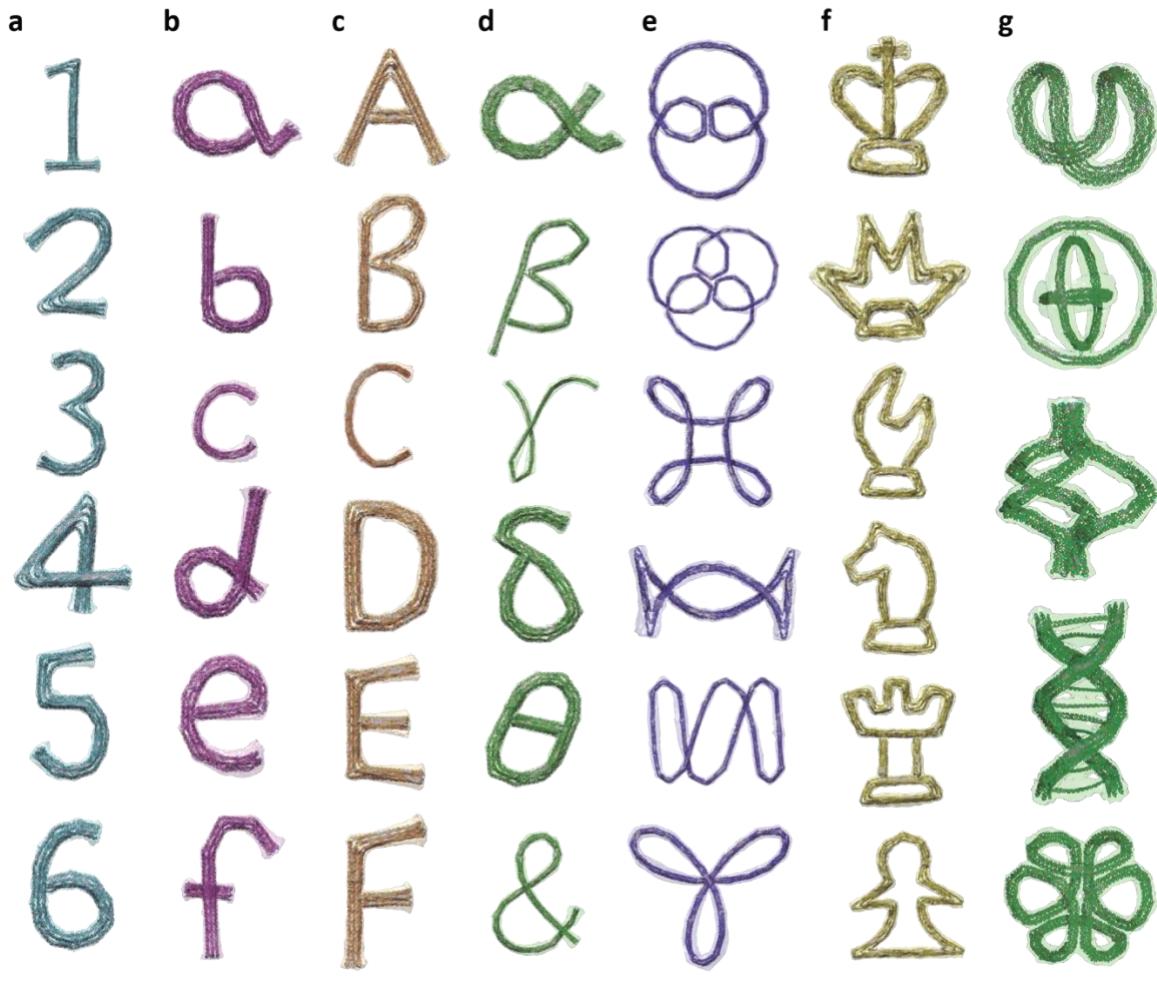
algorithm calculates the second derivative of $\mathbf{p}(s)$ to obtain the unit normal vector $\hat{\mathbf{e}}_i(s)$, a reference vector lying on the cross-section plane, and the binormal vector $\hat{\mathbf{e}}_j(s)$ from the vector product $\hat{\mathbf{e}}_k \times \hat{\mathbf{e}}_i$ (Fig. 3a). Since the spline describes the centroid of the cross-section, and the 3D locations of each dsDNA duplex along the spline curve can be calculated by vector addition of the spline position \mathbf{p} and linear combinations of $\hat{\mathbf{e}}_i$ and $\hat{\mathbf{e}}_j$. In this manner, the conformation of all duplexes in the target structure can be described using a single variable s , allowing creation of a continuous 3D model of the structure satisfying the inputs of the spline path and the desired cross-section profile. Through user-defined slicing (magenta slices in Fig. 3A right), the entire 3D model can be discretized into multiple DNA bundles of desired duplex lengths.

To validate the sweep algorithm, we designed and fabricated three distinct freeform structures, namely a G-Clef, a Nucleosome-like spring, and a Trifolium structure, each with a 6-helix bundle cross-section. Beginning with the G-Clef structure, Fig. 3a shows the conversion of the initial sketched spline into a continuous 3D bundle model, which was then discretized into 25 shorter components. The lengths of dsDNA duplexes in each segment were calculated by integrating the parametric curves for duplex axes between consecutive slice points (indicated by red lines in Fig. 3). The interfaces between consecutive bundles were held tight and parallel *via* multiple scaffold connections (typically zero bases long). We also implemented specific scaffold double connections between bundles 1 and 19, 6 and 21, and 11 and 18 (Fig. S19) to constrain the bundles into the G-Clef shape. OxDNA simulations revealed that the structure closely approximates the freeform G-Clef design (Fig. 3B, middle), and TEM images of the fabricated structures confirmed successful folding into the predicted structure (Fig. 3B, right). The Nucleosome-like spring was designed to form a 3D curve with 1.5 turns, forming a ~60 nm nominal diameter core with ~60-80 nm straight extensions on both sides (Fig. 3C). Simulations and images (Fig. 3C, middle) again revealed that the design accurately captures the desired 3D freeform geometry. Lastly, we designed the Trifolium design and showed successful folding of the structures according to design predictions (Fig. 3D). As in the case of the Nozzle structure, we used the Trifolium structure to demonstrate integration of sweep tool with the overhang tool for higher-order assembly. To this end, we designed dimeric and tetrameric assemblies of the Trifolium structures using the overhang tool and confirmed successful fabrication of both assemblies using simulations and imaging (Fig. 3E–3G). Gel electrophoresis analysis, folding yields, and additional TEM images are provided in Table S1, Figs. S20–21, 23–24, and 32–37 for all sweep designs.



286
287 **Fig. 3. Sweep tool for designs with continuous freeform curvature.** (A) Conversion of a
288 mathematical spline into a bundle model (B) G-Clef structure (from left to right): Bundle
289 model, oxDNA simulation, TEM image. (C) Nucleosome-like spring structure (from left to
290 right): Bundle model, oxDNA simulation, TEM image. (D) Monomeric version of the
291 Trifolium structure (bundle model and oxDNA simulation on top; TEM image on bottom).
292 (E) Dimeric version of the Trifolium structure (oxDNA simulation on top; TEM image on
293 bottom). (F) Closed-ring tetrameric version of the Trifolium structure (oxDNA simulation
294 on top; AFM image on bottom). (G) Zoom-in on the red square from the overlapping arms
295 in panel E showing the hybridization of overhangs on different bundles.
296 Scale bars = 100 nm.

297
298 **Integrating with MagicDNA features to expand design space**


299 The extrude and sweep approaches allow for the automated design of complex 3D
300 geometries. Implementing this freeform design automation in MagicDNA allows users to
301 leverage other features of this software to expand on freeform design. Here, we expand on
302 freeform designs by leveraging two specific features of MagicDNA: 1) control over
303 components-level cross-section, and 2) versatile scaffold routing algorithm including multi-
304 scaffold design. We used the extrude approach to design a Crown structure resembling the
305 symbol for the Queen chess piece (Fig. 4A). We carried the line model design (Fig. 4A, left)
306 through the MagicDNA design workflow to assign distinct cross-sections to individual
307 components, including a 6 helix-bundle honeycomb cross-section to the spikes of the crown,
308 an 8 helix-bundle square lattice cross-section to the base, and a 2-helix cross-section to the
309 struts that connect the base to the spikes (Fig. 4A, middle). The versatile scaffold routing
310 algorithm and assembly operations of the MagicDNA framework allowed us to place
311 scaffold connections to the base and the outer frame on either side of the struts to stabilize
312 the overall geometry. OxDNA simulations (Fig. 4A, right) and TEM images (Fig. 4B)
313 revealed that the design accurately captured the target geometry and that the structure folded
314 efficiently.

315
316 These advances in design capability are synergistic with recent advances in fabrication
317 methods, namely the ability to incorporate multiple orthogonal sequence scaffolds to fold
318 larger structures in a single-pot folding reaction (40). We previously implemented multi-
319 scaffold design into MagicDNA. To demonstrate integration of multi-scaffold design with
320 freeform automation, we designed an FNANO-script structure comprised of five letters that
321 are assembled and connected to a stiff support bundle (Fig. 4C). All letters have an 8-helix-
322 bundle cross-section, and the support bundle has a 6-helix-bundle cross-section. The multi-
323 scaffold routing algorithm in MagicDNA automatically divided the design into two
324 scaffolds with the structure formed from a total of 14,778 base pairs. Successful realization
325 of the FNANO structure is shown in Fig. 4D. Gel electrophoresis analysis, folding yields,
326 and additional TEM images are provided in Table S1, Figs. S26–27 and 29–30 for structures
327 with different cross-sections and multiple scaffolds.

Fig. 4. Combining freeform design with variable cross-section and multi-scaffold features of MagicDNA. (A) The Crown design workflow starts with the line model comprising multiple splines totaling 15 bundle components. Three different cross-sections were assigned to the yellow (crown spikes, 6 helix bundle), pink (base, 8 helix bundle), and gray (struts, 2-helix bundles) components. Components were assembled followed by automated scaffold and staple routing, and the final design was simulated in oxDNA. (B) TEM images illustrate well-folded Crown structures. (C) FNANO design workflow follows similar steps, with the bundle model and multi-scaffold routing highlighted, culminating in the final design simulated in oxDNA. (D) TEM images reveal well-folded FNANO script structures. Scale bars = 100 nm.

340 Finally, we highlight the capability of the automated freeform design implemented in
341 MagicDNA with an assorted gallery of sophisticated DNA origami nanostructures
342 presented in Fig. 5 including numbers, lowercase, uppercase, and Greek letters, parametric
343 curves, chess pieces, and other 3D freeform designs, demonstrating the versatility of our
344 design approach and software tool. All designs were simulated in oxDNA, and the
345 molecular structure of the average configuration is overlaid with a semi-transparent surface
346 view that envelops the maximum conformational fluctuations, giving an indication of the
347 local flexibility and the overall structural stability. As expected, structures with open
348 topology, small cross-sections (e.g., 6-helix-bundles), and lengthy components display
349 larger fluctuations around the mean configuration (e.g., the letter c) (Fig. S44).
350

351
352 **Fig. 5. Design gallery of freeform structures created using our software.** Conformations
353 of additional freeform designs obtained using oxDNA simulations. The designs include: (A)
354 numbers, (B) lowercase letters, (C) uppercase letters, (D) Greek letters, and the ampersand
355 symbol, (E) parametric curves, (F) six chess pieces, and (G) other 3D structures. Each
356 structure is shown by its mean conformation computed from the simulation with a bounding
357 surface representing the standard deviation of fluctuations the structure exhibits in the
358 simulation.
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373

Discussion

Design philosophy

We present a versatile design framework that interweaves GUIs (Fig. 1A) with algorithmic automations to enable the design of arbitrary freeform DNA origami structures and assemblies based on user-defined design parameters. The design process starts with the user sketching the geometry of the envisioned structure as freeform dimensionless splines by taking advantage of a GUI using which one can define and manipulate the shape of the splines and visualize them in real time. This real-time sketching allows users to rely on gradual modifications to achieve the target design. Realizing the 3D form of the structural design requires additional inputs such as cross-section profiles and edge gradients. Typically, the structures are comprised of many dsDNA bundles, which would make manual input of bundle design parameters tedious and error prone. To address this problem, we

374 implemented two new algorithms: the *extrude* and *sweep* methods. Both algorithms rely on
375 a series of oxDNA simulations that allowed us to derive a geometric model for relating
376 bundle design parameters to bending angle, which was implemented as an algorithm to
377 automatically convert the spline model to the assembly model (*i.e.*, geometry comprised of
378 connected bundles) in MagicDNA. Having the full sketch and assembly design process
379 implemented in one software (unlike second-generation design tools that import geometry
380 models from exterior CAD software) allows for flexible iteration between the sketch and
381 the assembly step to rapidly define and tune the geometry, while still leveraging the
382 algorithms implemented in MagicDNA for scaffold and staple strand routing to iterate and
383 complete designs. These designs can be evaluated computationally by coarse-grained
384 molecular dynamics simulations such as oxDNA with automatically generated simulation
385 input files to achieve an iterative robust design framework before moving forward to
386 experimental fabrication (see supplemental information for note on design iteration). Even
387 though the underlying algorithms for scaffold and staple routing, and for edge gradients
388 (leading to the extrude and sweep methods), have proven to work robustly, designs with
389 complex topology might require additional considerations, including control over the
390 folding pathway (41, 42) to achieve high yields. For example, such control over folding
391 could improve the yield of the trefoil knot topology for the design presented in Figure 11
392 (additional images in Fig. S67). One additional restriction in the scaffold-routing algorithm
393 of our software prevents the use of an odd number of helices because of a requisite step of
394 pairing helices, as discussed previously (24).
395

396 **Versatile design framework and hierarchical assembly**

397 We sacrificed full automation of the design process to allow users to customize structures
398 for intended applications. For example, the same geometry can be realized with different
399 bundle cross-sections to modulate the structure stiffness, as demonstrated with the DNA
400 crown structure (Fig. 4A). The choice of bundle cross-section depends on various factors,
401 including the desired thickness and flexibility of the structure and the amount of available
402 scaffold. Based on our results, vertex fluctuations also depend on the cross-section of the
403 vertex arms, with larger cross-sections leading to more precise vertex angles. In general,
404 larger cross-sections lead to stiffer structures that better maintain the desired shape, but this
405 comes at the expense of using more scaffold for individual components, which could mean
406 reducing the size or number of components in the overall structure or using multiple
407 scaffolds or larger scaffolds to fold the structure. Furthermore, a semi-automatic software
408 allows the user to examine the design status at several stages, modify details from default
409 settings, and seamlessly move forward and backward through the design steps, all of which
410 is facilitated by rapid feedback in GUIs to visualize results of design choices. Furthermore,
411 the new design paradigm introduced here can fully leverage the growing library of scaffold
412 sources (40, 43-45), removing restrictions in spatial dimensions and allowing users to
413 realize even more diverse structures. For example, we used the multi-scaffold feature of
414 MagicDNA to achieve large structures, such as the “FNANO” script (Fig. 4C), which was
415 designed from two scaffolds with orthogonal sequences (44) to honor this annual conference
416 that has played a seminal role in fostering the field of DNA nanotechnology.
417

418 **Expanded design scope with freeform features**

419 The design algorithms and associated software and GUIs developed here substantially
420 expand the capability of the MagicDNA design framework for designing freeform, curved
421 features. Our results demonstrate a vast array of freeform designs, fabricated with high
422 yields (>80%, Table S1), and with excellent agreement between oxDNA simulations and
423 experiments. Apart from validating our design strategy, these results also illustrate the

importance of coarse-grained simulations to computationally support the immense design space available for freeform structures with customizable features, allowing users to control both geometry and properties. In particular stiffness can be increased by using larger cross-sections (which might require a multi-scaffold design), or, for cases with overlapping components, introducing inter-bundle connections. For example, the bottom structure in the “Other 3D” series (Fig. 5) where a continuous freeform 6HB routes through the six faces of a cube (46) includes six inter-bundle connections along its edges. One could also exploit the versatility of the semi-automatic framework to design dynamic devices with multiple components, connected by single-stranded scaffold segments, to engineer pre-defined motions, as shown in the gyroscope structure (Fig. 5G, second from top) where two rotational degrees of freedoms exist between the inner and outer rings. While certain design concepts might be already covered by existing software, such as TALOS for 3D polyhedral wireframe structures (15), our approach is complementary, allowing users to diversify those designs, add irregular structural motifs, or combine wireframe components with non-wireframe components into a larger assembly.

The wide range of DNA origami designs presented illustrate the realization of advanced freeform features within the general categories of static, compliant, and dynamic DNA nanostructures. The freeform design algorithms integrate seamlessly with other features in MagicDNA such as hierarchical assembly and multi-scaffold designs to further broaden the design space for DNA self-assembly and provide a foundation for the realization of advanced materials, including assemblies of compliant mechanisms (47), curved polymeric DNA origami designs (48), and meta-materials (49). Moving forward, we envision enhancing the design capabilities of our software by directly including structure-property relationships into the design tools, where emerging tools like machine learning are expected to play a useful role (50).

Materials and Methods

Materials

Oligonucleotides for folding of the DNA origami structures were purchased at 10 nmol synthesis scale from Eurofins Genomics (<https://eurofinsgenomics.com>) or at 25 nmol synthesis scale from Integrated DNA Technologies Inc. (www.IDTDNA.com). DNA oligonucleotides were purchased with salt-free purification at 100 μ M concentration in RNase free water and were used without further purification. The single-stranded scaffold (p8064) was prepared as described previously (51), the single-stranded scaffold (CS03) was purchased from tibit (<https://www.tibit.com/>).

DNA Origami folding and purification

Folding of freeform DNA origami structures was performed by mixing 10 nM scaffold DNA with 100 nM corresponding staple strands in TEMg buffer (Tris: 5 mM, EDTA: 1 mM, MgCl₂: 10 mM, pH 8). Samples were folded in a BioRad PCR cycler by first heating them up to 65 °C for 15 minutes and then cooling them down to 20 °C over the course of 14 hours. The Nozzle-structure was folded over 2.5 days. The detailed protocols for thermal annealing and all staple strand sequences are provided in the Supplementary Material. Purification of DNA origami structures was performed by gel extraction (Freeze ‘N Squeeze, BioRad) or PEG precipitation (52). Hierarchical assembly of the Trifolium structure was performed by first folding monomers with different sets of overhangs, purifying them individually, mixing them in an equimolar ratio and incubating them at

474 temperatures between 40 and 55 °C for 20 hours. Unless stated otherwise, the Magnesium
475 concentration for these hierarchical assemblies was adjusted to 20 mM. Hierarchical
476 assembly of the Nozzle multimers was performed by folding structures with different sets
477 of overhangs, purifying them individually, mixing them in an equimolar ratio, and
478 incubating them at 40 °C for 20 hours.

479

480 AFM imaging

481 Gel purified structures (around 1 nM) were used for AFM imaging by adsorbing 6 μ l of
482 sample onto freshly cleaved mica (V1, Ted Pella). After three minutes of incubation, the
483 mica was rinsed carefully with milliQ-H₂O and dried with a gentle flow of air. Samples
484 were subsequently imaged in ScanAsyst Mode using a Bruker BioScope Resolve
485 microscope equipped with a Nanoscope V controller. ScanAsyst Air probes (Bruker) with
486 a nominal spring constant of 0.4 N/m were used for scanning. Height information was
487 recorded in the retrace channel.

488

489 Negative stain transmission electron microscopy

490 Purified DNA origami structures (1–10 nM) were adsorbed onto freshly glow discharged
491 copper grids (Electron Microscopy Sciences, Hatfield, PA) and incubated for 4 minutes.
492 Excess sample solution was subsequently wicked off with filter paper (Whatman #4) and
493 the grid stained with two 6 μ l drops of 1% aqueous Uranyl acetate (SPI Supplies) solution.
494 Samples were dried for at least 30 minutes prior to imaging. Imaging was performed on a
495 FEI Tecnai G2 Spirit operated at 80 kV acceleration.

496

497 Cryo-electron microscopy

498 The Hilbert structure used for Cryo-EM analysis was subjected to two rounds of PEG
499 precipitation to ensure sufficient purity. Furthermore, the second round was used to increase
500 the DNA origami concentration to 500 nM. Glow discharged grids (Ted Pella) were used
501 with a Thermo Scientific Vitrobot at 22 °C, 0 s drain time, 3 s blot time, 0 blot force at
502 100% humidity. Imaging was done on a Thermo Scientific Glacios cryo-TEM, equipped
503 with a Falcon III direct electron detector and 200 kV x-FEG.

504

505 Coarse-grained molecular dynamics simulations

506 For performing oxDNA2 simulations, the relevant topology and initial configuration files
507 were generated using the refined version of MagicDNA developed here. The initial
508 configuration was relaxed in a manner similar to our previous study. Briefly, this involved
509 substituting the DNA back-bone potential with linear springs, gradually increasing the force
510 constants of these springs, and then applying mutual traps between paired scaffold and
511 staple bases over a period of 100,000 timesteps. Next, the backbone potential was restored
512 and a further 1 million timesteps of simulations were carried out, still retaining the mutual
513 traps to finalize the relaxation process. During both these relaxation steps, we used a small
514 time step of 3.03 fs. Finally, we removed the mutual traps and continued the simulation for
515 an additional period of 20 million time steps of size 15.15 fs for calibrating the edge
516 gradients at bundle vertex, and 10 million time steps of size 3.03 fs for the other simulations
517 providing feedback on structure conformation for each design. We used a John thermostat
518 (with diffusion coefficient and Newtonian step settings of 2.5 and 103) to maintain a
519 constant temperature of 30 °C. A monovalent salt concentration at 0.5 M was chosen to
520 mimic standard Mg-induced folding conditions. GPU acceleration was used whenever
521 available. The trajectory files were analyzed using functions built into MagicDNA,
522 including visualization of configurations and calculation of root-mean-square deviation

(RMSD) and root-mean-squared fluctuations (RMSF). The average configurations were exported to the UCSF Chimera software and rendered to obtain high-quality images. We typically report the mean configuration of each structure and a surface map enveloping its conformational fluctuations.

References

1. N. C. Seeman, Nucleic acid junctions and lattices. *Journal of Theoretical Biology* **99**, 237-247 (1982).
2. D. Daems, W. Pfeifer, I. Rutten, B. Sacca, D. Spasic, J. Lammertyn, 3D DNA origami as programmable anchoring points for bioreceptors in fiber optic surface plasmon resonance biosensing. *ACS Applied Materials & Interfaces*, (2018).
3. E. Lin-Shiao, W. G. Pfeifer, B. R. Shy, M. Saffari Doost, E. Chen, V. S. Vykunta, J. R. Hamilton, E. C. Stahl, D. M. Lopez, C. R. Sandoval Espinoza, A. E. Deyanov, R. J. Lew, M. G. Poirier, A. Marson, C. E. Castro, J. A. Doudna, CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. *Nucleic acids research* **50**, 1256-1268 (2022).
4. C. R. Lucas, P. D. Halley, A. A. Chowdury, B. K. Harrington, L. Beaver, R. Lapalombella, A. J. Johnson, E. K. Hertlein, M. A. Phelps, J. C. Byrd, C. E. Castro, DNA Origami Nanostructures Elicit Dose-Dependent Immunogenicity and Are Nontoxic up to High Doses In Vivo. *Small (Weinheim an der Bergstrasse, Germany)* **18**, e2108063 (2022).
5. M. Dass, F. N. Gür, K. Kołataj, M. J. Urban, T. Liedl, DNA Origami-Enabled Plasmonic Sensing. *The Journal of Physical Chemistry C* **125**, 5969-5981 (2021).
6. B. R. Aryal, D. R. Ranasinghe, C. Pang, A. E. F. Ehlert, T. R. Westover, J. N. Harb, R. C. Davis, A. T. Woolley, Annealing of Polymer-Encased Nanorods on DNA Origami Forming Metal–Semiconductor Nanowires: Implications for Nanoelectronics. *ACS Applied Nano Materials* **4**, 9094-9103 (2021).
7. M. Darcy, K. Crocker, Y. Wang, J. V. Le, G. Mohammadiroozbahani, M. A. S. Abdelhamid, T. D. Craggs, C. E. Castro, R. Bundschuh, M. G. Poirier, High-Force Application by a Nanoscale DNA Force Spectrometer. *ACS nano*, (2022).
8. W. Pfeifer, P. Lill, C. Gatsogiannis, B. Sacca, Hierarchical Assembly of DNA Filaments with Designer Elastic Properties. *ACS nano* **12**, 44-55 (2018).
9. F. N. Gür, S. Kempfer, F. Schueder, C. Sikeler, M. J. Urban, R. Jungmann, P. C. Nickels, T. Liedl, Double- to Single-Strand Transition Induces Forces and Motion in DNA Origami Nanostructures. *Advanced Materials* **33**, 2101986 (2021).
10. X. Yan, Y. Wang, N. Ma, Y. Yu, L. Dai, Y. Tian, Dynamically Reconfigurable DNA Origami Crystals Driven by a Designated Path Diagram. *Journal of the American Chemical Society* **145**, 3978-3986 (2023).
11. A.-K. Pumm, W. Engelen, E. Kopperger, J. Isensee, M. Vogt, V. Kozina, M. Kube, M. N. Honemann, E. Bertosin, M. Langecker, R. Golestanian, F. C. Simmel, H. Dietz, A DNA origami rotary ratchet motor. *Nature* **607**, 492-498 (2022).
12. S. Dey, C. Fan, K. V. Gothelf, J. Li, C. Lin, L. Liu, N. Liu, M. A. D. Nijenhuis, B. Saccà, F. C. Simmel, H. Yan, P. Zhan, DNA origami. *Nature Reviews Methods Primers* **1**, 13 (2021).
13. S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Rapid prototyping of 3D DNA-origami shapes with caDNAno. *Nucleic acids research* **37**, 5001-5006 (2009).

574 14. S. Williams, K. Lund, C. Lin, P. Wonka, S. Lindsay, H. Yan, in *DNA Computing*, A. Goel,
575 F. C. Simmel, P. Sosík, Eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp.
576 90-101.

577 15. H. Jun, T. R. Shepherd, K. Zhang, W. P. Bricker, S. Li, W. Chiu, M. Bathe, Automated
578 Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges.
579 *ACS nano* **13**, 2083-2093 (2019).

580 16. H. Jun, X. Wang, W. P. Bricker, M. Bathe, Automated sequence design of 2D wireframe
581 DNA origami with honeycomb edges. *Nature communications* **10**, 5419 (2019).

582 17. H. Jun, F. Zhang, T. Shepherd, S. Ratanaert, X. Qi, H. Yan, M. Bathe, Autonomous
583 designed free-form 2D DNA origami. *Science advances* **5**, eaav0655 (2019).

584 18. R. Veneziano, S. Ratanaert, K. Zhang, F. Zhang, H. Yan, W. Chiu, M. Bathe, Designer
585 nanoscale DNA assemblies programmed from the top down. *Science (New York, N.Y.)*
586 **352**, 1534-1534 (2016).

587 19. E. Benson, A. Mohammed, A. Bosco, A. I. Teixeira, P. Orponen, B. Höglberg, Computer-
588 Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes.
589 *Angewandte Chemie (International ed. in English)* **55**, 8869-8872 (2016).

590 20. E. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, B. Höglberg,
591 DNA rendering of polyhedral meshes at the nanoscale. *Nature* **523**, 441 (2015).

592 21. M. Lolaico, S. Blokhuizen, B. Shen, Y. Wang, B. Höglberg, Computer-Aided Design of A-
593 Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges. *ACS nano*,
594 (2023).

595 22. H. Jun, X. Wang, M. F. Parsons, W. P. Bricker, T. John, S. Li, S. Jackson, W. Chiu, M.
596 Bathe, Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami. *Nucleic acids
597 research* **49**, 10265-10274 (2021).

598 23. E. de Llano, H. Miao, Y. Ahmadi, A. J. Wilson, M. Beeby, I. Viola, I. Barisic, Adenita:
599 interactive 3D modelling and visualization of DNA nanostructures. *Nucleic acids research*
600 **48**, 8269-8275 (2020).

601 24. C.-M. Huang, A. Kucinic, J. A. Johnson, H.-J. Su, C. E. Castro, Integrated computer-aided
602 engineering and design for DNA assemblies. *Nature Materials* **20**, 1264-1271 (2021).

603 25. H. Dietz, S. M. Douglas, W. M. Shih, Folding DNA into Twisted and Curved Nanoscale
604 Shapes. *Science (New York, N.Y.)* **325**, 725-730 (2009).

605 26. Y. Suzuki, I. Kawamata, K. Mizuno, S. Murata, Large Deformation of a DNA-Origami
606 Nanoarm Induced by the Cumulative Actuation of Tension-Adjustable Modules.
607 *Angewandte Chemie International Edition* **59**, 6230-6234 (2020).

608 27. D. N. Kim, F. Kilchherr, H. Dietz, M. Bathe, Quantitative prediction of 3D solution shape
609 and flexibility of nucleic acid nanostructures. *Nucleic acids research* **40**, 2862-2868
610 (2012).

611 28. C. Maffeo, A. Aksimentiev, MrDNA: a multi-resolution model for predicting the structure
612 and dynamics of DNA systems. *Nucleic acids research* **48**, 5135-5146 (2020).

613 29. J. Y. Lee, J. G. Lee, G. Yun, C. Lee, Y.-J. Kim, K. S. Kim, T. H. Kim, D.-N. Kim, Rapid
614 Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution. *ACS
615 nano* **15**, 1002-1015 (2021).

616 30. T. E. Ouldridge, A. A. Louis, J. P. K. Doye, Structural, mechanical, and thermodynamic
617 properties of a coarse-grained DNA model. *The Journal of Chemical Physics* **134**, 085101
618 (2011).

619 31. B. E. K. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E.
620 Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. K. Doye, Introducing improved
621 structural properties and salt dependence into a coarse-grained model of DNA. *The
622 Journal of Chemical Physics* **142**, 234901 (2015).

623 32. W. T. Kaufhold, W. Pfeifer, C. E. Castro, L. Di Michele, Probing the Mechanical
624 Properties of DNA Nanostructures with Metadynamics. *ACS nano* **16**, 8784-8797 (2022).

625 33. L. Rovigatti, P. Šulc, I. Z. Reguly, F. Romano, A comparison between parallelization
626 approaches in molecular dynamics simulations on GPUs. *Journal of computational
627 chemistry* **36**, 1-8 (2015).

628 34. P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. Doye, A. A. Louis, Sequence-
629 dependent thermodynamics of a coarse-grained DNA model. *J Chem Phys* **137**, 135101
630 (2012).

631 35. D. Fu, R. Pradeep Narayanan, A. Prasad, F. Zhang, D. Williams, J. S. Schreck, H. Yan, J.
632 Reif, Automated design of 3D DNA origami with non-rasterized 2D curvature. *Science
633 advances* **8**, eade4455 (2022).

634 36. S. M. Douglas, H. Dietz, T. Liedl, B. Höglberg, F. Graf, W. M. Shih, Self-assembly of
635 DNA into nanoscale three-dimensional shapes. *Nature* **459**, 414 (2009).

636 37. Z. Shi, C. E. Castro, G. Arya, Conformational Dynamics of Mechanically Compliant DNA
637 Nanostructures from Coarse-Grained Molecular Dynamics Simulations. *ACS nano* **11**,
638 4617-4630 (2017).

639 38. B. E. K. Snodin, J. S. Schreck, F. Romano, A. A. Louis, J. P. K. Doye, Coarse-grained
640 modelling of the structural properties of DNA origami. *Nucleic acids research* **47**, 1585-
641 1597 (2019).

642 39. K. F. Wagenbauer, F. A. S. Engelhardt, E. Stahl, V. K. Hechtl, P. Stommer, F. Seebacher,
643 L. Meregalli, P. Ketterer, T. Gerling, H. Dietz, How We Make DNA Origami.
644 *Chembiochem : a European journal of chemical biology* **18**, 1873-1885 (2017).

645 40. X. Liu, F. Zhang, X. Jing, M. Pan, P. Liu, W. Li, B. Zhu, J. Li, H. Chen, L. Wang, J. Lin,
646 Y. Liu, D. Zhao, H. Yan, C. Fan, Complex silica composite nanomaterials templated with
647 DNA origami. *Nature* **559**, 593-598 (2018).

648 41. F. Schneider, N. Möritz, H. Dietz, The sequence of events during folding of a DNA
649 origami. *Science advances* **5**, eaaw1412 (2019).

650 42. A. E. Marras, L. Zhou, H.-J. Su, C. E. Castro, Programmable motion of DNA origami
651 mechanisms. *Proceedings of the National Academy of Sciences* **112**, 713-718 (2015).

652 43. T. Aksel, Z. Yu, Y. Cheng, S. M. Douglas, Molecular goniometers for single-particle
653 cryo-electron microscopy of DNA-binding proteins. *Nature biotechnology* **39**, 378-386
654 (2021).

655 44. F. A. S. Engelhardt, F. Praetorius, C. H. Wachauf, G. Brüggenthies, F. Kohler, B. Kick, K.
656 L. Kadletz, P. N. Pham, K. L. Behler, T. Gerling, H. Dietz, Custom-Size, Functional, and
657 Durable DNA Origami with Design-Specific Scaffolds. *ACS nano* **13**, 5015-5027 (2019).

658 45. X. Chen, B. Jia, Z. Lu, L. Liao, H. Yu, Z. Li, Aptamer-Integrated Scaffolds for
659 Biologically Functional DNA Origami Structures. *ACS Applied Materials & Interfaces* **13**,
660 39711-39718 (2021).

661 46. C. Kimberling, P. J. C. Moses, Closed Space Curves Made from Circles on Polyhedra.
662 *Journal for Geometry and Graphics* **15**, 29-43 (2011).

663 47. H.-J. Su, C. Castro, A. Marras, L. Zhou, *The Kinematic Principle for Designing DNA
664 Origami Mechanisms: Challenges and Opportunities* (2015).

665 48. M. W. Grome, Z. Zhang, F. Pincet, C. Lin, Vesicle Tubulation with Self-Assembling
666 DNA Nanosprings. *Angewandte Chemie (International ed. in English)* **57**, 5330-5334
667 (2018).

668 49. R. Li, H. Chen, J. H. Choi, Auxetic Two-Dimensional Nanostructures from DNA**.
669 *Angewandte Chemie International Edition* **60**, 7165-7173 (2021).

670 50. M. DeLuca, S. Sensale, P.-A. Lin, G. Arya, Prediction and Control in DNA
671 Nanotechnology. *ACS Applied Bio Materials*, (2023).

672 51. C. E. Castro, F. Kilchherr, D. N. Kim, E. L. Shiao, T. Wauer, P. Wortmann, M. Bathe, H.
673 Dietz, A primer to scaffolded DNA origami. *Nature methods* **8**, 221-229 (2011).

674 52. E. Stahl, T. G. Martin, F. Praetorius, H. Dietz, Facile and scalable preparation of pure and
675 dense DNA origami solutions. *Angewandte Chemie (International ed. in English)* **53**,
676 12735-12740 (2014).

677

678

679 **Acknowledgments**

680 We acknowledge resources from the Campus Microscopy and Imaging Facility (CMIF) at
681 The Ohio State University for negative stain TEM imaging. Cryo-electron microscopy was
682 performed at the Center of Electron Microscopy and Analysis (CEMAS) at The Ohio State
683 University. We are thankful to Prof. G. Agarwal (The Ohio State University) for providing
684 access to the Bruker BioScope Resolve AFM

685

686

687 **Funding:**

688 This work was funded by the National Science Foundation, Award numbers: 1921881 and
689 1933344 to CEC and MGP and 1921955 to GA.

690 AFM imaging was supported by the National Institutes of Health grant 1S10OD025096-
691 01A1 to Gunjan Agarwal.

692 Computational resources were provided by the Duke Computing Cluster (DCC) and the
693 XSEDE Program supported by the National Science Foundation [Grant no. ACI-1053575].

694

695 **Author contributions**

696 WGP performed all experiments. CMH wrote the MatLab code and performed oxDNA
697 simulations. WGP and CMH wrote the initial draft of the manuscript and prepared the
698 figures. All authors discussed results. All authors reviewed and edited the final manuscript.

700 **Competing interests:** The authors declare that they have no competing interests.

701

702 **Data and materials availability:**

703 Code is available at github (<https://github.com/cmhuang2011/MagicDNA>). All data needed
704 to evaluate the conclusions in the paper are present in the paper and/or the Supplementary
705 Materials. Additional data used in the study are available through Open Science Framework
706 (DOI 10.17605/OSF.IO/N284U).

707

708

709 **Supplementary Materials**

710

711

712 Supplementary Text Folding Protocols

713 Supplementary Text: Design iterations

714

715 Table S1: Folding yield

716

717 Figure S1: Simulation of bending angles as function of edge gradients, using oxDNA.

718 Figure S2: Results of the edge gradient simulations

719 Figure S3: Design details of the Hilbert structure.

720 Figure S4: Magnesium screening during the folding of the Hilbert structure.

721 Figure S5: TEM micrograph the Hilbert structure.

722 Figure S6: Design details of the Nozzle structure.

723 Figure S7: Magnesium screening during the folding of the Nozzle structure.

724 Figure S8: TEM micrograph of the Nozzle structure (no overhangs).
725 Figure S9: Gel electrophoretic analysis of Nozzle variants with different overhangs.
726 Figure S10: TEM micrograph of the Nozzle structure (overhang species α).
727 Figure S11: TEM micrograph of the Nozzle structure (overhang species β).
728 Figure S12: TEM micrograph of the Nozzle structure (overhang species γ).
729 Figure S13: TEM micrograph of the Nozzle structure (overhang species δ).
730 Figure S14: Gel electrophoretic analysis of the multimerization of Nozzle structures with overhangs.
731 Figure S15: TEM micrograph of multimeric Nozzle structure (overhang species α & β), incubated in the
732 presence of 10 mM MgCl₂.
733 Figure S16: TEM micrograph of multimeric Nozzle structure (overhang species α & β), incubated in the
734 presence of 20 mM MgCl₂.
735 Figure S17: TEM micrograph of multimeric Nozzle structure (overhang species γ & δ), incubated in the
736 presence of 10 mM MgCl₂.
737 Figure S18: TEM micrograph of multimeric Nozzle structure (overhang species γ & δ), incubated in the
738 presence of 20 mM MgCl₂.
739 Figure S19: Design details of the G-clef structure.
740 Figure S20: Magnesium screening during the folding of the G-clef structure.
741 Figure S21: AFM image of the G-clef structure.
742 Figure S22: Design details of the nucleosome-like spring structure.
743 Figure S23: Magnesium screening during the folding of the nucleosome-like spring structure.
744 Figure S24: TEM micrograph of the nucleosome-like spring structure.
745 Figure S25: Design details of the crown structure.
746 Figure S26: Magnesium screening during the folding of the crown structure.
747 Figure S27: TEM micrograph of crown structure.
748 Figure S28: Design details of the FNANO-script structure.
749 Figure S29: Magnesium screening during the folding of the FNANO-script structure.
750 Figure S30: TEM micrograph of the FNANO-script structure.
751 Figure S31: Design details of the Trifolium structure.
752 Figure S32: Magnesium screening during the folding of the trifolium structure.
753 Figure S33: AFM image of the Trifolium structure.
754 Figure S34: Multimerization of Trifolium structures with overhangs Species A(1+2) and overhangs Species
755 B(1) or Species B(2).
756 Figure S35: AFM image of the Trifolium dimer-structures.
757 Figure S36: AFM image of higher order Trifolium structures.
758 Figure S37: AFM image of higher order Trifolium structures.
759 Figure S38: Other freeform examples in the number series (0 & 1).
760 Figure S39: Other freeform examples in the number series (2 & 3).
761 Figure S40: Other freeform examples in the number series (4 & 5).
762 Figure S41: Other freeform examples in the number series (6 & 7).
763 Figure S42: Other freeform examples in the number series (8 & 9).
764 Figure S43: Other freeform examples in the lowercase series (a & b).
765 Figure S44: Other freeform examples in the lowercase series (c & d).
766 Figure S45: Other freeform examples in the lowercase series (e & f).
767 Figure S46: Other freeform examples in the lowercase series (g & h).
768 Figure S47: Other freeform examples in the lowercase series (i & j).
769 Figure S48: Other freeform examples in the uppercase series (A & B).
770 Figure S49: Other freeform examples in the uppercase series (C & D).
771 Figure S50: Other freeform examples in the uppercase series (E & F).
772 Figure S51: Other freeform examples in the uppercase series (G & H).
773 Figure S52: Other freeform examples in the uppercase series (I & J).
774 Figure S53: Other freeform examples in the symbol series (alpha & beta).
775 Figure S54: Other freeform examples in the symbol series (gamma & theta).
776 Figure S55: Other freeform examples in the symbol series (ampersand & delta).
777 Figure S56: Other freeform examples in the symbol series (sigma & omega).
778 Figure S57: Other freeform examples in the symbol series (psi).
779 Figure S58: Other freeform examples in the parametric curve series (I).
780 Figure S59: Other freeform examples in the parametric curve series (II).
781 Figure S60: Other freeform examples in the parametric curve series (III).
782 Figure S61: Other freeform examples in the chess series (Queen & King).
783 Figure S62: Other freeform examples in the chess series (Bishop & Knight).
784 Figure S63: Other freeform examples in the chess series (Rook & Pawn).

785 Figure S64: Other freeform examples in the 3D series (Baseball-seam & Gyroscope).
786 Figure S65: Other freeform examples in the 3D series (Twist stair railing & Duplex DNA).
787 Figure S66: Other freeform example in the 3D series (3D continuous curve).
788 Figure S67: AFM images of different structures based on the Knot design.
789
790 Other Supplementary Material for this manuscript includes the following:
791 Data S1: DNA Sequences: Full list of staple strand sequences for all realized structures.