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ABSTRACT

The chemical reservoir within protoplanetary disks has a direct impact on plane-

tary compositions and the potential for life. A long-lived carbon-and nitrogen-rich

chemistry at cold temperatures (≤ 50 K) is observed within cold and evolved planet-

forming disks. This is evidenced by bright emission from small organic radicals in 1–10

Myr aged systems that would otherwise have frozen out onto grains within 1 Myr. We

explain how the chemistry of a planet-forming disk evolves from a cosmic-ray/X-ray-

dominated regime to a ultraviolet-dominated chemical equilibrium. This,in turn, will

bring about a temporal transition in the chemical reservoir from which planets will

accrete. This photochemical dominated gas phase chemistry develops as dust evolves

via growth, settling and drift, and the small grain population is depleted from the

disk atmosphere. A higher gas-to-dust mass ratio allows for deeper penetration of ul-

traviolet photons is coupled with a carbon-rich gas (C/O > 1) to form carbon-bearing

radicals and ions. This further results in gas phase formation of organic molecules,

which then would be accreted by any actively forming planets present in the evolved

disk.
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MAIN

Protoplanetary disks are the natal environments for planets. Disks have three main

components: a pebble-rich dusty midplane (dust grain radius >∼ 1mm), a gaseous

atmosphere extending well above(Miotello et al. 2022) and radially beyond (by a factor

of ∼2(Ansdell et al. 2018)) the pebble-rich midplane, and a small dust population

(radius < 10 µm) that is coupled to the gas. Each component of the protoplanetary

disk has an impact on shaping the chemistry of actively forming planets. The solid

cores of giant planets must form over a short timescale (∼1 Myr) for the eventual

planet to obtain its full mass over the course of a typical lifetime of gas in a disk (3-

10 Myr(Haisch et al. 2001)) and to explain the widely observed gap and ring structures

that are thought to be indicative of planet formation(Andrews et al. 2018). The

compositions of pebbles and their icy mantles directly influence the final composition

of a solid planetary core (Öberg et al. 2011; Johansen and Lambrechts 2017). After a

core becomes sufficiently massive, planets start to accrete material from the gaseous

reservoir surrounding the pebble-rich midplane of a protoplanetary disk to form their

atmospheres (Lambrechts et al. 2014). It remains difficult to directly probe the gas

within the planet-forming midplane due to the high dust densities leading to elevated

dust optical depths that mask line emission, as well as cold temperatures which leads

to the freezing out common gas tracers such as CO onto dust grains. However,

constraining the chemical environment of the planet-forming midplane is essential to

connect sub-mm observations probing the warm intermediate regions above the disk

midplane to the composition of actively forming planets.

The molecules CH3CN and HC3N are two of many complex organic molecules

(loosely defined as a molecules with at least four atoms, including multiple car-

bon atoms) that could act as basic precursors to prebiotic molecules(Powner et al.

2009; Ritson and Sutherland 2012; Sutherland 2015). CH3CN and HC3N have been

observed and spatially resolved towards the protoplanetary disks around six young

stars: GM Aur, AS 209, HD 163296, MWC 480, LkCa 15, and V4046 Sgr (Bergner

et al. 2018; Ilee et al. 2021; Kastner et al. 2018; Öberg et al. 2015). CH3CN has

also been spatially resolved observed toward the TW Hya disk(Loomis et al. 2018),

and a couple of small (≈4 source) surveys have detected unresolved CH3CN or HC3N

emission from other young stellar objects(Chapillon et al. 2012). These molecules

exhibit bright emission signifying high gas phase abundances and column densities

(NTotal=1012-1013cm−2 (Bergner et al. 2018; Ilee et al. 2021)). CH3CN is an excellent

probe of gas temperature due to multiple transitions tracing a range of energy states

[lowest energy state EL ≈5 K, spanning lower energy states over ∆EL=∼100 K] that

can be observed simultaneously. Each J -transition (where J is the rotational quanum

number) has a series of K -ladder transitions (where K is the quantum number of an-

gular momentum along the molecular axis) which are only sensitive to collisions,

∗ NASA Hubble Fellowship Program Sagan Fellow
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thus the ratio between K -transitions depends only on the gas density and temper-

ature. The K -transitions span a large range of temperatures and are sufficiently

close in frequency to observe in one spectral setting with the Atacama Large Millime-

ter/submillimeter Array (ALMA). Analyses of rotational diagrams(Goldsmith and

Langer 1999) made from CH3CN observations demonstrate an origin in gas with a

temperature between 25-50 K(Ilee et al. 2021), well below the expected desorption

temperature (100-124 K(Corazzi et al. 2021)). Thus, the brightly observed flux from

this species and similar nitriles and organics like HC3N, and CH2CN(Canta et al.

2021) present a chemical conundrum as they should not be present in the gaseous

state; rather, they should be frozen on cold grain surfaces. Where CH3CN and other

carbon-rich molecules reside and how they are replenished in the gas phase has a

substantial impact on our understanding of prebiotic enrichment into gaseous planet

atmospheres. The traditional solution to this apparent discrepancy has been to turn

to grain-surface chemistry. Simple carbon- and nitrogen-bearing molecules can un-

dergo hydrogenation or other reactions to form complex organics on the surface of a

grain that then non-thermally desorb the grain intact. This solution has been used

to explain the organic inventories locked onto pebbles and icy grains (Öberg et al.

2011; Bergner and Ciesla 2021). This dust chemistry path requires both an intact

photodesorption rate of CH3CN from the grains of 10−3 mols/photon(Walsh et al.

2014; Loomis et al. 2018) and a reactive desorption efficiency(Vasyunin and Herbst

2013) of 1%. Laboratory experiments find an intact photodesorption efficiency of

CH3CN to be orders of magnitude less efficient (10−5 mols/photon(Basalgète et al.

2021)) and reactive desorption has not been well studied in laboratory experiments

for these species. We posit here that there is a simpler alternative based solely on

disk evolution processes that have been previously theorized and observed which link

the disk gas chemistry to planet formation. This involves two ingredients: (1) an

elevated C-to-O ratio in the gas and (2) greater penetration of UV photons due to a

reduction in the total surface area of small grain population due to pebble formation.

These combine to power a state of photo-chemistry equilibrium.

There has been mounting evidence for an elevated C-to-O gas phase ratio at large

radial distances in evolved and cool gas-rich protoplanetary disks. Brighter than ex-

pected emission from small hydrocarbons such as C2H (Miotello et al. 2019; Bosman

et al. 2021a) and complex organics such as c-C3H2 (Cleeves et al. 2021) in disks and

HC3N and CH3CN in photon-dominated regions(Le Gal et al. 2019) have indepen-

dently suggested a C-to-O ratio well above the solar abundance ratio (C-to-O≈0.55)

(Asplund et al. 2021). As a radical, C2H has a short lifetime (<1000 years), but

it is found to be abundant in the gas. Bosman et al. 2021(Bosman et al. 2021a)

find that the only way to reproduce the high column densities observed was to in-

crease the C-to-O ratio throughout the full disk to between 1-2. They found that it

was also necessary for C2H to exist in high density gas while remaining above the

disk midplane (height/radius≈0.1-0.2) where UV photons dominate the high-energy
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photon budget. Together, this produces a long-lived carbon-rich gas phase cycle in

photochemical equilibrium(Bosman et al. 2021a). One critical factor is that C2H is

predicted and is observed to exist above the disk midplane(Law et al. 2021b). In

contrast, CH3CN has been observed to emit closer to the midplane(Ilee et al. 2021).

Extending the carbon-rich chemical environment that is used to explain C2H obser-

vations to the midplane could allow for gas phase formation of complex molecules in

the planet-forming zone. Elevated C-to-O ratios would be necessary to supply the

materials to create hydrocarbons and nitriles. However, this alone would not allevi-

ate the issue of CH3CN and HC3N existing in the gas at temperatures at which they

should be frozen and locked onto grains.

A non-thermal desorption mechanism is needed to increase the number of molecules

that are being desorbed from the grains, either intact or as fragments of larger

molecules. If the disk atmosphere is small-dust rich, with a gas-to-dust ratio close to

the typical interstellar medium (ISM) mass ratio (gas-to-dust = 100) then UV radi-

ation cannot penetrate deep into the disk. In this case, only high energy radiation

(X-rays and cosmic rays) can penetrate the dust and gas and drive the chemistry

within and near the midplane. Small dust grains are the main opacity source for UV

photons which are readily produced by the young and active star. As the protoplan-

etary disk evolves, small dust grains agglomerate and eventually settle downwards

and drift inward radially as they grow in size(Andrews and Birnstiel 2018; Birnstiel

et al. 2012), decreasing the total surface area of the small grain population. As the

main opacity source begins to deplete, UV photons can penetrate deeper into the

disk. Here, complete desorption of CH3CN or HC3N is inhibited due to the dense

and cold environment(Le Gal et al. 2019). This mechanism would have an effect on

all molecules residing on grains, and a brief discussion regarding this can be found in

the Supplemental Materials, in the section ‘Implications on other molecules’.

The combined effect of a high C-to-O ratio and excess UV flux allows for complex

molecules to exist within the gas phase at cold, midplane temperatures. Thus bright

hydrocarbon and nitrile (i.e. C2H, CH3CN) emission from the cold midplane acts

as a signpost for an evolved dust population, coincident with an advanced stage of

planet formation including the accumulation of gas-giant atmospheres. The chemical

scenario we put forward, comparing early and late-stage disk environments is shown

in Figure 1. The disks observed in the Molecules with ALMA at Planet-forming

Scales (MAPS) large program(Öberg et al. 2021) provide plausible support for this

theory. The youngest disks in the MAPS sample reside around IM Lup and AS 209

which are on the order of 1-2 Myr old(Öberg et al. 2021). Towards the youngest

source, IM Lup, there is no detection of CH3CN nor HC3N. AS 209 has detections

of CH3CN and HC3N which suggest both molecules emit from z/r>0.1. The disk

systems surrounding stars >6 Myr have CH3CN detected at z/r<0.1 as determined

by the modeled thermal structure and detected rotational temperature from the K-

ladder transitions. This complex organic-rich midplane will influence the atmospheres
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Figure 1. A schematic highlighting the physical evolution of a disk and how
that physical environment can affect the chemistry. At the top, we show a disk with
a large amount of small dust that acts to block UV photons. As the small dust settles,
UV photons make their way deeper into the disk, allowing for photodesorption of complex
species off grains. Now, there is a cycle of carbon chemistry that can be observed in the
gas phase.

of planetary companions. It is worth noting that the oldest disk systems in the

MAPS program exist around Herbig stars while the youngest systems are T Tauri

stars. The UV-bright spectrum innate to Herbig stars may additionally influence

the push of complex molecules towards the planet-forming midplane. Currently, the

MAPS sample contains the bulk of the resolved CH3CN and HC3N data towards

protoplanetary disks. To explore the effect of the stellar spectrum on CH3CN and

HC3N emission more disks with a wide range of stellar host masses would need to be

observed.

To test the validity of this proposed end-stage chemistry, we first explored single

point models representative of the disk midplane with corresponding cold tempera-

tures and high gas densities (approximately 35 K, 5×1011 mol/cm−3 ). We varied

the gas-to-dust mass ratio and initial carbon abundance among other physical and

chemical variables including the nitrogen abundance, dust extinction, and ionization

rate. We found that the gas phase CH3CN abundance was the most sensitive to

the gas-to-dust ratio and initial gas phase carbon abundance. We then produced a

thermo-chemical model representing the disk around the Herbig Ae star HD 163296.

This disk is old (approx. 7.6 Myr)(Bergner et al. 2019) and is nearby at 101 pc(Gaia

Collaboration et al. 2018) and has observed jets and winds (Booth et al. 2021; Xie

et al. 2021). The HD 163296 disk has been widely observed in multiple gas and dust

tracers with high spatial resolution (∼10 au) with clear gap and ring structures typ-

ically assumed to be associated with active planet formation(Andrews et al. 2018;

Öberg et al. 2021). There is bright CH3CN emission coming from ∼35 K gas as well
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Table 1. Modeling Parameters: TW Hya & HD 163296

Parameters TW Hya HD 163296

Gas Small Dust Large Dust Gas Small Dust Large Dusta

Mass (M�) 0.025 1.0× 10−4 4.0× 10−4 0.14 2.6× 10−5 0.024

Ψ 1.1 1.2 1.2 1.08 1.08 1.08

γ 0.75 0.75 1.0 0.8 0.8 0.1

hc (au) 42 42 8.4 8.44 8.44 n/a

rc (au) 400 400 400 165 165 n/a

rin (au) 0.1 0.5 1 0.45 0.45 0.45

rout (au) 200 200 200 600 600 240

Note—Final values of the TW Hya and HD 163296 models that reproduce CO, HD,
CH3CN, HCN, and HC3N observations when available. rin and rout are the radial
inner and outer limits of the disk, beyond these limits there is assumed to be no
gas nor dust. a The surface density of the large dust distribution in HD 163296 is
empirically set by continuum observations, thus it is not smooth and it is not dictated
by the parametric equations.

as bright emission from HC3N and HCN(Ilee et al. 2021; Bergner et al. 2021). Our

modeling efforts follow that of Zhang et al. 2021(Zhang et al. 2021), and Calahan

et al. 2021b(Calahan et al. 2021b) which set up a thermo-chemical model of the HD

163296 disk by reproducing the mm dust-continuum observations, the spectral-energy

distribution (SED), the full line intensity and morphology of six CO isotopologue

transitions, and the vertical distribution of the optically thick lines. The model of

HD 163296 started with a gas-to-small dust ratio of the disk equal to 500(Zhang et al.

2021) which was needed to reproduce the disk’s SED.

RESULTS

To produce this end-stage chemical environment, we deplete the small dust mass by

a factor of 10 throughout the disk of HD 163296 making the new gas-to-dust mass ratio

above the pebble disk midplane equal to 5,000. We then enhanced the initial gas phase

carbon abundance in the system in the form of C, CH4, or C2H, increasing the overall

gas phase carbon-to-oxygen ratio in both disks to above unity. There are two possible

sources for excess carbon in protoplanetary disks, either through the destruction of

refractory carbon grains(Bosman et al. 2021b) or CO depletion through mechanisms

such as reactions with ionized molecules and atoms such as He+ or H+
3 (Schwarz et al.

2018) and a series of chemical and freeze-out processes. We note that while signatures

of CO depletion are found in the HD 163296 disk(Zhang et al. 2021; Calahan et al.

2021b), CO destruction likely only occurs in environments with a high cosmic-ray flux

[2×10−17s−1](Schwarz et al. 2018). Additionally, CO destruction would supply equal

amounts of carbon and oxygen, while we seek to enhance carbon over oxygen. Our
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thermo-chemical model is run for a full megayear (Myr), after which the chemistry

reaches an equilibrium. Notable chemical feedback due to dust evolution is predicted

to occur over scales of ∼1 Myr(Krijt et al. 2018; Van Clepper et al. 2022), thus we use

∼1 Myr as an approximate length of time for the chemical environment to transition

from ‘early-stage’ to ‘late-stage’ dust evolution and subsequently exist in a state of

photochemical equilibrium. Gas phase chemical reactions and rates were taken from

the chemical network derived in Bosman et al. 2018(Bosman et al. 2018) which

in turn relies on the UMIST Database for Astrochemistry Rate12 version(McElroy

et al. 2013) (see Methods section for more details). We found that regardless of

the carrier of carbon, using a C/O = 1-2 and a factor of 10 depletion of small dust

roughly reproduces line ratios and fluxes of the radial intensity profiles of CH3CN,

HC3N, and HCN (see Figure 2). In this proposed scenario, ∼96% of the total mass of

CH3CN continues to reside frozen out onto grains, but the increase in UV flux allows

for sufficient CH3CN to exist and be formed in the gas to reproduce observed radial

intensity profiles and column densities.

Figure 3 shows the two-dimensional number densities of CH3CN and HC3N. The

inner ∼20 au exhibited brighter or more centrally peaked emission than was seen in

observations if the C-to-O ratio = 2 throughout the full disk. To counteract this, we

set the C-to-O ratio = 0.47, or the ISM ratio, inside of (∼20 au) where Zhang et al.

2021(Zhang et al. 2021) found an ISM ratio of H2/CO (See Supplementary Figure 2).

The inner disk emission remains slightly brighter than observed in HCN and CH3CN

(see Figure 2) with this alteration. This could be accounted for via a depletion in

the nitrogen abundance within the N2 ice line, a strong buildup of pebbles around

the water ice line (∼5au), a lower HCN desorption energy, or a combination of these

effects. Additionally, the observations may also be affected by processes such as beam

smearing and a higher dust opacity than modeled. A comparison model without a

depletion in small dust mass is shown in Supplementary Figure 5.

DISCUSSION

HC3N and CH3CN are built up in the gas from simple carbon and nitrogen-based

volatiles (see Methods section “Chemical Reactions” for details). A reservoir of these

more simple molecules is maintained in the gas phase due to photodesorption from

dust grain surfaces by an enhanced UV-field. The main destruction products from

CH3CN and HC3N are simple volatiles that can cycle back to create larger nitrile

molecules including their original parent molecule. While there are enough complex

organic molecules in the gas phase to observe bright emission, the majority of the

CH3CN, HC3N, and HCN near the midplane still remains frozen out onto grains. The

carbon-rich gas reservoir and UV-dominated disk together allow for a cycle of carbon

chemistry to remain active in the gas phase. This implies that actively accreting gas

giants will build their atmosphere out of this complex nitrile-enhanced material. Gas

giant planets with atmospheres containing a chemical make-up with a C-to-O ratio
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HCN, and HC3N (left to right with two J transition of CH3CN shown in the first two
panels). Solid thick lines in the background correspond to the observations derived from
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Figure 3. The radial and vertical number density distributions of CH3CN
and HC3N The density distributions were determined by our final HD 163296 model with
an increase in C/O ratio beyond 20 au and a depletion of small dust. This distribution
produced the radial profiles shown in Figure 2. A z/r<0.1 is good approximation for the
midplane of the disk, and both CH3CN and HC3N emit partially from the midplane. A
comparison can be made with Figure 10 which lacks the inclusion of small dust depletion.

>1 can be explained by the natural evolution of dust and the observed high C-to-O

ratios within protoplanetary disks. This environment could be extended to the inner

disk in some cases, as studies such as Najita et al. 2011(Najita et al. 2011) and

Anderson et al. 2021(Anderson et al. 2021) posit a higher than solar C-to-O ratio

within the inner disk to account for Spitzer observations of HCN and C2H2 around

T Tauri stars.

The implications of this end-stage chemistry are far-reaching. Primarily, we put

forward a new chemically and physically coupled picture of planet formation and its

direct impact on the chemistry of forming planet atmospheres. Within the early stages
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of planet formation, pebble growth and accretion into solid planet cores has begun,

and chemistry onto these cores are influenced primarily by the chemical make-up of

large pebbles and their icy mantles. The chemistry active in the midplane during

this stage of formation is dominated by X-rays and cosmic rays(Woitke et al. 2009).

After timescales of order 1 Myr, at the end-stage of pebble formation, small grains

have grown and settled towards the midplane, allowing for UV photons to penetrate

deeper in the disk than previously assumed. This excess UV flux in concert with an

above solar C-to-O ratio produces a carbon-rich gas phase cycle of production and

destruction in the gas surrounding actively forming planets. Bright emission from

CH3CN, HC3N and other carbon-rich molecules emitting at cold temperatures are a

sign-post of this evolved chemical environment. These forming gas giants may accrete

this surrounding gas and its chemical signature into their atmosphere, and may be

responsible for high C-to-O measurements that have been observed in exo-planetary

atmospheres as compared to their host star(Brewer et al. 2017). Secondly, the deeper

penetration of UV photons pushes the CO and H2 self-shielding layers deeper into the

disk. Due to this, there are more ions such as C+ and H+ throughout the disk than

would have been present with a regular (ISM) level of small dust surface area. As the

ion-fraction increases so does the area of the disk that is subject to magneto-rotational

instability (MRI). In our final model, the UV field increases by a factor of 3-5 in the

atmosphere and between 1-2 near the midplane, and thirteen times more gas mass is

MRI-active, most notably the gas midplane within 10 au, and then at a z/r=0.1-0.2

within 30 au (see Figure 4). This could be a source of accretion(Gammie and Ostriker

1996) for older disks. Our proposed UV-dominated carbon-rich gas phase chemistry

is a major shift in our understanding of the astrochemistry of planet formation. This

transition will have a strong effect on the composition of actively forming planets,

disk MRI-activity, and subsequent disk accretion.

METHODS

OBSERVATIONS

For a thorough description of the observations and the techniques used to obtain

the CLEAN-ed images and radial profiles of CH3CN, HCN, and HC3N towards HD

163296 see Czekala et al. 2021(Czekala et al. 2021), Law et al. 2021(Law et al.

2021a), and Öberg et al. 2021(Öberg et al. 2021). A description of the observations

of CH3CN towards TW Hya can be found in Loomis et al. 2018a(Loomis et al. 2018).

A brief summary of these observations are as follows.

- HD 163296 -

The data for HD 163296 is from the MAPS large program (Project ID

2018.1.01055.L)(Öberg et al. 2021). The image cubes were produced using the tclean

task in the Common Astronomy Software Applications (CASA) package, version

6.1.0(McMullin et al. 2007). Keplerian masks based on the disk geometric parameters
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Figure 4. A comparison of the MRI active region within a non-elevated UV
environment and an elevated UV environment. The two left-most plots show regions
within the HD 163296 disk which are MRI activated in an environment where small dust is
depleted by a factor of 10 in total mass (gas/dust = 5,000 middle plot) and where small dust
is not depleted (gas/dust=500 left). The color corresponds to the gas density in mol/cm3,
highlighting the substantial increase in mass that is MRI-active. The right-most plot shows
a comparison of the UV field strength through a ‘regular’ disk and a dust depleted disk.
The UV field increases upwards of a factor of 3-5 in the atmosphere of the disk and 1-2
below a z/r=0.2. This has a notable effects on the chemistry of the midplane.

were used in the CLEANing process and the final images were then corrected for the

Jorsater & van Moorsel effect to ensure that the image residuals are in units consis-

tent with that of the CLEAN model. For all lines, we used the beam-circularized and

uv-tapered images, which had synthesised beam sizes of 0.”3. All radial intensity pro-

files were generated by deprojecting and azimuthally-averaging zeroth moment maps

using the GoFish python package.

-TW HYA-

CH3CN was observed towards TW Hya as a part of ALMA project 2016.1.01046.S.

Each emission line was individually imaged using CLEAN and the synthesised beam

for each transition were matched using small uv-tapers to 1.′′05 x 0.′′83. A Keplerian

mask was used to extract the flux for each transition. See Loomis et al. 2018a(Loomis

et al. 2018) for more details.

MODELING

Simple single point models of the disk environment were utilized to quickly and

efficiently understand the chemical impacts of different physical and initial chemical

conditions. Our chemical network is derived from Bosman et al. 2018(Bosman et al.

2018) which in turn is derived from the UMIST “RATE12” network(McElroy et al.

2013), and for this study we disregarded most grain-surface chemical reactions in

order to isolate gas-phase formation of CH3CN. After our results from the modeling

suggested a higher gas/dust ratio and carbon content, we turned to more comprehen-

sive thermo-chemical codes which model the thermal physics and chemical evolution

throughout the whole disk. The code RAC2D (https://github.com/fjdu/rac-2d)(Du

and Bergin 2014), was used to create models of the disks around TW Hya and HD

163296. The 2D temperature, density, and molecular abundance results were used to
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simulate observations of each disk with a raytracing code: RADMC-3D(Dullemond

et al. 2012). A brief description of the physical code of RAC2D is given below; a

detailed description of the code can be found in Calahan et al 2021a(Calahan et al.

2021a).

RAC2D takes into account a gas and dust structure and stellar radiation field and

computes the gas and dust temperature and chemical structure over time. Our model

consists of three mass components: gas, small dust, and large dust grains. The spatial

extent of each component is given by a global surface density distribution (Lynden-

Bell and Pringle 1974), which is widely used in protoplanetary disk modeling and

corresponds to the self-similar solution of a viscously evolved disk.

Σ(r) = Σc

(
r

rc

)−γ
exp

[
−
(
r

rc

)2−γ
]
, (1)

rc is the characteristic radius at which the surface density is Σc/e where Σc is the

characteristic surface density, and γ is the power-law index that describes the radial

behavior of the surface density.

A 2D density profile for the gas and dust populations can be derived from the surface

density profile and a scale height:

ρ(r, z) =
Σ(r)√
2πh(r)

exp

[
−1

2

(
z

h(r)

)2
]
, (2)

h = hc

(
r

rc

)Ψ

, (3)

where hc is the scale height at the characteristic radius, and Ψ is a power index that

characterizes the flaring of the disk structure. The modeling parameters used for TW

Hya and HD 163296 are shown in Table 1.

For both TW Hya and HD 163296 models, each dust population follows an Mathis,

Rumpl, and Nordsieck (MRN) grain distribution n(a) ∝ a−3.5 (Mathis et al. 1977),

where ‘a’ indicates the size of the grain. The small dust grains have radii between

5 × 10−3 - 1µm, and the large grains have radii between 5 × 10−3 - 103µm. The

large dust population is settled in the midplane with a smaller vertical extent and

radial extent (gas extends ∼5 and 2.5 times above and beyond, respectively). This

settled large grain population is the result of dust evolution, namely growth in concert

with vertical settling to the midplane and radial drift. For the HD 163296 model,

the large grain population has a unique, non-smooth, surface density profile that

reproduces the millimeter continuum observations of the HD 163296 disk(Isella et al.

2018; Zhang et al. 2021). Opacity values for the dust are calculated based on Birnstiel

et al. 2018(Birnstiel et al. 2018). Large dust grains consist of water ice(Warren and

Brandt 2008), silicates(Draine 2003), troilites and refractory organics(Henning and

Stognienko 1996). Small dust grains consist of 50% silicates and 50% refractory
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organics. Further discussion on the modeling efforts for TW Hya can be found in

Calahan et al. 2021a(Calahan et al. 2021a) and for HD 163296 in Calahan et al.

2021b(Calahan et al. 2021b).

The thermo-chemical model resulted in 2D distributions of the gas and dust tem-

perature, density, and molecular abundances. These were used as inputs for the

raytracing code RADMC-3D(Dullemond et al. 2012). The molecular properties of

CH3CN, HC3N, and HCN were taken from the Leiden Atomic and Molecular Database

(LAMDA(Schöier et al. 2005)), with some molecular parameters updated according

to data from the Cologne Database for Molecular Spectroscopy (CDMS(Müller et al.

2001, 2005)). The result from RADMC-3D was a 3D image cube of the molecular

emission across velocity space. We utilized GoFish(Teague 2019) to compress these

3D images into zeroth moment maps and radial profiles which were then directly

compared to the azimuthally-averaged observations.

CHEMICAL REACTIONS

The chemical reaction network utilized in this work comes from Bosman et al.

2018(Bosman et al. 2018) which in turn relies on the Rate12 version of the UMIST

Database for Astrochemistry(McElroy et al. 2013): a network that is widely used

across astrochemical modeling efforts. In our network there are 6,302 gas phase

reactions and we have limited the grain-surface reactions to twelve. We kept grain-

surface reactions that involved the formation of H2, CH2OH, CH3OH, CO2, H2O and

NH3 due to each of these species being well-studied in the laboratory and come with

strong evidence for active two-body chemistry on dust grains(Allen and Robinson

1977; Hasegawa et al. 1992; Goumans et al. 2008; Ioppolo et al. 2008, 2010; Fuchs

et al. 2009; Oba et al. 2012; Ruffle and Herbst 2001) (see Table 2). Both thermal

adsorption and desorption are taken into account for every molecule in the network.

Our network contains molecules with at most eleven carbon atoms, and at most twelve

total atoms. We run our thermo-chemical model for 1 Myr as the CH3CN and HC3N

chemistry reaches an equilibrium after this time period (see Supplementary Figure

3). In our evolved disk model, the main formation pathways for CH3CN once the

chemistry has reached equilibrium is as follows:

CH+
3 + HCN→ CH3CNH+ + e− → CH3CN + H

This reaction in the gas phase is the primary formation pathway for CH3CN, thus

there is a strong reliance on HCN existing in the gas phase even at cold temperatures

below its measured sublimation temperature (∼85-103 K(Bergner et al. 2022)) and

an ionization source (UV photons) to produce CH+
3 . HC3N can be readily produced

by a number of different ways including:

N + CH2CCH→ HC3N + H2

CN + C2H2 → HC3N + H
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Table 2. Dust Surface Reactions

Reaction Reference

gH + gH → gH2 Hasegawa, Herbst, & Leung 1992(Hasegawa et al. 1992)

gH + gOH → gH2O Ioppolo et al. 2010(Ioppolo et al. 2010)

gH + gH2O2 → gH2O + gOH Ioppolo et al. 2008(Ioppolo et al. 2008)

gH + gCH3OH → gH2 + gCH2OH Extrapolated from Fuchs et al. 2009(Fuchs et al. 2009)

gH + gCH2OH → gCH3OH Extrapolated from Fuchs et al. 2009(Fuchs et al. 2009)

gH2 + gOH → gH2O + gH Oba et al 2012(Oba et al. 2012)

gOH + gCO → gCO2 + gH a Ruffle & Herbst 2001(Ruffle and Herbst 2001)

gO + gCO → gCO2
a Goumans & Brown 2008(Goumans et al. 2008)

gO + gHCO → gCO2 + gH Goumans & Brown 2008(Goumans et al. 2008)

gH + gNH2 → gNH3 Allen & Robinson 1977(Allen and Robinson 1977)

Note—The complete list dust surface reactions accounted for in this study. aHave additional
special treatment for three body reactions

H + C3N− → HC3N + e−

The formation of HC3N strongly relies on the existence of carbon-rich molecules

including radicals (CN) and ions (C3N−).

SUPPLEMENTARY INFORMATION

TW HYA

We additionally produced a thermo-chemical model representing the disk around

T Tauri star TW Hya. TW Hya is approximately 10 Myrs old(Thi et al. 2010) and

hosts the closest Class II disk at 59.9 pc(Gaia Collaboration et al. 2018). TW Hya

has been widely observed in multiple gas and dust tracers with high spatial resolution

(∼10 au)(Andrews et al. 2012; Huang et al. 2018). It also exhibits bright CH3CN

coming from ∼33 K gas(Loomis et al. 2018). Our modeling efforts of TW Hya follow

that of Calahan et al. 2021a(Calahan et al. 2021a) which sets up a thermo-chemical

model of the disk by reproducing the spectral-energy distribution (SED), the full line

intensity and morphology of seven CO isotopologue transitions, and an HD J=1-0

observation from the Hershel PACS instrument(Bergin et al. 2013). To reproduce

all CO radial profiles as well as the HD flux, the small dust in the upper layers of

the atmosphere of the TW Hya disk were effectively depleted slightly(Calahan et al.

2021a) due to having a slightly lower flaring angle than the gas population. This was

enough small dust depletion to reproduce the available CH3CN lines from Loomis et

al. 2018a given a C/O ratio equal to 1.0 (see Figure 5). This disk is an additional

piece of evidence supporting our evolved chemistry proposal.

IMPLICATIONS ON OTHER MOLECULES
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This introduction of a late-stage photo-chemical equilibrium was motivated by ob-

servations of CH3CN, HC3N, and HCN. However, the late-stage chemistry would have

an effect on other molecules as well. We predict in addition to these organic molecules,

molecules such as CXH, CXH2, and HCXN will be abundant in the gas, enhanced

by the cycle of carbon chemistry that reproduces observed CH3CN and HC3N. The

main carbon carrier, CO, is largely unaffected by the increase in photo-chemistry.

CO is largely in the gas phase in previous models that do not include this ‘late-stage’

chemistry and in the region in which CH3CN was added into the gas, CO was already

primarily in the gas phase. We find a slight depletion of CO in the upper atmosphere

of the disk due to the CO photodissociation layer being pushed down, and there is

a slight enhancement of CO in the midplane due to the UV-enhancement. However

this accounts for less than 1% of the total abundance of CO thus did not have a

strong impact on the modeled radial profiles. Another key molecule is H2O. In our

models, we do not initialize our model with H2O, thus there is very little water to

be affected by this ‘late-stage’ chemistry. Observational results of Du et al. 2017(Du

et al. 2017) support this as they found a low overall abundance in H2O in disks with

a survey of 13 protoplanetary disks. CH3CN nor HC3N would be seen to be at a high

abundance if gas-phase H2O was in high abundance in the disk as it would disrupt

the carbon-rich chemistry.

SED DEGENERACY

The depletion of small grains will affect the observed spectral energy distribution

(SED) from each disk. TW Hya’s dust population was not altered from that of

Calahan et al. 2021a(Calahan et al. 2021a) and continues to match its observed

SED. A depletion of a factor of 10 in the small dust population around HD 163296

would cause a dimming in the mid-infrared part of the SED. However, the small dust

abundance, the distribution of dust grain size, and the assumed dust opacity sources

are degenerate in the ways they may affect the disk SED. We modeled protoplanetary

disk SEDs using the code TORUS(Harries et al. 2004, 2019). TORUS is a Monte

Carlo radiative transfer code utilizing radiative equilibrium(Lucy 1999) and silicate

grains(Draine and Lee 1984). In Figure 11, we show a series of SEDs produced from

models motivated by our thermo-chemical model of HD 163296 including the stellar

parameters and dust distribution in Table 1 from Calahan et al. 2021b(Calahan et al.

2021b). We find that by varying the minimum dust grain radius or the power law

index, we can account for a factor of 10 in UV attenuation. The total population

mass, grain size, and how the grain sizes are distributed are strongly degenerate and

can result in uncertainties of the dust mass by a factor of at least 10. Thus our

depletion of small dust continues to reproduce all previous observables including the

SED.

MRI INSTABILITY
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With the increase in UV flux deeper into the disk, more ions are created. Ions can

be coupled with the magnetic fields that thread through the disk and interact with

the bulk gas creating turbulence. This mechanism is called the magneto-rotational

instability or MRI(Balbus and Hawley 1991). Magneto-hydrodynamical processes

are assumed to be present throughout protoplanetary disks due to young star’s active

magnetic field, and are thought to be one of the main drivers of angular momentum

transport (Chandrasekhar 1960). An MRI-active zone may drive the bulk of the mass

transportation in the disk and activate accretion onto the star, two vital processes

that determine the future of a young solar system. It is thought that planet formation

may be aided within ‘dead-zones’ where MRI is non-active(Gressel et al. 2012). The

magnetic Reynolds number (Re) and ambipolar diffusion term (Am) are two quan-

tities that help quantify the presence of an MRI-active zone. The Reynolds number

quantifies the level of coupling between ionized gas and magnetic fields and is defined

as

Re ≡ csh

D
≈ 1

( χe
10−13

)( T

100 K

)1/2 ( a

AU

)3/2

, (4)

where cs is the sound speed, h is the scale height of the disk, D is the magnetic diffu-

sivity parameter, χe is the electron abundance, T temperature and a radial location

in the disk (Perez-Becker and Chiang 2011). The ambipolar diffusion term describes

the coupling of ionized molecules and their interaction with neutral gas particles:

Am ≡ χinH2βin

Ω
≈ 1

( χi
10−8

)( nH2

1010cm−3

)( a

AU

)3/2

, (5)

where χi is the ion abundance, nH2 is the number density of H2 atoms, Ω is the

dynamical time, βin is the collisional rate coefficient for singly charged species to

share momentum with neutral species, and a is the radial location in the disk (Draine

et al. 1983; Perez-Becker and Chiang 2011). For MRI to act as a turbulent driver of

neutral gas, both Re and Am must be sufficiently high. Simulations show that values

between 0.1-100 for Am can trigger significant coupling between ions and neutrals

(Hawley and Stone 1998; Bai and Stone 2011). Models by Flock et al. 2012(Flock

et al. 2012) suggest Re ≈ 3,300-5,000 is required to sustain sufficient turbulence with

a critical Re = 3,000. In our work, we assume a combined Am >100 and Re > 3,000

to signify an MRI-active zone.

We calculate the regions in which the MRI is active in the HD 163296 disk in

our models with an early-stage physical environment and a late-stage environment

(signified by a depletion in the small dust population mass) in Figure 8. Our solution

allows for an increase of UV flux in the atmosphere by a factor of 3-5. More of

the disk becomes ion-rich due to the CO and H2 self-shielding layers being located

deeper into the disk. The increase in the ion and electron abundance (χi, χe) are

the key factors that enhance the Re and Am values and thus produce additional

MRI activity (see Figure 8). As a result, thirteen times more mass within the disk
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Figure 5. A comparison of observed CH3CN(Loomis et al. 2018) towards TW Hya and a
thermo-chemical model. The model is run for 1 Myr with a gas-to-dust ratio equal to 250
and a C-to-O ratio equal to 1.0. Observed emission is shown as the solid lines while modeled
results are the dashed lines. The left and right panels show different JK transitions.

becomes MRI-active including within the midplane. In the base model representing

early stages of disk chemistry, the MRI activity at the midplane extends to 4 au. By

depleting the small dust population by an order of magnitude, the MRI activity at the

midplane then extends out to ∼10 au. This increase in MRI activity can contribute

to the reason behind why older disk systems, such as TW Hya, are actively accreting.

Meridional flows have been identified in the HD 163296 disk located at two of the

largest dust gaps (approx. 45 and 86 AU)(Teague et al. 2019) and these vertical

flows are coincident with the lower vertical limit of the MRI-active zone. The MRI

activation could have an effect on the height or continue to drive meridional flows.

Turbulence measurements of the HD 163296 disk have been derived in Flaherty et

al. 2015 and 2017(Flaherty et al. 2015, 2017) using molecular tracers, and they find

turbulent velocities to be 5% or less of the sound speed between 30-300 au and at

all measured heights. It is not yet clear whether our MRI prediction is in tension

with the observational evidence of low turbulence in HD 163296, more work needs

to be done on the modeling of how MRI-active regions drive turbulence and more

observational constraints are needed to constrain the inner 40 au where we find the

strongest MRI-activity.

SUPPLEMENTARY FIGURES
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Figure 6. A comparison of two HD 163296 disk models with varying C-to-O ratios. The
final model has a C-to-O = 0.47 within 20 au and C-to-O = 2 beyond 20 au (left). The
comparison model has a C-to-O ratio equal 2 throughout the entire disk. Dashed lines are
modeled radial intensity profiles while the thick line in the background are observations,
with the thickness corresponding to the uncertainty of the flux. In our final model, the
C-to-O ratio is equal to what is found in the ISM, 0.47.
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Figure 8. A comparison of the terms that effect the MRI strength in two distict models.
The final ion abundance (χi left) calculated Reynolds number (Re, middle) and ambipolar
diffusion term (Am, right) are shown in a model depleted of small dust (gas-to-dust = 5,000)
versus a baseline model (gas-to-dust = 500). The depleted model corresponds to the model
that reproduces observations of CH3CN, HCN, and HC3N, see Figure 2 of main text.
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0 50 100 150 200
Radius [au]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

He
ig

ht
/R

ad
iu

s

CH3CN

4

3

2

1

0

1

lo
g 1

0(
CH

3C
N/

cm
3 )

0 50 100 150 200
Radius [au]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

HC3N

3

2

1

0

1

lo
g 1

0(
HC

3N
/c

m
3 )

Figure 10. The radial and vertical number density distributions of CH3CN and HC3N
in a model with a high C-to-O ratio and normal gas-to-dust ratio. C-to-O is equal to 2
throughout the whole disk, and the atmospheric gas-to-dust ratio is equal to 500 (corre-
sponding to the model results in Figure 9). This is contrasted with Figure 3, where there
is more organic emission deeper in the disk.
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Edwin A. Bergin, Ryan A. Loomis,

Jamila Pegues, and Chunhua Qi. A

Survey of C2H, HCN, and C18O in

Protoplanetary Disks. ApJ, 876(1):25,

May 2019.

https://doi.org/10.3847/1538-

4357/ab141e.

Jennifer B. Bergner, Karin I. Öberg,
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Laura M. Pérez, and Shangjia Zhang.

The Disk Substructures at High

Angular Resolution Project

(DSHARP). V. Interpreting ALMA

Maps of Protoplanetary Disks in Terms

of a Dust Model. ApJL, 869(2):L45,

December 2018.

https://doi.org/10.3847/2041-

8213/aaf743.

https://doi.org/10.1086/170270
https://doi.org/10.3847/1538-4357/ac2d93
https://doi.org/10.3847/1538-4357/ac2d93
https://doi.org/10.1038/nature11805
https://doi.org/10.3847/1538-4357/ac0fd7
https://doi.org/10.3847/1538-4357/ac0fd7
https://doi.org/10.3847/1538-4357/aab664
https://doi.org/10.3847/1538-4357/aab664
https://doi.org/10.3847/1538-4357/ab141e
https://doi.org/10.3847/1538-4357/ab141e
https://doi.org/10.3847/1538-4365/ac143a
https://doi.org/10.3847/1538-4365/ac143a
https://doi.org/10.3847/1538-4357/ac771e
https://doi.org/10.3847/1538-4357/ac771e
https://doi.org/10.1051/0004-6361/201219262
https://doi.org/10.1051/0004-6361/201219262
https://doi.org/10.3847/2041-8213/aaf743
https://doi.org/10.3847/2041-8213/aaf743


24

Alice S. Booth, Benôıt Tabone, John D.
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T. Brüsemeister, E. Brugaletta,
B. Bucciarelli, A. Burlacu,
D. Busonero, A. G. Butkevich,
R. Buzzi, E. Caffau, R. Cancelliere,
G. Cannizzaro, T. Cantat-Gaudin,
R. Carballo, T. Carlucci, J. M.
Carrasco, L. Casamiquela,
M. Castellani, A. Castro-Ginard,
P. Charlot, L. Chemin, A. Chiavassa,
G. Cocozza, G. Costigan, S. Cowell,
F. Crifo, M. Crosta, C. Crowley,
J. Cuypers, C. Dafonte, Y. Damerdji,
A. Dapergolas, P. David, M. David,
P. de Laverny, F. De Luise, R. De
March, D. de Martino, R. de Souza,
A. de Torres, J. Debosscher, E. del
Pozo, M. Delbo, A. Delgado, H. E.
Delgado, P. Di Matteo, S. Diakite,
C. Diener, E. Distefano, C. Dolding,
P. Drazinos, J. Durán, B. Edvardsson,
H. Enke, K. Eriksson, P. Esquej,
G. Eynard Bontemps, C. Fabre,
M. Fabrizio, S. Faigler, A. J. Falcão,
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E. Racero, S. Ragaini, N. Rambaux,
M. Ramos-Lerate, S. Regibo, C. Reylé,
F. Riclet, V. Ripepi, A. Riva,
A. Rivard, G. Rixon, T. Roegiers,
M. Roelens, M. Romero-Gómez,
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Jürgen Stutzki, and Gisbert

Winnewisser. The Cologne Database

for Molecular Spectroscopy, CDMS: a

useful tool for astronomers and

spectroscopists. Journal of Molecular

Structure, 742(1-3):215–227, May 2005.

https://doi.org/10.1016/j.molstruc.2005.01.027.

Joan R. Najita, Máté Ádámkovics, and
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