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The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional
limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the
vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and
inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, llex,
Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess
embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance
was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low
VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF
enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits
and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure
differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.

Keywords: drought, gas movement, xylem anatomy.
Introduction to drought, and have found that embolism resistance can set

During drought, homoiohydric plants die when the tension on the distributional limits of species across rainfall gradients

the water column becomes so negative that gas invades the
sap-filled xylem, causing widespread embolism and permanently
breaking the liquid connection between hydrated photosynthetic
tissues and soil water (Sperry and Pockman 1993, Brodribb and
Cochard 2009, Cochard and Delzon 2013, Charrier et al. 2016,
Lamarque et al. 2018, Brodribb et al. 2021). Plants employ
a number of dynamic strategies to avoid reaching these lethal
water potentials (W), like closing stomata to reduce water loss
(). Zhang et al. 2016, Choat et al. 2018, Cardoso et al. 2019),
plants that construct xylem that is able to resist embolism at
more negative ¥ may have a prolonged survival during drought
(Cochard et al. 2021).

Many studies have presented correlations between the
embolism resistance of xylem conduits and plant tolerance

(Blackman et al. 2009, Brodribb et al. 2010, Anderegg et al.
2012, Choatetal. 2012, Pittermann etal. 2012, Li etal. 2018).
As homogeneous nucleation of a gas bubble in the xylem is
physically unlikely at a W less negative than —10 MPa, the
behavior of pre-existing bubbles under changing pressure and
temperature are likely the primary cause of embolism formation
(Holtta et al. 2002, Kandu¢ et al. 2020, Ingram et al. 2021).
Moreover, gas movement by diffusion or advection (i.e., bulk
movement) appears to play a crucial role in this process and is
largely determined by gas entry through pit membranes (Sperry
and Tyree 1988, Kaack et al. 2019, Zhang et al. 2019, Guan
etal. 2021, Avila et al. 2022). Indeed, pit membrane thickness
is correlated with embolism resistance across angiosperms
(Choat et al. 2008, Li et al. 2016, Kaack et al. 2019, 2021).
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The physical and anatomical determinants of air seeding remain
poorly understood (Jansen et al. 2018); thus, studies have
focused on gross anatomical traits of the xylem to provide
additive explanations for variation in embolism resistance across
species.

A number of vessel anatomical traits have been associated
with differences in Pso (or the W at which 50% of the xylem
is embolized) between species such as cell wall thickness and
vessel diameter ratio (t/b)? (Hacke et al. 2001, Blackman et al.
2010); vessel diameter (Scoffoni et al. 2016, Venturas et al.
2017); and vessel length (Lens et al. 2011, Jacobsen et al.
2016). Species that have evolved in arid environments and
present high resistance to embolism often have high values
of (t/b)? and pit membrane thickness, as well as relatively
narrow vessel diameter and short vessel lengths. These adaptive
features have likely been selected for because they directly
or indirectly impair (i) the initial seeding of embolism events,
(i) the spread of embolism between conduits once an initial
embolism has formed or (iii) perhaps even the deformation of
vessel conduits under negative pressure.

In addition to the features of individual conduits, recent lit-
erature provides compelling evidence that embolism resistance
may be determined by gross xylem anatomy, particularly traits
that incorporate some metric of the connectivity of vessels
(Johnson et al. 2020, Avila et al. 2021, Levionnois et al.
2021, Wason et al. 2021). Inter-vessel connectivity increases
hydraulic conductivity but may also increase vulnerability to
embolism (Wheeler et al. 2005, Loepfe et al. 2007, Lens
et al. 2011, Mrad et al. 2018, 2021, Wason et al. 2021),
although the effect of connectivity on embolism resistance
may be relatively small due to the multi-layered, safe nature
of pit membranes (Kaack et al. 2021, Avila et al. 2022).
Connectivity of the vessel network involves various anatomical
features, including vessel dimensions (diameter and width),
vessel grouping, and the conductive or non-conductive nature
of imperforate tracheary elements (i.e., tracheids and fibers).
Species with grouped vessels, which are more likely to have non-
conductive imperforate tracheary elements (Carlquist 1984,
Sano et al. 201 1), are more likely to have a relatively low vessel
lumen fraction (VLF), and a low vessel density for a given vessel
diameter (Martinez-Vilalta et al. 2012). As such, VLF represents
the product of the mean vessel diameter and vessel density,
and can be considered as an indirect measure of connectivity
(Zanne et al. 2010). Connectivity between vessels is rather
poorly understood due to practical difficulties with 3D vessel
network reconstructions (Zimmermann and Tomlinson 1966,
Brodersen et al. 2011), whereas it is also unknown how exactly
vessel connectivity relates to vessel dimensions and the pres-
ence/absence of tracheids. Moreover, it is unclear how these
connectivity characters relate directly or indirectly to embolism
propagation, which is known to occur from an embolized to a
sap-filled vessel (Brodersen et al. 2013, Choat et al. 2016,

Guan et al. 2021, Pritzkow et al. 2022). For this reason, we
hypothesize that VLF is related to embolism resistance because
a higher conduit fraction facilitates gas movement, which has
been suggested to increase the likelihood of embolism forma-
tion (Guan et al. 2021, Avila et al. 2022).

To test this hypothesis, we made comparisons of xylem
anatomy and embolism resistance in species pairs or triplets,
native to regions of differing aridity, in five genera. Some of the
best examples of the adaptive relevance of embolism resistance
to plant survival in dry environments are provided by studies
that have examined the variation in embolism resistance across
genera with a wide distributional range. In 23 species of Callitris
from across the range of the genus, a variation in mean species-
specific Pso is driven by aridity gradients across the continent
of Australia (Larter et al. 2017). Considerable variability in
embolism resistance across species has also been reported
in the genus Quercus with species-specific Pso ranging from
—2.72 to —6.27 MPa across the genus (Skelton et al. 2018).
This variation in Quercus is correlated with the aridity of native
ranges (Skelton et al. 2021). Across species in the genus Acer
Pso also correlates with habitat preferences (Lens et al. 2013,
Schumann et al. 2019). Acer campestre, a species that occurs
commonly in more arid areas of Europe and Asia Minor, has a
Pso of —5.40 MPa, whereas the more mesic adapted species
Acer pseudoplatanus has a Pso of —3.10 MPa (Schumann et al.
2019).

Here, we investigate whether species with more vulnerable
xylem have xylem anatomy and network traits more conducive
to embolism propagation between conduits, including higher
VLFE. We examine embolism resistance and xylem anatomy
across 11 species from 5 genera, which evolved in contrasting
environments varying in aridity, to investigate whether gross
xylem anatomical drivers correlate with intrageneric variation
in embolism resistance, namely vessel characteristics including
vessel diameter, wall thickness and VLF. We used the optical
vulnerability method for detecting embolism in stem xylem
to construct vulnerability curves (Brodribb et al. 2016) and
also conducted an experiment to test the validity of this non-
hydraulic method by the simultaneous measurement of stem
vulnerability curves in two species of Acer with the Chinatron
centrifuge (Wang et al. 2014).

Materials and methods

Plant material

To assess intrageneric variation in embolism resistance and
xylem anatomy, we selected species from the genera Acer
(Sapindaceae), Cinnamomum (Lauraceae), llex (Aquifoliaceae),
Quercus (Fagaceae) and Persea (Lauraceae), which evolved in
contrasting environments (Table S1 available as Supplementary
data at Tree Physiology Online). Plants of Acer pseudoplatanus
L. and A. campestre L. were wild-grown trees in the grounds of
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the Botanical Garden of Ulm University, Ulm (Germany) (48° 25
N, 9° 57’ E), llex paraguariensis A.St.-Hill was ~20 years old
and a 4-m-tall shrub grown in the glasshouses of the Botanical
Gardens of Ulm University, and Cinnamomum cassia (L.) J.Presl,
C. camphora (L.) J.Pres|, Persea americana Mill., P indica (L.)
Spreng, Quercus falcata Michx., Q. robur L., Q. rubra L. and llex
verticillata (L.) A.Gray were 3-year-old seedlings grown in the
glasshouses of Purdue University, West Lafayette (Indiana, USA)
(40° 25’ N, 86° 54’ W, elevation: 187 m). Samples of /. verti-
cillata were also taken from three mature shrubs grown outside
on the grounds of Purdue University. Experiments performed in
West Lafayette and Ulm were conducted between August and
early October 2018 and June and July 2019, respectively.

Vulnerability curves

Measurements of vulnerability curves in stems were conducted
using the optical vulnerability method (Brodribb et al. 2016)
with stereo microscopes (SZMT2, optika, Italy) and Raspberry Pi
clamps (opensourceOV.org). ChinaTron (Model H2100R, Xian-
gui, China) centrifuge vulnerability curves were also obtained
using 27.4-cm-long stem segments of the two Acer species
taken from the same three plants used to assess vulnerability
with the optical method, as these species have relatively short
vessels (Schumann et al. 2019). Three 2-m-long branches,
collected before dawn in July 2019, were used to construct cen-
trifuge vulnerability curves as described by Guan et al. (2022).
Samples were not flushed prior to assessing vulnerability, as
flushing was not performed on the paired branches for which
the optical vulnerability method was used. A reference solution
of 10-mM KCl was used.

For optical vulnerability curves, three stems of each species
(each stem from a different individual) were cut under water
early in the morning (0.6-2.5 m long, depending on the
species) and placed inside a closed bag containing moist
paper towels for 1 h to equilibrate water potential. A small,
terminal stem of current year growth only was selected for
analysis between 0.35 and 2.2 m from the open cut to avoid
open vessel artifacts. These terminal stems had a diameter
of 7-11 mm and were randomly selected on the harvested
branch. A location along this branch 0.3 m from apex was
selected to avoid the strongest effects of developmentally
driven vessel tapering (Petit et al. 2008, Olson et al. 2014)
and the bark was gently removed by hand, with care taken
to not touch the xylem. Immediately after bark removal, an
adhesive gel (Tensive) was spread onto the exposed xylem
and a coverslip placed over the gel. This region was enclosed
in the imaging clamp or placed under a stereo microscope.
Branches were allowed to dry in darkness while images were
taken every 3 min and W assessed every 10 min using
a PSY1 stem Psychrometer (ICT International, version 4.4)
that was installed at least 0.2 m from the imaged area. In
I. verticillata, W until leaf death was concurrently measured
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in small branches bearing up to five leaves using a Scholan-
der Pressure Chamber (PMS Instrument Company, Model
1505D).

Stem anatomy

Stem xylem anatomy was observed in a central segment of the
area of the stem that was directly imaged to generate optical
vulnerability curves. For the centrifuge curves, a sample was
taken from the middle of the stem segment that was used to
construct curves. Transverse sections (25-um thick) were made
using a freezing stage-microtome (Thermo scientific, model: HM
430) stained with aqueous 5% toluidine blue and mounted
in phenol glycerine jelly. To determine vessel diameter, (t/b)?,
and VLF, images were taken with an Axiocam 506 color camera
connected to a light microscope (Zeiss Axio Imager.A2 at 10x
and 5x magnification and amplified by a 1.6x magnification
tube). All anatomical traits were measured using Imagel software
on the newest season growth rings and all data were collected
before the formation of latewood in the ring-porous Quercus
species, but after leaf flushing.

Double wall thickness (t) and corresponding vessel lumen
diameter (b) was determined in 125 vessels from stems for
each sample. The cell wall thickness was measured between
two xylem vessels (avoiding cell wall corners) and the lumen
diameter was calculated from the vessel area. Assuming that
vessel lumen in cross-section was an approximate circle, the
diameter was estimated using Eq. (1), where b is the vessel
lumen diameter and A is the area of the vessel lumen:

b=2xJA/x. (1)

Vessel lumen fraction was determined by summing all A
values for each cross-section and expressing this area as a
percentage of total xylem area using Eqg. (2). For stems, the
VLF values were based on wood tissue, whereas the VLF
measurements of leaves were based on xylem of the vascular
bundle.

A
VLF = 27 x 100. (2)
Xylem area

Data analysis

Mean optical vulnerability curve data for each species were
generated by calculating the mean and standard error ¥ mea-
sured at each 1% increment of the embolized xylem area
from the three curves constructed. This approach constructs a
mean scaled empirical cumulative distribution of embolism for
each species, a method that provides a more accurate estimate
of Psp, and other cardinal water potentials, than sigmoidal
or exponential model fitting to optical vulnerability datasets
(Cardoso et al. 2022). Mean Psp for each species was used
to test for significant linear correlations with key anatomical

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Figure 1. Optical (blue, OV) and centrifuge (red, CE) vulnerability curves of stems in angiosperm species (each represented by curves of a different
shade (OV), or symbol (CE) in Acer (a), Cinnamomum (b), llex (c), Persea (d) and Quercus (e) (n = 3, error bars represent £SE)). See Table 1 for
mean Psg values for each species.

traits by fitting linear regressions using SigmaPlot v.10 software
(Systat Software, Germany). Tests for differences in embolism
resistance and anatomical traits within and between genera were
performed using ANOVAs with post hoc Tukey’s test using R
software (version 4.1.2).

Results
A large intrageneric variation in stem Pso

We found a large variation in stem Psg ranging from —2.07 up
to —6.80 MPa across all species measured (Figure 1, Table 1).
Between species in the same genus, we found significant
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Table 1. Mean stem water potential at which 50% of the stem xylem area was embolized (Psp) and standard error (n = 3), in addition to mean
vessel diameter and inter-vessel wall thickness (n = 125) for each species examined. Psg values were based on the optical method, except for the
two Acer species studied, which also included flow-centrifuge measurements. Different letters denote a significant difference in species within each

genus (P < 0.05).

Species Method Pso (MPa) SE VLF (%) SE Vessel diameter SE Inter-vessel wall SE
(um) thickness (um)
Acer pseudoplatanus ~ Optical —2.87a 0.24 13.71 0.23 26.95 1.3 2.99 0.18
Centrifuge —2.83a 0.3 14.59 0.52 28.08 3.1 3.29 0.09
Acer campestre Optical —5.2b 0.12 10.66 0.86 25.33 0.87 2.64 0.11
Centrifuge —4.55b 0.5 9.34 0.71 30.04 1.8 2.8 0.1
Cinnamomum cassia Optical —3.08a 0.2 8.93 0.46 35.79 2.38 3.83 0.12
Cinnamomum Optical —5.9b 0.35 5.86 0.77 30.63 1.33 3.28 0.12
camphora
llex verticillata Optical —4 0.42 16.58 2.35 25.51 1.32 3.96 0.16
llex paraguariensis Optical —5.03 0.89 9.58 2.14 19.07 3.24 4.45 0.21
Persea americana Optical —2.3a 0.2 12.98a 2.13 27.31 0.22 2.98a 0.04
Persea indica Optical —4.53b 0.47 4.66b 0.49 32.49 1.4 3.94b 0.01
Quercus falcata Optical —3.53a 0.35 16.81 1.49 41.46 5.86 3.18 0.11
Quercus robur Optical —4ab 0.42 12.02 2.74 35.53 4.26 3.16 0.12
Quercus rubra Optical —5.03b 0.89 11.35 1.15 40.29 6.69 3.71 0.28

differences in mean embolism resistance (ANOVA, F(12,
26) = 8.023, P < 0.001), with the exception of llex, in
which the Northern Hemisphere temperate deciduous species .
vercitillata and the Southern Hemisphere subtropical evergreen
species [|. paraguariensis had a similar mean (£SE) Pso
(—4.00 4+ 0.42 MPa and — 5.03 £ 0.89 MPa, respectively)
(Figure 1). Persea americana, native to subtropical rainforest,
was more vulnerable than the Macronesian native P indica,
(Pso —2.30 &+ 0.20 MPa, compared with —4.53 £ 0.47 MPa,
respectively). Cinnamomum cassia, which is native to mildly
seasonal subtropical forests, had a mean (£SE) stem Pso of
—3.08 &+ —0.20 MPa, which was more vulnerable than the
stems of C. camphora, native to highly seasonal subtropical
forests with a mean (£SE) stem Psp of —5.90 4+ 0.35 MPa.
A modest variation in mean stem Psg was observed across
Quercus species with Q. falcata, Q. robur and Q. rubra having
a mean (£SE) stem Pso of —3.53 £+ 0.35, —4.00 £+ 0.42
and — 5.03 4+ 0.89 MPa, respectively. In Acer, the optical
method and the Chinatron centrifuge were used to construct
vulnerability curves. Post hoc Tukey's test revealed no significant
difference between the mean (+SE) Pso generated by either
method in Acer, with means from both methods being
—2.87 £ 0.24 and —5.2 £ 0.12 MPa, respectively, for A.
pseudoplatanus and A. campestre (Figure 1a, Table 1).

Anatomical features correlated with Psgp

We found considerable variation in VLF between species of the
same genus, ranging from between 11 and 16% across species
of Quercus and between 4 and 12% in the two species of
Persea (Figure 2). This difference in VLF was visibly apparent in
transverse sections, particularly between the two Persea species

(Figure 3). Across all genera, the higher the VLF the more
vulnerable the stem xylem was to embolism. Mean stem Pso
correlated with VLF within each of the five genera examined,
as well as across all samples pooled together (linear regression,
t(37) = 3.7629, P < 0.001, r = 0.53) (Figure 2).

There was considerable variation in the vessel diameter
(ANOVA, F(12, 26) = 4.24, P < 0.001) and wall thick-
ness (ANOVA, F(12, 26) = 8.02, P < 0.001) across the
species sampled (Table 1, Figures 4 and 5). Mean vessel
diameter ranged from 19 £ 3.24 um in . paraguariensis to
415 £ 59 um in Q falcata (Table 1). Species pairs in the
genera Acer, Persea and Quercus had similar mean vessel
diameters (Table 1). Neither the vessel diameter (Figure 4)
nor wall thickness (Figure 5) correlated with Psgo across all
species. A post hoc Tukey's test showed that there was a
significant difference (P < 0.01) in the mean vessel diameter
between the two species of Cinnamomum, with C. camphora,
which had a more negative Pso than C. cassia, having the
narrowest vessels (30.6 £ 1.3 to 35.8 & 2.4 um, respectively)
(Figure 4, Table 1). This was the only species pair to display
a significant positive relationship between the vessel diameter
and Pso (Figure 4c; linear regression, t(5) = 2.78; P < 0.05,
r = 0.81). By contrast, we observed a significant negative
linear correlation between vessel diameter and Psg in the two
species of Persea (Figure 4e; linear regression, t(5) = —7.22,
P < 0.01,r =0.96).

Inter-vessel wall thickness varied across the species sampled
with the narrowest wall thickness observed in A. campestre
(2.64 £ 0.11 um), whereas the thickest inter-vessel wall
thickness was observed in I. paraguariensis (4.45 £ 0.21 pum)
(Table 1). Mean inter-vessel wall thickness did not vary across

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Figure 2. The relationship between vessel lumen fraction (VLF) and water potential at which 50% of xylem area was embolized or 50% of conductivity
was lost (Pso) in Acer (circles), Cinnamomum (squares), llex (diamonds), Persea (triangles) and Quercus (stars) (a). The relationships between VLF
and Psg in each genus including Acer (b), for this genus data from both optical (OV—closed symbols) and centrifuge sampled stems (CE—open
symbols) are shown, Cinnamomum (c), llex (d), Persea (e) and Quercus (f). Species within each genus in panels (b)—(f) are represented by symbols

of a different shade, significant linear regressions are shown.

species from the genera Acer, llex and Quercus (Table 1). In
the genus Cinnamomum, we observed a significant positive
linear correlation between inter-vessel wall thickness and Psgo
(linear regression, t(5) = 3.99, P < 0.05, r = 0.89), with the

samples that had more vulnerable xylem having the thinnest
walls (Figure 5¢). By contrast, the only other genus in which
we saw a relationship between wall thickness and embolism
resistance was Persea, in which we observed a significant
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Figure 3. Transverse section through the stem xylem of P, indica and P
americana. Scale bars = 100 um.

negative linear relationship between vessel wall thickness and
Pso (linear regression, t(5) = —4.19, P < 0.05, r = 0.9), with
the most embolism resistant samples having the thickest walls
(Figure 5e).

Discussion

We found that VLF correlated with Psp across 11 species from
five genera. A lower VLF was observed in species adapted
to more arid or seasonal environments than in closely related
species in the same genus native to more mesic environments.
Similar correlations between VLF and mean annual rainfall have
been observed across 51 species native to California (Preston
et al. 2006). This environmental and functional link with VLF
also manifests in correlations with wood density and theoretical
conductivity (Zanne et al. 2010).

Given the emergent nature of VLF, being a function of numer-
ous anatomical traits linked to embolism resistance including
the vessel connectivity, vessel size, density and potentially wall
thickness, it seems most likely that the correlations we find
here are due to the indirect nature of the trait on embolism
resistance. There is ample evidence that embolism spreads
from an embolized conduit to an adjacent, sap-filled conduit,
with embolism formation in isolated conduits not connected
to any neighboring embolized conduits being rare (Brodersen
et al. 2013, Brodribb et al. 2016, Choat et al. 2016, Guan
et al. 2021, Wason et al. 2021, Avila et al. 2022). When
a conduit becomes embolized, it is initially filled with 100%
water vapor (0.003 MPa at 25 °C), but will undergo a gradual
build-up of bubble pressure to atmospheric pressure, with
gas diffusion over different spatial scales (Wang et al. 2014).
This pressurization process represents a buffering process to
further embolism spread and may take several hours to days,
depending on the gas diffusion kinetics across cell walls and
pit membranes (Sorz and Hietz 2006, Wang et al. 2014).
Given that isolated embolism events are rare, we would assume
that gas movement (including both dissolved and undissolved
gas) plays a major role in embolism propagation, especially
along the resulting pressure differential between an embolized
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and sap-filled conduit (Jansen et al. 2020, Guan et al. 2021).
There is evidence that individual conduits in the xylem have
specific W thresholds at which embolism will form, but that
once a substantial proportion of gas has entered the xylem
tissue, embolism will rapidly propagate through the remaining
hydrated xylem (Avila et al. 2022). We suggest that when VLF
is low, due to one or more key wood anatomical traits related
to the connectivity or distance between conduits being altered,
the spread of embolism between conduits is reduced. Our work
here further emphasizes that more investigation is required to
understand the importance of the 3D vessel network in future
studies on embolism resistance (Loepfe et al. 2007, Wason
etal. 2021).

Bordered pits will only develop in a conduit wall that is
connected to another vessel or a tracheid, whereas pits do
not occur between a vessel and non-conductive imperforate
tracheary elements (Sano et al. 2008, 201 1). In this way, fibers
that are gas-filled and not holding any capillary water are unlikely
to provide gas sources for fast embolism spread in neighboring
conduits, as the gas movement across the wall should be
much slower than across thin, mesoporous pit membranes.
Also, xylem tissue that does not embolize (Y. Zhang et al.
2016) and contributes very little to water transport, including
living fibers and parenchyma, may impair the spread of gas
through the xylem (Jacobsen et al. 2005). This avoidance of
embolism spread by the non-conduit xylem matrix may translate
to changes in xylem vulnerability, with more negative W required
to trigger embolism formation in more protected vessels (Loepfe
et al. 2007, Johnson et al. 2020, Avila et al. 2021, Levionnois
etal. 2021, Wason et al. 2021). By contrast, when vessels are
packed into xylem in close proximity, with a minimal non-vessel
matrix, gas movement between vessels would be relatively fast,
and the chance of embolism spreading between adjacent ves-
sels at negative W increases, increasing the vulnerability of the
xylem. Species with greater lignification have more embolism-
resistant xylem due to increased lignification of conduits, a high
amount of imperforate tracheary elements, such as fibers in
the ground tissue of the xylem, or sclerenchyma surrounding
vascular bundles (Lens et al. 2016, Déria et al. 2018). The
lignin composition, in particular the ratio of guaiacyl to syringyl,
may also be related to embolism resistance (Lima et al. 2018,
Pereira et al. 2018).

We find that vessel conduit dimensions, especially diameter
and wall thickness (Figures 4 and 5), are not good sole predic-
tors of embolism resistance, and there is currently no direct,
mechanistic explanation for a putative vessel diameter—Psg
relationship. More detailed analyses, however, would be needed
to test this relationship between vessel diameter and Pso at
the inter- and intra-generic level. This contrasts with numerous
earlier studies that find correlations in cell wall thickness and
vessel diameter ratio (t/b)? (Hacke et al. 2001, Blackman
et al. 2010), the diameter of vessels (Scoffoni et al. 2016,
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Figure 4. The relationship between mean vessel diameter (+SE) and water potential at which 50% of xylem area was embolized or 50% of
conductivity was lost (Psg) in Acer (circles), Cinnamomum (squares), llex (diamonds), Persea (triangles) and Quercus (stars) (a). The relationships
between vessel diameter and Pso in each genus including Acer (b), for this genus data from both optical (OV—closed symbols) and centrifuge
sampled stems (CE—open symbols) are shown, Cinnamomum (c), llex (d), Persea (e) and Quercus (f). Species within each genus in panels (b)—(f)
are represented by symbols of a different shade, significant linear regressions are shown.

Hacke et al. 2017) and vessel length (Lens et al. 2011,
Jacobsen et al. 2016) with inter-specific variation in xylem
vulnerability. Our results suggest that these observations may
not be universal. Indeed, within a species, vessel diameter

is largely driven by size-related trends that could complicate
relationships between this trait and Psp. Interestingly, the thick-
ness and chemistry of secondary walls in leaf mesophyll was
found to be an important determinant of CO, diffusion and
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photosynthetic efficiency (Flexas et al. 2021, Roig-Oliver et al.
2021). However, wall thickness of vessels does not seem to
affect embolism spread, most likely because pit membranes
in bordered pit pairs are estimated to provide ca. 100 times
less resistance to gas flow than cell walls (Yang et al. 2022).

How alterations in VLF are driven by variation in vessel-to-
vessel connectivity, vessel and imperforate tracheary connec-
tions, and understanding the importance of these connections in
preventing embolism spread could be useful for a deeper
understanding about the drivers of embolism resistance, and
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should be a matter for future studies (Choat et al. 2005, 2016,
Rockwell et al. 2014, Charrier et al. 2016, Hochberg et al.
2016, 2017).

We observed a considerable variation in embolism resistance
between species from five genera, with consistent observations
of species adapted to more arid environments having lower
mean Pso. Studies investigating variation in embolism resistance
across species from the same genus are relatively common,
and a similar variation is often detected (Choat et al. 2012,
Lobo et al. 2018, Skelton et al. 2021), suggesting that the
evolution of resistant xylem is evolutionarily dynamic and highly
adaptive at the species level. For many of the species in this
study, this is the first report of stem embolism resistance to
our knowledge. In some species, there are reports of embolism
resistance determined by various methods, some of which are
prone to long-vessel artifacts. There are two reports of stem
Pso in C. camphora being —1.24 (Vander Willigen et al. 2000)
and —3 MPa (Krober et al. 2014). Both studies used the
high-pressure flow meter on short stem segments, which might
explain why the Pso we report here for this species using
the optical method was much lower at —5.9 MPa (Table 1).
In Quercus, there have been many studies in which embolism
resistance has been determined using approaches prone to
long-vessel artifacts (Tyree and Cochard 1996, Maherali et al.
2006). More recently, there have been reports of Pso values in
species from this genus using branches that exceed the length
of the longest vessel (Lobo et al. 2018, Skelton et al. 2021).
Lobo et al. (2018) measured embolism resistance in mature,
field grown trees in Europe of Q. rubra and Q. robur and found
mean Psg values of —4.43 4+ 0.25 and —4.74 + 0.09 MPa,
respectively. There was no or only minor significant differences
between the Pso values measured in this study in greenhouse
grown saplings and those measured in mature field grown trees
(—5.03 £0.89 and — 4 £+ 0.42 MPa for Q. rubra and Q. robur,
respectively (t-tests, P = 0.42 in Q. rubra and P = 0.021 in
Q. robur). The two species of Acer in this study were selected
because they have relatively short vessels allowing for accurate
measurements of embolism resistance using a centrifuge, and
our results here are similar to previously published data for
these two species (Rosner et al. 2019, Schumann et al. 2019).
Schumann et al. (2019) have suggested that the increased
embolism resistance of A. campestre compared with two other
widespread native European Acer species is due to adaptation
to drier microsites.

In this study, we conducted a comparison between the vulner-
ability curves generated by the optical vulnerability technique
and the hydraulic curves generated by the Chinatron centrifuge.
We found that both methods produced similar vulnerability
curves in the two species of Acer in which this experiment
was conducted, with both methods yielding similar estimates
of Pso (Figure 1). This result adds to a body of literature
demonstrating close agreement in stem vulnerability curves
constructed by the optical vulnerability technique and hydraulic

methods (Brodribb et al. 2017, Skelton and Diaz 2020),
pneumatic method (Guan et al. 2021) and microCT (Pratt et al.
2019, Gauthey et al. 2020, Johnson et al. 2020). A recent study
by Venturas et al. (2019), which found no relationship between
a curve generated by the optical method and both hydraulic or
microCT methods, used an unconventional approach to estimat-
ing embolism resistance from optical data, arbitrarily assigning
each embolism event, regardless of size, a similar weight. We
would not recommend this approach in future studies, but would
instead recommend quantifying embolism area and presenting
vulnerability curves in terms of the percentage accumulated
embolized area.

Conclusions

In conclusion, we found that VLF correlates with stem xylem
resistance consistently across species. This correlation was
found across clades of species adapted to different aridities,
which might be due to the emergent nature of this key xylem
anatomical trait, incorporating a suite of vessel and xylem traits
associated with embolism resistance. In this way, Pso may not
just be a function of how resistant an individual xylem conduit
is, but also a function of how easily incipient embolism might
spread through the conduit network in xylem.
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