
Enabling Direct Message Dissemination in
Industrial Wireless Networks via Cross-Technology

Communication

Di Mu, Yitian Chen, Xingjian Chen, Junyang Shi
Department of Computer Science

State University of New York at Binghamton

Email: {dmu1, cyitian1, xchen218, jshi28}@binghamton.edu

Mo Sha∗

Knight Foundation School of Computing

and Information Sciences

Florida International University

Email: msha@fiu.edu

AbstractÐIEEE 802.15.4 based industrial wireless networks
have been widely deployed to connect sensors, actuators, and
gateway in industrial facilities. Although wireless mesh networks
work satisfactorily most of the time thanks to years of research,
they are often complex and difficult to manage once the networks
are deployed. Moreover, the deliveries of time-critical messages
suffer long delay, because all messages have to go through
hop-by-hop transport. Recent studies show that adding a low-
power wide-area network (LPWAN) radio to each device in
the network can effectively overcome such limitations, because
network management and time-critical messages can be transmit-
ted from gateway to field devices directly through long-distance
LPWAN links. However, industry practitioners have shown a
marked reluctance to embrace the new solution because of the
high cost of hardware modification. This paper presents a novel
system, namely DIrect MEssage dissemination (DIME) system,
that leverages the cross-technology communication technique to
enable the direct message dissemination from gateway to field
devices in industrial wireless networks without the need to add
a second radio to each field device. Experimental results show
that our system effectively reduces the latency of delivering time-
critical messages and improves network reliability compared to
a state-of-the-art baseline.

Index TermsÐIndustrial Wireless Network, IEEE 802.15.4,
Message Dissemination, Cross-Technology Communication,
LoRa, Transmission Scheduling

I. INTRODUCTION

The Internet of Things (IoT) refers to a broad vision

whereby everyday objects, places, and environments are in-

terconnected via the Internet [1]. Until recently, most of the

IoT infrastructure and application development by businesses

have focused on smart homes and wearables. However, it is

the production and manufacturing segment of the IoT, which

underlies the Fourth Industrial Revolution (or Industry 4.0 [2]),

that promises one of the largest potential economic effects

of IoT [3] ± up to $47 trillion in added value globally by

2025, according to the McKinsey report on future disruptive

technologies [4]. Industrial networks that serve industrial

IoT typically connect field devices (sensors and actuators)

and gateway in industrial facilities, such as manufacturing

plants, steel mills, oil refineries. Industrial applications pose

unique challenges to networking due to their critical demand

for real-time and reliable communication in harsh industrial

environments. Failure to achieve such performance can lead to

production inefficiency, safety threats, and financial loss. The

stringent demand has been traditionally met by specifically

chosen wired solutions, such as the highway addressable

remote transducer (HART) communication protocol [5], where

cables connect sensors and forward sensor readings to the

gateway where a controller sends commands to actuators.

However, wired networks are often costly to deploy and

maintain in industrial environments and difficult to reconfigure

to accommodate new production requirements.

Over the past decade, IEEE 802.15.4 based wireless net-

works have been widely adopted to replace wired networks

in industrial facilities. Battery-powered wireless modules are

used to easily and inexpensively retrofit existing sensors and

actuators without the need to run cables for communication

and power. To meet the stringent reliability and real-time

requirements, the industrial wireless standards, such as Wire-

lessHART [6], ISA100 [7], WIA-FA [8], and 6TiSCH [9],

make a set of specific design choices, such as employing the

time slotted channel hopping (TSCH) technology, which dis-

tinguish themselves from traditional wireless sensor networks

(WSNs) designed for best effort services [10]. A decade of

real-world deployments of those standards has demonstrated

the feasibility to achieve reliable wireless communication in

industrial facilities. Although wireless mesh networks work

satisfactorily in industrial facilities most of the time thanks

to years of research, they are often complex and difficult

to manage once the networks are deployed. Moreover, the

deliveries of time-critical messages, especially those carrying

urgent information such as emergency alarms, suffer long

delay, because all messages have to go through hop-by-hop

transport. Recent studies show that adding a low-power wide-

area network (LPWAN) radio (e.g., a LoRa [11] radio) to each

device in the network effectively overcomes such limitations,

because messages and time synchronization beacons can be

transmitted from gateway to field devices directly through

long-distance LPWAN links [12], [13]. However, industry

practitioners have shown a marked reluctance to embrace the

new solution because of the high cost of hardware modifica-∗ Corresponding author

tion.

To address the issue, we develop a novel system, namely DI-

rect MEssage dissemination (DIME) system, that leverages

the cross-technology communication (CTC) from LoRa to

IEEE 802.15.4 devices [14], [15] to enable the direct message

dissemination from gateway to field devices in industrial

wireless networks without the need to add a second radio to

each field device. To our knowledge, this paper represents the

first networking solution that takes advantage of CTC to reduce

the network management complexity and the latency of deliv-

ering time-critical messages in industrial wireless networks.

Specifically, we make the following contributions:

• We develop a new TSCH slotframe structure, which

enables direct message dissemination using CTC;

• We develop a novel autonomous transmission scheduling

method that runs on top of the routing protocol for low-

power and lossy networks (RPL) on each device and

schedule transmissions without the need to handshake

with neighboring devices;

• We implement DIME and evaluate it on a physical

testbed with 40 devices. Experimental results show that

DIME significantly improves end-to-end reliability and

reduces end-to-end latency compared to a state-of-the-art

baseline.

The remainder of this paper is organized as follows. Section II

introduces the background of TSCH, RPL, and CTC. Sec-

tion III presents our DIME system. Section IV discusses our

testbed and evaluation of DIME. Section V reviews the related

work. Section VI concludes the paper.

II. BACKGROUND

In this section, we introduce the background of TSCH, RPL,

and CTC.

A. TSCH

TSCH [16] was introduced in 2012 as an amendment (IEEE

802.15.4e) to the medium access control (MAC) portion of

the IEEE 802.15.4 standard. It is designed to provide time-

deterministic packet deliveries for industrial process control

and automation. TSCH divides time into timeslots (or slots) for

time-deterministic media access and enables channel hopping

in every timeslot for resilience against interference. Under

TSCH, the gateway and all field devices in the network must

keep globally time synchronized to support time slotted access.

Starting from the gateway, each synchronized device shares

its time information to its neighboring devices by periodically

broadcasting enhanced beacons (EBs). Contained in each EB,

the absolute slot number (ASN) indicates the number of

timeslots passed since the network starts. ASN is set to zero

when the network starts and increased by one at the end of

each timeslot. A fixed number of timeslots are grouped into

a slotframe, which repeats over time. This fixed number is

defined as the slotframe length LSF . A timeslot in a slotframe

is specified by the time offset to, the channel offset co, and

the type of operation (e.g., transmission, reception, or sleep).

The time offset to of a timeslot is represented by the modulo

operation between ASN and LSF :

to = mod(ASN,LSF) (1)

A sequence of channels used for channel hopping, called

frequency hopping sequence (FHS), is known by all devices.

The frequency channel used in a timeslot is determined by

FHS, ASN, the channel offset (co), and the length of FHS

(LFHS):

channel = FHS(mod(ASN + co, LFHS)) (2)

A TSCH schedule generated by a transmission scheduling

algorithm determines each device’s operation type and channel

offset in every timeslot.

B. RPL

RPL is a destination oriented distance-vector routing pro-

tocol designed to support multi-hop routing on the resource-

constrained field devices with IPv6 compatibility. RPL uses a

destination-oriented directed acyclic graph (DODAG) rooted

at the gateway (border router device). Each field device in the

network computes its rank based on a cost function, such as

the accumulated expected transmission counts (ETXs) from

itself to the gateway. DODAG information object (DIO) mes-

sages are broadcasted in the network to exchange the routing

information between neighboring devices, which allows each

field device to update its rank and preferred parent device. A

destination advertisement object (DAO) message is sent to the

selected parent device from the child device. By exchanging

DIO and DAO messages, each device sets up its downward

and upward routes in the DODAG.

C. CTC

The CTC techniques are designed to enable direct com-

munication between two heterogeneous wireless devices that

run different physical layers but in the same frequency band.

As a key technology that enhances wireless coexistence in

the 2.4 GHz frequency band, CTC has been explored in

recent research to enable the direct communication between

WiFi and IEEE 802.15.4 devices [17]±[25], between WiFi

and Bluetooth devices [26], [27], and between Bluetooth and

IEEE 802.15.4 devices [28], [29]. The emerging LPWAN

technologies, such as LoRa, have emerged to provide low-

power long distance wireless connections. To leverage the long

communication range of LPWANs, several CTC techniques

have been proposed to enable direct messaging from LoRa

to IEEE 802.15.4 device [14], [15], [30], [31]. For example,

under the CTC technique developed by Shi et al. [14], [15],

an IEEE 802.15.4 radio detects the radio-frequency (RF)

energy patterns transmitted from a LoRa radio in the 2.4 GHz

frequency band and decodes the information carried by those

patterns. Shi et al. identified 454 distinguishable RF energy

patterns, which can be used to encode information in a 15ms

timeslot.

Fig. 1. System architecture of DIME.

Fig. 2. Slotframe structure.

III. OUR DESIGN OF DIME

In this section, we first present an overview of DIME

and then introduce the designs of our slotframe structure,

CTC technique, synchronization controller, and transmission

scheduler in detail.

A. System Overview

The primary design goals of DIME are to ensure timely

deliveries of time-critical messages from gateway, reduce net-

work management complexity, and improve network reliabil-

ity. To achieve such goals, the network that runs DIME allows

its gateway to directly disseminate time-critical messages to

field devices through long distance CTC links, leverage CTC

packets to synchronize the clocks of all devices in the network,

and deliver important messages through both CTC and hop-

by-hop transport. Figure 1 shows the system architecture of

DIME. The gateway is equipped with two radios: an IEEE

802.15.4 radio and a LPWAN radio and each field device

is equipped with an IEEE 802.15.4 radio. DIME adopts the

IEEE 802.15.4 and LPWAN physical layers to handle the

interactions between DIME and its underlying radio hardware.

CTC Encoder that runs on the gateway and CTC Decoder that

runs on the field device create the CTC link between them.

DIME extends TSCH, namely TSCH-DIME MAC, by adding

Slotframe Structure, Synchronization Controller, and Trans-

mission Scheduler. Slotframe Structure specifies three types of

slotframes for time synchronization, routing, and application

traffic. Synchronization Controller manages the CTC-based

time synchronization process on each device. Transmission

Scheduler that runs on each device is responsible for deter-

mining the device’s action and communication channel in each

timeslot. The application and the routing protocol (e.g., RPL)

run on top of TSCH-DIME MAC. The detailed design of each

component will be presented next.

Fig. 3. Timeslot in direct messaging phase.

B. Slotframe Structure

We follow the suggestions made by Duquennoy et al. [32]

and define three types of slotframes: one for time synchro-

nization traffic, one for routing traffic, and one for applica-

tion traffic. Figure 2 shows the slotframe structure. The first

timeslot of each synchronization slotframe is reserved for the

gateway to broadcast a CTC beacon. All field devices are

active in that timeslot and use the beacon to synchronize their

clocks (see Section III-D). The first timeslot of each routing

slotframe is shared among the gateway and all field devices to

exchange the packets generated by the routing protocol. Each

application slotframe consists of three phases: uplink phase,

direct messaging phase, and downlink phase. The timeslots in

the uplink phase are reserved for the field devices to forward

the packets generated by the source devices to the gateway

and the timeslots in the downlink phase are reserved for the

field devices to forward the packets generated by the gateway

to the destination devices. One or more timeslots in the direct

messaging phase are reserved for the gateway to send direct

messages to the destination devices through the long distance

CTC links.

Figure 3 shows the timeslot in the direct messaging phase.

The CTC transmission starts at TxOffset, which is the time

offset computed according to the on-air time duration of the

CTC transmission to make sure that the CTC transmission

finishes at the exact end of that timeslot. TxOffset must be

no less than the recommended value in TSCH (e.g., 3ms for

a 15ms timeslot) to make CTC transmissions tolerable to the

clock drifts on field devices. The receiver starts to listen to

the channel at RxOffset and looks for the start of a CTC

message during RxWait. If the receiver cannot detect any

CTC signals during RxWait, it turns off the radio to save

energy; otherwise, it keeps the radio on to receive and decode

the CTC message. We employ a coding method with a set

of distinguishable CTC symbols, which can be encoded in a

single timeslot (see Section III-C).

C. CTC

DIME is not tied up with any CTC techniques. Our im-

plementation adopts a state-of-the-art technique developed by

Shi et al. [14], which supports CTC from LoRa to IEEE

802.15.4 device in the 2.4 GHz frequency band and employs

a coding method with 454 distinguishable CTC symbols.

DIME reserves eight symbols for CTC beacons and the rest

for application messages. All CTC symbols can fit into a

single 15ms timeslot. Under such a CTC technique, the

LoRa transmitter generates radio energy patterns by tuning

the packet payload length and the time to transmit packets.

The IEEE 802.15.4 device receiver samples the received signal

strength (RSS) values to recognize the radio energy patterns.

The LoRa packets with 15 different payload lengths can

generate the on-air transmission time ranging from 3.705ms to

14.405ms within a 15ms timeslot. Depending on the variable

payload length, one or more (up to four) LoRa packets can

be transmitted within a timeslot. Non-transmitting time can be

selectively inserted between two consecutive packets to create

more energy patterns. A unique CTC symbol is created by the

combined energy pattern of the transmitted LoRa packet(s) in

a timeslot and the optional non-transmitting time between the

packets. Our IEEE 802.15.4 devices can continuously sample

the RSS with the interval of 0.088ms, which is enough to

distinguish different LoRa packet lengths and the presence of

non-transmitting time.

D. Synchronization Controller

Synchronization Controller that runs on each field device

is responsible for using the periodically broadcasted CTC

beacons to synchronize its clock. As discussed in Section II,

TSCH uses EBs for time synchronization. DIME replaces

EBs with CTC beacons, which are used to time synchronize

all devices and accommodate the new device when it joins

the network. Similar to EBs, the CTC beacons contain time

information and are broadcasted periodically. Unlike EBs

that are flooded by all field devices in the network, the

CTC beacons are only transmitted by the gateway, which

significantly reduces time synchronization overhead. All field

devices use the gateway as their time source and use the CTC

beacons to keep them time synchronized. Each CTC beacon

is transmitted in the first timeslot of each synchronization

slotframe. When the transmission of a CTC beacon is finished,

all field devices use the time when the CTC signal disappears

to synchronize their local clocks. Each CTC beacon carries

the synchronization period number (SPN), which can be used

to calculate the absolute time since the network starts. SPN

can be encoded in one CTC beacon or multiple consecutive

synchronization slotframes, where the CTC beacon in the last

synchronization slotframe contains a special CTC symbol that

indicates the end of SPN encoding. SPN is initialized as 0 and

incremented by 1 after each time that it has been encoded.

Assuming there are Nsym CTC symbols reserved for the

CTC beacons, each SPN is encoded in NSF synchronization

slotframes, the length of a synchronization slotframe is L
sync
SF

timeslots, and the duration of a timeslot is Ts, the maximum

time Tmax that can be represented by SPN can be calculated

as

Tmax = Ts × L
sync
SF ×NSF × (Nsym − 1)(NSF−1). (3)

For example, if Nsym = 8, NSF = 10, L
sync
SF = 397, and

Ts = 15ms, then Tmax is more than 76 years. Based on the

received SPN, the field devices can calculate the current ASN

by

ASN = SPN × L
sync
SF ×NSF . (4)

There are two ways for a new device to join the network.

It either joins the network when it starts or after the network

starts. When the network starts to operate, the gateway con-

tinuously broadcasts CTC beacons for a fixed period of time

(e.g., 30s), which allows all field devices to set their CTC

physical-layer parameters (e.g., the RSS threshold for CTC

signal detection) based on link measurements. If a field device

joins the network when the network has already started, it uses

the default CTC physical-layer parameters and looks for the

CTC beacons, which allows it to derive the complete SPN and

ASN. Please note that there is no need for the field devices

that join the network when it starts to derive SPN, because the

ASN starts from 0.

E. Transmission Scheduler

Transmission Scheduler that runs on each device is respon-

sible for generating the operation schedule for that device.

It first determines whether the device transmits, receives, or

sleeps in each timeslot of every slotframe and generates a

operation schedule for each slotframe. It then combines all

schedules into a single one for runtime execution. The priority

assigned to each slotframe determines whether the schedule

of that slotframe should yield to another when a scheduling

conflict appears during the schedule combination process. The

lengths of all slotframes are three mutually prime numbers to

minimize the schedule conflicts. We will discuss the priority

assignments and transmission scheduling next.

Synchronization Slotframe has the highest priority because

the network cannot operate without time synchronization. The

only active timeslot scheduled in the synchronization slotframe

is the first one, where the time offset to is 0 and the operation

channel is fixed to the best one available.

Routing Slotframe has the priority lower than Synchroniza-

tion Slotframe’s. The first timeslot of each routing slotframe

is scheduled to exchange routing information, where the time

offset to is 0 and the channel offset co is 1.

Application Slotframe has the lowest priority. As Figure 2

shows, the application slotframe has three phases: uplink

phase, direct messaging phase, and downlink phase.

To provide contention-free transmissions, Transmission

Scheduler assigns a sender-based dedicated (SBD) timeslot in

the application slotframe’s uplink phase to each field device to

forward the application traffic generated by the source devices

to the gateway. Similarly, Transmission Scheduler assigns a

receiver-based dedicated (RBD) timeslot in the application

slotframe’s downlink phase to each field device to forward

the application traffic generated by the gateway to the desti-

nation devices. In the uplink phase, each field device receives

incoming packets during its child devices’ SBD timeslots

and forwards them during its own SBD timeslot. The time

offset of each SBD timeslot tSBD
o is calculated by performing

the modulo operation between the sender device’s ID txID

(txID ⩾ 1) and the length of the uplink phase LUP :

tSBD
o (txID) = mod(txID − 1, LUP) (5)

Following Eq. 5, each device can calculate each timeslot

for packet transmission using its own device ID and the

(a) Network topology.

(b) Generated transmission schedule.

Fig. 4. An example of transmission schedule generated based on a given
network topology.

ones for packet receptions using its child devices’ IDs. The

direct messaging phase begins after the uplink phase. The

gateway groups the messages for all destination devices into

LCTC CTC transmission(s), where LCTC is the length of

the direct messaging phase. The time offset of the first CTC

transmission tCTC
o equals LUP because it immediately follows

the uplink phase. All destination devices listen to the CTC

transmission(s) in the direct messaging phase and decode the

CTC messages. In the downlink phase, each device on every

downlink path (the path from the gateway to the destination

device) listens during its RBD timeslot and forwards down-

link traffic to its child device along the downlink path until

reaching the destination device. The time offset of each RBD

timeslot tRBD
o is calculated by the receiver device’s ID rxID

(rxID ⩾ 1), LUP , LCTC , and the length of the downlink

phase LDP :

tRBD
o (rxID) = LUP + LCTC +mod(rxID − 1, LDP) (6)

Following Eq. 6, each device along the downlink path can

calculate the timeslot for packet reception using its own

device’s ID and the one for packet transmission using its

child device’s ID. The channel offset co of the application

slotframe is set to 2. To ensure contention-free transmissions

in both uplink and downlink phases, both LUP and LDP

must be no less than the number of field devices in the

network. We choose LUP = LDP = 50, LCTC = 1, and

L
app
SF = LUP +LCTC +LDP = 101 as the default lengths in

our implementation for 40 field devices.

Figure 4(b) shows an example schedule generated based on

the network topology shown in Figure 4(a). In this network,

#0 is the gateway device, #2 is a source device, and #3 acts

as both source and destination device. In this example, the

lengths of synchronization, routing, and application slotframes

are 47, 5, and 7, respectively. The length of application

slotframe is the summation of LUP = 3, LCTC = 1, and

Fig. 5. Testbed deployment. Device 00 is the gateway marked as a star.

LDP = 3. The first application slotframe begins when ASN

is 0 and the second one begins when ASN is 7. However, the

timeslots are preempted by the synchronization and routing

slotframes when ASN is 0, 5, and 10 in the first two application

slotframes. When ASN is 0, all field devices (#1, #2, and #3)

listens to the CTC synchronization beacon broadcasted by the

gateway, because the synchronization slotframe has the highest

priority and is active in that timeslot. The uplink phase of the

application slotframe is active when ASN is 1 and 2, in which

#2 and #3 transmit uplink application packets to their parent

devices in the senders’ SBD timeslots. The direct messaging

phase of the application timeslot is active when ASN is 3, in

which #3 listens to the CTC direct message from the gateway.

The downlink phase of the application slotframe is active

when ASN is 4 and 6, in which #0 and #1 transmit downlink

application packets to their child devices on the downlink path

in the receivers’ RBD timeslots. When ASN is 5 and 10,

the routing slotframe is active and preempts the application

slotframe to allow all devices in the network exchange routing

messages. The second application slotframe begins when ASN

is 7 with uplink transmissions. The entire schedule repeats

every 47× 5× 7 = 1645 timeslots.

IV. EVALUATION

To evaluate the performance of DIME, we have imple-

mented DIME under Contiki OS [33], integrated it with RPL

under storing mode, and performed a series of experiments on

our testbed. We first perform microbenchmark experiments to

examine the network initialization process when the network

starts to operate with DIME and then test DIME’s resilience

to network changes. We then measure the performance of

DIME when it runs on the networks with various device

densities. Finally, we perform two 24-hour measurements to

evaluate the performance of DIME when the devices generate

data at a high rate and a low rate, respectively. We compare

DIME against Orchestra [32], [34], one of the state-of-the-

art networking solutions designed for TSCH based industrial

wireless networks.

Figure 5 shows the device deployment of our testbed, which

consists of one gateway and 40 field devices deployed through-

out 22 office and lab areas in an office environment [35].

The gateway is a TelosB mote [36] integrated with a WiMOD

iM282A LoRa module [37] and each field device is a TelosB

(a) Number of synchronized devices over time. (b) End-to-end PDR. (c) End-to-end latency.

Fig. 6. Network performance during network initialization.

TABLE I
THE SOURCE AND DESTINATION DEVICE IDS OF EACH DATA FLOW.

Data Flow Number Source Device ID Destination Device
ID

1 11 12
2 13 14
3 15 30
4 18 16
5 20 21
6 22 36
7 24 25
8 09 05

mote. We run a monitor-control application with eight data

flows, each of which has a source device and a destination

device. Table I lists the source and destination devices of

each data flow. The source device of a data flow generates

an uplink packet periodically based on the data rate specified

by the application. Each uplink packet is then forwarded

to the gateway where a controller generates and sends a

downlink packet to its corresponding destination device. We

precompute eight downlink paths and use them at runtime

due to the hardware limitation of TelosB motes. We configure

DIME and Orchestra with three slotframes: synchronization

slotframe (397 timeslots), routing slotframe (31 timeslots),

and application slotframe (101 timeslots). The length of each

timeslot is 15ms. To ensure a fair comparison, we use the

same slotframe lengths and settings in DIME and Orchestra.

A. Network Initialization

To examine the network initialization process, we record

the number of synchronized devices in each synchronization

slotframe and measure the end-to-end packet delivery ratio

(PDR) and the end-to-end latency after the network starts

to operate with DIME. We configure each source device

to generate an uplink packet every 10s. Figure 6(a) shows

the number of synchronized devices in each synchronization

slotframe after the network starts to operate. As Figure 6(a)

shows, DIME successfully synchronizes all 40 devices in

the first synchronization slotframe (5.96s) after the network

starts to operate, while Orchestra takes nine synchronization

slotframes (53.60s) to synchronize all devices due to the need

of flooding synchronization beacons across the entire network.

Figure 6(b) and 6(c) plot the network performance during the

network initialization process, where each data point shows the

averaged value in a 30s time window. As Figure 6(b) and 6(c)

(a) End-to-end PDR.

(b) End-to-end latency.

Fig. 7. Network performance of Data Flow 1 when we disable Device 8 for
five minutes (time between two red dashed lines).

show, DIME helps the network stabilize its performance

quickly and consistently provides PDRs higher than 91.7%

and latency less than 4.84s. As a comparison, Orchestra takes

more than five minutes to stabilize the network performance

and provide PDRs higher than 90%. More importantly, DIME

consistently provides higher network reliability and shorter

latency over Orchestra by employing the CTC links, which

will be evaluated more extensively in Section IV-C and IV-D.

B. Adaptation to Network Changes

To test DIME’s resilience to network changes, we mimic

devices failures by disabling different devices in the network

and measure network performance changes. For example,

Figure 7 plots the network performance of Data Flow 1

when we disable Device 8 after the network operates with

five minutes and enable it after another five minutes. As

Figure 7(a) shows, the network that runs either DIME or

Orchestra provides PDR larger than 83% before the failure

occurs and after the network recovers. When the failure occurs,

the network that runs DIME can still provide high PDRs

(a) End-to-end PDR at low device density. (b) End-to-end PDR at medium device density. (c) End-to-end PDR at high device density.

(d) End-to-end latency at low device density. (e) End-to-end latency at medium device density. (f) End-to-end latency at high device density.

Fig. 8. Performance of each data flow when the network with different device densities runs DIME and Orchestra.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty cycle.

Fig. 9. Averaged network performance of each data flow when source devices generate data at high rate.

thanks to its CTC links, while the PDRs of the network that

runs Orchestra drop to 0% due to the disconnection of the

downlink path. As Figure 7(b) shows, DIME helps the network

keep the end-to-end latency shorter than 7.3s even when the

network faces device failure. We observe similar results when

the failures occur at other devices. The results demonstrates

DIME’s resilience to network changes.

C. Network Performance under Various Device Densities

To evaluate the performance of DIME, we create three

networks by randomly disabling different numbers of devices

on our testbed and measure the performance of each network

for an hour. Specifically, we enable all 40 field devices on

our testbed to create the network with high device density

and use 34 field devices to create the network with medium

device density. We only enable 22 field devices to create the

network with low device density. Figure 8 plots the end-

to-end PDR and the end-to-end latency of each data flow

when the network runs DIME and Orchestra, respectively.

DIME consistently outperforms Orchestra. For example, as

Figure 8(a) and 8(d) plot, the network with low device density

achieves PDRs higher than 99.6% and latency shorter than

3.3s on all data flows when it runs DIME. As a comparison,

the network reaches the lowest PDR of 93.7% on Data Flow

5 and the longest latency of 6.7s on Data Flow 3 when it

runs Orchestra. In the network with medium device density,

DIME consistently helps the network achieve PDRs higher

than 99.4% and latency shorter than 4.0s on all data flows,

while Orchestra has the lowest PDR of 93.6% and the longest

latency of 9.6s, as Figure 8(b) and Figure 8(e) show. Similarly,

in the network with high device density, DIME consistently

helps the network achieve PDRs higher than 99.0% and latency

shorter than 4.4s on all data flows, while Orchestra has the

lowest PDR of 90.8% and the longest latency of 11.4s, as

Figure 8(c) and Figure 8(f) show.

We also observe that the improvements provided by DIME

increase with network density. For example, Orchestra expe-

riences decreased PDRs from 100% to 93.5% and increased

latency from 2.1s to 7.9s on Data Flow 4 when the device

density increases from low to high, while DIME only has

minor changes on PDRs from 100% to 99.4% and latency

from 1.8s to 2.2s. This is because the higher device density

increases network management complexity, resulting in more

packet losses and larger latency under Orchestra. On the

other hand, DIME can consistently provide good network

performance with the help of CTC links.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty Cycle.

Fig. 10. Network performance over 24 hours when source devices generate data at high rate. Each data point is calculated within a one-hour time window.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty cycle.

Fig. 11. Averaged network performance of each data flow when source devices generate data at low rate.

(a) End-to-end PDR. (b) End-to-end latency. (c) Device duty cycle.

Fig. 12. Network performance over 24 hours when source devices generate data at low rate. Each data point is calculated within a one-hour time window.

D. 24-Hour Performance under Different Data Rates

Finally, we perform two 24-hour measurements to evaluate

DIME’s performance when the devices generate data at a

high rate and a low rate, respectively. To evaluate DIME’s

performance at high data rates, we configure each source

device to periodically generate an uplink packet every 10s.

Figure 9 plots the averaged network performance of each

data flow. As Figure 9(a) shows, the network that runs

DIME achieves PDRs higher than 99.5% on all data flows,

consistently outperforming the one that runs Orchestra with

the lowest PDR of 91.8%. Figure 9(b) plots the averaged

end-to-end latency of each data flow. As Figure 9(b) shows,

the network that runs DIME achieves latency always shorter

than 4.23s, which is significantly shorter the latency when the

network runs Orchestra. For instance, the averaged end-to-

end latency of Data Flow 3 is 3.36s under DIME and 11.58s

under Orchestra. We also measure the device duty cycle1 of

each device when it runs DIME and Orchestra. Figure 9(c)

1The device duty cycle is defined as the percentage of timeslots in which
the radio is active. This metric is an indicator of energy consumption.

plots the CDF of the device duty cycles of all field devices

under DIME and Orchestra, where the duty cycles are similar

between two solution. The device duty cycles range from

3.46% to 6.78% under DIME and vary from 3.26% to 6.75%

under Orchestra. The median device duty cycle is 4.61%

under DIME and 4.69% under Orchestra. These results show

that DIME improves network reliability and reduces latency

without consuming more energy.

Figure 10 shows the network performance over the 24-hour

period. DIME consistently outperforms Orchestra at the high

data rate. As Figure 10(a) shows, the end-to-end PDRs are

always higher than 99.3% under DIME and vary between

90.2% and 93.7% under Orchestra. As Figure 10(b) shows,

the end-to-end latency are always shorter than 3.61s under

DIME and varies between 8.23s and 10.54s under Orchestra.

As Figure 10(c) shows, the field devices experience similar

duty cycles under both solutions over 24 hours. On average,

DIME improves the end-to-end PDR from 92.6% to 99.8% and

reduces the end-to-end latency from 9.03s to 3.06s compared

to Orchestra. More importantly, the variations of PDRs under

DIME are much smaller than the ones under Orchestra, which

represents a significant advantage in industrial applications that

demand consistent high reliability in harsh industrial facilities.

To evaluate DIME’s performance when the network operates

at the low data rate, we increase the data generation period

from 10s to 60s and repeat our experiments. Figure 11 plots

our measurements. As Figure 11(a) shows, the network that

runs DIME has the averaged PDRs of all data flows higher

than 99.93% and the network that runs Orchestra achieves

comparable performance (higher than 99.52%). Figure 11(b)

shows the averaged end-to-end latency of each data flow. As

Figure 11(a) shows, DIME reduces the latency by 6.53s on

average compared to Orchestra. For instance, the averaged

end-to-end latency of Data Flow 6 is 1.57s under DIME

and 11.42s under Orchestra. Figure 11(c) plots the CDF of

the device duty cycles of all field devices under DIME and

Orchestra. Both solutions provide similar device duty cycles.

The median duty cycle is 4.44% under DIME and 4.48%

under Orchestra. The results confirms that DIME improves

network reliability and reduces latency without consuming

more energy.

Figure 12 shows the network performance when the network

runs DIME and Orchestra, respectively, over the 24-hour

period. As Figure 12(a) shows, DIME achieves the PDR of

99.7% during the first hour and always delivers 100% PDR

after that, while Orchestra experiences the lowest PDR of

96.9% in the first hour and achieves the PDRs higher than

98.8% after that. As Figure 12(b) shows, DIME always keeps

the latency less than 2.82s, while Orchestra experiences the

latency up to 10.45s. As Figure 12(c) shows, the field devices

experience similar duty cycles under both solutions over 24

hours.These results show that DIME consistently outperforms

Orchestra at the low data rate.

V. RELATED WORK

In recent years, many centralized and decentralized trans-

mission scheduling methods have been developed for TSCH-

based wireless networks. The centralized method relies on a

global scheduler to determine the transmission schedule of

each device in the network. For instance, Jin et al. propose a

centralized multi-hop scheduling method that allocates more

resources to more vulnerable links [38] and Palattella et al.

develop a traffic-aware scheduling algorithm, which reduces

energy consumption of each device by allocating the minimum

number of active slots to it [39]. The centralized scheduling

methods suffer poor scalability and low flexibility once the

networks are deployed. The decentralized scheduling methods

have been proposed to overcome those drawbacks. Under a

decentralized scheduling method, each device generates its

own transmission schedules after exchanging information with

its neighboring devices at runtime. For example, Municio et al.

develop a decentralized broadcast-based scheduling algorithm

for dense multi-hop TSCH networks, which uses selective

broadcasting to exchange transmission schedules of neigh-

boring devices [40] and Aijaz et al. designs a decentralized

adaptive multi-hop scheduling protocol, which is traffic-aware

and adaptive to topology changes [41]. The decentralized

scheduling methods improve network scalability and flexibility

at the cost of introducing significant signaling overhead due

to the need of information exchange between neighboring

devices. To eliminate such overhead, research efforts in the

recent years have produced autonomous scheduling methods

including Orchestra, DiGS, ALICE, and ATRIA. Orches-

tra allows network devices to generate their transmission

schedules autonomously based on their local RPL routing

information [32]. DiGS is a distributed graph routing and

autonomous scheduling solution that allows network devices

to compute their own transmission schedules based on their

graph routes [42]. ALICE is an autonomous link-based cell

scheduling scheme, which allocates a unique cell for each

directional link by using the local information in the routing

layer [43]. ATRIA is an autonomous traffic-aware transmission

scheduling method, in which each device detects its traffic

load based on its local routing information and then schedules

its transmissions accordingly [44]. Although the autonomous

scheduling methods effectively eliminate the signaling over-

head, they still suffer long latency when delivering network

control messages (e.g., time synchronization) and time-critical

application messages (e.g., emergency alarms) because all

messages have to go through hop-by-hop transport.

Emerging LPWAN technologies, such as LoRa, offer new

opportunities to overcome the limitations of multi-hop wireless

networks by adding long-distance links. Recent studies have

combined LPWAN radios with IEEE 802.15.4 radios to form

hybrid wireless networks. For example, Gu et al. propose one-

hop out-of-band control planes that use LoRa links to deliver

control messages directly from gateway to field devices [12],

[13] and Singh et al. develop a hybrid network architecture

that integrates LoRa and IEEE 802.15.4 radios for oil pipeline

monitoring applications [45]. However, adding new radios

to all devices in a network requires significant effort and

cost because of the need of hardware modification. Industry

practitioners therefore have shown a marked reluctance to

embrace such solutions. To address this issue, our solution

leverages the CTC technique from LoRa to IEEE 802.15.4

devices to provide long-distance message deliveries and does

not require any hardware modification on field devices.

Recently, many techniques have been developed to enable

the CTC between heterogeneous wireless devices that operate

in the same frequency band. Significant efforts have been

made to enable the CTC between WiFi and IEEE 802.15.4

devices [17]±[25], between WiFi and Bluetooth devices [26],

[27], and between Bluetooth and IEEE 802.15.4 devices [28],

[29], and between LoRa and IEEE 802.15.4 devices [14], [15],

[30], [31]. Our solution adopts the CTC technique developed

by Shi et al. [14], [15] to enable long-distance communication

in the 2.4 GHz band.

VI. CONCLUSION

A decade of real-world deployments of industrial standards

has demonstrated the feasibility to achieve reliable wireless

communication in industrial environments. Although wireless

mesh networks work satisfactorily in industrial facilities most

of the time thanks to years of research, they are often complex

and difficult to manage once the networks are deployed.

Moreover, the deliveries of time-critical messages, especially

those carrying urgent information such as emergency alarms,

suffer long delay, because all messages have to go through

the hop-by-hop transport. To address the issue, we develop

DIME, which consists of a new TSCH slotframe structure for

direct message dissemination and time synchronization using

CTC and a new autonomous transmission scheduling method

that schedules transmissions without the need to handshake

with neighboring devices. We implement DIME and evaluate

it on a physical testbed with 40 devices. Experimental results

show that DIME significantly improves end-to-end reliability

and reduces end-to-end latency compared to a state-of-the-art

baseline.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation under grant CNS-1657275 and CNS-2150010.

REFERENCES

[1] M. E. Porter and J. E. Heppelmann, ªHow Smart, Connected Products
are Transforming Competition,º Harvard Business Review, vol. 92,
no. 11, 2014.

[2] H. Kagermann, W. Wahlster, and J. Helbig. Recommendations for
Implementing the Strategic Initiative Industrie 4.0. [Online]. Available:
http://alvarestech.com/temp/tcn/CyberPhysicalSystems-Industrial4-0.pdf

[3] A. Thierer and A. Castillo. Projecting the Growth
and Economic Impact of the Internet of Things. [On-
line]. Available: https://www.mercatus.org/publications/technology-and-
innovation/projecting-growth-and-economic-impact-internet-things

[4] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson,
and A. Marrs. Disruptive Technologies: Advances that will
Transform Life, Business, and the Global Economy. [On-
line]. Available: http://www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/disruptive-technologies

[5] HART Communication Protocol and Foundation (Now the FieldComm
Group). [Online]. Available: https://fieldcommgroup.org/

[6] WirelessHART. [Online]. Available:
https://fieldcommgroup.org/technologies/hart/hart-technology

[7] ISA 100. [Online]. Available: http://www.isa100wci.org/
[8] WIA-FA. [Online]. Available: https://webstore.iec.ch/publication/32718
[9] IETF, ª6TiSCH: IPv6 over the TSCH mode of IEEE 802.15.4e,º 2020.

[Online]. Available: https://datatracker.ietf.org/wg/6tisch/documents/
[10] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,

L. Nie, and Y. Chen, ªReal-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems,º Proceedings of the IEEE, vol.
104, no. 5, 2016.

[11] LoRa. [Online]. Available: https://lora-alliance.org
[12] C. Gu, R. Tan, X. Lou, and D. Niyato, ªOne-Hop Out-of-Band Control

Planes for Low-Power Multi-Hop Wireless Networks,º in INFOCOM,
2018.

[13] C. Gu, R. Tan, and X. Lou, ªOne-Hop Out-of-Band Control Planes for
Multi-Hop Wireless Sensor Networks,º ACM Transactions on Sensor

Networks, vol. 15, no. 4, 2019.
[14] J. Shi, X. Chen, and M. Sha, ªEnabling Direct Messaging from LoRa

to ZigBee in the 2.4 GHz Band for Industrial Wireless Networks,º in
ICII, 2019.

[15] ÐÐ, ªEnabling Cross-Technology Communication from LoRa to Zig-
Bee in the 2.4 GHz Band,º ACM Transactions on Sensor Networks,
vol. 18, no. 2, 2021.

[16] IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH). [Online].
Available: https://datatracker.ietf.org/doc/html/rfc7554

[17] W. Wang, X. Liu, Y. Yao, and T. Zhu, ªExploiting WiFi AP for
Simultaneous Data Dissemination among WiFi and ZigBee Devices,º
in ICNP, 2021.

[18] X. Guo, Y. He, X. Zheng, L. Yu, and O. Gnawali, ªZigFi: Harness-
ing Channel State Information for Cross-Technology Communication,º
IEEE/ACM Transactions on Networking, vol. 28, no. 1, 2020.

[19] X. Guo, Y. He, and X. Zheng, ªWiZig: Cross-Technology Energy
Communication Over a Noisy Channel,º IEEE/ACM Transactions on

Networking, vol. 28, no. 6, 2020.
[20] S. Wang, S. M. Kim, and T. He, ªSymbol-Level Cross-Technology

Communication via Payload Encoding,º in ICDCS, 2018.
[21] S. Wang, Z. Yin, Z. Li, and T. He, ªNetworking Support for Physical-

Layer Cross-Technology Communication,º in ICNP, 2018.
[22] X. Zheng, Y. He, and X. Guo, ªStripComm: Interference-Resilient

Cross-Technology Communication in Coexisting Environments,º in IN-

FOCOM, 2018.
[23] Z. Yin, W. Jiang, S. M. Kim, and T. He, ªC-Morse: Cross-Technology

Communication with Transparent Morse Coding,º in INFOCOM, 2017.
[24] Z. Li and T. He, ªWEBee: Physical-Layer Cross-Technology Commu-

nication via Emulation,º in MobiCom, 2017.
[25] Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu, ªB2W2: N-Way

Concurrent Communication for IoT Devices,º in ACM Conference on

Embedded Network Sensor Systems, 2016.
[26] X. Guo, Y. He, X. Zheng, Z. Yu, and Y. Liu, ªLEGO-Fi: Transmitter-

Transparent CTC with Cross-Demapping,º IEEE Internet of Things

Journal, vol. 8, no. 8, 2021.
[27] Z. Li and Y. Chen, ªBlueFi: Physical-Layer Cross-Technology Commu-

nication from Bluetooth to WiFi,º in ICDCS, 2020.
[28] W. Jiang, Z. Yin, R. Liu, Z. Li, S. M. Kim, and T. He, ªBoosting

the Bitrate of Cross-Technology Communication on Commodity IoT
Devices,º IEEE/ACM Transactions on Networking, vol. 27, no. 3, 2019.

[29] W. Jiang, S. M. Kim, Z. Li, and T. He, ªAchieving Receiver-Side Cross-
Technology Communication with Cross-Decoding,º in International

Conference on Mobile Computing and Networking, 2018.
[30] J. Shi, D. Mu, and M. Sha, ªEnabling Cross-technology Communication

from LoRa to ZigBee via Payload Encoding in Sub-1 GHz Bands,º ACM

Transactions on Sensor Networks, vol. 18, no. 1, 2021.
[31] ÐÐ, ªLoRaBee: Cross-Technology Communication from LoRa to

ZigBee via Payload Encoding,º in ICNP, 2019.
[32] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, ªOrchestra:

Robust Mesh Networks through Autonomously Scheduled TSCH,º in
SenSys, 2015.

[33] Contiki OS. [Online]. Available: https://github.com/contiki-os/contiki
[34] Orchestra Source Code. [Online]. Available:

https://github.com/simonduq/orchestra
[35] ªWireless Embedded System Testbed at the State Univer-

sity of New York at Binghamton.º [Online]. Available:
https://users.cs.fiu.edu/˜msha/testbed.htm

[36] TelosB Mote Platform. [Online]. Available:
https://www.cs.albany.edu/˜jhh/Resources/TelosB Datasheet.pdf

[37] WiMOD iM282A Datasheet. [Online]. Available: https://wireless-
solutions.de/wp-content/uploads/2019/02/iM282A Datasheet V1 0.pdf

[38] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, ªA Centralized
Scheduling Algorithm for IEEE 802.15.4e TSCH Based Industrial Low
Power Wireless Networks,º in WCNC, 2016.

[39] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, ªOn Optimal Scheduling in Duty-Cycled Industrial IoT
Applications Using IEEE 802.15.4e TSCH,º IEEE Sensors Journal,
vol. 13, no. 10, 2013.

[40] E. Municio and S. LatrÂe, ªDecentralized Broadcast-Based Scheduling
for Dense Multi-Hop TSCH Networks,º in MobiArch, 2016.

[41] A. Aijaz and U. Raza, ªDeAMON: A Decentralized Adaptive Multi-
Hop Scheduling Protocol for 6TiSCH Wireless Networks,º IEEE Sensors

Journal, vol. 17, no. 20, 2017.
[42] J. Shi, M. Sha, and Z. Yang, ªDiGS: Distributed Graph Routing

and Scheduling for Industrial Wireless Sensor-Actuator Networks,º in
ICDCS, 2018.

[43] S. Kim, H.-S. Kim, and C. Kim, ªALICE: Autonomous Link-based Cell
Scheduling for TSCH,º in IPSN, 2019.

[44] X. Cheng and M. Sha, ªATRIA: Autonomous Traffic-Aware Scheduling
for Industrial Wireless Sensor-Actuator Networks,º in ICNP, 2021.

[45] R. Singh, M. Baz, C. Narayana, M. Rashid, A. Gehlot, S. V. Akram, S. S.
Alshamrani, D. Prashar, and A. S. AlGhamdi, ªZigbee and Long-Range
Architecture Based Monitoring System for Oil Pipeline Monitoring with
the Internet of Things,º Sustainability, vol. 13, no. 18, 2021.

